JP2007279083A - 光学補償フィルム、偏光板及び液晶表示装置 - Google Patents

光学補償フィルム、偏光板及び液晶表示装置 Download PDF

Info

Publication number
JP2007279083A
JP2007279083A JP2006101500A JP2006101500A JP2007279083A JP 2007279083 A JP2007279083 A JP 2007279083A JP 2006101500 A JP2006101500 A JP 2006101500A JP 2006101500 A JP2006101500 A JP 2006101500A JP 2007279083 A JP2007279083 A JP 2007279083A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
film
liquid crystal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006101500A
Other languages
English (en)
Inventor
Kenichi Fukuda
謙一 福田
Nobutaka Fukagawa
伸隆 深川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006101500A priority Critical patent/JP2007279083A/ja
Publication of JP2007279083A publication Critical patent/JP2007279083A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】生産性が良好で、且つ光学特性にも優れたプラスチックフィルム、及び液晶表示装置に適用した場合に、コントラストの低下を引き起こさず、液晶表示装置の視野角特性の改善に寄与する光学補償フィルムを提供する。
【解決手段】面内レターデーションが20〜150nmであり、厚さ方向のレターデーションが100〜300nmであり、内部ヘイズが0.6%以下であり、且つ表面ヘイズが0.05%以上であることを特徴とするプラスチックフィルム、及び少なくとも第1の光学異方性層及び第2の光学異方性層を含み、該第1の光学異方性層は面内レターデーションが0〜10nmであり、且つ厚さ方向のレターデーションが−400〜−80nmであって、該第2の光学異方性層が前記プラスチックフィルムであることを特徴とする光学補償フィルムである。
【選択図】 なし

Description

本発明は液晶表示装置の技術分野に関し、特に水平方向に配向した液晶性化合物に横方向の電界を印加することにより表示を行う、インプレーンスイッチング(IPS)モードやFFSモードの液晶表示装置等に関する。また、本発明は、IPSモード等の液晶表示装置の正面コントラスト比の改善に寄与する光学補償フィルム、及びそれを用いた偏光板に関する。
液晶表示装置としては、2枚の直交した偏光板の間に、ネマチック液晶をツイスト配列させた液晶層を挟み、電界を基板に対して垂直な方向にかける方式、いわゆるTNモードが広く用いられている。この方式では、黒表示時に液晶が基板に対して立ち上がるために、斜めから見ると液晶性化合物による複屈折が発生し、光漏れが起こる。この問題に対して、液晶性化合物がハイブリッド配向したフィルムを用いることで、液晶セルを光学的に補償し、この光漏れを防止する方式が実用化されている。しかし、液晶性化合物を用いても液晶セルを問題なく完全に光学的に補償することは非常に難しく、画面下方向での階調反転が抑えきれないという問題を生じていた。
かかる問題を解決するため、横電界を液晶に対して印加する、いわゆるIPSモードやFFSモードによる液晶表示装置や、誘電率異方性が負の液晶を垂直配向してパネル内に形成した突起やスリット電極によって配向分割した垂直配向(VA)モードが提案され、実用化されている。近年、これらのパネルはモニター用途に留まらず、テレビ用途として開発が進められており、それに伴って画面の輝度が大きく向上してきている。このため、これらの動作モードで従来問題とされていなっかった黒表示時の対角位斜め入射方向での僅かな光漏れが、表示品質の低下の原因として顕在化してきた。
この色調や黒表示の視野角を改善する手段の一つとして、液晶層と偏光板の間に複屈折特性を有する光学補償材料を配置することがIPSやFFSモードにおいても検討されている。例えば、傾斜時の液晶層のレターデーションの増減を補償する作用を有する光軸を互いに直交した複屈折媒体を基板と偏光板との間に配置することで、白表示又は中間調表示を斜め方向から直視した場合の色付きが改善できることが開示されている(特許文献1参照)。また、負の固有複屈折を有するスチレン系ポリマーやディスコティック液晶性化合物からなる光学補償フィルムを使用した方法(特許文献2、3、4参照)や光学補償フィルムとして複屈折が正で光学軸がフィルムの面内にある膜と複屈折が正で光学軸がフィルムの法線方向にある膜とを組み合わせる方法(特許文献5参照)、レターデーションが二分の一波長の二軸性の光学補償フィルムを使用する方法(特許文献6参照)、偏光板の保護膜として負のレターデーションを有する膜を使い、この表面に正のレターデーションを有する光学補償層を設ける方式(特許文献7参照)が提案されている。
また、特許文献8には、面内レターデーションReが20nm〜150nmでNzが1.5〜7の延伸したセルロースアシレートフィルム上に棒状液晶を塗布、配向させた補償フィルムを搭載した、IPS液晶装置が提案されている。このIPS液晶装置は、簡易な構成で、表示品位とし視野角が著しく改善されている。
しかしながら、特許文献8で開示されている方法では高レターデーションフィルムが用いられており、従来のセルロースアシレートフィルムはレターデーションが大きくなるに伴いヘイズが増加する傾向にあり、このようなヘイズの増加したフィルムを液晶表示装置の補償フィルムとして用いると、液晶表示装置のコントラストが低下する傾向にあり、更なる改善が求められていた。
また、特許文献9には平均粒径が0.001以上0.1μm未満の1次微粒子を含む平均粒径が0.1〜1.5μmの2次粒子を有する延伸セルロースアシレートフィルムにおいて、フィルム中の添加剤の平均含有量より、2次微粒子近傍の添加剤の含有量を多くすることにより、微粒子の凝集を抑制し、ヘイズを低減させる方法が開示されている。しかし、この方法によっても、ヘイズの低減は不十分であり、改善が求められていた。一方、フィルムのヘイズを低下し過ぎるとフィルム表面が平滑化され、その結果、フィルム搬送時のハンドリング上の問題や、ロール状態で保存した時に表裏面での接着の問題を引き起こす。
特開平9−80424号公報 特開平10−54982号公報 特開平11−202323号公報 特開平9−292522号公報 特開平11−133408号公報 特開平11−305217号公報 特開平10−307291号公報 特開2005−265889号公報 特開2003−301049号公報
本発明の目的は、ロールのハンドリング性や保存性などの生産性が良好で、且つ光学特性にも優れたプラスチックフィルムを提供することである。また、本発明の他の目的は、液晶表示装置に適用した場合に、コントラストの低下を引き起こさず、視野角特性の改善、特にIPS型液晶表示装置の視野角特性の改善に寄与する光学補償フィルム及び偏光板を提供することである。
また、本発明の他の目的は、簡易な構成であり、コントラストが良好であり、且つ視野角特性に優れた液晶表示装置、特にIPS型液晶表示装置を提供することである。
本発明者らは、上記目的を達成するために鋭意検討した結果、光学補償フィルムの部材となるプラスチックフィルムの面内のレターデーション及び厚さ方向のレターデーションを特定の範囲とした上で、内部ヘイズと表面ヘイズをコントロールすることで、製造安定性にも優れ、それを搭載した液晶表示装置のコントラスト低下抑制に有効であるとの知見を得、この知見に基づいてさらに鋭意検討した結果、本発明を完成するに至った。
すなわち、上記課題を解決するための手段は以下の通りである。
[1] 面内レターデーションが20〜150nmであり、厚さ方向のレターデーションが100〜300nmであり、内部ヘイズが0.6%以下であり、且つ表面ヘイズが0.05%以上であることを特徴とするプラスチックフィルム。
[2] 前記プラスチックフィルムが、横一軸延伸法、縦一軸延伸法、同時二軸延伸法又は逐次二軸延伸法により延伸されてなるフィルムである[1]のプラスチックフィルム。
[3] 前記プラスチックフィルムが、セルロースアシレートフィルムであることを特徴とする[1]又は[2]のプラスチックフィルム。
[4] 前記プラスチックフィルムが、セルロースの水酸基をアセチル基及び炭素原子数が3〜22のアシル基で置換して得られたセルロースの混合脂肪酸エステルであるセルロースアシレートから実質的になるセルロースアシレートフィルムであって、アセチル基の置換度Aと、炭素原子数が3〜22のアシル基の置換度Bとが下記数式(I)及び(II)を満たすことを特徴とする[3]のプラスチックフィルム:
数式(I):2.0≦A+B≦3.0
数式(II):0.1≦A≦2.5。
[5] 前記セルロースアシレートフィルムの炭素原子数が、3以上のアシル基がブタノイル基又はプロピオニル基である[4]のプラスチックフィルム。
[6] 前記セルロースアシレートフィルムの炭素原子数が、3以上のアシル基の置換度Bが0.6〜1.0である[4]〜[5]のいずれかのプラスチックフィルム。
[7] 少なくとも第1の光学異方性層及び第2の光学異方性層を含み、該第1の光学異方性層は面内レターデーションが0〜10nmであり、且つ厚さ方向のレターデーションが−400〜−80nmであって、該第2の光学異方性層が[1]〜[6]のいずれかのプラスチックフィルムであることを特徴とする光学補償フィルム。
[8] 前記第1の光学異方性層が、棒状液晶化合物を含有する組成物からなり、前記第1の光学異方性層中、該棒状液晶化合物の分子が層平面に対して実質的に垂直に配向した状態に固定されている[7]の光学補償フィルム。
[9] [7]又は[8]の光学補償フィルムと、偏光層とを有する偏光板。
[10] 前記光学補償フィルムと前記偏光層との間には実質的に等方的な接着剤層、及び/又は実質的に等方的な保護フィルムのみが含まれる[9]の偏光板。
[11] 前記透明保護フィルムが、セルロースアシレート又は環状ポリオレフィンを含むフィルムであり、面内のレターデーションが0〜10nm、厚さ方向のレターデーションが−20〜20nmである[10]の偏光板。
[12] 前記第1の光学異方性層、前記第2の光学異方性層、及び前記偏光層が、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光層の吸収軸の方向とが、実質的に直交している[9]〜[11]のいずれかの偏光板。
[13] 前記第2の光学異方性層、前記第1の光学異方性層、及び前記偏光層が、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光層の吸収軸の方向とが、実質的に平行である[9]〜[11]のいずれかの偏光板。
[14] 一対の基板と、該一対の基板に狭持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル、及び[12]の偏光板を含み、該一対の基板の一方の基板の外側に該基板側から、第1の光学異方性層、第2の光学異方性層、及び偏光層がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に平行になるように前記偏光板が配置され、及び他方の基板の外側にさらに第2の偏光層を有し、双方の偏光層の吸収軸が互いに直交している液晶表示装置。
[15] 一対の基板と、該一対の基板に狭持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル、及び[13]の偏光板を含み、該一対の基板の一方の基板の外側に該基板側から、第2の光学異方性層、第1の光学異方性層、及び偏光層がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に直交するように前記偏光板が配置され、及び他方の基板の外側にさらに第2の偏光層を有し、双方の偏光層の吸収軸が互いに直交している液晶表示装置。
[16] 前記第2の偏光層と前記基板との間には実質的に等方的な接着剤層、及び/又は実質的に等方的な透明保護フィルムのみが含まれる[14]又は[15]の液晶表示装置。
[17] 前記透明保護フィルムはセルロースアシレート又は環状ポリオレフィンを含むフィルムであり、面内のレターデーションが0〜10nm、厚さ方向のレターデーションが−20〜20nmである[16]の液晶表示装置。
[18] ソルベントキャスティング法によってセルロースアシレートフィルムを製造する方法であって、セルロースアシレートの濃度が5〜35質量%の第1の液と、マット剤及びセルロースアシレートを少なくとも含有し、該セルロースアシレートの濃度が0.01〜5質量%未満の第2の液とをそれぞれ準備し、第1の液と第2の液とを混合した混合液Aを、表面に流延することを含むセルロースアシレートフィルムの製造方法。
[19] 前記第2の液がさらにレターデーション発現剤の少なくとも一種を含有する[18]に記載の方法。
[20] レターデーション発現剤及びセルロースアシレートを少なくとも含有し、セルロースアシレートの濃度が5〜35質量%の第3の液を準備し、前記第2及び第3の液を混合した後、前記第1の液を混合して混合液Aを調製することを含む[18]に記載の方法。
[21] レターデーション発現剤及びセルロースアシレートを少なくとも含有し、セルロースアシレートの濃度が5〜35質量%の第3の液と、前記第1の液とを混合した混合液Bを準備し、該混合液Bを表面に流延した後、該流延膜の表面に前記混合液Aを流延する、又は前記混合液Aを表面に流延した後、該流延膜の表面に前記混合液Bを流延する、[18]に記載の方法。
本発明によれば、所定の内部ヘイズと表面ヘイズを有し、更に所定のレターデーションを有するプラスチックフィルムを光学異方性層として用いることにより、IPS型液晶表示装置の視野角特性の改善に寄与する光学補償フィルム及び偏光板を提供することができる。また、本発明によれば、簡易な構成であり、正面コントラストが高く、視野角特性に優れた液晶表示装置を提供することができる。
発明の実施の形態
以下、本発明について更に詳細に説明する。なお、本明細書において、数値が物性値、特性値等を表す場合に、「(数値1)〜(数値2)」という記載は「(数値1)以上(数値2)以下」の意味を表し、その範囲には下限値として数値1及び上限値として数値2が勿論含まれる。また、本明細書において、「(メタ)アクリレート」との記載は、「アクリレート及びメタクリレートの少なくともいずれか」の意味を表す。「(メタ)アクリル酸」等も同様である。
本明細書において「偏光板」とは、特に断らない限り、長尺の偏光板及び液晶装置に組み込まれる大きさに裁断された(本明細書において、「裁断」には「打ち抜き」及び「切り出し」等も含むものとする)偏光板の両者を含む意味で用いられる。また、本明細書では、「偏光膜」及び「偏光板」を区別して用いるが、「偏光板」は「偏光膜」の少なくとも片面に該偏光膜を保護する透明保護膜を有する積層体を意味するものとする。
また、本明細書において、「(メタ)アクリレート」との記載は、「アクリレート及びメタクリレートの少なくともいずれか」の意味を表す。「(メタ)アクリル酸」等も同様である。
本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーションおよび厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADHまたはWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。
測定されるフィルムが1軸または2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は、前記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADHまたはWRが算出する。
尚、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値及び入力された膜厚値を基に、以下の式(1)及び式(2)よりRthを算出することもできる。
Figure 2007279083
注記:
上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値を現す。
式(1)におけるnxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnx及びnyに直交する方向の屈折率を表す。
式(2)
Rth=((nx+ny)/2−nz)×d
測定されるフィルムが1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して−50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
上記の測定において、平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:
セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。
これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHまたはWRはnx、ny、nzを算出する。
なお、本明細書において、特に断らない限り、測定波長は590nmとする。
[プラスチックフィルム]
本発明は面内レターデーションが20〜150nmであり、且つ厚さ方向のレターデーションが100〜300nmであり、内部ヘイズが0.6%以下であり、外部ヘイズが0.05%以上であるプラスチックフィルムに関する。
内部ヘイズが0.6%を超えるとコントラストが低下する。コントラスト低下を抑制するためには内部ヘイズは0.5%以下がより好ましく、0.4%以下が更に好ましく、0.35%以下が特に好ましい。
一方、外部ヘイズが0.05%を切ると表面が平滑すぎて、ロールフィルムの送り出し、巻き取りのためのハンドリング時にハンドリングロールとの滑りが確保できずに、傷の問題が起こる。また、長尺のロール状態で保存中に表裏面が密着の問題を引き起こすことがある。従って、表面ヘイズは0.07%以上がより好ましく、0.10%以上が好ましく、0.12%以上が特に好ましい。
なお、フィルムの内部ヘイズ(Hi)及び表面ヘイズ(Hs)の測定方法に関しては、実施例の(ヘイズの測定)項に記載する。
ところで、プラスチックフィルムのレターデーションを大きくするには、(1)ポリマーの固有複屈折を大きくする、及び(2)ポリマーの配向度を向上させる、という二つの方法が一般的である。本発明者らは、セルロースアシレートフィルムの場合、前記二つの方法がともに内部ヘイズ上昇の要因になっていることをつきとめた。
セルロースアシレートの固有複屈折を大きくするには、アシル化度を低下させる、及び分極率異方性の大きい化合物(以下レターデーション発現剤)をフィルム中にドープすることにより見かけの固有複屈折を増幅する、という2つの方法が従来とられてきた。しかし、第1のアシル化度を低下させる方法は、マット剤として添加される二酸化珪素等の無機化合物分散物の凝集を促進してしまい、内部ヘイズの上昇を引き起こす。また、第2のレターデーション発現剤を添加する方法も、マット剤上でレターデーション発現剤が凝集してしまい、内部ヘイズを上昇させてしまう問題があることをつきとめた。
これに対し本発明者らは、以下に説明する方法により内部ヘイズを上昇させることなく、高レターデーションを付与できることを見出し、本発明を完成させるに至った。すなわち、マット剤分散液あるいは添加剤溶液の少なくとも一方に低濃度(例えば、0.01質量%以上5質量%未満)のセルロースアシレートを添加しておき、流延直前にマット剤液と添加剤液を混合後、さらにドープ液(例えば、セルロースアシレート濃度が5〜35質量%のセルロースアシレート溶液)と混合し、流延直後から急速(好ましい乾燥条件については後述する)に乾燥させ、マット剤及び添加剤の凝集を抑制するものである。また、添加剤の凝集については、(a)マット剤粒子のフィルム表面近傍での存在比率を高めてマット剤を効率的に機能させこれによりマット剤の添加量を低減する、及び(b)マット剤と他添加剤との溶液状態での接触時間を低減させる。また、延伸によるクレーズ発生については、高発現性のレターデーション発現剤により固有複屈折を実質的に向上させ、低延伸倍率でレターデーションを発現させるものである。
以下、本発明のプラスチックフィルムを作製するのに利用可能な材料、及び方法について詳細に説明する。
本発明のプラスチックフィルムは、セルロースアシレートフィルムであるのが好ましい。
(セルロースアシレート)
本発明のプラスチックフィルムの原料として使用可能なセルロースアシレートは、セルロースの構成単位(β1→4グリコシド結合しているグルコース基)に存在している三つの水酸基の少なくとも一部がアシル化された化合物である。セルロースアシレートの置換度は、セルロースの構成単位(β1→4グリコシド結合しているグルコース基)に存在している三つの水酸基がアシル化されている割合を意味する。置換度は、セルロースの構成単位質量当りの結合脂肪酸量を測定して算出することができる。測定方法は、ASTM-D817-91に準じて実施する。
本発明に使用するセルロースアシレートはアセチル化度が2.5以上2.95以下のセルロースアセテートが好ましい。アセチル化度は2.6以上2.85以下がさらに好ましい。また、下記式(A)で表される6位の置換比率が0.31以上であり、全置換度が2.85以下であるセルロースアセテートを使用することがより好ましい。
式(A)
6位の置換比率=6位の置換度/(2位の置換度+3位の置換度+6位の置換度
さらに、本発明に使用するセルロースアシレートは、アシル基としてアセチル基と炭素数3以上22以下のアシル基とを有しており、かつアセチル基の置換度Aと炭素数3〜22のアシル基の置換度Bが下記式(II)及び(III)を満たすセルロースアシレートであるのが好ましい。
(II) 2.0≦A+B≦3.0
(III) 0.1≦A≦2.5
(A+B)はさらに好ましくは2.2以上2.95以下である。また、Aはさらに好ましくは1.0以上2.2以下である。炭素数3以上22以下のアシル基としては、好ましくはプロピオニル基、ブチリル基である。
本発明に使用するセルロースアシレートは、250〜800の重量平均重合度を有することが好ましく、300〜600の重量平均重合度を有することがさらに好ましい。前記セルロースアシレートは、70000〜230000の数平均分子量を有することが好ましく、75000〜230000の数平均分子量を有することがさらに好ましく、78000〜120000の数平均分子量を有することが最も好ましい。
前記セルロースアシレートは、アシル化剤として酸無水物や酸塩化物を用いて合成できる。アシル化剤が酸無水物である場合は、反応溶媒として有機酸(例、酢酸)や塩化メチレンが使用される。触媒としては、硫酸のようなプロトン性触媒が用いられる。アシル化剤が酸塩化物である場合は、触媒として塩基性化合物が用いられる。工業的に最も一般的な合成方法では、セルロースをアセチル基及び他のアシル基に対応する有機酸(例;酢酸、プロピオン酸、酪酸)又はそれらの酸無水物(例;無水酢酸、無水プロピオン酸、無水酪酸)を含む混合有機酸成分でエステル化してセルロースエステルを合成する。この方法において、綿花リンターや木材パルプのようなセルロースは、酢酸のような有機酸で活性化処理した後、硫酸触媒の存在下で、上記のような有機酸成分の混合液を用いてエステル化する場合が多い。有機酸無水物成分は、一般にセルロース中に存在する水酸基の量に対して過剰量で使用する。このエステル化処理では、エステル化反応に加えてセルロース主鎖(β1→4グリコシド結合)の加水分解反応(解重合反応)が進行する。主鎖の加水分解反応が進むとセルロースエステルの重合度が低下し、製造するセルロースエステルフィルムの物性が低下する。そのため、反応温度などの反応条件は、得られるセルロースエステルの重合度や分子量を考慮して決定することが好ましい。
重合度の高い(分子量の大きい)セルロースエステルを得るためには、エステル化反応工程における最高温度を50℃以下に調節することが重要である。最高温度は、好ましくは35〜50℃、さらに好ましくは37〜47℃に調節する。反応温度が35℃未満では、エステル化反応が円滑に進行しない場合がある。反応温度が50℃を越えると、セルロースエステルの重合度が低下しやすい。エステル化反応の後、温度上昇を抑制しながら反応を停止すると、さらに重合度の低下を抑制でき、高い重合度のセルロースエステルを合成できる。すなわち、反応終了後に反応停止剤(例、水、酢酸)を添加すると、エステル化反応に関与しなかった過剰の酸無水物は、加水分解して対応する有機酸を副成する。この加水分解反応は激しい発熱を伴い、反応装置内の温度が上昇する。反応停止剤の添加速度が大きいと、反応装置の冷却能力を超えて急激に発熱する。そのため、セルロース主鎖の加水分解反応が著しく進行し、得られるセルロースエステルの重合度が低下する。また、エステル化の反応中に触媒の一部はセルロースと結合しており、その大部分は反応停止剤の添加中にセルロースから解離する。しかし、反応停止剤の添加速度が大きいと、触媒が解離するために充分な反応時間がなく、触媒の一部がセルロースに結合した状態で残る。強酸の触媒が一部結合しているセルロースエステルは安定性が非常に悪く、製品の乾燥時の熱などで容易に分解して重合度が低下する。これらの理由により、エステル化反応の後、好ましくは4分以上、さらに好ましくは4〜30分の時間をかけて反応停止剤を添加して、反応を停止することが望ましい。なお、反応停止剤の添加時間が30分を越えると、工業的な生産性が低下する。反応停止剤としては、一般に酸無水物を分解する水やアルコールが用いられている。ただし、本発明では、各種有機溶媒への溶解性が低いトリエステルを析出させないために、水と有機酸との混合物が、反応停止剤として好ましく用いられる。以上のような条件でエステル化反応を実施すると、重量平均重合度が500以上である高分子量セルロースエステルを容易に合成することができる。
本発明のプラスチックフィルムは、フィルムを構成するポリマー成分が実質的に上記の定義を有するセルロースアシレートからなることが好ましい。『実質的に』とは、ポリマー成分の55質量%以上(好ましくは70質量%以上、さらに好ましくは80質量%以上)を意味する。フィルム製造の原料としては、セルロースアシレートの粒子形状のものが好ましい。使用される粒子の90質量%以上は、0.5〜5mmの粒子径を有することが好ましい。また、使用する粒子の50質量%以上が1〜4mmの粒子径を有することが好ましい。セルロースアシレート粒子は、なるべく球形に近い形状を有することが好ましい。
本発明のプラスチックフィルムは、レターデーション発現剤溶液とマット剤分散液とをセルロースアシレート濃度が0.01質量%以上5質量%未満の状態で混合した後、セルロースアシレート濃度が5質量%以上35質量%以下の溶液と混合した液を用いて流延することが好ましい。
レターデーション発現剤としては、分子量が200以上2000以下でlogPが2以上の化合物が、マット剤分散液の凝集を抑制する効果が大きく好ましい(Pはオクタノールー水分配係数)。分子量は250以上1500以下がさらに好ましい。logPは4以上がさらに好ましい。
前記添加剤としては、レターデーション発現剤、可塑剤、紫外線吸収剤、レターデーション低減剤、劣化防止剤等の機能を有する化合物を用いることができる。
本発明のプラスチックフィルムの作製には、レターデーション発現剤を用いることが好ましい。レターデーション発現剤を添加してフィルムの固有複屈折を実質的に向上させることにより、低延伸倍率で高Reを発現させることができ、ヘイズ低減と高レターデーション発現を両立させることが可能となる。
以下に本発明において、好ましく使用されるレターデーション発現剤について詳細に説明する。
(レターデーション発現剤)
本発明において使用するレターデーション発現剤の好ましい例としては、下記一般式(1)で表される化合物が挙げられる。以下にこれらの化合物に関して詳細に説明する。
一般式(1)
Figure 2007279083
一般式(1)中、R1〜R7、R9及びR10はそれぞれ独立に水素原子、又は置換基を表し、R8は水素原子、炭素数1〜4のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基又はハロゲン原子を表し、これらの基は置換基を有してもよい。R1〜R10が有してもよい置換基は後述の置換基Tが適用できる。
1〜R5のうち少なくとも1つは電子供与性基を表す。R1、R3又はR5のうちの1つが電子供与性基であることが好ましく、R3が電子供与性基であることがより好ましい。
電子供与性基とはHammetのσp値がO又は負の値のものを表し、Chem.Rev.,91,165(1991).記載のHammetのσp値がO又は負の値のものが好ましく適用でき、より好ましくは−0.85〜0のものが用いられる。例えば、アルキル基、アルコキシ基、アミノ基、水酸基などが挙げられる。
電子供与性基として好ましくはアルキル基、アルコキシ基であり、より好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4である。)である。
1として好ましくは、水素原子又は電子供与性基であり、より好ましくはアルキル基、アルコキシ基、アミノ基、水酸基であり、更に好ましくは、炭素数1〜4のアルキル基、炭素数1〜12のアルコキシ基であり、特に好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)であり、最も好ましくはメトキシ基である。
2として好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、より好ましくは、水素原子、アルキル基、アルコキシ基であり、更に好ましくは水素原子、アルキル基(好ましくは炭素数1〜4、より好ましくはメチル基である。)、アルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)である。特に好ましくは水素原子、メチル基、メトキシ基である。
3として好ましくは、水素原子又は電子供与性基であり、より好ましくは水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、更に好ましくは、アルキル基、アルコキシ基であり、特に好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)である。最も好ましくはn−プロポキシ基、エトキシ基、メトキシ基である。
4として好ましくは、水素原子又は電子供与性基であり、より好ましくは水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、更に好ましくは、水素原子、炭素数1〜4のアルキル基、炭素数1〜12のアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)であり、特に好ましくは水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基であり、最も好ましくは水素原子、メチル基、メトキシ基である。
5として好ましい基は、R2で挙げた基と同じである。
6、R7、R9及びR10として好ましくは水素原子、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、ハロゲン原子であり、より好ましくは、水素原子、ハロゲン原子であり、更に好ましくは水素原子である。
8は水素原子、炭素数1〜4のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基又はハロゲン原子を表し、可能な場合には置換基を有してもよく、置換基としては後述の置換基Tが適用できる。
8として好ましくは炭素数1〜4のアルキル基、炭素数2〜12のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基であり、より好ましくは、炭素数2〜12のアルキニル基、炭素数6〜12のアリール基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基であり、更に好ましくは、炭素数2〜7のアルキニル基、炭素数6〜12のアリール基、炭素数2〜6のアルコキシカルボニル基、炭素数2〜7のアシルアミノ基、シアノ基であり、特に好ましくは、フェニルエチニル基、フェニル基、p−シアノフェニル基、p−メトキシフェニル基、ベンゾイルアミノ基、n−プロポキシカルボニル基、エトキシカルボニル基、メトキシカルボニル基、シアノ基である。
一般式(1)のうちより好ましくは下記一般式(1−A)である。
一般式(1−A)
Figure 2007279083
一般式(1―A)中、R1、R2、R4、R5、R6、R7、R8、R9及びR10はそれぞれ一般式(1)におけるそれらと同義であり、また好ましい範囲も同様である。
一般式(1−A)中、R31はアルキル基を表し、R31で表されるアルキル基は直鎖でも分岐があってもよく、また更に置換基を有してもよい。好ましくは炭素数1〜12のアルキル基、より好ましくは炭素数1〜8のアルキル基、更に好ましくは炭素数1〜6のアルキル基、特に好ましくは炭素数1〜4のアルキル基(例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基などが挙げられる。)を表す。
一般式(1)のうちより好ましくは下記一般式(1−B)である。
一般式(1−B)
Figure 2007279083
一般式(1−B)中、R1、R2、R4、R5、R6、R7、R9、R10は一般式(1)におけるそれらと同義であり、また好ましい範囲も同様である。
一般式(1−B)中、R31は一般式(1−A)におけるそれらと同義であり、また好ましい範囲も同様である。
一般式(1−B)中、Xは炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、カルボニル基、シアノ基又はハロゲン原子を表す。
1、R2、R4、R5がすべて水素原子の場合にはXとして好ましくはアルキル基、アルキニル基、アリール基、アルコキシ基、アリールオキシ基であり、より好ましくは、アリール基、アルコキシ基、アリールオキシ基であり、更に好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4である。)であり、特に好ましくは、メトキシ基、メトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基である。
1、R2、R4、R5のうち少なくとも1つが置換基の場合にはXとして好ましくは炭素数2〜12のアルキニル基、炭素数6〜12のアリール基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基であり、更に好ましくは、炭素数2〜7のアルキニル基、炭素数6〜12のアリール基、炭素数2〜6のアルコキシカルボニル基、炭素数2〜7のアシルアミノ基、シアノ基であり、特に好ましくは、フェニルエチニル基、フェニル基、p−シアノフェニル基、p−メトキシフェニル基、ベンゾイルアミノ基、n−プロポキシカルボニル基、エトキシカルボニル基、メトキシカルボニル基、シアノ基である。
一般式(1)のうち更に好ましくは下記一般式(1−C)である。
一般式(1−C)
Figure 2007279083
一般式(1−C)中、R1、R2、R4、R5、R31及びXは一般式(1−B)におけるそれらと同義であり、また好ましい範囲も同様である。
一般式(1)で表される化合物の中で好ましいのは下記一般式(1−D)で表される化合物である。
一般式(1−D)
Figure 2007279083
一般式(1−D)中、R2、R4及びR5は一般式(1−C)におけるそれらと同義であり、また好ましい範囲も同様である。R41、R42はそれぞれ独立に炭素数1〜4のアルキル基を表す。X1は炭素数2〜7のアルキニル基、炭素数6〜12のアリール基、炭素数2〜6のアルコキシカルボニル基、炭素数2〜7のアシルアミノ基、又はシアノ基を表す。
41は炭素数1〜4のアルキル基を表し、好ましくは炭素数1〜3のアルキル基であり、より好ましくはエチル基、メチル基である。
42は炭素数1〜4のアルキル基を表し、好ましくは炭素数1〜3のアルキル基であり、より好ましくはエチル基、メチル基であり、更に好ましくはメチル基である。
1は炭素数2〜7のアルキニル基、炭素数6〜12のアリール基、炭素数2〜6のアルコキシカルボニル基、炭素数2〜7のアシルアミノ基、シアノ基を表し、好ましくは、フェニルエチニル基、フェニル基、p−シアノフェニル基、p−メトキシフェニル基、ベンゾイルアミノ基、n−プロポキシカルボニル基、エトキシカルボニル基、メトキシカルボニル基、シアノ基である。
一般式(1)のうち最も好ましくは下記一般式(1−E)である。
一般式(1−E)
Figure 2007279083
一般式(1−E)中、R2、R4及びR5は一般式(1−D)におけるそれらと同義であり、また好ましい範囲も同様だが、いずれか1つは−OR13で表される基であり(R13は炭素数1〜4のアルキル基である。)、R41、R42、X1は一般式(1−D)におけるそれらと同義であり、また好ましい範囲も同様である。
好ましくはR4、R5が−OR13で表される基であり、より好ましくはR4が−OR13で表される基である。
13は炭素数1〜4のアルキル基を表し、好ましくは炭素数1〜3のアルキル基であり、より好ましくはエチル基、メチル基であり、更に好ましくはメチル基である。
以下に前述の置換基Tについて説明する。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどの各基が挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどの各基が挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル基、3−ペンチニル基などが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどの各基が挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどの各基が挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどの各基が挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ基、2−ナフチルオキシ基などが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどの各基が挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル基、エトキシカルボニル基などが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニル基などが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ基、ベンゾイルオキシ基などが挙げられる。)、
アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノ基などが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノ基などが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどの各基が挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどの各基が挙げられる。)、
アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ基、エチルチオ基などが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオ基などが挙げられる。)、アルキルスルホニル基又はアリールスルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル基、トシル基などが挙げられる。)、アルキルスルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどの各基が挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどの各環基が挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。
また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
以下に一般式(1)で表される化合物に関して具体例をあげて詳細に説明するが、本発明は以下の具体例によって何ら限定されることはない。
Figure 2007279083
Figure 2007279083
Figure 2007279083
Figure 2007279083
Figure 2007279083
Figure 2007279083
前記一般式(1)で表される化合物は、置換安息香酸とフェノール誘導体の一般的なエステル反応によって合成でき、エステル結合形成反応であればどのような反応を用いてもよい。例えば、置換安息香酸を酸ハロゲン化物に官能基変換した後、フェノールと縮合する方法、縮合剤あるいは触媒を用いて置換安息香酸とフェノール誘導体を脱水縮合する方法などがあげられる。
製造プロセス等を考慮すると置換安息香酸を酸ハロゲン化物に官能基変換した後、フェノールと縮合する方法が好ましい。
本発明に用いるレターデーション発現剤としては、下記一般式(B)及び一般式(C)で表される化合物が、マット剤の凝集抑制効果が大きく、特に好ましい。
以下に、一般式(B)で表される化合物に関して詳細に説明する。
一般式(B)
Ar1−L1−X−L2−Ar2
(式中、Ar1及びAr2はそれぞれアリール基又は芳香族ヘテロ環を表す。L1及びL2はそれぞれ、−C(=O)O−又は−C(=O)NR−を表す(Rは水素原子またアルキル基を表す。)。Xは下記一般式(2)又は一般式(3)を表す。)
一般式(2)
Figure 2007279083
(R1、R2、R3、R4、R5、R6、R7及びR8は水素原子又は置換基を表す。)
一般式(3)
Figure 2007279083
(R11、R12、R13、R14、R15、R16、R17及びR18は水素原子又は置換基を表す。)
一般式(B)中、Ar1、Ar2はアリール基又は芳香族ヘテロ環を表し、Ar1、Ar2で表されるアリール基として好ましくは炭素数6〜30のアリール基であり、単環であってもよいし、更に他の環と縮合環を形成してもよい。また、可能な場合には置換基を有してもよく、置換基としては後述の置換基Tが適用できる。
一般式(B)中、Ar1、Ar2で表されるアリール基としてより好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル基、p−メチルフェニル基、ナフチル基などが挙げられる。
一般式(B)中、Ar1、Ar2で表される芳香族ヘテロ環としては酸素原子、窒素原子あるいは硫黄原子のうち少なくとも1つを含む芳香族ヘテロ環であれば何でもよいが、好ましくは5ないし6員環の酸素原子、窒素原子あるいは硫黄原子のうち少なくとも1つを含む芳香族ヘテロ環である。また、可能な場合には更に置換基を有してもよい。置換基としては後述の置換基Tが適用できる。
一般式(B)中、Ar1、Ar2で表される芳香族ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデン、ピロロトリアゾール、ピラゾロトリアゾールなどの環基が挙げられる。芳香族ヘテロ環として好ましくは、ベンズイミダゾール環、ベンズオキサゾール環、ベンズチアゾール環、ベンゾトリアゾール環である。
一般式(B)中、L1、L2は−C(=O)O−、−C(=O)NR−を表し(Rは水素原子又はアルキル基を表す)、どちらも同様に好ましい。
Rは水素原子又はアルキル基を表し、Rとして好ましくは水素原子又は、炭素数1〜6アルキル基であり、より好ましくは水素原子、又は炭素数1〜4のアルキル基であり、更に好ましくは水素原子、メチル基であり、特に好ましくは水素原子である。
1、R2、R3、R4、R5、R6、R7及びR8はそれぞれ独立に水素原子又は置換基を表し、置換基としては後述の置換基Tが適用できる。
1、R2、R3、R4、R5、R6、R7及びR8として好ましくは、水素原子、アルキル基、アミノ基、アルコキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは、水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、ヒドロキシ基、ハロゲン原子であり、更に好ましくは水素原子、メチル基、メトキシ基、ヒドロキシ基、塩素原子、フッ素原子であり、特に好ましくは水素原子、フッ素原子であり、最も好ましくは水素原子である。
11、R12、R13、R14、R15、R16、R17及びR18はそれぞれ独立に水素原子又は置換基を表し、置換基としては後述の置換基Tが適用できる。
11、R12、R13、R14、R15、R16、R17及びR18として好ましくは、水素原子、アルキル基、アミノ基、アルコキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは、水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、ヒドロキシ基、ハロゲン原子であり、更に好ましくは水素原子、メチル基、メトキシ基、ヒドロキシ基、塩素原子、フッ素原子であり、特に好ましくは水素原子、フッ素原子であり、最も好ましくは水素原子である。
一般式(B1)
Figure 2007279083
一般式(B1)中、R21、R22、R23、R24、R25、R26、R27、R28、R29及びR30はそれぞれ独立に水素原子又は置換基を表す。L1、L2及びXは上記一般式(1)におけるそれらと同義であり、また好ましい範囲も同様である。
21、R26はそれぞれ独立に水素原子又は置換基を表し、R21、R26として好ましくはアルキル基、アルコキシ基、アミノ基、水酸基であり、より好ましくは、炭素数1〜4のアルキル基、炭素数1〜12のアルコキシ基であり、更に好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)であり、特に好ましくはメトキシ基である。
22、R27はそれぞれ独立に水素原子又は置換基を表し、R22、R27として好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、より好ましくは、水素原子、アルキル基、アルコキシ基であり、更に好ましくは水素原子、アルキル基(好ましくは炭素数1〜4、より好ましくはメチル基である。)、アルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)である。特に好ましくは水素原子、メチル基、メトキシ基である。
23、R28はそれぞれ独立に水素原子又は置換基を表し、R23、R28として好ましくは水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、更に好ましくは、アルキル基、アルコキシ基であり、特に好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)である。最も好ましくはn−プロポキシ基、エトキシ基、メトキシ基である
24、R29はそれぞれ独立に水素原子又は置換基を表し、R24、R29として好ましくは水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、更に好ましくは、水素原子、炭素数1〜4のアルキル基、炭素数1〜12のアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)であり、特に好ましくは水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基であり、最も好ましくは水素原子、メチル基、メトキシ基である。
25、R30はそれぞれ独立に水素原子又は置換基を表し、R25、R30として好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、より好ましくは、水素原子、アルキル基、アルコキシ基であり、更に好ましくは水素原子、アルキル基(好ましくは炭素数1〜4より好ましくはメチル基である。)、アルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6特に好ましくは炭素数1〜4)である。特に好ましくは水素原子、メチル基、メトキシ基である。
一般式(B)のうちより好ましくは一般式(B2)である。
一般式(B2)
Figure 2007279083
一般式(B2)中、R21、R22、R23、R24、R25、R26、R27、R28、R29、R30、L1、L2及びXは上記一般式(B1)におけるそれらと同義であり、また好ましい範囲も同様である。R31は炭素数1〜12のアルキル基を表す。
一般式(B2)中、R31は炭素数1〜12のアルキル基を表し、R31で表されるアルキル基は直鎖でも分岐があってもよく、また更に置換基を有してもよいが、好ましくは炭素数1〜12のアルキル基、より好ましくは炭素数1〜8アルキル基、更に好ましくは炭素数1〜6アルキル基、特に好ましくは炭素数1〜4のアルキル基(例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基などが挙げられる)を表す。
一般式(B)のうち更に好ましくは一般式(B3)である。
一般式(B3)
Figure 2007279083
一般式(B3)中、R22、R23、R24、R25、R26、R27、R28、R29、R30、R31、L1、L2及びXは一般式(B2)におけるそれらと同義であり、また好ましい範囲も同様である。R32は水素原子又は炭素数1〜4のアルキル基を表す。
32は水素原子又は炭素数1〜4のアルキル基を表し、好ましくは水素原子又は炭素数1〜3のアルキル基であり、より好ましくは水素原子、メチル基、エチル基であり、更に好ましくは水素原子又はメチル基であり、特に好ましくはメチル基である。
一般式(B)のうち特に好ましくは一般式(B4)である。
一般式(B4)
Figure 2007279083
一般式(B4)中、R22、R23、R25、R26、R27、R28、R29、R30、R31、R32、L1、L2及びXは一式(B3)におけるそれらと同義であり、また好ましい範囲も同様である。R33は炭素数1〜4のアルキル基を表す。
33は炭素数1〜4のアルキル基を表し、好ましくは炭素数1〜3のアルキル基であり、より好ましくはメチル基、エチル基であり、更に好ましくはメチル基である。
以下に前述の置換基Tについて説明する。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどの各基が挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどの各基が挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル基、3−ペンチニル基などが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどの各基が挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどの各基が挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどの各基が挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ基、2−ナフチルオキシ基などが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどの各基が挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどの各基が挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニル基などが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ基、ベンゾイルオキシ基などが挙げられる。)、
アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノ基などが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノ基などが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどの各基が挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどの各基が挙げられる。)、
アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ基、エチルチオ基などが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオ基などが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル基、トシル基などが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどの各基が挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどの各環基が挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。
また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
以下に一般式(B)で表される化合物に関して具体例をあげて詳細に説明するが、本発明は以下の具体例によって何ら限定されることはない。
Figure 2007279083
Figure 2007279083
Figure 2007279083
Figure 2007279083
Figure 2007279083
前記一般式(B1)〜(B4)のいずれかで表される化合物は置換安息香酸とフェノール、あるいはアニリン誘導体の一般的なエステル化反応、アミド化反応によって合成でき、エステル結合形成反応であればどのような反応を用いてもよい。例えば、置換安息香酸を酸ハロゲン化物に官能基変換した後、フェノール、あるいはアニリン誘導体と縮合する方法、縮合剤あるいは触媒を用いて置換安息香酸とフェノール、あるいはアニリン誘導体を脱水縮合する方法などがあげられる。
製造プロセス等を考慮すると置換安息香酸を酸ハロゲン化物に官能基変換した後、フェノール、あるいはアニリン誘導体と縮合する方法が好ましい。
本発明において、前記レターデーション発現剤の添加量はセルロースアシレート100質量部に対して、1〜30質量%が好ましく、2〜25質量%がさらに好ましい。この範囲で前記化合物を用いることにより、ブリードアウトを生じることなくレターデーションを上昇させることができる。
前記レターデーション発現剤は、アルコールやメチレンクロライド、ジオキソランの有機溶媒にセルロースアシレート濃度が0.01質量%以上5質量%未満の状態で溶解してから、マット剤分散液と混合したのち、セルロースアシレート濃度が5質量%以上35質量%以下のセルロースアシレート溶液(ドープ)に添加することが好ましい。レターデーション発現剤溶液のセルロースアシレート濃度は0.1質量%以上3質量%未満がさらに好ましい。
また、セルロースアシレート溶液の中のセルロアシレート濃度は10質量%以上30質量%以下がさらに好ましい。このような添加方法をとることにより、所望のレターデーションで、且つヘイズの低いプラスチックフィルムを得ることができる。
(マット剤微粒子)
本発明のプラスチックフィルムには、マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。これらの微粒子の中ではケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子径が1nm以上20nm以下であり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができて、より好ましい。見かけ比重は90〜200g/リットル以上が好ましく、100〜200g/リットル以上がさらに好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
これらの微粒子は、通常平均粒子径が0.05〜2.0μmの2次粒子を形成し、これらの微粒子はフィルム中では、1次粒子の凝集体として存在し、フィルム表面に0.05〜2.0μmの凹凸を形成させる。2次平均粒子径は0.05μm以上1.0μm以下が好ましく、0.1μm以上0.7μm以下がさらに好ましく、0.1μm以上0.4μm以下が最も好ましい。1次、2次粒子径はフィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とした。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子径とする。
二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
これらの中でアエロジル200V、アエロジルR972Vが1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上である二酸化珪素の微粒子であり、光学フィルムのヘイズを低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。
本発明において、前記マット剤は以下の方法により調製することが好ましい。溶剤と微粒子を撹拌混合した微粒子分散液をあらかじめ調製し、この微粒子分散液を別途用意したセルロースアシレート濃度が5質量%未満で分子量200以上2000以下でlogPが2以上の添加剤を1〜40質量%含む溶液に加えて撹拌溶解し、さらにメインのセルロースアシレートドープ液と混合する方法が好ましい。この方法により流延されたフィルムを延伸することにより、内部ヘイズが低く、所望のレターデーションのプラスチックフィルムが得られる。
マット剤分散剤と添加剤溶液の混合、及びセルロースアシレート液との混合にはインラインミキサーを使用することが好ましい。本発明のプラスチックフィルムはこれらの方法によって製造されたものに限定されないが、二酸化珪素微粒子を溶剤などと混合して分散するときの二酸化珪素の濃度は5〜30質量%が好ましく、10〜25質量%が更に好ましく、15〜20質量%が最も好ましい。分散濃度が高い方が同量の添加量に対する濁度は低くなり、ヘイズ、凝集物が良化するため好ましい。最終的なセルロースアシレートのドープ溶液中でのマット剤の添加量は0.001〜1.0質量%が好ましく、0.005〜0.5質量%が更に好ましく、0.01〜0.1質量%が最も好ましい。
(プラスチックフィルムの製造)
本発明のプラスチックフィルムは、ソルベントキャスト法により製造する。ソルベントキャスト法では、例えば、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフィルムを製造する。
有機溶媒は、炭素原子数が3〜12のエーテル、炭素原子数が3〜12のケトン、炭素原子数が3〜12のエステル及び炭素原子数が1〜6のハロゲン化炭化水素から選ばれる溶媒を含むことが好ましい。
エーテル、ケトン及びエステルは、環状構造を有していてもよい。エーテル、ケトン及びエステルの官能基(すなわち、−O−、−CO−及びCOO−)のいずれかを二つ以上有する化合物も、有機溶媒として用いることができる。有機溶媒は、アルコール性水酸基のような他の官能基を有していてもよい。二種類以上の官能基を有する有機溶媒の場合、その炭素原子数はいずれかの官能基を有する溶媒の上記した好ましい炭素原子数範囲内であることが好ましい。
炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、テトラヒドロフラン、アニソール及びフェネトールが含まれる。
炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロヘキサノン及びメチルシクロヘキサノンが含まれる。
炭素原子数が3〜12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート及びペンチルアセテートが含まれる。
二種類以上の官能基を有する有機溶媒の例には、2-エトキシエチルアセテート、2-メトキシエタノール及び2-ブトキシエタノールが含まれる。
ハロゲン化炭化水素の炭素原子数は、1又は2であることが好ましく、1であることが最も好ましい。ハロゲン化炭化水素のハロゲンは、塩素であることが好ましい。ハロゲン化炭化水素の水素原子が、ハロゲンに置換されている割合は、25〜75モル%であることが好ましく、30〜70モル%であることがより好ましく、35〜65モル%であることがさらに好ましく、40〜60モル%であることが最も好ましい。メチレンクロリドが、代表的なハロゲン化炭化水素である。
本発明では、前記有機溶媒として、メチレンクロライドとアルコールとの混合液を用いることが好ましく、メチレンクロライドに対するアルコールの比率は1質量%以上50質量%以下が好ましく、10質量%以上40質量%以下が好ましく、12質量%以上30質量%以下が最も好ましい。アルコールとしてはメタノール、エタノール、n−ブタノールが好ましく、2種類以上のアルコールを混合して使用してもよい。
0℃以上の温度(常温又は高温)で処理することからなる一般的な方法で、セルロースアシレート溶液を調製することができる。溶液の調製は、通常のソルベントキャスト法におけるドープの調製方法及び装置を用いて実施することができる。なお、一般的な方法の場合は、有機溶媒としてハロゲン化炭化水素(特にメチレンクロリド)を用いることが好ましい。
セルロースアシレートの量は、得られる溶液中に10〜40質量%含まれるように調整する。セルロースアシレートの量は、10〜30質量%であることがさらに好ましい。有機溶媒(主溶媒)中には、後述する任意の添加剤を添加しておいてもよい。
溶液は、常温(0〜40℃)でセルロースアシレートと有機溶媒とを攪拌することにより調製することができる。高濃度の溶液は、加圧及び加熱条件下で攪拌してもよい。具体的には、セルロースアシレートと有機溶媒とを加圧容器に入れて密閉し、加圧下で溶媒の常温における沸点以上、かつ溶媒が沸騰しない範囲の温度に加熱しながら攪拌する。
加熱温度は、通常は40℃以上であり、好ましくは60〜200℃であり、さらに好ましくは80〜110℃である。
各成分は予め粗混合してから容器に入れてもよい。また、順次容器に投入してもよい。容器は攪拌できるように構成されている必要がある。窒素ガス等の不活性気体を注入して容器を加圧することができる。また、加熱による溶媒の蒸気圧の上昇を利用してもよい。あるいは、容器を密閉後、各成分を圧力下で添加してもよい。
加熱する場合、容器の外部より加熱することが好ましい。例えば、ジャケットタイプの加熱装置を用いることができる。また、容器の外部にプレートヒーターを設け、配管して液体を循環させることにより容器全体を加熱することもできる。
容器内部に攪拌翼を設けて、これを用いて攪拌することが好ましい。攪拌翼は、容器の壁付近に達する長さのものが好ましい。攪拌翼の末端には、容器の壁の液膜を更新するため、掻取翼を設けることが好ましい。
容器には、圧力計、温度計等の計器類を設置してもよい。容器内で各成分を溶剤中に溶解する。調製したドープは冷却後容器から取り出すか、あるいは、取り出した後、熱交換器等を用いて冷却する。
冷却溶解法により、溶液を調製することもできる。冷却溶解法では、通常の溶解方法では溶解させることが困難な有機溶媒中にもセルロースアシレートを溶解させることができる。なお、通常の溶解方法でセルロースアシレートを溶解できる溶媒であっても、冷却溶解法によると迅速に均一な溶液が得られるとの効果がある。
冷却溶解法では最初に、室温で有機溶媒中にセルロースアシレートを撹拌しながら徐々に添加する。セルロースアシレートの量は、この混合物中に10〜40質量%含まれるように調整することが好ましい。セルロースアシレートの量は、10〜30質量%であることがさらに好ましい。さらに、混合物中には後述する任意の添加剤を添加しておいてもよい。
次に、混合物を−100〜−10℃(好ましくは−80〜−10℃、さらに好ましくは−50〜−20℃、最も好ましくは−50〜−30℃)に冷却する。冷却は、例えば、ドライアイス・メタノール浴(−75℃)や冷却したジエチレングリコール溶液(−30〜−20℃)中で実施できる。冷却によりセルロースアシレートと有機溶媒の混合物は固化する。
冷却速度は、4℃/分以上であることが好ましく、8℃/分以上であることがさらに好ましく、12℃/分以上であることが最も好ましい。冷却速度は、速いほど好ましいが、10000℃/秒が理論的な上限であり、1000℃/秒が技術的な上限であり、そして100℃/秒が実用的な上限である。なお、冷却速度は、冷却を開始する時の温度と最終的な冷却温度との差を、冷却を開始してから最終的な冷却温度に達するまでの時間で割った値である。
さらに、これを0〜200℃(好ましくは0〜150℃、さらに好ましくは0〜120℃、最も好ましくは0〜50℃)に加温すると、有機溶媒中にセルロースアシレートが溶解する。昇温は、室温中に放置するだけでもよく、温浴中で加温してもよい。
加温速度は、4℃/分以上であることが好ましく、8℃/分以上であることがさらに好ましく、12℃/分以上であることが最も好ましい。加温速度は、速いほど好ましいが、10000℃/秒が理論的な上限であり、1000℃/秒が技術的な上限であり、そして100℃/秒が実用的な上限である。なお、加温速度は、加温を開始する時の温度と最終的な加温温度との差を加温を開始してから最終的な加温温度に達するまでの時間で割った値である。
以上のようにして、均一な溶液が得られる。なお、溶解が不充分である場合は冷却、加温の操作を繰り返してもよい。溶解が充分であるかどうかは、目視により溶液の外観を観察するだけで判断することができる。
冷却溶解法においては、冷却時の結露による水分混入を避けるため、密閉容器を用いることが望ましい。また、冷却加温操作において、冷却時に加圧し、加温時の減圧すると、溶解時間を短縮することができる。加圧及び減圧を実施するためには、耐圧性容器を用いることが望ましい。
本発明のプラスチックフィルムは固形分濃度が17質量%以上25質量%以下のドープを用いて製膜されることが好ましい。さらに好ましくは、18質量%以上24質量%以下であり、最も好ましくは19質量%以上22質量%以下である。
上記範囲の固形分濃度のドープを用いて製膜することにより、製膜過程でのセルロースアシレートの結晶化を抑制でき、かつ不溶解物に起因する面状故障を防止することができる。
本発明では、調製したセルロースアシレート溶液(ドープ)から、ソルベントキャスト法によりプラスチックフィルムを製造するのが好ましい。ドープにはレターデーション発現剤を添加することが好ましい。
ドープは、ドラム又はバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が18〜35%となるように濃度を調整することが好ましい。ドラム又はバンドの表面は、鏡面状態に仕上げておくことが好ましい。ドープは、表面温度が10℃以下のドラム又はバンド上に流延することが好ましい。
ソルベントキャスト法における乾燥方法については、米国特許第2336310号、同2367603号、同2492078号、同2492977号、同2492978号、同2607704号、同2739069号、同2739070号、英国特許640731号、同736892号の各明細書、特公昭45−4554号、同49−5614号、特開昭60−176834号、同60−203430号、同62−115035号の各公報に記載がある。バンド又はドラム上での乾燥は空気、窒素などの不活性ガスを送風することにより行なうことができる。
本発明のプラスチックフィルムはドープを支持体に流延した直後から風速1m/min以上の風をあてて乾燥することが好ましい。乾燥風の風速は3m/min以上がさらに好ましく、より好ましくは5m/min以上であり、10m/min以上が最も好ましい。
また本発明のプラスチックフィルムは、支持体上の平均乾燥温度と平均風量が下記関係を満たす工程を経て製造されることが好ましい。
支持体前半部において:
{乾燥風の平均温度(℃)×乾燥風の平均風速(m/min)}>支持体
後半の乾燥において:
{乾燥風の平均温度(℃)×乾燥風の平均風速(m/min)}
より好ましくは、支持体前半部において:
{乾燥風の平均温度(℃)×乾燥風の平均風速(m/min)}>支持体
後半の乾燥において:
{乾燥風の平均温度(℃)×乾燥風の平均風速(m/min)}+4000
である。
ここで乾燥風の平均温度とは、所定の期間における乾燥風の10秒ごとに記録した乾燥温度の平均値であり、平均風速とは所定の期間における乾燥風の10秒ごとに記録した風速の平均値を表す。
上記の如く、流延初期から急激に乾燥させることにより、フィルム中におけるマット剤微粒子、及び添加剤の拡散速度が低下し、マット剤微粒子の凝集及び添加剤の凝集を抑制することができる。さらに、前記の如くマット剤微粒子を最上層のドープ液にのみ添加した場合、流延後のマット剤微粒子の最上層から下層への拡散混合を抑制でき、より少ない添加量でマット剤微粒子の表面ヘイズを確保し、スベリ効果を発現させられる。いずれの場合もマット剤起因の内部ヘイズの上昇を抑制でき好ましい。
得られたフィルムをドラム又はバンドから剥ぎ取り、さらに100℃〜160℃まで逐次温度を変えた高温風で乾燥して残留溶剤を蒸発させることもできる。以上の方法は、特公平5−17844号公報に記載がある。この方法によると、流延から剥ぎ取りまでの時間を短縮することが可能である。この方法を実施するためには、流延時のドラム又はバンドの表面温度においてドープがゲル化することが必要である。
調整したセルロースアシレート溶液(ドープ)を用いて二層以上の流延を行いフィルム化することもできる。この場合、ソルベントキャスト法によりプラスチックフィルムを作製することが好ましい。ドープは、ドラム又はバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が10〜40%の範囲となるように濃度を調整することが好ましい。ドラム又はバンドの表面は、鏡面状態に仕上げておくことが好ましい。
二層以上の複数のセルロースアシレート液を流延する場合、複数のセルロースアシレート溶液を流延することが可能で、支持体の進行方向に間隔をおいて設けられた複数の流延口からセルロースアシレートを含む溶液をそれぞれ流延させて積層させながらフィルムを作製してもよい。例えば、特開昭61−158414号、特開平1−122419号、及び、特開平11−198285号の各公報に記載の方法を用いることができる。また、2つの流延口からセルロースアシレート溶液を流延することによってもフィルム化することもできる。例えば、特公昭60−27562号、特開昭61−94724号、特開昭61−947245号、特開昭61−104813号、特開昭61−158413号、及び、特開平6−134933号の各公報に記載の方法を用いることができる。また、特開昭56−162617号公報に記載の高粘度セルロースアシレート溶液の流れを低粘度のセルロースアシレート溶液で包み込み、その高・低粘度のセルロースアシレート溶液を同時に押し出すセルロースアシレートフィルムの流延方法を用いることもできる。
また、二個の流延口を用いて、第一の流延口により支持体に成形したフィルムを剥ぎ取り、支持体面に接していた側に第二の流延を行うことにより、フィルムを作製することもできる。例えば、特公昭44−20235号公報に記載の方法を挙げることができる。
流延するセルロースアシレート溶液は、同一の溶液を用いてもよいし、異なるセルロースアシレート溶液を用いてもよい。複数のセルロースアシレート層に機能をもたせるために、その機能に応じたセルロースアシレート溶液を、それぞれの流延口から押し出せばよい。さらに本発明のセルロースアシレート溶液は、他の機能層(例えば、接着層、染料層、帯電防止層、アンチハレーション層、紫外線吸収層、偏光層など)と同時に流延することもできる。
従来の単層液では、必要なフィルムの厚さにするためには高濃度で高粘度のセルロースアシレート溶液を押し出すことが必要である。その場合セルロースアシレート溶液の安定性が悪くて固形物が発生し、ブツ故障となったり、平面性が不良となったりして問題となることが多かった。この問題の解決方法として、複数のセルロースアシレート溶液を流延口から流延することにより、高粘度の溶液を同時に支持体上に押し出すことができ、平面性も良化し優れた面状のフィルムが作製できるばかりでなく、濃厚なセルロースアシレート溶液を用いることで乾燥負荷の低減化が達成でき、フィルムの生産スピードを高めることができる。
[延伸処理]
本発明のプラスチックフィルムは、延伸処理されることが好ましい。延伸処理により所望のレターデーションを付与することが可能である。
プラスチックフィルムの延伸方向は幅方向、長手方向のいずれでも好ましい。横一軸延伸法、縦一軸延伸法、同時二軸延伸法又は逐次二軸延伸法のいずれの方法により延伸を行ってもよい。
幅方向に延伸する方法は、例えば、特開昭62−115035号、特開平4−152125号、同4−284211号、同4−298310号、同11−48271号などの各公報に記載されている。フィルムの延伸は、常温又は加熱条件下で実施する。加熱温度は、フィルムのガラス転移温度以下であることが好ましい。長手方向の延伸の場合、例えば、フィルムの搬送ローラーの速度を調節して、フィルムの剥ぎ取り速度よりもフィルムの巻き取り速度の方を速くするとフィルムは延伸される。幅方向の延伸の場合、フィルムの巾をテンターで保持しながら搬送して、テンターの巾を徐々に広げることによってもフィルムを延伸できる。フィルムの乾燥後に、延伸機を用いて延伸すること(好ましくはロング延伸機を用いる一軸延伸)もできる。
本発明のプラスチックフィルムは延伸時の残留溶剤含量は1質量%以上30質量%以下が好ましく、1質量%以上25質量%以下が好ましく、3質量%以上20質量%以下が最も好ましい。
また、延伸温度は残留溶剤含量が0.5%未満におけるフィルムのガラス転移点(Tg)に対して下記範囲であることが好ましい。
(Tg−30)℃≦延伸温度≦(Tg+10)℃
さらに好ましくは
(Tg−25)℃≦延伸温度≦(Tg)℃
であり、最も好ましくは
(Tg−20)℃≦延伸温度≦(Tg−5)℃
である。
ガラス転移温度は下記の方法により測定できる。
フィルム試料(未延伸)5mm×30mmを、25℃60%RHで2時間以上調湿した後に動的粘弾性測定装置(バイブロン:DVA−225(アイティー計測制御株式会社製))で、つかみ間距離20mm、昇温速度2℃/分、測定温度範囲30℃〜200℃、周波数1Hzで測定した。縦軸に対数軸で貯蔵弾性率、横軸に線形軸で温度(℃)をとった時に、貯蔵弾性率が固体領域からガラス転移領域へ移行する際に見受けられる貯蔵弾性率の急激な減少を固体領域で直線1を引き、ガラス転移領域で直線2を引いた。
この直線1と直線2の交点は、昇温時に貯蔵弾性率が急激に減少しフィルムが軟化し始める温度すなわち、ガラス転移領域に移行し始める温度であり、これをガラス転移温度Tg(動的粘弾性)とする。
上記温度範囲で延伸を行うことにより、クレージングによるヘイズ上昇及び結晶化によるヘイズ上昇の双方を抑制することができる。
残留溶剤を含んだ状態で一定の時間で延伸することが好ましい。延伸開始時の残留溶剤含量は流延前の溶剤含量の5%以上100%以下が好ましく、10%以上50%以下がさらに好ましい。延伸終了時の残留溶剤含量は0.1%以上50%以下が好ましく、1%以上30%以下がさらに好ましい。
延伸時間は10秒以上120秒以下が好ましく、20秒以上90秒以下がさらに好ましい。
延伸時の雰囲気温度は100℃以上160℃以下が好ましく、120℃以上150℃以下がさらに好ましい。
フィルムの延伸倍率は、1%〜100%が好ましく、5%〜90%がさらに好ましい。なお、本発明において、フィルムの延伸倍率とは、(延伸後の寸法/延伸前の寸法)−1}×100(%)を指すものとする。
[添加剤]
本発明のプラスチックフィルムはレターデーション発現剤の他に紫外線吸収剤、可塑剤等の添加剤を含有することが好ましい。
<紫外線吸収剤>
本発明のプラスチックフィルムは紫外線吸収剤を含有してもよい。
紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等を挙げることができるが、着色の少ないベンゾトリアゾール系化合物が好ましい。また、特開平10−182621号公報、特開平8−337574号公報記載の紫外線吸収剤、特開平6−148430号公報記載の高分子紫外線吸収剤も好ましく用いられる。本発明のプラスチックフィルムを偏光板の保護フィルムとして用いる場合、紫外線吸収剤としては、偏光子や液晶の劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、且つ、液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。
本発明に有用なベンゾトリアゾール系紫外線吸収剤の具体例として、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’−(3’’,4’’,5’’,6’’−テトラヒドロフタルイミドメチル)−5’−メチルフェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物等を挙げることができるが、これらに限定されない。また、市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)326、チヌビン(TINUVIN)328(何れもチバ・スペシャリティ・ケミカルズ社製)を好ましく使用できる。
<可塑剤>
本発明のプラスチックフィルムには機械的物性を改良するために、以下の可塑剤を用いることができる。可塑剤としては、リン酸エステル又はカルボン酸エステルが用いられる。リン酸エステルの例には、トリフェニルフォスフェート(TPP)及びトリクレジルホスフェート(TCP)が含まれる。カルボン酸エステルとしては、フタル酸エステル及びクエン酸エステルが代表的である。フタル酸エステルの例には、ジメチルフタレート(DMP)、ジエチルフタレート(DEP)、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)、ジフェニルフタレート(DPP)及びジエチルヘキシルフタレート(DEHP)が含まれる。クエン酸エステルの例には、O−アセチルクエン酸トリエチル(OACTE)及びO−アセチルクエン酸トリブチル(OACTB)が含まれる。その他のカルボン酸エステルの例には、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。フタル酸エステル系可塑剤(DMP、DEP、DBP、DOP、DPP、DEHP)が好ましく用いられる。DEP及びDPPが特に好ましい。
可塑剤の添加量は、セルロースアセテートの量の0.1〜25質量%であることが好ましく、1〜20質量%であることがさらに好ましく、3〜15質量%であることが最も好ましい。
<劣化防止剤>
また、本発明のプラスチックフィルムには、劣化防止剤(例、酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、アミン)を添加してもよい。劣化防止剤については、特開平3−199201号、同5−1907073号、同5−194789号、同5−271471号、同6−107854号の各公報に記載がある。劣化防止剤の添加量は、調製する溶液(ドープ)の0.01〜1質量%であることが好ましく、0.01〜0.2質量%であることがさらに好ましい。添加量が0.01質量%未満であると、劣化防止剤の効果がほとんど認められない。添加量が1質量%を越えると、フィルム表面への劣化防止剤のブリードアウト(滲み出し)が認められる場合がある。特に好ましい劣化防止剤の例としては、ブチル化ヒドロキシトルエン(BHT)、トリベンジルアミン(TBA)を挙げることができる。
これら流延から後乾燥までの工程は、空気雰囲気下でもよいし窒素ガスなどの不活性ガス雰囲気下でもよい。本発明のプラスチックフィルムの製造には、一般的に使用されている巻き取り機を用いてもよく、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法などの巻き取り方法で巻き取ることができる。
[フィルムの物性]
<フィルムのヘイズ>
本発明のプラスチックフィルムの全ヘイズは0.05〜0.8%であることが好ましい。より好ましくは0.05〜0.7%である。全ヘイズが0.8%以上になると液晶表示装置のコントラストの低下が著しい。全ヘイズが低いほど光学的性能が優れるが原料選択や製造管理また、ロールフィルムのハンドリング性も考慮すると上記範囲が好ましい。
内部ヘイズと表面と表面ヘイズの好ましい範囲に関しては前記の通りである。
フィルムのヘイズは大きく2つの要因によって上昇する。第1はマット剤粒子の凝集による2次粒径の増大、第2は延伸処理によるフィルム中の空隙の増大である。セルロースアシレートのアシル化度及びアシル基の種類を適度に調節すること、及び/あるいは上記した通り分極率異方性の高いレターデーション発現剤を用いることにより、前記2つのヘイズ上昇要因の全てを効果的に抑制できる。
なおヘイズの測定は、本発明のプラスチックフィルム試料40mm×80mmを、25℃,60%RHでヘイズメーター(HGM−2DP、スガ試験機)でJIS K−6714に従って測定した。
なお全ヘイズ(H)、内部ヘイズ(Hi)及び表面ヘイズ(Hs)の測定方法詳細に関しては実施例の(ヘイズの測定)項に記載する。
<プラスチックフィルムの熱膨張係数>
本発明のプラスチックフィルムの熱膨張係数は熱機械測定装置で一定荷重で昇温させた場合の温度あたりの寸度変化として測定することができる。
本発明のプラスチックフィルムの熱膨張係数は20ppm/℃以上100ppm/℃以下が好ましく、25ppm/℃以上80ppm/℃以下がさらに好ましく、30ppm/℃以上70ppm/℃以下が最も好ましい。熱膨張係数が前記範囲となることにより、高温で使用された場合のレターデーション変化を低減することができる。
<プラスチックフィルムの厚み>
本発明のプラスチックフィルムの厚みは10μm以上200μm以下が好ましく、20μm以上150μm以下がさらに好ましく、30μm以上100μm以下が最も好ましい。
<プラスチックフィルムの面内配向度>
本発明のプラスチックフィルムの面内配向度(配向オーダーパラメーター)Pは透過2次元X線測定における2θ=6〜11°のピーク強度の平均値から下記式を用いて求めることができる。
0 = <3 cos2 β−1> /2
ここで
Figure 2007279083
本発明のプラスチックフィルム中の分子の配向度Pは0.20以上0.50以下が好ましく、0.30以上0.45以下がさらに好ましい。プラスチックフィルムの配向度を適度にコントロールすることにより、内部ヘイズが小さく、かつ所望のRth/Reを有するプラスチックフィルムを得ることができる。
<プラスチックフィルムの結晶化指数>
本発明のプラスチックフィルムの結晶化指数はフィルムのX線回折強度測定により下記式(A)で定義するものとする。
(A) 結晶化指数=(2θが27°のX線回折強度)/(2θが25°のX線回折強度)
ここでの、2θが27°のX線回折強度、2θが25°のX線回折強度は、それぞれ、結晶部に基づくX線回折強度、(非晶部+結晶部)に基づくX線回折強度を意味しており、したがって、(2θが27°のX線回折強度)/(2θが25°のX線回折強度)の値は、微結晶の含有率に比例する値、すなわち結晶化指数を表すと考えることができる。
本発明のプラスチックフィルムの結晶化指数は0.80以上1.1以下であり、好ましくは0.85以上0.1.0以下であり、さらに好ましくは0.85以上0.95以下である。本発明のプラスチックフィルムの結晶化指数を上記範囲に制御することにより、ヘイズを低減して、所定の範囲にすることができる。
<プラスチックフィルム中の微粒子の個数>
本発明のプラスチックフィルムは共焦点レーザー顕微鏡により観察される0.2μm以上3μm以下の微粒子の100μm2あたりの個数が20個以下であることが好ましい。さらに好ましくは10個以下であり、最も好ましくは5個以下である。前記共焦点レーザー顕微鏡で観察される微粒子はプラスチックフィルム中に添加された可塑剤等の添加剤がマット剤表面に集まり凝集体を形成したものである。マット剤、添加剤、セルロースアシレートの添加方法を前記の如く工夫することにより、該凝集体の形成を抑制できヘイズの低いプラスチックフィルムが得られる。
<プラスチックフィルムのカール値>
本発明のプラスチックフィルムは湿度によるカール変化が小さいことが好ましい。
カール度の測定は該フィルムを幅手方向50mm、長手方向2mmに切断し、所定の湿度で24時間調湿し、曲率スケールを用いて該フィルムのカール値を測定することにより求めることができる。カール値は1/Rで表され、Rは曲率半径で単位はmを用いる(JIS K7619参照)。
本発明のプラスチックフィルムの相対湿度1%あたりのカール値変化は0.02以下が好ましく、0.015以下がさらに好ましい。
相対湿度1%あたりのカール値変化を上記範囲にすることにより偏光板加工後に使用環境湿度変化による変形が小さくなり、液晶表示装置の使用環境の変化に伴う光漏れが防止することができる。
<プラスチックフィルムの高温高湿下での寸度変化>
本発明のプラスチックフィルムは高温恒湿下での寸度変化が小さいことが好ましい。40℃95%24hr処理前後での寸度変化率は0.20%以下が好ましく、0.15%以下がさらに好ましい。
高温恒湿下での寸度変化を上記範囲にすることにより偏光板加工後に使用環境湿度変化による変形が小さくなり、液晶表示装置の使用環境の変化に伴う光漏れが防止することができる。
<プラスチックフィルムの透湿度>
透湿度はJIS Z0208に記載の方法に則り、各試料の透湿度を測定し、面積1m2あたり24時間で蒸発する水分量(g)として算出する。透湿度は偏光板の耐久性と密接に関係したフィルム物性であり、透湿度を下げることにより偏光板耐久性を向上させることができる。本発明のプラスチックフィルムは、60℃、95%RH、24hrにおける透湿度が200g/m2以上1700g/m2以下であることが好ましい。より好ましくは、500g/m2以上1400g/m2以下である。
<プラスチックフィルムの含水率>
本発明のプラスチックフィルムの含水率は一定温湿度における平衡含水率を測定することにより評価することができる。平衡含水率は前記温湿度に24時間放置した後、平衡に達した試料の水分量をカールフィッシャー法で測定し、水分量(g)を試料質量(g)で除して算出したものである。
本発明のプラスチックフィルムの25℃、80%RHにおける含水率は4.5質量%以下であることが好ましく、4.0質量%以下であることがさらに好ましく、3.5質量%以下であることが最も好ましい。
<プラスチックフィルムの鹸化処理>
本発明のプラスチックフィルムは、アルカリ鹸化処理することによりポリビニルアルコールとの密着性を付与し、偏光板保護フィルムとして用いることができる。
プラスチックフィルムのアルカリ鹸化処理は、フィルム表面をアルカリ溶液に浸漬した後、酸性溶液で中和し、水洗して乾燥するサイクルで行われることが好ましい。
アルカリ溶液としては、水酸化カリウム溶液、水酸化ナトリウム溶液が挙げられ、水酸化イオンの規定濃度は0.1〜5.0規定の範囲にあることが好ましく、1.0〜4.5規定の範囲にあることがさらに好ましい。アルカリ溶液温度は、室温〜90℃の範囲にあることが好ましく、25〜70℃の範囲にあることがさらに好ましい
<プラスチックフィルムのレターデーション>
本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーション及び厚さ方向のレターデーションを表し、測定方法に関しては前記の通りである。
本発明のプラスチックフィルムの波長590nmにおける面内レターデーションRe(590)は20〜150nmであることが必要であり、30〜120nmが好ましく、40〜100nmがさらに好ましく、50〜80nmがよりさらに好ましい。波長590nmにおける厚さ方向のレターデーションRth(590)は、100〜300nmであることが必要であり、120〜280nmが好ましく、140〜260nmがさらに好ましく、150〜250nmがよりさらに好ましい。
<プラスチックフィルムの光弾性>
本発明のプラスチックフィルムの光弾性係数は、60×10-8cm2/N以下が好ましく、20×10-8cm2がさらに好ましい。光弾性係数はエリプソメーターにより求めることができる。
<プラスチックフィルムのガラス転移温度>
本発明のプラスチックフィルムのガラス転移温度は120℃以上が好ましく、更に140℃以上が好ましい。なお、本明細書では、プラスチックフィルムのガラス転移温度は、示差走査型熱量計(DSC)を用いて昇温速度10℃/分で測定したときに、フィルムのガラス転移に由来するベースラインが変化しはじめる温度と再びベースラインに戻る温度との平均値として求めた値とする。
[光学補償フィルム]
次に本発明の光学補償フィルムについて説明する。
面内のレターデーションが0〜10nmであり、且つ厚さ方向のレターデーションが−400〜−80nmである第1の光学異方性層と、上記のプラスチックフィルム、好ましくは所定のセルロースアシレートフィルム、からなり、面内のレターデーションが20〜150nmであり、厚さ方向のレターデーションが100〜300nmであり、内部及び表面ヘイズ値がそれぞれ前記範囲である第2の光学異方性層とを有する。
(第1の光学異方性層)
本発明の光学補償フィルムは、面内のレターデーションが0〜10nmであり、厚さ方向のレターデーションが−400〜−80nmの第1の光学異方性層を有する。前記第1の光学異方性層は面内のレターデーションは、0〜5nmであることが好ましく、0〜3nmであることがより好ましい。さらに、該光学異方性層の厚さ方向のレターデーションは、−360〜−100nmであることが好ましく、−320〜−120nmであることがさらに好ましい。
第1の光学異方性層は、液晶化合物の少なくとも一種を含有する組成物から形成されていることが好ましい。前記液晶化合物は棒状液晶化合物であることが好ましい。棒状液晶化合物を用いた場合は、前記第1の光学異方性層において棒状分子が垂直配向しているのが好ましい。
液晶性化合物の種類については特に制限されない。本発明の光学補償フィルムに含まれる第1の光学異方性層は、例えば、低分子液晶性化合物を液晶状態においてネマチック配向に形成後、光架橋や熱架橋によって固定化して作製してもよい。また、高分子液晶性化合物を液晶状態においてネマチック配向に形成後、冷却することによって当該配向を固定化して作製してもよい。なお本発明では、光学異方性層の作製に液晶性化合物が用いられるが、作製の過程で液晶性化合物は重合等によって固定された状態で光学異方性層に含有される場合が多く、最終的には液晶性を示す必要はない。重合性液晶性化合物は、多官能性重合性液晶でもよいし、単官能性重合性液晶性化合物でもよい。
本発明の光学補償フィルムに含まれる第1の光学異方性層において、液晶化合物の分子は、所定の配向状態、好ましくは垂直配向の状態に固定されていることが好ましい。棒状液晶性化合物が実質的に垂直とは、フィルム面と棒状液晶性化合物のダイレクターとのなす角度が70°〜90°の範囲内であることを意味する。80°〜90°がより好ましく、85°〜90°がさらに好ましい。
本発明の光学補償フィルムに含まれる第1の光学異方性層は、支持体上に形成してもよい。支持体として前述の本発明のプラスチックフィルム(好ましくは前記セルロースアシレートフィルム)からなる第2の光学異方性層を用いてもよいし、仮の支持体上に第1の光学異方性層に設けた後、偏光層や第2の光学異方性層に転写してもよいし、光学的に等方性のフィルムを支持体として用いてもよい。偏光層と本発明の光学補償フィルムとを積層して、偏光板として液晶表示装置等に組み込むことができる。
次に、第1の光学異方性層の作製に用いられる材料、作製方法等を詳細に説明する。
前記第1の光学異方性層は、棒状液晶性化合物等の液晶性化合物と、所望により、下記の重合開始剤や配向制御剤や他の添加剤を含む組成物から形成することができる。
(棒状液晶性化合物)
本発明では、棒状液晶性化合物を用いて第1の光学異方性層を形成することが好ましい。棒状液晶性化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類及びアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。棒状液晶性化合物を重合によって配向を固定することがより好ましい。液晶性化合物には活性光線や電子線、熱などによって重合や架橋反応を起こしうる部分構造を有するものが好適に用いられる。その部分構造の個数は好ましくは1〜6個、より好ましくは1〜3個である。重合性棒状液晶性化合物としては、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1−272551号公報、同6−16616号公報、同7−110469号公報、同11−80081号公報、特開2001−328973号公報、特開2004−240188号公報、特開2005−99236号公報、特開2005−99237号公報、特開2005−121827号公報、特開2002−30042号公報などに記載の化合物を用いることができる。
(垂直配向促進剤)
液晶性化合物を均一に垂直配向させるためには、配向膜界面側及び空気界面側において液晶性化合物を垂直に配向制御することが必要である。この目的のために、配向膜に、排除体積効果、静電気的効果又は表面エネルギー効果によって液晶性化合物を垂直に配向させる作用を及ぼす化合物を添加した組成物を採用してもよい。また、空気界面側の配向制御に関しては液晶性化合物の配向時に空気界面に偏在し、その排除体積効果、静電気的効果、又は表面エネルギー効果によって液晶性化合物を垂直に配向させる作用を及ぼす化合物を配合した液晶性組成物を採用してもよい。このような配向膜界面側で液晶性化合物の分子を垂直に配向させるのを促進する化合物(配向膜界面側垂直配向剤)としては、ピリジニウム誘導体が好適に用いられる。空気界面側で液晶性化合物の分子を垂直に配向させるのを促進する化合物(空気界面側垂直配向剤)としては、該化合物が空気界面側に偏在するのを促進する、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含む化合物が好適に用いられる。また、これらの化合物を配合することによって、例えば、液晶性組成物を塗布液として調製した場合に、該塗布液の塗布性が改善され、ムラ、ハジキの発生が抑制される。以下に垂直配向剤に関して詳細に説明する。
(配向膜界面側垂直配向剤)
本発明に使用可能な配向膜界面側垂直配向剤としては、下記式(I)で表されるピリジニウム誘導体(ピリジニウム塩)が好適に用いられる。該ピリジニウム誘導体の少なくとも1種を前記液晶性組成物に添加することによって、ディスコティック液晶性化合物の分子を配向膜近傍で実質的に垂直に配向させることができる。
Figure 2007279083
式(I)において、L0は2価の連結基を表し、アルキレン基と−O−、−S−、−CO−、−SO2−、−NRa−(但し、Raは炭素原子数が1〜5のアルキル基又は水素原子である)、アルケニレン基、アルキニレン基又はアリーレン基との組み合わせからなる炭素原子数が1〜20の2価の連結基であることが好ましい。アルキレン基は、直鎖であっても分岐であってもよい。
式(I)において、R0は、水素原子、無置換のアミノ基又は炭素原子数が1〜20の置換基で置換された置換アミノ基である。R0が置換アミノ基である場合、脂肪族基によって置換されていることが好ましい。脂肪族基は、例えば、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基及び置換アルキニル基が挙げられる。また、R0が2置換アミノ基である場合、2つの脂肪族基が互いに結合して含窒素複素環を形成してもよい。このとき形成される含窒素複素環は、5員環又は6員環であることが好ましい。R0は水素原子、無置換のアミノ基又は炭素原子数が1〜20の置換アミノ基であることが好ましく、水素原子、無置換のアミノ基又は炭素原子数が2〜12の置換アミノ基であることがより好ましく、水素原子、無置換のアミノ基又は炭素原子数が2〜8の置換アミノ基であることがさらに好ましい。R0がアミノ基である場合、ピリジニウム環の4位に置換されていることが好ましい。
式(I)において、X0はアニオンである。アニオンの例には、ハロゲン陰イオン(例えば、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオンなど)、スルホン酸イオン(例えば、メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、メチル硫酸イオン、p−トルエンスルホン酸イオン、p−クロロベンゼンスルホン酸イオン、1,3−ベンゼンジスルホン酸イオン、1,5−ナフタレンジスルホン酸イオン、2,6−ナフタレンジスルホン酸イオンなど)、硫酸イオン、炭酸イオン、硝酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ピクリン酸イオン、酢酸イオン、ギ酸イオン、トリフルオロ酢酸イオン、リン酸イオン(例えば、ヘキサフルオロリン酸イオン)、水酸イオンなどが挙げられる。X0は、好ましくは、ハロゲン陰イオン、スルホネートイオン、水酸イオンである。
式(I)において、Y1は5員環又は6員環を部分構造として有する炭素数1〜30の2価の連結基である。Y1に含まれる環状部分構造はシクロヘキシル環、芳香族環又は複素環であることがより好ましい。芳香族環としては、ベンゼン環、インデン環、ナフタレン環、フルオレン環、フェナントレン環、アントラセン環、ビフェニル環、及びピレン環を挙げることができる。ベンゼン環、ビフェニル環、及びナフタレン環がさらに好ましい。複素環を構成する複素原子としては、窒素原子、酸素原子及び硫黄原子が好ましく、例えば、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、ジオキサン環、ジチアン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環及びトリアジン環などを挙げることができる。複素環は6員環であることが好ましい。Y1で表される5員環又は6員環を部分構造として有する2価の連結基は置換基を有していてもよい。
式(I)において、Zは、ハロゲン置換フェニル基、ニトロ置換フェニル基、シアノ置換フェニル基、炭素原子数が1〜10のアルキル基で置換されたフェニル基、炭素原子数が2〜10のアルコキシ基で置換されたフェニル基、炭素原子数が1〜12のアルキル基、炭素原子数が2〜20のアルキニル基、炭素原子数が1〜12のアルコキシ基、炭素原子数が2〜13のアルコキシカルボニル基、炭素原子数が7〜26のアリールオキシカルボニル基、炭素原子数が7〜26のアリールカルボニルオキシ基であり、シアノ置換フェニル基、ハロゲン置換フェニル基、炭素原子数が1〜10のアルキル基で置換されたフェニル基、炭素原子数が2〜10のアルコキシ基で置換されたフェニル基、炭素原子数が7〜26のアリールオキシカルボニル基又は炭素原子数が7〜26のアリールカルボニルオキシ基であるのが好ましい。
Zは、さらに置換基を有していてもよく、置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数が1〜16のアルキル基、炭素原子数が1〜16のアルケニル基、炭素原子数が1〜16のアルキニル基、炭素原子数が1〜16のハロゲン置換アルキル基、炭素原子数が1〜16のアルコキシ基、炭素原子数が2〜16のアシル基、炭素原子数が1〜16のアルキルチオ基、炭素原子数が2〜16のアシルオキシ基、炭素原子数が2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数が2〜16のアルキル置換カルバモイル基及び炭素原子数が2〜16のアシルアミノ基が含まれる。
本発明に用いられるピリジニウム化合物としては、下記式(Ia)で表されるピリジニウム化合物が好ましい。
Figure 2007279083
式(Ia)において、L03は、単結合、−O−、−O−CO−、−CO−O−、−C≡C−、−CH=CH−、−CH=N−、−N=CH−、−N=N−、−O−AL−O−、−O−AL−O−CO−、−O−AL−CO−O−、−CO−O−AL−O−、−CO−O−AL−O−CO−、−CO−O−AL−CO−O−、−O−CO−AL−O−、−O−CO−AL−O−CO−又はO−CO−AL−CO−O−である。ALは、炭素原子数が1〜10のアルキレン基である。L03は、単結合、−O−、−O−AL−O−、−O−AL−O−CO−、−O−AL−CO−O−、−CO−O−AL−O−、−CO−O−AL−O−CO−、−CO−O−AL−CO−O−、−O−CO−AL−O−、−O−CO−AL−O−CO−又はO−CO−AL−CO−O−であるのが好ましく、単結合又はO−であるのがより好ましい。
式(Ia)において、L04は、単結合、−O−、−O−CO−、−CO−O−、−C≡C−、−CH=CH−、−CH=N−、−N=CH−又はN=N−である。
式(Ia)において、R03は、水素原子、無置換アミノ基又は炭素原子数が2〜20のアルキル置換アミノ基である。R03がジアルキル置換アミノ基である場合、2つのアルキル基が互いに結合して含窒素複素環を形成してもよい。このとき形成される含窒素複素環は、5員環又は6員環が好ましい。R03は水素原子、無置換アミノ基又は炭素原子数が2〜12のジアルキル置換アミノ基がさらに好ましく、水素原子、無置換アミノ基又は炭素原子数が2〜8のジアルキル置換アミノ基が最も好ましい。R03が無置換アミノ基である場合、ピリジニウム環の4位がアミノ置換されていることが好ましい。
式(Ia)において、Y2及びY3は、それぞれ独立に、置換基を有していてもよい6員環からなる2価の基である。6員環の例は、脂肪族環、芳香族環(ベンゼン環)及び複素環が挙げられる。6員脂肪族環の例は、シクロヘキサン環、シクロヘキセン環及びシクロヘキサジエン環が挙げられる。6員複素環の例は、ピラン環、ジオキサン環、ジチアン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環及びトリアジン環が挙げられる。6員環に、他の6員環又は5員環が縮合していてもよい。
置換基の例は、ハロゲン原子、シアノ基、炭素原子数が1〜12のアルキル基及び炭素原子数が1〜12のアルコキシ基が挙げられる。アルキル基及びアルコキシ基は、炭素原子数が2〜12のアシル基又は炭素原子数が2〜12のアシルオキシ基で置換されていてもよい。アシル基及びアシルオキシ基の定義は、後述する。
式(Ia)において、X01はアニオンである。X01は、一価のアニオンであることが好ましい。アニオンの例には、ハロゲン陰イオン(例えば、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン)及びスルホン酸イオン(例えば、メタンスルホン酸イオン、p−トルエンスルン酸イオン、ベンゼンスルン酸イオン)が含まれる。
式(Ia)において、Z1は水素原子、シアノ基、炭素原子数が1〜12のアルキル基又は炭素原子数が1〜12のアルコキシ基であって、アルキル基及びアルコキシ基は、それぞれ、炭素原子数が2〜12のアシル基又は炭素原子数が2〜12のアシルオキシ基で置換されていてもよい。
式(Ia)において、mは1又は2であって、mが2の場合、2つのL04及び2つのY3は、異なっていてもよい。
mが2の場合、Z1は、シアノ基、炭素原子数が1〜10のアルキル基又は炭素原子数が1〜10のアルコキシ基であることが好ましい。
mが1の場合、Z1は、炭素原子数が7〜12のアルキル基、炭素原子数が7〜12のアルコキシ基、炭素原子数が7〜12のアシル置換アルキル基、炭素原子数が7〜12のアシル置換アルコキシ基、炭素原子数が7〜12のアシルオキシ置換アルキル基又は炭素原子数が7〜12のアシルオキシ置換アルコキシ基であることが好ましい。
アシル基は−CO−R、アシルオキシ基は−O−CO−Rで表され、Rは脂肪族基(アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基)又は芳香族基(アリール基、置換アリール基)である。Rは、脂肪族基であることが好ましく、アルキル基又はアルケニル基であることがさらに好ましい。
式(Ia)において、pは、1〜10の整数である。Cp2pは、分岐構造を有していてもよい鎖状アルキレン基を意味する。Cp2pは、直鎖状アルキレン基であることが好ましい。また、pは1又は2であることがより好ましい。
以下に、式(I)及び/又は(Ia)で表される化合物の具体例を示す。ここで、Meはメチル基を表す。
Figure 2007279083
Figure 2007279083
Figure 2007279083
Figure 2007279083
ピリジニウム誘導体は、一般にピリジン環をアルキル化(メンシュトキン反応)して得られる。
前記液晶性組成物中における前記ピリジニウム誘導体の含有量の好ましい範囲は、その用途によって異なるが、液晶性組成物(塗布液として調製した場合は溶媒を除いた液晶性組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましい。
(空気界面側垂直配向剤)
本発明に使用可能な空気界面側垂直配向剤としては、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含有するフルオロ脂肪族基含有ポリマー(以下、「フッ素系ポリマー」という)、又は一般式(III)で表される含フッ素化合物が好適に用いられる。
まず、フッ素系ポリマーについて説明する。
本発明に使用可能なフッ素系ポリマーは、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含有することを特徴とする。ポリマーの種類としては、「改訂 高分子合成の化学」(大津隆行著、発行:株式会社化学同人、1968)1〜4ページに記載があり、例えば、ポリオレフィン類、ポリエステル類、ポリアミド類、ポリイミド類、ポリウレタン類、ポリカーボネート類、ポリスルホン類、ポリカーボナート類、ポリエーテル類、ポリアセタール類、ポリケトン類、ポリフェニレンオキシド類、ポリフェニレンスルフィド類、ポリアリレート類、ポリテトラフルオロエチレン(PTFE)類、ポリビニリデンフロライド類、セルロース誘導体などが挙げられる。前記フッ素系ポリマーは、ポリオレフィン類であることが好ましい。
前記フッ素系ポリマーは、フルオロ脂肪族基を側鎖に有するポリマーである。前記フルオロ脂肪族基は、炭素数1〜12であるのが好ましく、6〜10であるのがより好ましい。脂肪族基は、鎖状であっても環状であってもよく、鎖状である場合は直鎖状であっても分岐鎖状であってもよい。中でも、直鎖状の炭素数6〜10のフルオロ脂肪族基が好ましい。フッ素原子による置換の程度については特に制限はないが、脂肪族基中の50%以上の水素原子がフッ素原子に置換されているのが好ましく、60%以上が置換されているのがより好ましい。フルオロ脂肪族基は、エステル結合、アミド結合、イミド結合、ウレタン結合、ウレア結合、エーテル結合、チオエーテル結合、芳香族環などを介してポリマー主鎖と結合した側鎖に含まれる。フルオロ脂肪族基の一つは、テロメリゼーション法(テロマー法ともいわれる)又はオリゴメリゼーション法(オリゴマー法ともいわれる)により製造されたフルオロ脂肪族化合物から導かれるものである。これらのフルオロ脂肪族化合物の製造法に関しては、例えば、「フッ素化合物の合成と機能」(監修:石川延男、発行:株式会社シーエムシー、1987)の117〜118ページや、「Chemistry of Organic Fluorine Compounds II」(Monograph 187,Ed by Milos Hudlicky and Attila E.Pavlath,American Chemical Society 1995)の747〜752ページに記載されている。テロメリゼーション法とは、ヨウ化物等の連鎖移動常数の大きいアルキルハライドをテローゲンとして、テトラフルオロエチレン等のフッ素含有ビニル化合物のラジカル重合を行い、テロマーを合成する方法である(Scheme−1に例を示した)。
Figure 2007279083
得られた、末端ヨウ素化テロマーは通常、例えば[Scheme2]のごとき適切な末端化学修飾を施され、フルオロ脂肪族化合物へと導かれる。これらの化合物は必要に応じ、さらに所望のモノマー構造へと変換され、フッ素系ポリマーの製造に使用される。
Figure 2007279083
本発明に使用可能なフッ素系ポリマーの製造に利用可能なモノマーの具体例を以下に挙げるが、本発明は以下の具体例によってなんら制限されるものではない。
Figure 2007279083
Figure 2007279083
Figure 2007279083
Figure 2007279083
Figure 2007279083
Figure 2007279083
Figure 2007279083
本発明に使用可能なフッ素系ポリマーの一態様は、フルオロ脂肪族基含有モノマー(以下、「フッ素系モノマー」ということがある)より誘導される繰り返し単位と、下記式(II)で表される親水性基を含有する繰り返し単位とを有する共重合体である。
Figure 2007279083
上記式(II)において、R61、R62及びR63はそれぞれ独立に、水素原子又は置換基を表す。Qはカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又は、ホスホノキシ基{−OP(=O)(OH)2}もしくはその塩を表す。Lは下記の連結基群から選ばれる任意の基、又はそれらの2つ以上を組み合わせて形成される2価の連結基を表す。
(連結基群)
単結合、−O−、−CO−、−NRb−(Rbは水素原子、アルキル基、アリール基、又はアラルキル基を表す)、−S−、−SO2−、−P(=O)(ORf)−(Rfはアルキル基、アリール基、又はアラルキル基を表す)、アルキレン基及びアリーレン基。
式(II)中、R61、R62及びR63は、それぞれ独立に、水素原子又は下記に例示した置換基群から選ばれる置換基を表す。
(置換基群)
アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、さらに好ましくは炭素数1〜8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、さらに好ましくは炭素数2〜8のアルケニル基であり、例えば、ビニル基、アリール基、2−ブテニル基、3−ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、さらに好ましくは炭素数2〜8のアルキニル基であり、例えば、プロパルギル基、3−ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、さらに好ましくは炭素数6〜12のアリール基であり、例えば、フェニル基、p−メチルフェニル基、ナフチル基などが挙げられる)、アラルキル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、さらに好ましくは炭素数7〜12のアラルキル基であり、例えば、ベンジル基、フェネチル基、3−フェニルプロピル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、さらに好ましくは炭素数0〜6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、アニリノ基などが挙げられる)、
アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜10のアルコキシ基であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは2〜10のアルコキシカルボニル基であり、例えば、メトキシカルボニル基、エトキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは2〜10のアシルオキシ基であり、例えば、アセトキシ基、ベンゾイルオキシ基などが挙げられる)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜10のアシルアミノ基であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜12のアルコキシカルボニルアミノ基であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、さらに好ましくは炭素数7〜12のアリールオキシカルボニルアミノ基であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルホニルアミノ基であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、さらに好ましくは炭素数0〜12のスルファモイル基であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のカルバモイル基であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、
アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のアルキルチオ基であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、さらに好ましくは炭素数6〜12のアリールチオ基であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルホニル基であり、例えば、メシル基、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルフィニル基であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のウレイド基であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のリン酸アミド基であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、さらに好ましくは、炭素数3〜24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)が含まれる。これらの置換基はさらにこれらの置換基によって置換されていてもよい。また、置換基を二つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
61、R62及びR63はそれぞれ独立に、水素原子、アルキル基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、又は後述する−L−Qで表される基であることが好ましく、水素原子、炭素数1〜6のアルキル基、塩素原子、−L−Qで表される基であることがより好ましく、水素原子、炭素数1〜4のアルキル基であることが特に好ましく、水素原子、炭素数1〜2のアルキル基であることが最も好ましい。該アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、sec−ブチル基等が挙げられる。該アルキル基は、適当な置換基を有していてもよい。該置換基としては、ハロゲン原子、アリール基、ヘテロ環基、アルコキシル基、アリールオキシ基、アルキルチオ基、アリールチオ基、アシル基、ヒドロキシル基、アシルオキシ基、アミノ基、アルコキシカルボニル基、アシルアミノ基、オキシカルボニル基、カルバモイル基、スルホニル基、スルファモイル基、スルホンアミド基、スルホリル基、カルボキシル基などが挙げられる。なお、アルキル基の炭素数は、置換基の炭素原子を含まない。以下、他の基の炭素数についても同様である。
Lは、上記連結基群から選ばれる2価の連結基、又はそれらの2つ以上を組み合わせて形成される2価の連結基を表す。上記連結基群中、−NRb−のRbは、水素原子、アルキル基、アリール基又はアラルキル基を表し、好ましくは水素原子又はアルキル基である。また、−PO(ORf)−のRfはアルキル基、アリール基又はアラルキル基を表し、好ましくはアルキル基である。Rb及びRfがアルキル基、アリール基又はアラルキル基を表す場合の炭素数は「置換基群」で説明したものと同じである。Lとしては、単結合、−O−、−CO−、−NRb−、−S−、−SO2−、アルキレン基又はアリーレン基を含むことが好ましく、−CO−、−O−、−NRb−、アルキレン基又はアリーレン基を含んでいることが特に好ましい。Lがアルキレン基を含む場合、アルキレン基の炭素数は好ましくは1〜10、より好ましくは1〜8、さらに好ましくは1〜6である。特に好ましいアルキレン基の具体例として、メチレン基、エチレン基、トリメチレン基、テトラブチレン基、ヘキサメチレン基等が挙げられる。Lが、アリーレン基を含む場合、アリーレン基の炭素数は、好ましくは6〜24、より好ましくは6〜18、さらに好ましくは6〜12である。特に好ましいアリーレン基の具体例として、フェニレン基、ナフタレン基等が挙げられる。Lが、アルキレン基とアリーレン基を組み合わせて得られる2価の連結基(即ちアラルキレン基)を含む場合、アラルキレン基の炭素数は、好ましくは7〜34、より好ましくは7〜26、さらに好ましくは7〜16である。特に好ましいアラルキレン基の具体例として、フェニレンメチレン基、フェニレンエチレン基、メチレンフェニレン基等が挙げられる。Lとして挙げられた基は、適当な置換基を有していてもよい。このような置換基としては先にR61、R62、R63における置換基として挙げた置換基と同様なものを挙げることができる。
以下にLの具体的構造を例示する。
Figure 2007279083
Figure 2007279083
前記式(II)中、Qはカルボキシル基、カルボキシル基の塩(例えば、リチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩(例えばアンモニウム、テトラメチルアンモニウム、トリメチル−2−ヒドロキシエチルアンモニウム、テトラブチルアンモニウム、トリメチルベンジルアンモニウム、ジメチルフェニルアンモニウムなど)、ピリジニウム塩など)、スルホ基、スルホ基の塩(塩を形成するカチオンの例は上記カルボキシル基に記載のものと同じ)、ホスホノキシ基、ホスホノキシ基の塩(塩を形成するカチオンの例は上記カルボキシル基に記載のものと同じ)を表す。より好ましくはカルボキシル基、スルホ基、ホスホ基であり、特に好ましいのはカルボキシル基又はスルホ基である。
前記フッ素系ポリマーは、前記式(II)で表される繰り返し単位を1種含んでいてもよいし、2種以上含んでいてもよい。また、前記フッ素系ポリマーは、上記各繰り返し単位以外の他の繰り返し単位を1種又は2種以上有していてもよい。前記他の繰り返し単位については特に制限されず、通常のラジカル重合反応可能なモノマーから誘導される繰り返し単位が好ましい例として挙げられる。以下、他の繰り返し単位を誘導するモノマーの具体例を挙げる。前記フッ素系ポリマーは、下記モノマー群から選ばれる1種又は2種以上のモノマーから誘導される繰り返し単位を含有していてもよい。
モノマー群
(1)アルケン類
エチレン、プロピレン、1−ブテン、イソブテン、1−ヘキセン、1−ドデセン、1−オクタデセン、1−エイコセン、ヘキサフルオロプロペン、フッ化ビニリデン、クロロトリフルオロエチレン、3,3,3−トリフルオロプロピレン、テトラフルオロエチレン、塩化ビニル、塩化ビニリデンなど;
(2)ジエン類
1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2−エチル−1,3−ブタジエン、2−n−プロピル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−メチル−1,3−ペンタジエン、1−フェニル−1,3−ブタジエン、1−α−ナフチル−1,3−ブタジエン、1−β−ナフチル−1,3−ブタジエン、2−クロロ−1,3−ブタジエン、1−ブロモ−1,3−ブタジエン、1−クロロブタジエン、2−フルオロ−1,3−ブタジエン、2,3−ジクロロ−1,3−ブタジエン、1,1,2−トリクロロ−1,3−ブタジエン及び2−シアノ−1,3−ブタジエン、1,4−ジビニルシクロヘキサンなど;
(3)α,β−不飽和カルボン酸の誘導体
(3a)アルキルアクリレート類
メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、sec−ブチルアクリレート、tert−ブチルアクリレート、アミルアクリレート、n−ヘキシルアクリレート、シクロヘキシルアクリレート、2−エチルへキシルアクリレート、n−オクチルアクリレート、tert−オクチルアクリレート、ドデシルアクリレート、フェニルアクリレート、ベンジルアクリレート、2−クロロエチルアクリレート、2−ブロモエチルアクリレート、4−クロロブチルアクリレート、2−シアノエチルアクリレート、2−アセトキシエチルアクリレート、メトキシベンジルアクリレート、2−クロロシクロヘキシルアクリレート、フルフリルアクリレート、テトラヒドロフルフリルアクリレート、2−メトキシエチルアクリレート、ω−メトキシポリエチレングリコールアクリレート(ポリオキシエチレンの付加モル数:n=2ないし100のもの)、3−メトキシブチルアクリレート、2−エトキシエチルアクリレート、2−ブトキシエチルアクリレート、2−(2−ブトキシエトキシ)エチルアクリレート、1−ブロモ−2−メトキシエチルアクリレート、1,1−ジクロロ−2−エトキシエチルアクリレート、グリシジルアクリレートなど);
(3b)アルキルメタクリレート類
メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、イソブチルメタクリレート、sec−ブチルメタクリレート、tert−ブチルメタクリレート、アミルメタクリレート、n−ヘキシルメタクリレート、シクロヘキシルメタクリレート、2−エチルヘキシルメタクリレート、n−オクチルメタクリレート、ステアリルメタクリレート、ベンジルメタクリレート、フェニルメタクリレート、アリルメタクリレート、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、クレジルメタクリレート、ナフチルメタクリレート、2−メトキシエチルメタクリレート、3−メトキシブチルメタクリレート、ω−メトキシポリエチレングリコールメタクリレート(ポリオキシエチレンの付加モル数:n=2ないし100のもの)、2−アセトキシエチルメタクリレート、2−エトキシエチルメタクリレート、2−ブトキシエチルメタクリレート、2−(2−ブトキシエトキシ)エチルメタクリレート、グリシジルメタクリレート、3−トリメトキシシリルプロピルメタクリレート、アリルメタクリレート、2−イソシアナトエチルメタクリレートなど;
(3c)不飽和多価カルボン酸のジエステル類
マレイン酸ジメチル、マレイン酸ジブチル、イタコン酸ジメチル、タコン酸ジブチル、クロトン酸ジブチル、クロトン酸ジヘキシル、フマル酸ジエチル、フマル酸ジメチルなど;
(3d)α、β−不飽和カルボン酸のアミド類
N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、N−n−プロピルアクリルアミド、N−tertブチルアクリルアミド、N−tertオクチルメタクリルアミド、N−シクロヘキシルアクリルアミド、N−フェニルアクリルアミド、N−(2−アセトアセトキシエチル)アクリルアミド、N−ベンジルアクリルアミド、N−アクリロイルモルフォリン、ジアセトンアクリルアミド、N−メチルマレイミドなど;
(4)不飽和ニトリル類
アクリロニトリル、メタクリロニトリルなど;
(5)スチレン及びその誘導体
スチレン、ビニルトルエン、エチルスチレン、p−tertブチルスチレン、p−ビニル安息香酸メチル、α−メチルスチレン、p−クロロメチルスチレン、ビニルナフタレン、p−メトキシスチレン、p−ヒドロキシメチルスチレン、p−アセトキシスチレンなど;
(6)ビニルエステル類
酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、安息香酸ビニル、サリチル酸ビニル、クロロ酢酸ビニル、メトキシ酢酸ビニル、フェニル酢酸ビニルなど;
(7)ビニルエーテル類
メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、n−ブチルビニルエーテル、イソブチルビニルエーテル、tert−ブチルビニルエーテル、n−ペンチルビニルエーテル、n−ヘキシルビニルエーテル、n−オクチルビニルエーテル、n−ドデシルビニルエーテル、n−エイコシルビニルエーテル、2−エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル、フルオロブチルビニルエーテル、フルオロブトキシエチルビニルエーテルなど;及び
(8)その他の重合性単量体
N−ビニルピロリドン、メチルビニルケトン、フェニルビニルケトン、メトキシエチルビニルケトン、2−ビニルオキサゾリン、2−イソプロペニルオキサゾリンなど。
前記フッ素系ポリマー中、フルオロ脂肪族基含有モノマーの量は、該ポリマーの構成モノマー総量の5質量%以上であるのが好ましく、10質量%以上であるのがより好ましく、30質量%以上であるのがさらに好ましい。前記フッ素系ポリマーにおいて、前記式(II)で表される繰り返し単位の量は、該フッ素ポリマーの構成モノマー総量の0.5質量%以上であるのが好ましく、1〜20質量%であるのがより好ましく、1〜10質量%であるのがさらに好ましい。上記の質量百分率は使用するモノマーの分子量により好ましい範囲の数値が変動し易いため、ポリマーの単位質量当たりの官能基モル数で表す方が、式(II)で表される繰り返し単位の含有量を正確に規定できる。該表記を用いた場合、前記フッ素系ポリマー中に含有される親水性基(式(II)中のQ)の好ましい量は、0.1mmol/g〜10mmol/gであり、より好ましい量は0.2mmol/g〜8mmol/gである。
本発明に用いる前記フッ素系ポリマーの質量平均分子量は1,000,000以下が好ましく、500,000以下がより好ましく、100,000以下がさらに好ましい。質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用いて、ポリスチレン(PS)換算の値として測定可能である。
前記フッ素系ポリマーの重合方法は、特に限定されるものではないが、例えば、ビニル基を利用したカチオン重合やラジカル重合、又は、アニオン重合等の重合方法を採ることができ、これらの中ではラジカル重合が汎用に利用できる点で特に好ましい。ラジカル重合の重合開始剤としては、ラジカル熱重合開始剤や、ラジカル光重合開始剤等の公知の化合物を使用することができるが、特に、ラジカル熱重合開始剤を使用することが好ましい。ここで、ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ジアシルパーオキサイド(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ケトンパーオキサイド(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ハイドロパーオキサイド(過酸化水素、tert−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド(ジ−tert−ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシエステル類(tert−ブチルパーオキシアセテート、tert−ブチルパーオキシピバレート等)、アゾ系化合物(アゾビスイソブチロニトリル、アゾビスイソバレロニトリル等)、過硫酸塩類(過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
ラジカル重合方法は、特に制限されるものでなく、乳化重合法、懸濁重合法、塊状重合法、溶液重合法等を採ることが可能である。典型的なラジカル重合方法である溶液重合についてさらに具体的に説明する。他の重合方法についても概要は同等であり、その詳細は例えば「高分子科学実験法」高分子学会編(東京化学同人、1981年)等に記載されている。
溶液重合を行うためには有機溶媒を使用する。これらの有機溶媒は本発明の目的、効果を損なわない範囲で任意に選択可能である。これらの有機溶媒は通常、大気圧下での沸点が50〜200℃の範囲内の値を有する有機化合物であり、各構成成分を均一に溶解させる有機化合物が好ましい。好ましい有機溶媒の例を示すと、イソプロパノール、ブタノール等のアルコール類;ジブチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、酢酸アミル、γ−ブチロラクトン等のエステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;が挙げられる。なお、これらの有機溶媒は、1種単独又は2種以上を組み合わせて用いることが可能である。さらに、モノマーや生成するポリマーの溶解性の観点から上記有機溶媒に水を併用した水混合有機溶媒も適用可能である。
また、溶液重合条件も特に制限されるものではないが、例えば、50〜200℃の温度範囲内で、10分〜30時間加熱することが好ましい。さらに、発生したラジカルが失活しないように、溶液重合中はもちろんのこと、溶液重合開始前にも、不活性ガスパージを行うことが好ましい。不活性ガスとしては通常窒素ガスが好適に用いられる。
前記フッ素系ポリマーを好ましい分子量範囲で得るためには、連鎖移動剤を用いたラジカル重合法が特に有効である。連鎖移動剤としてはメルカプタン類(例えば、オクチルメルカプタン、デシルメルカプタン、ドデシルメルカプタン、tert−ドデシルメルカプタン、オクタデシルメルカプタン、チオフェノール、p−ノニルチオフェノール等)、ポリハロゲン化アルキル類(例えば、四塩化炭素、クロロホルム、1,1,1−トリクロロエタン、1,1,1−トリブロモオクタンなど)、低活性モノマー類(α−メチルスチレン、α−メチルスチレンダイマー等)のいずれも用いることができるが、好ましくは炭素数4〜16のメルカプタン類である。これらの連鎖移動剤の使用量は、連鎖移動剤の活性やモノマーの組み合わせ、重合条件などにより著しく影響され精密な制御が必要であるが、使用するモノマーの全モル数に対して好ましくは0.01モル%〜50モル%程度であり、より好ましくは0.05モル%〜30モル%、さらに好ましくは0.08モル%〜25モル%である。これらの連鎖移動剤は、重合過程において重合度を制御するべき対象のモノマーと同時に系内に存在させればよく、その添加方法については特に問わない。モノマーに溶解して添加してもよいし、モノマーと別途に添加することも可能である。
なお、フッ素系ポリマーは、ディスコティック液晶性化合物の配向状態を固定化するために置換基として重合性基を有するものも好ましい。
以下に、フッ素系ポリマーとして本発明に好ましく用いられる具体例を示すが、本発明はこれらの具体例によってなんら限定されるものではない。ここで式中の数値(a、b、c、d等の数値)は、それぞれ各モノマーの組成比を示す質量百分率であり、MwはGPCにより測定されたPEO換算の質量平均分子量である。
Figure 2007279083
Figure 2007279083
Figure 2007279083
Figure 2007279083
Figure 2007279083
本発明に用いられるフッ素系ポリマーは、公知慣用の方法で製造することができる。例えば先にあげたフッ素系モノマー、水素結合性基を有するモノマー等を含む有機溶媒中に、汎用のラジカル重合開始剤を添加し、重合させることにより製造できる。また、場合によりその他の付加重合性不飽和化合物を、さらに添加して上記と同じ方法にて製造することができる。各モノマーの重合性に応じ、反応容器にモノマーと開始剤を滴下しながら重合する滴下重合法なども、均一な組成のポリマーを得るために有効である。
前記液晶性組成物(塗布液として調製した場合は、溶媒を除いた液晶性組成物)中における前記フッ素系ポリマーの含有量の好ましい範囲は、その用途によって異なるが、液晶性組成物(塗布液である場合は溶媒を除いた組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましく、0.05〜1質量%であるのがさらに好ましい。前記フッ素系ポリマーの添加量が0.005質量%未満では効果が不十分であり、また8質量%より多くなると、塗膜の乾燥が十分に行われなくなったり、光学フィルムとしての性能(例えばレターデーションの均一性等)に悪影響を及ぼす。
次に、同様に空気界面側垂直配向剤として使用可能な、式(III)で表される含フッ素化合物について説明する。
式(III)
(R100mo−L100−(W)no
式中、R100はアルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表し、moは1以上の整数を表す。複数個のR100は同一でも異なっていてもよいが、少なくとも一つは末端にCF3基又はCF2H基を有するアルキル基を表す。L100は(mo+no)価の連結基を表し、Wはカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又はホスホノキシ{−OP(=O)(OH)2}もしくはその塩を表し、noは1以上の整数を表す。
式(III)中、R100は含フッ素化合物の疎水性基として機能する。R100で表されるアルキル基は置換もしくは無置換のアルキル基であり、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルキル基であり、更に好ましくは4〜16のアルキル基であり、特に好ましくは6〜16のアルキル基である。該置換基としては後述の置換基群Dとして例示する置換基のいずれかを適用できる。
100で表される末端にCF3基を有するアルキル基は、好ましくは炭素数1〜20であり、より好ましくは4〜16であり、さらに好ましくは4〜8である。前記末端にCF3基を有するアルキル基は、アルキル基に含まれる水素原子の一部又は全部がフッ素原子で置換されたアルキル基である。アルキル基中の水素原子の50%以上がフッ素原子で置換されているのが好ましく、60%以上が置換されているのがより好ましく、70%以上を置換されているのが特に好ましい。残りの水素原子は、さらに後述の置換基群Dとして例示された置換基によって置換されていてもよい。R100で表される末端にCF2H基を有するアルキル基は、好ましくは炭素数1〜20であり、より好ましくは4〜16であり、さらに好ましくは4〜8である。前記末端にCF2H基を有するアルキル基は、アルキル基に含まれる水素原子の一部又は全部がフッ素原子で置換されたアルキル基である。アルキル基中の水素原子の50%以上がフッ素原子で置換されていることが好ましく、60%以上が置換されていることがより好ましく、70%以上を置換されていることがさらに好ましい。残りの水素原子は、さらに後述の置換基群Dとして例示する置換基によって置換されていてもよい。R100で表される末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基の例を以下に示す。
R1:n−C817
R2:n−C613
R3:n−C49
R4:n−C817−(CH22
R5:n−C613−(CH22
R6:n−C49−(CH22
R7:H−(CF28
R8:H−(CF26
R9:H−(CF24
R10:H−(CF28−(CH2)−
R11:H−(CF26−(CH2)−
R12:H−(CF24−(CH2)−
式(III)において、L100で表される(mo+no)価の連結基は、アルキレン基、アルケニレン基、芳香族基、ヘテロ環基、−CO−、−NRd−(Rdは炭素原子数が1〜5のアルキル基又は水素原子)、−O−、−S−、−SO−、−SO2−からなる群より選ばれる基を少なくとも2つ組み合わせた連結基であることが好ましい。
式(III)において、Wはカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又はホスホノキシ基{−OP(=O)(OH)2}もしくはその塩を表す。Wの好ましい範囲は、式(II)におけるQと同一である。
前記式 (III)で表される含フッ素化合物の中でも、下記式(III)−a又は式(III)−bで表される化合物が好ましい。
Figure 2007279083
式(III)−a中、R104及びR105は各々アルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表すが、R104及びR105が同時にアルキル基であることはない。W1及びW2は各々水素原子、カルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ{−OP(=O)(OH)2}もしくはその塩、又は置換基としてカルボキシル基、スルホ基もしくはホスホノキシ基を有する、アルキル基、アルコキシ基もしくはアルキルアミノ基を表すが、W1及びW2が同時に水素原子であることはない。
式(III)−b
(R106−L102−)m2(Ar101)−W3
式(III)−b中、R106はアルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表し、m2は1以上の整数を表し、複数個のR106は同一でも異なっていてもよいが、少なくとも一つは末端にCF3基又はCF2H基を有するアルキル基を表す。L102は、アルキレン基、芳香族基、−CO−、−NR’−(R’は炭素原子数が1〜5のアルキル基又は水素原子)、−O−、−S−、−SO−、−SO2−及びそれらの組み合わせからなる群より選ばれる2価の連結基を表し、複数個のL102は同一でも異なっていてもよい。Ar101は芳香族炭化水素環又は芳香族ヘテロ環を表し、W3はカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ基{−OP(=O)(OH)2}もしくはその塩、又は置換基としてカルボキシル基、スルホ基もしくはホスホノキシ基を有する、アルキル基、アルコキシ基もしくはアルキルアミノ基を表す。
まず、前記式(III)−aについて説明する。
104及びR105は前記式(III)におけるR100と同義であり、その好ましい範囲も同一である。W1及びW2で表されるカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ基{−OP(=O)(OH)2}もしくはその塩は前記式(III)におけるWと同義でありその好ましい範囲も同一である。W1及びW2で表される置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基は、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルキル基であり、更に好ましくは1〜8のアルキル基であり、特に好ましくは1〜3のアルキル基である。前記置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基は、少なくとも一つのカルボキシル基、スルホ基、又はホスホノキシ基を有していればよく、カルボキシル基、スルホ基、ホスホノキシ基としては、前記式(III)中のWが表すカルボキシル基、スルホ基、ホスホノキシ基と同義であり好ましい範囲も同一である。前記置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基は、これ以外の置換基によって置換されていてもよく、該置換基としては後述の置換基群Dとして例示する置換基のいずれかを適用できる。W1及びW2で表される置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルコキシ基は、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルコキシ基であり、更に好ましくは1〜8のアルコキシ基であり、特に好ましくは1〜4のアルコキシ基である。前記置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルコキシ基は、少なくとも一つのカルボキシル基、スルホ基、又はホスホノキシ基を有していればよく、カルボキシル基、スルホ基、ホスホノキシ基としては、前記式(III)中のWが表すカルボキシル基、スルホ基、ホスホノキシ基と同義であり好ましい範囲も同一である。前記カルボキシル基、スルホ基、ホスホノキシ基を有するアルコキシ基は、これ以外の置換基によって置換されていてもよく、該置換基としては後述の置換基群Dとして例示する置換基のいずれかを適用できる。W1及びW2で表される置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキルアミノ基は、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルキルアミノ基であり、より好ましくは1〜8のアルキルアミノ基であり、さらに好ましくは1〜4のアルキルアミノ基である。前記カルボキシル基、スルホ基、ホスホノキシ基を有するアルキルアミノ基は、少なくとも一つのカルボキシル基、スルホ基、又はホスホノキシ基を有していればよく、カルボキシル基、スルホ基、ホスホノキシ基としては、前記式(III)中のWが表すカルボキシル基、スルホ基、ホスホノキシ基と同義であり好ましい範囲も同一である。前記カルボキシル基、スルホ基、ホスホノキシ基を有するアルキルアミノ基は、これ以外の置換基によって置換されていてもよく、該置換基としては後述の置換基群Dとして例示する置換基のいずれかを適用できる。
1及びW2は、特に好ましくはそれぞれ水素原子又は(CH2nSO3M(nは0又は1を表す。)である。Mはカチオンを表すが、分子内で荷電が0になる場合は、Mはなくてもよい。Mで表されるカチオンとしては、例えばプロトニウムイオン、アルカリ金属イオン(リチウムイオン、ナトリウムイオン、カリウムイオンなど)、アルカリ土類金属イオン(バリウムイオン、カルシウムイオンなど)、アンモニウムイオンなどが好ましく適用される。このうち、特に好ましくはプロトニウムイオン、リチウムイオン、ナトリウムイオン、カリウムイオン、アンモニウムイオンである。
次に、前記式(III)−bについて説明する。
106は前記式(III)−bにおけるR100と同義であり、その好ましい範囲も同一である。L102は、好ましくは炭素数1〜12のアルキレン基、炭素数6〜12の芳香族基、−CO−、−NR−、−O−、−S−、−SO−、−SO2−及びそれらの組み合わせからなる総炭素数0〜40の連結基を表し、より好ましくは炭素数1〜8のアルキレン基、フェニル基、−CO−、−NR−、−O−、−S−、−SO2−及びそれらの組み合わせからなる総炭素数0〜20の連結基を表す。Ar101は、好ましくは炭素数6〜12の芳香族炭化水素環を表し、より好ましくはベンゼン環又はナフタレン環を表す。W3で表されるカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ基{−OP(=O)(OH)2}もしくはその塩、又は置換基としてカルボキシル基、スルホ基もしくはホスホノキシ基を有するアルキル基、アルコキシ基、又はアルキルアミノ基は、前記式(III)−aにおけるW1及びW2で表されるカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ{−OP(=O)(OH)2}もしくはその塩、又は置換基としてカルボキシル基、スルホ基もしくはホスホノキシ基を有するアルキル基、アルコキシ基、又はアルキルアミノ基と同義でありその好ましい範囲も同一である。
3は、好ましくはカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又は置換基としてカルボキシル基(−COOH)もしくはその塩又はスルホ基(−SO3H)もしくはその塩を有するアルキルアミノ基であり、特に好ましくはSO3M又はCO2Mである。Mはカチオンを表すが、分子内で荷電が0になる場合は、Mはなくてもよい。Mで表されるカチオンとしては、例えばプロトニウムイオン、アルカリ金属イオン(リチウムイオン、ナトリウムイオン、カリウムイオンなど)、アルカリ土類金属イオン(バリウムイオン、カルシウムイオンなど)、アンモニウムイオンなどが好ましく適用される。このうち、特に好ましくはプロトニウムイオン、リチウムイオン、ナトリウムイオン、カリウムイオン、アンモニウムイオンである。
本明細書において、置換基群Dには、アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、さらに好ましくは炭素数2〜8のアルケニル基であり、例えば、ビニル基、アリル基、2−ブテニル基、3−ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、さらに好ましくは炭素数2〜8のアルキニル基であり、例えば、プロパルギル基、3−ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、さらに好ましくは炭素数6〜12のアリール基であり、例えば、フェニル基、p−メチルフェニル基、ナフチル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、さらに好ましくは炭素数0〜6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基などが挙げられる)、
アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、さらに好ましくは炭素数1〜8のアルコキシ基であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、さらに好ましくは炭素数6〜12のアリールオキシ基であり、例えば、フェニルオキシ基、2−ナフチルオキシ基などが挙げられる)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のアシル基であり、例えば、アセチル基、ベンゾイル基、ホルミル基、ピバロイル基などが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜12のアルコキシカルボニル基であり、例えば、メトキシカルボニル基、エトキシカルボニル基などが挙げられる)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、さらに好ましくは炭素数7〜10のアリールオキシカルボニル基であり、例えば、フェニルオキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜10のアシルオキシ基であり、例えば、アセトキシ基、ベンゾイルオキシ基などが挙げられる)。
アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜10のアシルアミノ基であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜12のアルコキシカルボニルアミノ基であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、さらに好ましくは炭素数7〜12のアリールオキシカルボニルアミノ基であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルホニルアミノ基であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、さらに好ましくは炭素数0〜12のスルファモイル基であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のカルバモイル基であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、
アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のアルキルチオ基であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、さらに好ましくは炭素数6〜12のアリールチオ基であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルホニル基であり、例えば、メシル基、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルフィニル基であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のウレイド基であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のリン酸アミド基であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、さらに好ましくは、炭素数3〜24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)が含まれる。これらの置換基はさらにこれらの置換基によって置換されていてもよい。また、置換基が二つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
なお、含フッ素化合物は、ディスコティック液晶性化合物の配向状態を固定化するために置換基として重合性基を有するものも好ましい。
本発明に使用可能な式(III)にて表される含フッ素化合物の具体例を以下に示すが、本発明に用いられる含フッ素化合物はこれらに限定されるものではない。
Figure 2007279083
Figure 2007279083
Figure 2007279083
Figure 2007279083
Figure 2007279083
前記液晶性組成物中における前記含フッ素化合物の含有量の好ましい範囲は、その用途によって異なるが、前記液晶性組成物(塗布液である場合は溶媒を除いた組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましく、0.05〜1質量%であるのがさらに好ましい。
(重合開始剤)
所望の配向状態(例えば、棒状液晶性化合物の場合は垂直配向)に配向させた液晶性化合物の分子を、その配向状態を維持して固定するのが好ましい。固定化は、液晶性化合物に導入した重合性基(P)の重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。光重合開始剤の例には、α−カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジン及びフェナジン化合物(特開昭60−105667号公報、米国特許第4239850号明細書記載)及びオキサジアゾール化合物(米国特許第4212970号明細書記載)が含まれる。
光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%であることが好ましく、0.5〜5質量%であることがさらに好ましい。
(第1の光学異方性層の他の添加剤)
上記の液晶性化合物と共に、可塑剤、界面活性剤、重合性モノマー等を併用して、塗工膜の均一性、膜の強度、液晶性化合物の配向性等を向上させることができる。これらの素材は液晶性化合物と相溶性を有し、配向を阻害しないことが好ましい。
重合性モノマーとしては、ラジカル重合性若しくはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶化合物と共重合性のものが好ましい。例えば、特開2002−296423号公報明細書中の段落番号[0018]〜[0020]記載のものが挙げられる。上記化合物の添加量は、円盤状液晶性分子に対して一般に1〜50質量%の範囲にあり、5〜30質量%の範囲にあることが好ましい。
界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001−330725号公報中の段落番号[0028]〜[0056]記載の化合物、特願2003−295212号明細書中の段落番号[0069]〜[0126]記載の化合物が挙げられる。
液晶性化合物とともに使用するポリマーは、塗布液を増粘できることが好ましい。ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、特開2000−155216号公報明細書中の段落番号[0178]記載のものが挙げられる。液晶性化合物の配向を阻害しないように、上記ポリマーの添加量は、液晶性分子に対して0.1〜10質量%の範囲にあることが好ましく、0.1〜8質量%の範囲にあることがより好ましい。
前記第1の光学異方性層は、例えば、液晶性化合物、及び所望により添加される重合開始剤、配向制御剤等の添加剤を、溶媒に溶解及び/又は分散させて調製した塗布液を、支持体上に塗布することで形成することができる。支持体上に配向膜を形成し、該配向膜表面に前記塗布液を塗布して形成するのが好ましい。塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライド及びケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
(塗布方法)
塗布液の塗布は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。中でも、前記第1の光学異方性層を形成する際は、ワイヤーバーコーティング法を利用して塗布するのが好ましく、ワイヤーバーの回転数は下記式を満たすことが好ましい。
0.6<(W×(R+2r)×π)/V<1.4
[W:ワイヤーバーの回転数(rpm)、R:バーの芯の直径(m)、r:ワイヤーの直径(m)、V:支持体の搬送速度(m/min)]
(W×(R+2r)×π)/Vの範囲は、0.7〜1.3であることがより好ましく、0.8〜1.2であることがさらに好ましい。
前記第1の光学異方性層の形成にはダイコーティング法が好ましく用いられ、特に、スライドコーター又はスロットダイコーターを利用した塗布方法が好ましい。例えば、特開2004−290775号、特開2004−290776号、特開2004−358296号、特開2005−13989号等に記載の塗布方法を用いることができる。
次に、上記の通り、支持体表面又は配向膜表面に前記組成物を塗布した後、液晶性化合物の分子を配向(棒状液晶性分子については好ましくは垂直配向)させて、分子をその配向状態に固定して光学異方性層を形成する。配向させる温度は、用いる液晶性化合物の転移温度、所望の配向状態等を考慮して、決定することができる。固定化は、液晶性分子や、組成物中に所望により添加される重合性モノマーの重合反応又は架橋反応により実施されるのが好ましい。重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2〜50J/cm2であることが好ましく、100〜800mJ/cm2であることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
形成される光学異方性層の厚さは、0.1〜10μmであることが好ましく、0.5〜5μmであることがさらに好ましく、1〜5μmであることがよりさらに好ましい。
(配向膜)
前記第1の光学異方性層を形成する際は、配向膜の表面に前記組成物を塗布して、液晶性化合物の分子を配向させるのが好ましい。配向膜は液晶性化合物の配向方向を規定する機能を有するため、本発明の好ましい態様を実現する上で利用するのが好ましい。しかし、液晶性化合物を配向後にその配向状態を固定してしまえば、配向膜はその役割を果たしているために、本発明の構成要素としては必ずしも必須のものではない。即ち、配向状態が固定された配向膜上の光学異方性層のみを偏光子上に転写して本発明の偏光板を作製することも可能である。
配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。
配向膜は、ポリマーのラビング処理により形成することが好ましい。
ポリマーの例には、例えば特開平8−338913号公報明細書中段落番号[0022]記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコール及び変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコール及び変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコール及び変性ポリビニルアルコールが最も好ましい。
ポリビニルアルコールの鹸化度は、70〜100%が好ましく、80〜100%がさらに好ましい。ポリビニルアルコールの重合度は100〜5000であることが好ましい。
前記第1の光学異方性層の作製に利用可能な配向膜は、架橋性官能基(例、二重結合)を有する側鎖を主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する架橋性官能基を側鎖に導入することが好ましい。配向膜に使用されるポリマーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができ、これらの組み合わせを複数使用することができる。
架橋性官能基を有する側鎖を配向膜ポリマーの主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する側鎖に架橋性官能基を導入すると、配向膜のポリマーと光学異方性層に含まれる多官能モノマーとを共重合させることができる。その結果、多官能モノマーと多官能モノマーとの間だけではなく、配向膜ポリマーと配向膜ポリマーとの間、そして多官能モノマーと配向膜ポリマーとの間も共有結合で強固に結合される。従って、架橋性官能基を配向膜ポリマーに導入することで、光学補償フィルムの強度を著しく改善することができる。
配向膜ポリマーの架橋性官能基は、多官能モノマーと同様に、重合性基を含むことが好ましい。具体的には、例えば特開2000−155216号公報明細書中段落番号[0080]〜[0100]記載のもの等が挙げられる。
配向膜ポリマーは、上記の架橋性官能基とは別に、架橋剤を用いて架橋させることもできる。架橋剤としては、アルデヒド、N−メチロール化合物、ジオキサン誘導体、カルボキシル基を活性化することにより作用する化合物、活性ビニル化合物、活性ハロゲン化合物、イソオキサゾール及びジアルデヒド澱粉が含まれる。二種類以上の架橋剤を併用してもよい。具体的には、例えば特開2002−62426号公報明細書中の段落番号[0023]〜[0024]記載の化合物等が挙げられる。反応活性の高いアルデヒド、特にグルタルアルデヒドが好ましい。
架橋剤の添加量は、ポリマーに対して0.1〜20質量%が好ましく、0.5〜15質量%がさらに好ましい。配向膜に残存する未反応の架橋剤の量は、1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。このように調節することで、配向膜を液晶表示装置に長期使用、或は高温高湿の雰囲気下に長期間放置しても、レチキュレーション発生のない充分な耐久性が得られる。
配向膜は、基本的に、配向膜形成材料である上記ポリマー、架橋剤及び添加剤を含む溶液を透明支持体上に塗布した後、加熱乾燥(架橋させ)し、ラビング処理することにより形成することができる。架橋反応は、前記のように、透明支持体上に塗布した後、任意の時期に行ってよい。ポリビニルアルコールのような水溶性ポリマーを配向膜形成材料として用いる場合には、塗布液は消泡作用のある有機溶媒(例、メタノール)と水の混合溶媒とすることが好ましい。その比率は質量比で水:メタノールが0:100〜99:1が好ましく、0:100〜91:9であることがさらに好ましい。これにより、泡の発生が抑えられ、配向膜、更には光学異方層の層表面の欠陥が著しく減少する。
配向膜作製時に利用する塗布方法は、スピンコーティング法、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法又はロールコーティング法が好ましい。特にロッドコーティング法が好ましい。また、乾燥後の膜厚は0.1〜10μmが好ましい。加熱乾燥は、20℃〜110℃で行うことができる。充分な架橋を形成するためには60℃〜100℃が好ましく、特に80℃〜100℃が好ましい。乾燥時間は1分〜36時間で行うことができるが、好ましくは1分〜30分である。pHも、使用する架橋剤に最適な値に設定することが好ましく、グルタルアルデヒドを使用した場合は、pH4.5〜5.5で、特に5が好ましい。
配向膜は、透明支持体上に設けられることが好ましい。配向膜は、上記のようにポリマー層を架橋した後、表面をラビング処理することにより得ることができる。
前記ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法を適用することができる。即ち、配向膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法を用いることができる。一般的には、長さ及び太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。
配向膜のラビング処理面に前記組成物を塗布して、液晶性化合物の分子を配向させる。その後、必要に応じて、配向膜ポリマーと光学異方性層に含まれる多官能モノマーとを反応させるか、あるいは、架橋剤を用いて配向膜ポリマーを架橋させることで、前記第1の光学異方性層を形成することができる。
配向膜の膜厚は、0.1〜10μmの範囲とするのが好ましい。
(支持体)
液晶性組成物からなる第1の光学異方性層を形成するための支持体としては、本発明のプラスチックフィルムからなる前記第2の光学異方性層を用いてもよいし、仮の支持体上に第1の光学異方性層に設けた後、第2の光学異方性層上に転写してもよいし、別途、光学的に等方性のフィルムを支持体として用いてもよい。仮の支持体を用いる場合は、支持体の光学特性は特に問わないが、第1の光学異方性層が容易に剥離できることが好ましい。光学的に等方的な支持体上に第1の光学異方性層を形成した場合、液晶表示装置での使用時、該支持体は取り除いてもよいし、残してもよい。また、支持体は偏光層の保護フィルムとしても利用できる。支持体は光透過率が80%以上であることが好ましい。
実質的に等方的な支持体としては、面内のレターデーション(Re)は0〜20nmであることが好ましく、0〜10nmであることがさらに好ましく、0〜5nmであることが最も好ましい。また、厚さ方向のレターデーション(Rth)は−60nm〜60nmであることが好ましく、−40nm〜40nmであることが好ましく、−20nm〜20nmであることが最も好ましい。波長分散は、Re400/Re700の比が1.2未満であることが好ましい。
ポリマーの例には、セルロースエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアクリレート、ポリメタクリレート及び環状ポリオレフィンが含まれる。セルロースエステルが好ましく、アセチルセルロースがさらに好ましく、トリアセチルセルロースが最も好ましい。環状ポリオレフィンとしては、特公平2−9619号公報記載のテトラシクロドデセン類の開環重合体又はテトラシクロドデセン類とノルボルネン類の開環共重合体を水素添加反応させて得られた重合体を構成成分とするポリマー、商品名としてはアートン(JSR製)や、ゼオネックス、ゼオノア(日本ゼオン製)のシリーズから使用することができる。プラスチックフィルムは、ソルベントキャスト法により形成することが好ましい。
プラスチックフィルムは、ソルベントキャスト法により形成することが好ましい。透明支持体の厚さは、20〜500μmであることが好ましく、50〜200μmであることがさらに好ましい。透明支持体とその上に設けられる層(接着層、垂直配向膜あるいは位相差層)との接着を改善するため、透明支持体に表面処理(例、グロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理)を実施してもよい。透明支持体の上に、接着層(下塗り層)を設けてもよい。また、透明支持体や長尺の透明支持体には、搬送工程でのすべり性を付与したり、巻き取った後の裏面と表面の貼り付きを防止するために、平均粒径が10〜100nm程度の無機粒子を固形分質量比で5%〜40%混合したポリマー層を支持体の片側に塗布や支持体との共流延によって形成したものを用いることが好ましい。
[偏光板]
本発明の偏光板は、偏光層と、本発明の光学補償フィルムとを含む。
偏光層には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜を用いることができる。ヨウ素系偏光膜及び染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造する。偏光膜の吸収軸は、フィルムの延伸方向に相当する。従って、縦方向(搬送方向)に延伸された偏光膜は長手方向に対して平行に吸収軸を有し、横方向(搬送方向と垂直方向)に延伸された偏光膜は長手方向に対して垂直に吸収軸を有す。
本発明の偏光板の好ましい製造方法は、偏光膜と光学補償フィルムとをそれぞれ長尺の状態で連続的に積層される工程を含む。該長尺の偏光板は用いられる液晶表示装置の画面の大きさに合わせて裁断される。
偏光層は、一般に双方の表面に保護膜を有する。本発明の光学補償フィルム中に含まれるプラスチックフィルムを、偏光層の保護膜として機能させることができ、かかる場合は、前記光学補償フィルム側の偏光層の表面には別途保護膜を貼り合わせる必要はない。本発明の偏光板において、偏光層と本発明のプラスチックフィルム(本発明の光学補償フィルムの一部材)との間には、等方的な接着剤層、及び/又は実質的に等方的な透明保護フィルムのみが含まれているのが好ましい。実質的に等方的な透明保護フィルムとしては、具体的には、面内のレターデーションが0〜10nm、厚さ方向のレターデーションが−20〜20nmであるフィルムである。セルロースアシレート又は環状ポリオレフィンを含むフィルムが好ましい。
本発明の偏光板の第1の態様は、前記第1の光学異方性層、前記第2の光学異方性層、及び前記偏光層が、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光層の吸収軸の方向とが、実質的に直交している偏光板であり、及び本発明の偏光板の第2の態様は、前記第2の光学異方性層、前記第1の光学異方性層、及び前記偏光層が、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光層の吸収軸の方向とが、実質的に平行である偏光板である。本発明のプラスチックフィルムからなる第2の光学異方性層の遅相軸の方向は、プラスチックフィルムを作製する際の延伸方向等によって調整することができる。
[液晶表示装置]
本発明の液晶表示装置は、本発明の偏光板を少なくとも含む。本発明の液晶表示装置は、反射型、半透過型、透過型液晶表示装置等のいずれであってもよい。液晶表示装置は一般的に、偏光板、液晶セル、及び必要に応じて位相差板、反射層、光拡散層、バックライト、フロントライト、光制御フィルム、導光板、プリズムシート、カラーフィルター等の部材から構成されるが、本発明においては本発明の偏光板を使用することを必須とする点を除いて特に制限はない。液晶セルとしては特に制限されず、電極を備える一対の透明基板で液晶層を狭持したもの等の一般的な液晶セルが使用できる。液晶セルを構成する前記透明基板としては、液晶層を構成する液晶性を示す材料を特定の配向方向に配向させるものであれば特に制限はない。具体的には、基板自体が液晶を配向させる性質を有していている透明基板、基板自体は配向能に欠けるが、液晶を配向させる性質を有する配向膜等をこれに設けた透明基板等がいずれも使用できる。また、液晶セルの電極は、公知のものが使用できる。通常、液晶層が接する透明基板の面上に設けることができ、配向膜を有する基板を使用する場合は、基板と配向膜との間に設けることができる。前記液晶層を形成する液晶性を示す材料としては、特に制限されず、各種の液晶セルを構成し得る通常の各種低分子液晶性化合物、高分子液晶性化合物及びこれらの混合物が挙げられる。また、これらに液晶性を損なわない範囲で色素やカイラル剤、非液晶性化合物等を添加することもできる。
前記液晶セルは、前記電極基板及び液晶層の他に、後述する各種の方式の液晶セルとするのに必要な各種の構成要素を備えていてもよい。前記液晶セルの方式としては、TN(Twisted Nematic)方式、STN(SuperTwisted Nematic)方式、ECB(Electrically Controlled Birefringence)方式、IPS(In−Plane Switching)方式、VA(Vertical Alignment)方式、MVA(Multidomain Vertical Alignment)方式、PVA(Patterned Vertical Alignment)方式、OCB(Optically Compensated Birefringence)方式、HAN(Hybrid Aligned Nematic)方式、ASM(Axially Symmetric Aligned Microcell)方式、ハーフトーングレイスケール方式、ドメイン分割方式、あるいは強誘電性液晶、反強誘電性液晶を利用した表示方式等の各種の方式が挙げられる。また、液晶セルの駆動方式も特に制限はなく、STN−LCD等に用いられるパッシブマトリクス方式、並びにTFT(Thin Film Transistor)電極、TFD(Thin Film Diode)電極等の能動電極を用いるアクティブマトリクス方式、プラズマアドレス方式等のいずれの駆動方式であってもよい。カラーフィルターを使用しないフィールドシーケンシャル方式であってもよい。
本発明の偏光板は、反射型、半透過型、及び透過型液晶表示装置に好ましく用いられる。反射型液晶表示装置は、通常、反射板、液晶セル及び偏光板を、この順に積層した構成を有する。位相差板は、反射板と偏光膜との間(反射板と液晶セルとの間又は液晶セルと偏光膜との間)に配置される。反射板は、液晶セルと基板を共有していてもよい。前記偏光板として、本発明の偏光板を用いることができ、かかる場合は、位相差板を別途配置しなくてもよい。
また、半透過反射型液晶表示装置は、液晶セルと、該液晶セルより観察者側に配置された偏光板と、前記偏光板と前記液晶セルの間に配置される少なくとも1枚の位相差板と、観察者から見て前記液晶層よりも後方に設置された半透過反射層を少なくとも備え、さらに観察者から見て前記半透過反射層よりも後方に少なくとも1枚の位相差板と偏光板とを有す。このタイプの液晶表示装置では、バックライトを設置することで反射モードと透過モード両方の使用が可能となる。双方の偏光板が本発明の偏光板であってもよいし、一方のみが本発明の偏光板であってもよい。本発明の偏光板を配置する場合は、液晶セルと本発明の偏光板との間には、位相差板を別途配置しなくてもよい。
液晶セルのモードは特に限定されないが、IPSモード又はFFSモードであることが好ましい。
IPSモードの液晶セルは、棒状液晶分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の透過軸は直交している。光学補償フィルムを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10−54982号公報、特開平11−202323号公報、特開平9−292522号公報、特開平11−133408号公報、特開平11−305217号公報、特開平10−307291号公報などに開示されている。
例えば、前記第1の態様の偏光板を、一対の基板と、該一対の基板に狭持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル(例えば、IPSモードの液晶セル)を有する液晶表示装置に用いる場合は、前記一対の基板の一方の基板の外側に該基板側から、第1の光学異方性層、第2の光学異方性層、及び偏光層がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に平行になるように前記偏光板を配置し、及び他方の基板の外側にさらに第2の偏光層を配置することができる。この場合、双方の偏光層の吸収軸を互いに直交させて配置する。
また、前記第2の態様の偏光板を、一対の基板と、該一対の基板に狭持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル(例えば、IPSモードの液晶セル)を有する液晶表示装置に用いる場合は、前記一対の基板の一方の基板の外側に該基板側から、第2の光学異方性層、第1の光学異方性層、及び偏光層がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に直交するように前記偏光板を配置し、及び他方の基板の外側にさらに第2の偏光層を配置することができる。この場合、双方の偏光層の吸収軸が互いに直交させて配置する。この場合も、双方の偏光層の吸収軸を互いに直交させて配置する。
前記いずれの態様においても、前記第2の偏光層と前記基板との間には実質的に等方的な接着剤層、及び/又は実質的に等方的な透明保護フィルムのみが含まれているのが好ましい。実質的に等方的な透明保護フィルムとは、具体的には、面内のレターデーションが0〜10nm、厚さ方向のレターデーションが−20〜20nmであり、例えば、かかる光学特性を有するセルロースアシレート又は環状ポリオレフィンを含むフィルムが好ましい。また、このようなフィルムの内部ヘイズは0.6%以下で表面ヘイズは0.05%以上であることが好ましい。
以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[実施例1]
(セルロースアシレートフィルムC1の作製)
<セルロースアセテート溶液の調製>
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアセテート溶液Aを調製した。
――――――――――――――――――――――――――――――――
セルロースアシレート溶液A組成
――――――――――――――――――――――――――――――――
アセチル化度2.80のセルロースアセテート 100.0質量部
トリフェニルフォスフェート(可塑剤) 7.6質量部
ビフェニルフォスフェート(可塑剤) 3.8質量部
メチレンクロライド(第1溶媒) 414.0質量部
メタノール(第2溶媒) 61.6質量部
――――――――――――――――――――――――――――――――
<マット剤溶液の調製>
下記の組成物を分散機に投入し、攪拌して各成分を溶解し、マット剤溶液を調製した。
―――――――――――――――――――――――――――――――――
マット剤溶液A組成
―――――――――――――――――――――――――――――――――
平均粒径20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製 2.0質量部
メチレンクロライド(第1溶媒) 74.4質量部
メタノール(第2溶媒) 11.1質量部
セルロースアシレート溶液A 12.4質量部
―――――――――――――――――――――――――――――――――
<レターデーション発現剤溶液の調製>
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、レターデーション発現剤溶液を調製した。
―――――――――――――――――――――――――――――――
レターデーション発現剤溶A液組成
―――――――――――――――――――――――――――――――
レターデーション発現剤(A−107) 20.0質量部
メチレンクロライド(第1溶媒) 57.3質量部
メタノール(第2溶媒) 8.6質量部
セルロースアシレート溶液A 14.1質量部
―――――――――――――――――――――――――――――――
上記マット剤溶液Aを1.5質量部とレターデーション発現剤溶液A2.6質量部をそれぞれを濾過後にインラインミキサーを用いて混合し、さらにセルロースアシレート溶液Aを96.0質量部を加えて、インラインミキサー混合し、バンド流延機を用いて流延した。支持体(バンド)前半部の乾燥風は平均温度140℃、平均風速180m/min、支持体後半部の乾燥風の平均温度60℃、乾燥風量は140m/minで乾燥した。残留溶剤含量27%でフィルムをバンドから剥離し、143℃の雰囲気温度でフィルムをテンターを用いて112%まで横延伸した。延伸開始時の残留溶剤含量は20%、延伸終了時の残留溶剤含量は4%であった。その後、クリップを外して130℃で40分間乾燥させ、幅1.6m、長さ4000mの長尺状のセルロースアシレートフィルムC1を作製した。できあがったセルロースアシレートフィルムの残留溶剤量は0.1%であり、膜厚は80μmであった。
(セルロースアシレートフィルムC2〜C7の作製)
セルロースアシレートの種類、レターデーション発現剤の種類、添加量、マット剤、レターデーション発現剤及びドープ中のセルロースアシレート濃度、支持体上の乾燥条件、延伸温度、延伸時の残量溶剤含量、延伸倍率を、表1に示す通りに変更した以外は、同様にして長尺状のセルロースアシレートフィルムC2〜C7を作製した。
なお、セルロースアシレートフィルムC7の作製ではマット剤溶液を用いなかった。また、セルロースアシレートフィルムのレターデーション発現剤として以下の化合物を用いた。
レターデーション発現剤 A−107
Figure 2007279083
(セルロースアシレートフィルムC8の作製)
上記レターデーション発現剤溶液A2.6質量部を濾過後、セルロースアシレート溶液Aを97.4質量部に加えて、インラインミキサー混合し、バンド流延機を用いて流延した。支持体(バンド)前半部の乾燥風は平均温度140℃、平均風速180m/min、支持体後半部の乾燥風の平均温度60℃、乾燥風量は140m/minで乾燥した。
引き続き、上記マット剤溶液Aを4.0質量部を濾過後、セルロースアシレート溶液A、96.0質量部に加えて、インラインミキサー混合したものを、上記のバンド上の流延膜の残留溶剤が50%の状態で、固形分塗布量が上記流延膜に対し1.5%になるように流延した。全流延膜の残留溶剤含量が27%でフィルムをバンドから剥離し、143℃の雰囲気温度でフィルムをテンターを用いて112%まで横延伸した。延伸開始時の残留溶剤含量は20%、延伸終了時の残留溶剤含量は4%であった。その後、クリップを外して130℃で40分間乾燥させ、幅1.6m、長さ4000mの長尺状のセルロースアシレートフィルムC8を作製した。できあがったセルロースアシレートフィルムの残留溶剤量は0.1%であり、膜厚は80μmであった。
(セルロースアシレートフィルムC18の作製)
上記セルロースアシレートフィルムC8に対し、横延伸を縦延伸に変更し、長尺状のセルロースアシレートフィルムC18を作製した。
Figure 2007279083
<セルロースアシレートフィルムの評価>
(光学特性の測定)
また、自動複屈折率計(KOBRA−21ADH、王子計測機器(株)製)により25℃60%におけるRe及びRthを測定した。測定波長は590nmとした。
<ヘイズの測定>
以下の測定により、得られたフィルムの全ヘイズ(H)、内部ヘイズ(Hi)、表面ヘイズ(Hs)を測定した。
1)得られたフィルムの全ヘイズ(H)をヘイズメーター(HGM−2DP、スガ試験験機)でJIS−K−6714に従って測定した。
2)得られたフィルムの表面及び裏面に流動パラフィンを数滴添加し、厚さ1mmのガラス板(ミクロスライドガラス品番S 9111、MATAUNAMI製)を2枚用いて裏表より挟んで、完全に2枚のガラス板と得られたフィルムを光学的に密着し、表面ヘイズを除去した状態でヘイズを測定し、別途測定したガラス板2枚の間に流動パラフィンのみを挟んで測定したヘイズを引いた値をフィルムの内部ヘイズ(Hi)として算出した。
3)上記1)で測定した全ヘイズ(H)から上記2)で算出した内部ヘイズ(Hi)を引いた値をフィルムの表面ヘイズ(Hs)として算出した。
<X線測定>
X線回折による配向度は以下のようにして求めた。
理学電機製 RINT RAPIDでX線源にはCu管球を用い、40kV−36mAでX線を発生した。コリメーターは0.8mmf、フィルム試料は透過試料台を用いて固定した。また、露光時間は600秒とした。
<マット剤の2次平均粒径の測定>
マット剤の2次平均粒径はフィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とした。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒径とした。結果を表2に示す。
<Tg測定>
フィルム試料(未延伸)5mm×30mmを、25℃60%RHで2時間以上調湿した後に動的粘弾性測定装置(バイブロン:DVA−225(アイティー計測制御株式会社製))で、つかみ間距離20mm、昇温速度2℃/分、測定温度範囲30℃〜200℃、周波数1Hzで測定した。縦軸に対数軸で貯蔵弾性率、横軸に線形軸で温度(℃)をとった時に、貯蔵弾性率が固体領域からガラス転移領域へ移行する際に見受けられる貯蔵弾性率の急激な減少を固体領域で直線1を引き、ガラス転移領域で直線2を引いた。
この直線1と直線2の交点は、昇温時に貯蔵弾性率が急激に減少しフィルムが軟化し始める温度すなわち、ガラス転移領域に移行し始める温度であり、これをガラス転移温度Tg(動的粘弾性)とした。
<共焦点レーザー顕微鏡観察>
共焦点レーザー顕微鏡観察は、Lasertec社製のVL2000Dを用いて行った。レーザー光源には波長410nmのGaN固体ブルーレーザーを用いた。コントラスト及び空間分解能向上のために、対物レンズに水浸観察用150倍レンズ(NA=1.25)を使用し、水浸観察を行った。10μm×10μm四方3箇所について、最長方向の長さが0.2μm以上3μm以下のサイズの微粒子数を数え、3箇所の平均を算出した。
<結晶化指数>
理学電機(株)製“RAPID R−AXIS”により、X線源にはCuを回転対陰極として用い、50kV−100mAでX線を発生させた。コリメーターは0.8mmφ、フィルム試料は透過試料台を用いて固定した。また、露光時間は180秒とした。このようにして2θ=25°及び27°における回折強度を読み取り、下記式(A)により結晶化指数を求めた。
(A) 結晶化指数=(2θが27°のX線回折強度)/(2θが25°のX線回折強度)
<擦り傷>
長尺状セルロースアセテートフィルムを全幅で5mのサンプリングし、反射光、目視検査にて擦り傷を観察し、下記のように3段階評価を行った。
○:擦り傷がない
△:3×3mm未満の擦り傷が観察される
×:3×3mm以上の擦り傷が観察される
測定結果を表2に示す。表2に示す結果から、セルロースアシレートフィルムC1〜C4、C8及びC18は、比較例のセルロースアシレートC5〜C7と比較して、傷もなく、内部ヘイズが低く、かつ高レターデーションの好ましいプラスチックフィルムであることが理解できる。
Figure 2007279083
※セルロースアシレートフィルムC7には多数の擦り傷が観察されたが、上記の擦り傷以外の評価は、擦り傷のない部分を行った。
[実施例2]
<片面鹸化処理>
作製したセルロースアシレートフィルムC1を温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、下記の組成のアルカリ溶液をバーコーターにより、14ml/m2塗布し、110℃に加熱したスチーム式遠赤外線ヒーター((株)ノリタケカンパニー製)の下に10秒間滞留させた後、同じくバーコーターを用いて純水を3ml/m2塗布した。このときのフィルム温度は40℃であった。次いでファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返して後に、70℃の乾燥ゾーンに2秒滞留させて乾燥した。
――――――――――――――――――――――――――――――――――
<アルカリ溶液組成>
――――――――――――――――――――――――――――――――――
水酸化カリウム 4.7質量部
水 15.7質量部
イソプロパノール 64.8質量部
プロピレングリコール 14.9質量部
1633O(CH2CH2O)10H(界面活性剤) 1.0質量部
――――――――――――――――――――――――――――――――――
<第1の光学異方性層の作製>
上記作製した長尺状のセルロースアシレートフィルム(C1)の鹸化処理を施した面に、下記の組成の配向膜塗布液を#14のワイヤーバーで連続的に塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、配向膜を形成した。
配向膜塗布液の組成
――――――――――――――――――――――――――
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド 0.5質量部
――――――――――――――――――――――――――
Figure 2007279083
下記の組成の棒状液晶化合物を含む塗布液を、上記作製した配向膜上に#5.0のワイヤーバーで連続的に塗布した。フィルムの搬送速度は20m/minとした。室温から80℃に連続的に加温する工程で溶媒を乾燥させ、その後、80℃の乾燥ゾーンで90秒間加熱し、棒状液晶性化合物を配向させた。続いて、フィルムの温度を60℃に保持して、UV照射により液晶化合物の配向を固定化し、第1の光学異方性層B1を形成した。続いて、55℃の1.5mol/L水酸化ナトリウム水溶液中に作製したフィルムを2分間浸漬した後、水に浸漬し十分に水酸化ナトリウムを洗い流した。その後、35℃の5mmol/L硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。このようにして、第1及び第2の光学異方性層が積層された光学補償フィルムF1を作製した。
同様にセルロースアシレートフィルム(C1)をそれぞれ、セルロースアシレートフィルム(C2〜C8)、(C18)に変更し、光学補償フィルムF2〜F8及びF18を作製した。なお、F8とF18では、セルロースアシレートフィルムC8及びC18の1層目側にB1層を設けた。
棒状液晶化合物を含む塗布液(S1)の組成
――――――――――――――――――――――――――――――――――――
下記の棒状液晶性化合物(I) 100質量部
光重合開始剤(イルガキュアー907、チバガイギー社製) 3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製) 1質量部
下記のフッ素系ポリマー 0.4質量部
下記のピリジニム塩 1質量部
メチルエチルケトン 172質量部
――――――――――――――――――――――――――――――――――――
Figure 2007279083
Figure 2007279083
Figure 2007279083
作製した光学補償フィルムF1から棒状液晶性化合物を含む光学異方性層のみを剥離し、自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて光学特性を測定した。波長590nmで測定した光学異方性層のみのReは0nmであり、Rthは−260nmであった。また、棒状液晶分子がフィルム面に対して実質的に垂直に配向している光学異方性層が形成されたことが確認できた。
[実施例3]
<偏光板(P1〜P8)の作製>
ヨウ素水溶液中で連続して染色した厚さ80μmのロール状ポリビニルアルコールフィルムを搬送方向に5倍延伸し、乾燥して長尺の偏光膜を得た。この偏光膜の一方の面に、上記作製した光学補償フィルムF1の第1の光学異方性層が形成されていない面を、他方の面に、表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)を、ポリビニルアルコール系接着剤を用いて連続的に貼り合わせ、長尺の偏光板P1を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であり、且つ、偏光膜の吸収軸と第2の光学異方性層(セルロースアシレートフィルム)の遅相軸とがなす角は90°であった。
同様に光学補償フィルムF1を上記光学補償フィルムF2〜F8に変更し、長尺の偏光板P2〜P8を作製した。
偏光板P2〜P8の偏光膜の吸収軸は全て、長手方向に対して平行であり、第2の光学異方性層(セルロースアシレートフィルム)の遅相軸とがなす角はP2〜P8では90°であった。
[実施例4]
<セルロースアセテートフィルム(T0)の作製>
(セルロースアセテート溶液の調製)
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアセテート溶液Bを調製した。
セルロースアセテート溶液Bの組成
―――――――――――――――――――――――――――――――――――
アセチル置換度2.94のセルロースアセテート 100.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
―――――――――――――――――――――――――――――――――――
(マット剤溶液の調製)
平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)を20質量部、メタノール80質量部を30分間よく攪拌混合してシリカ粒子分散液とした。この分散液を下記の組成物とともに分散機に投入し、さらに30分以上攪拌して各成分を溶解し、マット剤溶液を調製した。
マット剤溶液組成
―――――――――――――――――――――――――――――――――
平均粒径16nmのシリカ粒子分散液 10.0質量部
メチレンクロライド(第1溶媒) 76.3質量部
メタノール(第2溶媒) 3.4質量部
セルロースアセテート溶液B 10.3質量部
―――――――――――――――――――――――――――――――――
(添加剤溶液の調製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
添加剤溶液組成
――――――――――――――――――――――――――――――
下記の光学的異方性低下剤 49.3質量部
下記の波長分散調整剤 4.9質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアセテート溶液B 12.8質量部
――――――――――――――――――――――――――――――
Figure 2007279083
Figure 2007279083
(セルロースアセテートフィルムの作製)
上記セルロースアセテート溶液Bを94.6質量部、マット剤溶液を1.3質量部、添加剤溶液4.1質量部それぞれを濾過後に混合し、バンド流延機を用いて流延した。上記組成で光学的異方性を低下する化合物及び波長分散調整剤のセルロースアセテートに対する質量比はそれぞれ12%、1.2%であった。残留溶剤量30%でフィルムをバンドから剥離し、140℃で40分間乾燥させ、厚さ80μmの長尺状のセルロースアセテートフィルムT0を製造した。得られたフィルムの面内レターデーション(Re)は1nm(遅相軸はフィルム長手方向と垂直な方向)、厚み方向のレターデーション(Rth)は−1nm、表面ヘイズは0.22%、内部ヘイズは0.15%であった。
<偏光板(P0)の作製>
ヨウ素水溶液中で連続して染色した厚さ80μmのロール状ポリビニルアルコールフィルムを搬送方向に5倍延伸し、乾燥して長尺の偏光膜を得た。この偏光膜の一方の面に鹸化処理した上記のセルロースアセテートフィルムT0を、他方の面に鹸化処理した市販のセルロースアセテートフィルム(フジタックTD80UL、富士写真フイルム(株)製)を、ポリビニルアルコール系接着剤を用いて連続して貼り合わせ、偏光板P0を作製した。
<偏光板(P18)の作製>
上記作製した偏光板P0のセルロースアセテートフィルムT0側の面と、光学補償フィルムF18の第1の光学異方性層が形成されている面を、光学的に等方性のアクリル系粘着剤を用いて連続的に貼り合わせ、長尺の偏光板P18を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であり、且つ、偏光膜の吸収軸と第2の光学異方性層の遅相軸とがなす角は0°であった。
[実施例5]
<第1の光学異方性層の形成>
仮支持体として長尺状のポリエチレンテレフタレートフィルム(厚さ100μm)を用いて、その上に、実施例1と同様にして配向膜を形成し、さらに、塗布液S1を用いて第1の光学異方性層B1を形成した。
<偏光板(P38)の作製>
実施例2と同様にして、長尺の偏光膜を得た。この偏光膜の一方の面に、実施例1において作製したセルロースアシレートフィルムC8を、その1層目側を片面鹸化し、鹸化処理された面を貼り付け、偏光膜の他方の面に、表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)を、ポリビニルアルコール系接着剤を用いて連続的に貼り合わせた。続いて、この偏光板のセルロースアシレートフィルムC8の面に光学的に等方性のアクリル系粘着剤層を形成し、該粘着剤層に、上記のポリエチレンテレフタレートフィルム(仮支持体)上に形成した第1の光学異方性層B1を連続的に貼り合せ、引き続き、ポリエチレンテレフタレートフィルムを剥離した。このようにして、偏光膜、第2の光学異方性層(C8)、第1の光学異方性層(B1)がこの順で積層された長尺状の偏光板P38を作製した。なお、偏光膜の吸収軸は長手方向に対して平行であり、且つ、偏光膜の吸収軸と第2の光学異方性層の遅相軸とがなす角は90°であった。
[実施例6]
<液晶表示装置(L1)〜(L8)、(L18)、(L38)の作製>
液晶テレビTH-32LX500(松下電器産業(株)社製)から、液晶セルを取り出し、視認者側及びバックライト側に貼られてあった偏光板及び光学フィルムを剥した。この液晶セルは、電圧無印加状態及び黒表示時では液晶分子はガラス基板間で実質的に平行配向しており、その遅相軸方向は画面に対して水平方向であった。
上記の平行配向セルの上下のガラス基板に、上記作製した偏光板(P1及びP0)を粘着剤を用いて貼り合わせた。このとき、視認者側の偏光板にP1を配置し、バックライト側にP0を配置し、偏光板P1に含まれる第1の光学異方性層が視認者側のガラス基板に接するように、また、偏光板P0に含まれるセルロースアセテートフィルムT0がバックライト側のガラス基板に接するように貼り合わせた。また、偏光板P1の吸収軸と液晶セルの遅相軸が直交するようにし、偏光板P1と偏光板P0の吸収軸は直交するように配置した。このようにして偏光板を貼り合せた液晶セルを、再度、液晶テレビTH-32LX500に組み込みこんだ。このようにして液晶表示装置L1を作製した。
上記の偏光板P1を、それぞれ偏光板P0、P2〜P8、P18、P38に変更し液晶表示装置L0、L2〜L8、L38を作製した。
なお、上記の液晶表示装置L1〜L8、及びL38では液晶セル、第1の光学異方性層、第2の光学異方性層、偏光板層がこの順であり、第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に平行であった。
また、液晶表示装置L18では液晶セル、第2の光学異方性層、第1の光学異方性層、偏光板層がこの順であり、第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に直交していた。
[実施例7]
<液晶表示装置(L28)の作製>
上記実施例6と同様にして、平行配向セルを用意した。この平行配向セルの上下のガラス基板に、上記作製した偏光板(P8及びP0)を粘着剤を用いて貼り合わせた。このとき、視認者側の偏光板にP0を配置し、バックライト側にP8を配置し、偏光板P8に含まれる第1の光学異方性層がバックライト側のガラス基板に接するように、また、偏光板P0に含まれるセルロースアセテートフィルムT0が視認者側のガラス基板に接するように貼り合わせた。また、偏光板P8の吸収軸と液晶セルの遅相軸が直交するようにし、偏光板P0と偏光板P8の吸収軸は直交するように配置した。このようにして偏光板を貼り合せた液晶セルを、再度、液晶テレビTH-32LX500に組み込みこんだ。このようにして液晶表示装置L28を作製した。
なお、上記液晶表示装置L28では液晶セル、第1の光学異方性層、第2の光学異方性層、偏光層がこの順であり、第2の光学異方性層の遅相軸と黒表示字の液晶表示分子の長軸方向とが実質的に平行であった。
(光漏れ評価)
上記で作製した偏光板を貼り合せた液晶パネルを、バックライトを点灯させ、左斜め方向60°から光漏れを観察し下記のように2段階評価を行った。結果を表3に示す。
○:光漏れが見え難い
×:明らかに光漏れがある
(暗室コントラスト評価)
各液晶表示装置を、液晶セルの法線方向に1m離れたところに設置された輝度計(分光放射輝度計CS−1000:ミノルタ(株)製)で、輝度の比(白表示/黒表示)であるコントラスト比を測定した。
Figure 2007279083
表3に示した結果から以下のことが明らかである。本発明の液晶表示装置は、比較例の液晶表示装置に比べて、斜め方向から観た時の光漏れがなく、高コントラストで、黒表示時の明欠陥もなく良好であった。

Claims (21)

  1. 面内レターデーションが20〜150nmであり、厚さ方向のレターデーションが100〜300nmであり、内部ヘイズが0.6%以下であり、且つ表面ヘイズが0.05%以上であることを特徴とするプラスチックフィルム。
  2. 前記プラスチックフィルムが横一軸延伸法、縦一軸延伸法、同時二軸延伸法又は逐次二軸延伸法により延伸されてなるフィルムである請求項1に記載のプラスチックフィルム。
  3. 前記プラスチックフィルムがセルロースアシレートフィルムであることを特徴とする請求項1又は2に記載のプラスチックフィルム。
  4. 前記プラスチックフィルムが、セルロースの水酸基をアセチル基及び炭素原子数が3以上22以下のアシル基で置換して得られたセルロースの混合脂肪酸エステルであるセルロースアシレートから実質的になるセルロースアシレートフィルムであって、アセチル基の置換度Aと、炭素原子数が3〜22のアシル基の置換度Bとが下記数式(I)及び(II)を満たすことを特徴とする請求項3に記載のプラスチックフィルム:
    数式(I):2.0≦A+B≦3.0
    数式(II):0.1≦A≦2.5。
  5. 前記セルロースアシレートフィルムの炭素原子数が、3以上のアシル基がブタノイル基又はプロピオニル基である請求項4に記載のプラスチックフィルム。
  6. 前記セルロースアシレートフィルムの炭素原子数が、3以上のアシル基の置換度Bが0.6〜1.0である請求項4又は5に記載のプラスチックフィルム。
  7. 少なくとも第1の光学異方性層及び第2の光学異方性層を含み、
    該第1の光学異方性層は面内レターデーションが0〜10nmであり、且つ厚さ方向のレターデーションが−400〜−80nmであって、
    該第2の光学異方性層が請求項1〜6のいずれか1項に記載のプラスチックフィルムであることを特徴とする光学補償フィルム。
  8. 前記第1の光学異方性層が、棒状液晶化合物を含有する組成物からなり、前記第1の光学異方性層中、該棒状液晶化合物の分子が層平面に対して実質的に垂直に配向した状態に固定されている請求項7に記載の光学補償フィルム。
  9. 請求項7又は請求項8に記載の光学補償フィルムと、偏光層とを有する偏光板。
  10. 前記光学補償フィルムと前記偏光層との間には実質的に等方的な接着剤層、及び/又は実質的に等方的な保護フィルムのみが含まれる請求項9に記載の偏光板。
  11. 前記透明保護フィルムが、セルロースアシレート又は環状ポリオレフィンを含むフィルムであり、面内のレターデーションが0〜10nm、厚さ方向のレターデーションが−20〜20nmである請求項10に記載の偏光板。
  12. 前記第1の光学異方性層、前記第2の光学異方性層、及び前記偏光層が、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光層の吸収軸の方向とが、実質的に直交している請求項9〜11のいずれか1項に記載の偏光板。
  13. 前記第2の光学異方性層、前記第1の光学異方性層、及び前記偏光層が、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光層の吸収軸の方向とが、実質的に平行である請求項9〜11のいずれか1項に記載の偏光板。
  14. 一対の基板と、該一対の基板に狭持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル、及び請求項12に記載の偏光板を含み、該一対の基板の一方の基板の外側に該基板側から、第1の光学異方性層、第2の光学異方性層、及び偏光層がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に平行になるように前記偏光板が配置され、及び他方の基板の外側にさらに第2の偏光層を有し、双方の偏光層の吸収軸が互いに直交している液晶表示装置。
  15. 一対の基板と、該一対の基板に狭持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル、及び請求項13に記載の偏光板を含み、該一対の基板の一方の基板の外側に該基板側から、第2の光学異方性層、第1の光学異方性層、及び偏光層がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に直交するように前記偏光板が配置され、及び他方の基板の外側にさらに第2の偏光層を有し、双方の偏光層の吸収軸が互いに直交している液晶表示装置。
  16. 前記第2の偏光層と前記基板との間には実質的に等方的な接着剤層、及び/又は実質的に等方的な透明保護フィルムのみが含まれる請求項14又は15に記載の液晶表示装置。
  17. 前記透明保護フィルムはセルロースアシレート又は環状ポリオレフィンを含むフィルムであり、面内のレターデーションが0〜10nm、厚さ方向のレターデーションが−20〜20nmである請求項16に記載の液晶表示装置。
  18. ソルベントキャスティング法によってセルロースアシレートフィルムを製造する方法であって、セルロースアシレートの濃度が5〜35質量%の第1の液と、マット剤及びセルロースアシレートを少なくとも含有し、該セルロースアシレートの濃度が0.01〜5質量%未満の第2の液とをそれぞれ準備し、第1の液と第2の液とを混合した混合液Aを、表面に流延することを含むセルロースアシレートフィルムの製造方法。
  19. 前記第2の液がさらにレターデーション発現剤の少なくとも一種を含有する請求項18に記載の方法。
  20. レターデーション発現剤及びセルロースアシレートを少なくとも含有し、セルロースアシレートの濃度が5〜35質量%の第3の液を準備し、前記第2及び第3の液を混合した後、前記第1の液を混合して混合液Aを調製することを含む請求項18に記載の方法。
  21. レターデーション発現剤及びセルロースアシレートを少なくとも含有し、セルロースアシレートの濃度が5〜35質量%の第3の液と、前記第1の液とを混合した混合液Bを準備し、該混合液Bを表面に流延した後、該流延膜の表面に前記混合液Aを流延する、又は前記混合液Aを表面に流延した後、該流延膜の表面に前記混合液Bを流延する、請求項18に記載の方法。
JP2006101500A 2006-04-03 2006-04-03 光学補償フィルム、偏光板及び液晶表示装置 Pending JP2007279083A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006101500A JP2007279083A (ja) 2006-04-03 2006-04-03 光学補償フィルム、偏光板及び液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006101500A JP2007279083A (ja) 2006-04-03 2006-04-03 光学補償フィルム、偏光板及び液晶表示装置

Publications (1)

Publication Number Publication Date
JP2007279083A true JP2007279083A (ja) 2007-10-25

Family

ID=38680639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006101500A Pending JP2007279083A (ja) 2006-04-03 2006-04-03 光学補償フィルム、偏光板及び液晶表示装置

Country Status (1)

Country Link
JP (1) JP2007279083A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126535A1 (ja) * 2007-03-20 2008-10-23 Konica Minolta Opto, Inc. 位相差フィルム、偏光板、液晶表示装置および位相差フィルムの製造方法
JP2009249588A (ja) * 2008-04-10 2009-10-29 Konica Minolta Opto Inc セルロースエステルフィルム、偏光板および液晶表示装置
JP2011028251A (ja) * 2009-06-26 2011-02-10 Fujifilm Corp 位相差フィルム、偏光板及び液晶表示装置
JP2011123316A (ja) * 2009-12-11 2011-06-23 Fujifilm Corp 光学フィルム、その製造方法、偏光板および液晶表示装置
JP2011133841A (ja) * 2009-11-30 2011-07-07 Fujifilm Corp 液晶表示装置
JP2011132496A (ja) * 2009-11-25 2011-07-07 Fujifilm Corp プラスチックフィルム、その製造方法、偏光板および液晶表示装置
JP2013076872A (ja) * 2011-09-30 2013-04-25 Fujifilm Corp セルロースアシレートフィルム、偏光板および液晶表示装置
US8681295B2 (en) 2009-11-30 2014-03-25 Fujifilm Corporation VA-mode liquid-crystal display device
KR20140144697A (ko) 2012-04-13 2014-12-19 후지필름 가부시키가이샤 위상차 필름, 편광판, 액정 표시 장치, 및 위상차 필름의 제조 방법
US8976325B2 (en) 2009-11-30 2015-03-10 Fujifilm Corporation VA-mode liquid-crystal display device
US9103988B2 (en) 2009-11-30 2015-08-11 Fujifilm Corporation Liquid-crystal display device
KR20190039599A (ko) * 2016-10-04 2019-04-12 닛토덴코 가부시키가이샤 광학 적층체 및 화상 표시 장치
WO2022050003A1 (ja) * 2020-09-07 2022-03-10 住友化学株式会社 光学積層体およびこれを含む楕円偏光板

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299270B2 (ja) * 2007-03-20 2013-09-25 コニカミノルタ株式会社 位相差フィルム、偏光板、液晶表示装置および位相差フィルムの製造方法
WO2008126535A1 (ja) * 2007-03-20 2008-10-23 Konica Minolta Opto, Inc. 位相差フィルム、偏光板、液晶表示装置および位相差フィルムの製造方法
JP2009249588A (ja) * 2008-04-10 2009-10-29 Konica Minolta Opto Inc セルロースエステルフィルム、偏光板および液晶表示装置
US8159635B2 (en) 2009-06-26 2012-04-17 Fujifilm Corporation Liquid crystal display device
JP2011028251A (ja) * 2009-06-26 2011-02-10 Fujifilm Corp 位相差フィルム、偏光板及び液晶表示装置
JP2011132496A (ja) * 2009-11-25 2011-07-07 Fujifilm Corp プラスチックフィルム、その製造方法、偏光板および液晶表示装置
JP2011133841A (ja) * 2009-11-30 2011-07-07 Fujifilm Corp 液晶表示装置
US8681295B2 (en) 2009-11-30 2014-03-25 Fujifilm Corporation VA-mode liquid-crystal display device
US8976325B2 (en) 2009-11-30 2015-03-10 Fujifilm Corporation VA-mode liquid-crystal display device
US9103988B2 (en) 2009-11-30 2015-08-11 Fujifilm Corporation Liquid-crystal display device
JP2011123316A (ja) * 2009-12-11 2011-06-23 Fujifilm Corp 光学フィルム、その製造方法、偏光板および液晶表示装置
JP2013076872A (ja) * 2011-09-30 2013-04-25 Fujifilm Corp セルロースアシレートフィルム、偏光板および液晶表示装置
KR20140144697A (ko) 2012-04-13 2014-12-19 후지필름 가부시키가이샤 위상차 필름, 편광판, 액정 표시 장치, 및 위상차 필름의 제조 방법
KR20190039599A (ko) * 2016-10-04 2019-04-12 닛토덴코 가부시키가이샤 광학 적층체 및 화상 표시 장치
KR101989550B1 (ko) 2016-10-04 2019-06-18 닛토덴코 가부시키가이샤 광학 적층체 및 화상 표시 장치
WO2022050003A1 (ja) * 2020-09-07 2022-03-10 住友化学株式会社 光学積層体およびこれを含む楕円偏光板

Similar Documents

Publication Publication Date Title
JP2007279083A (ja) 光学補償フィルム、偏光板及び液晶表示装置
US7318951B2 (en) Retardation film, producing process thereof and liquid crystal display utilizing the same
JP4619913B2 (ja) 光学補償フィルム、偏光板、および液晶表示装置
JP4907881B2 (ja) 液晶組成物、光学補償フィルム、及び液晶表示装置
JP2007108732A (ja) 偏光板及び液晶表示装置
JP4583206B2 (ja) 液晶表示装置
JP2007155972A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP4619249B2 (ja) 光学異方性体、偏光板及び液晶表示装置
KR101351151B1 (ko) 광학 보상 필름, 편광판 및 액정 표시 장치
JP2007093864A (ja) 位相差板、偏光板および液晶表示装置
JP4909698B2 (ja) 偏光板一体型光学補償フィルム及び液晶表示装置
JP2006276817A (ja) 位相差板、偏光板および液晶表示装置
JP2007101678A (ja) 偏光板及びそれを用いた液晶表示装置
JP2007264403A (ja) 位相差板、偏光板、輝度向上フィルム、及び液晶表示装置
KR101186480B1 (ko) 셀룰로오스아실레이트 필름, 편광판 보호 필름, 편광판 및액정 표시 장치
JP2007206207A (ja) 光学フィルム、偏光板及び液晶表示装置
JP2007045993A (ja) 液晶組成物、光学補償シート、及び液晶表示装置
JP2007241011A (ja) 光学異方性膜、位相差板、及び液晶表示装置
JP2006267183A (ja) 光学補償シート、その製造方法、ならびにそれを用いた偏光板及び液晶表示装置
JP2007206205A (ja) 光学フィルム、偏光板及び液晶表示装置
JP2007248621A (ja) 偏光板及び液晶表示装置
JP2009288259A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP2006133652A (ja) 位相差板、偏光板および液晶表示装置
JP4495012B2 (ja) 位相差板、偏光板および液晶表示装置
JP2007178680A (ja) 光学補償フィルム、偏光板及び液晶表示装置