JP2010078701A - 光ファイバの接続構造およびシングルモードファイバ - Google Patents

光ファイバの接続構造およびシングルモードファイバ Download PDF

Info

Publication number
JP2010078701A
JP2010078701A JP2008244567A JP2008244567A JP2010078701A JP 2010078701 A JP2010078701 A JP 2010078701A JP 2008244567 A JP2008244567 A JP 2008244567A JP 2008244567 A JP2008244567 A JP 2008244567A JP 2010078701 A JP2010078701 A JP 2010078701A
Authority
JP
Japan
Prior art keywords
cladding
single mode
mode fiber
core
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008244567A
Other languages
English (en)
Inventor
Masatoshi Tanaka
正俊 田中
Masayoshi Hachiwaka
正義 八若
Seiro Oizumi
晴郎 大泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2008244567A priority Critical patent/JP2010078701A/ja
Priority to US13/120,745 priority patent/US8111962B2/en
Priority to PCT/JP2009/004030 priority patent/WO2010035398A1/ja
Priority to CN2009801328928A priority patent/CN102171594A/zh
Publication of JP2010078701A publication Critical patent/JP2010078701A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02366Single ring of structures, e.g. "air clad"
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02376Longitudinal variation along fibre axis direction, e.g. tapered holes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/268Optical coupling means for modal dispersion control, e.g. concatenation of light guides having different modal dispersion properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres

Abstract

【課題】ファイバ中に空孔を設けることによって耐曲げ性を向上させた光ファイバを用いた際にMPIの発生を抑制する光ファイバの接続構造およびMPIの発生を抑制するシングルモードファイバを提供する。
【解決手段】第2のシングルモードファイバ20は、第2クラッドの部分に空孔28を備えており、曲げ損失が小さい。第2のシングルモードファイバ20の第1のシングルモードファイバ10aとの接続部分には、長さL0に亘って空孔28が潰されて中実となっている部分がが存しており、この部分においてLP11モードの光が大きう減衰してMPIの発生が抑制される。
【選択図】図1

Description

本発明は、光ファイバの接続構造およびシングルモードファイバに関するものである。
インターネットの普及・発展に伴い、大量の情報が通信網を通ってやり取りされており、より大量の情報をより高速に送受信することが求められている。このような情報の送受信には一般に光ファイバが用いられている。なかでも石英ガラスからなるシングルモードファイバは、情報の大容量伝送に向いており、通信用のファイバとして大量に使用されている。
通常のシングルモードファイバは、中心部に屈折率の高いコアを備え、コアの回りを屈折率が低いクラッドが覆う構造を有しており、コアの部分を基本モードのみが伝搬するファイバである。このようなシングルモードファイバは、情報の中継ポイントから各ユーザー(例えば企業や家庭)までのメインのファイバとして、送電線に沿わせるなどして引かれているが、各建物内への引き込みや中継機器内の配線に別の光ファイバが用いられており、この別のファイバとメインのファイバとはコネクタ等によって接続されている。この場合、建物内への引き込みや中継機器内の配線に用いられる光ファイバとして、メインのファイバとは異なる構造の曲げ耐性を向上させた光ファイバを使用することがある。これは、建物内や中継機器内では狭い空間において引き回しをする必要があるからである。
Journal of lightwave technology, vol.9, No.8, August 1991, pp954-958
けれども光ファイバ同士の接続において、光ファイバの接続部分でコアずれが生じていると、伝送光が入力されたファイバ内に高次モードの光が発生し、それが該ファイバ出口で基本モードと再結合する際に干渉して(多重経路干渉:MPI(Multi Path Interference))出力変動が生じてしまうという現象が見出された。この現象はいくつかの条件が重なることで初めて問題として現れるようになってきており、メインのファイバに接続される光ファイバがファイバ中に空孔を設けることによって耐曲げ性を向上させた光ファイバであるとこのような問題が生じ易いことが明らかになった。
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、ファイバ中に空孔を設けることによって耐曲げ性を向上させた光ファイバを用いた際にMPIの発生を抑制する光ファイバの接続構造およびMPIの発生を抑制するシングルモードファイバを提供することにある。
上記課題を解決するために、本発明の光ファイバの接続構造は、第1のシングルモードファイバから第2のシングルモードファイバへ伝送光を入力させるため、両光ファイバを接続する部分の構造であって、前記第2のシングルモードファイバは、中心から順に同心円状にコア、第1クラッド及び該第1クラッドよりも前記伝送光の波長において屈折率の低い第2クラッドを有しているとともに、規格化周波数が2.405以上3.9以下であり、前記第2クラッドには前記コアに沿って延びる空孔が設けられており、前記第1のシングルモードファイバに接続される前記第2のシングルモードファイバの端部では、前記空孔が2mm以上30mm以下にわたって塞がれていて前記第2クラッドが中実な状態である構成とした。ここで第2クラッドの屈折率は、空孔部分とその回りの中実部分とを合わせ、横断面における存在比率を考慮した平均の屈折率である。また第2クラッドが中実な状態であるというのは、第2クラッドがファイバ構成物質によって隙間無く充填された状態であることである。即ち、第1シングルモードファイバと接続される第2シングルモードファイバの端部の第2クラッドは、2mm以上30mm以下の範囲で空孔が無くファイバ構成物質によって隙間無く充填された状態である。
ここでコアは伝送光を通過させる部分であり、第1クラッドおよび第2クラッドは伝送光を閉じ込める役割を果たす部分である。なお、第1クラッドおよび第2クラッドには伝送光が少し染み出しても構わない。また、規格化周波数vは、
=k(n1−n0)a :式1
kは伝送光の波数、n1はコア屈折率、n0はクラッド屈折率、aはコア半径
で表される。
前記第2のシングルモードファイバは、前記第2クラッドの外側にさらに第3クラッドを有しており、前記コアは、径が8.2μm以上10.2μm以下であり、前記第1クラッドは、前記伝送光の波長において前記コアより屈折率が小さく且つ外径が30μm以上45μm以下であり、前記第2クラッドは、厚みが7.4μm以上であり、前記第3クラッドは、前記伝送光の波長において前記第2クラッドより屈折率が大きく且つ該第2クラッドと該第3クラッドとの比屈折率差が0.5%以上であり、前記第1クラッドと前記第2クラッドとの比屈折率差が0.5%以上であることが好ましい。
前記第1のシングルモードファイバと前記第2のシングルモードファイバとはコネクタにより接続されており、前記第2クラッドが中実な状態である第2シングルモードファイバの端部は、前記コネクタ内部に納められている構成とすることができる。
本発明のシングルモードファイバは、中心から順に同心円状にコア、第1クラッド及び第2クラッドを有しているとともに、規格化周波数が2.405以上3.9以下であり、前記第2クラッドには前記コアに沿って延びる空孔が設けられており、少なくとも長手方向の1箇所において、前記空孔が2mm以上30mm以下にわたって塞がれていて前記第2クラッドが中実な状態である部分が存する構成とした。
前記第2クラッドの外側にさらに第3クラッドを有しており、前記コアは、径が8.2μm以上10.2μm以下であり、前記第1クラッドは、前記伝送光の波長において前記コアより屈折率が小さく且つ外径が30μm以上45μm以下であり、前記第2クラッドは、前記伝送光の波長において前記第1クラッドより屈折率が小さく且つ厚みが7.4μm以上であり、前記第3クラッドは、前記伝送光の波長において前記第2クラッドより屈折率が大きく且つ該第2クラッドと該第3クラッドとの比屈折率差が0.5%以上とし、前記第1クラッドと前記第2クラッドとの比屈折率差が0.5%以上とすることができる。
前記第2クラッドが中実な状態である部分は、熱により前記空孔を潰すことにより形成されていることが好ましい。
本発明の光ファイバの接続構造は、第2クラッドに空孔を有する第2のシングルモードファイバの第1シングルモードファイバに接続する端部において空孔を所定の長さ分潰しているので、第2のシングルモードファイバにおいて高次モードの光の伝送を抑制でき、MPIを抑制できる。
本発明の実施形態を説明する前に、光ファイバ同士を接続した場合にどのようにしてMPIが発生するかを図5を参照して説明する。
2本のシングルモードファイバ10a’,20’を接続して一方のシングルモードファイバ10a’から他方のシングルモードファイバ20’へ光を入力した場合、基本モードLP01が1番目のファイバ10a’から2番目のファイバ20’に入力される。ここで、両ファイバ10a’、20’の接続部分C3で双方のコア11,21の断面同士がぴったりと接続していなくてずれが存していると接続部分C3で高次モードであるLP11がわずかに生じる。2番目のファイバ20’が、クラッドが1層だけである通常のシングルモードファイバである場合は、LP11はごく短い距離を進むうちに消滅してLP01のみが伝送していく。
ここでコア同士の接続部分がずれているというのは、2つのコアの断面が同形同大の場合は断面同士が重なり合わない部分が存している状態であり、2つのコアの断面の大きさが異なる場合は小さい方のコア断面に大きい方のコア断面と重なり合わない部分が存している状態であることをいう。
一方2番目のファイバ20’が曲げ損失を低減させたファイバである場合は、耐曲げ性を大きくするためにクラッド22を屈折率が異なる複数層からなるものとし、コアに接するクラッド層とそのすぐ外側のクラッド層において後者の方が前者よりも屈折率が低い構成としており、具体的にここではコア21に隣接する第1クラッド23の外側の2番目のクラッド部分にコア21に沿って延びる空孔28を設けて屈折率を下げている。このような構造であるとLP11は減衰しにくく、建物内や中継機器内で使われる距離ではLP11が出口側端部にまで伝送してしまう。2番目のファイバ20’は出口側端部において機器側のシングルモードファイバ10b’などに接続されるが、その接続部C4においてLP11がLP01に再結合し、MPIが生じる。また、LP01とLP11とのファイバ20’内の伝送速度が異なるので再結合によってノイズが生じる。
このように干渉が生じた場合、光出力Iは非特許文献1に記載されているように、
I=A+Bcos(Φ)、 Φ=2πL・Δn/λ :式2
A,B:係数 L:ファイバ長 Δn:LP01とLP11との群屈折率差 λ:伝送光の波長
と表される。式2からわかるように、温度が変動するとΔnが変動するため、光出力Iが変動してしまう。
このような出力変動が生じないようにするためには、接続部C3においてコアのずれが起こらないようにすればよいのであるが、コネクタ接続ではコネクタで固定された光ファイバの端面同士をつき合わせて固定するので、現在のコネクタの機械的精度ではコア同士の端面を完全には一致させられないことおよび光ファイバそのもののコアの中心からのずれがあるために接続部のコアずれを完全に解消することはできない。顕微鏡でコアを観察して融着接続を行えばコアずれを防ぐことができるが、各建物内への引き込みや中継機器等内の配線に対して融着接続を行うとコストが大きくなり、また作業スペースの確保も困難であり、現実的には適用が非常に困難である。
本願発明者らは、上記の課題点に鑑み様々な検討を行い、本願発明を想到するに至った。
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の図面においては、説明の簡潔化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。
(実施形態1)
実施形態1は、図1に示すように入力側のシングルモードファイバである第1のシングルモードファイバ(以下、第1のSMFという)10aと出口側SMF10bとの間に第2のSMF20を挟み込んだファイバ接続構成である。第1のSMF10a及び出口側SMF10bは、クラッド12が単一構成であって曲げ損失が大きい通常のシングルモードファイバであり、両者はコア径、クラッド径が同じである同種のファイバである。第2のSMF20は、第1のSMF10a及び出口側SMF10bに比べて曲げ損失の小さい耐曲げファイバである。
第2のSMF20は、図2に示すようにクラッド22が同心円状の複数層により構成されている。第2のSMF20の構成は、中心から順に、コア21、第1クラッド23、第2クラッド24、第3クラッド25である。
コア21は、石英にゲルマニウムをドープして作製されていて屈折率が大きく、径R1は8.2μm以上10.2μm以下の範囲内である。第1クラッド23はコア21の外側を覆うように純粋石英により形成されており、コア21よりも屈折率が低く、外径R2は30μm以上45μm以下の範囲内である。第2クラッド24は第1クラッド23の外側を覆うように形成されており、第1クラッド23よりも実効の屈折率が低く第1クラッド23と第2クラッド24との比屈折率差は0.5%以上であって、厚みL1は7.4μm以上である(本実施形態では10μm)。第3クラッド25は第2クラッド24の外側を覆うように形成されており、第2クラッド24よりも比屈折率差が0.5%以上大きい屈折率としている。第3クラッド25の外径は125μmである。以上の屈折率は伝送光の波長における屈折率を意味している。
第2クラッド24にはコア21に沿って延びる空孔28が設けられている。空孔28が第1クラッド23の周りを取りまいている。第2クラッド24の屈折率は、空孔28部分と空孔28周りの石英とのファイバ横断面における面積比で空気と石英との屈折率を加重平均した実効屈折率となる。また、第2のSMF20において、第3クラッド25は支持体としての役割を果たしており、光を閉じ込める役割は第1及び第2クラッド23,24が果たしている。
第1のSMF10a及び出口側SMF10bと第2のSMF20とはシングルモードファイバであるので、規格化周波数は2.405以上である。第2のSMF20の規格化周波数は3.9以下であることが好ましい。
第1のSMF10a及び出口側SMF10bが、例えば、コア11を石英にゲルマニウムをドープしたものとし、クラッド12を石英とし、両者の比屈折率差を0.35%として、コア径を9μmとした光ファイバであるとすると、伝送光の波長が1.31μmの場合、規格化周波数が2.62となる。
第2のSMF20の第1のSMF10aと接続する端部は、長さL0に亘って空孔28が塞がれていて第2クラッド24が中実な状態となっている。L0は、2mm以上30mm以下である。この長さL0の部分はLP11を消滅させる部分である。つまり長さL0の部分の規格化周波数が2.405以上であると、長さL0の間においてLP11を大きく減衰させ、長さL0の部分の規格化周波数が2.405未満であると、長さL0の間においてLP11を完全に遮断する。従って、第1のSMF10aと第2のSMF20との接合部C1においてコアずれのため第2のSMF20内にLP11が発生しても、LP11モードは長さL0の部分で遮断又は大幅減衰されるため、第2のSMF20と出口側SMF10bとの接合部C2においてMPIは生じない又はほとんど生じない。ここでL0が2mm未満であると、LP11の減衰が不十分となってMPIを大きく抑制することが難しい。また30mmを越えると曲げ損失が大きい部分が相応に長くなるので、その部分を曲げから守る保護材を設ける必要が出てくる。
第2クラッド24が中実である長さL0の部分は、空孔28を潰して形成されている。空孔28の潰し方には、空孔28に物質を詰め込んだり、熱により構成する物質を溶かして穴を塞ぐ方法など、種々な方法がある。第2のSMF20の端部にガスバーナー、放電あるいはレーザ等で熱を加えて空孔28を潰す方法は、簡便であって且つ長さL0を容易に調節できる。
上述の光ファイバの接続は、図3に示すコネクタ61,62により行われる。第1のSMF10aに被覆を施した被覆心線15と、第2のSMF20に被覆を施した被覆心線25とのそれぞれの一端にコネクタ61,62が取り付けられている。コネクタ61,62内にはフェルール63,64が納められており、フェルール63,64内に第1のSMF10a及び第2のSMF20の空孔28が潰された部分が保持されて両ファイバの端面がフェルール63,64端部で露出している。二つのコネクタ61,62はフェルール63,64の端部同士を突き合わせてアダプタ65,66によって接続固定される。この接続固定により第1のSMF10a及び第2のSMF20の端面同士が、中心を一致させるように突き合わされて固定される。なお、光ファイバのコアは光ファイバ横断面の中心からずれる場合があること、およびコネクタ61,62の作製精度が現状では正確にコアの中心同士を一致させるほどの高さとなっていないこととによって第1のSMF10a及び第2のSMF20のコア11,21同士がずれて接続されてしまうことがある。
コネクタ61,62は、アダプタ65,66およびそれに続く保護カバー67,68の部分において、内部の光ファイバの曲げ半径が小さくならないように曲げが制限されている。そして空孔28が潰された長さL0の部分はこの部分(アダプタ62および保護カバー68、これらを合わせてコネクタ62とする)に納められており、過度の曲げから保護されている。この曲げから保護されている部分の長さL3はコネクタの種類によって異なるが30〜60mmである。空孔28が潰された長さL0の部分はこの保護されている部分(コネクタ内部)に納められており、曲げから守られている。従って曲げによる損失は生じない。さらに、空孔28が潰された長さL0の部分がフェルール64内に全て納められていると、曲げから確実に守られるため好ましい。
第2のSMF20と出口側SMF10bとの接続にも同様にコネクタを用いることが好ましい。
以上より、本実施形態では第1のSMF10aに接続する第2のSMF20の端部において、空孔28を潰して第2のクラッド24を長さL0に亘って中実にしているので、MPIの発生を抑止できる。従って、伝送する情報に加わるノイズを低減することができ、温度変化に伴う出力変動・ノイズ変化も低減でき、伝送品質(エラーレートなど)を向上させることができる。また、空孔28を潰す長さL0は2〜30mmと短いので、第2のSMF20の設計の自由度を低下させず、コネクタ内部に納められるので、曲げから守られて曲げ損失をほぼ0とすることができる。なお、第2クラッドが中実な部分の規格化周波数は2.405未満であることが好ましい。
(実施形態2)
実施形態2は、第2のSMFに関する実施形態である。第1のSMFとの接続部分ではなく、第2のSMFの任意の部分にMPIの発生を抑制する構造を設けている点が実施形態1とは異なっているので、実施形態1と異なっている部分を以下に説明する。
図4に示すように、本実施形態の第2のSMF27は、長さ方向の端部ではなく中央部分に空孔28を長さL0に亘って潰して中実とした部分を有している。空孔28を潰した部分の長さ方向での位置は任意の位置である。長さL0は、2mm以上30mm以下である。空孔28を潰す方法は、実施形態1と同じ方法を用いればよい。
本実施形態の第2のSMF27を実施形態1の第1のSMF10aとコネクタによって接続をすると、接続部分でコアずれが存在した場合、LP11モードの光が発生する。LP11モードの光は、空孔28が存している区間では減衰率が小さいので、あまり減衰せずに伝送していくが、空孔28を長さL0に亘って潰した部分においてはLP11モードの光の減衰率が大きくこの部分でLP11モードの光は全てあるいはほとんど消滅してしまう。従って、第2のSMF27の光の出口側の端部では、MPIは全くあるいはほとんど生じない。
本実施形態の第2のSMF27は、MPIの発生を抑止でき、伝送信号のノイズを低減することができる。また。空孔28を潰す部分は任意の位置でよいので、光ファイバの設計の自由度が十分確保される。
(その他の実施形態)
上記の実施形態は本発明の例示であり、本発明はこれらの例に限定されない。例えば、空孔28を潰した部分は、1本の第2のSMFにおいて複数形成してもよい。実施形態1において、第2のSMF20の両端に空孔28を潰した部分を形成してもよい。
第1のSMF10a及び出口側SMF10bや第2のSMF20,27のファイバ構造は、上記説明した光ファイバとしての機能を有する限り上記実施形態とは異なっていても構わない。
以上説明したように、本発明に係る光ファイバの接続構造は、MPIの発生を抑止し、光通信における光ファイバの接続部分の構造等として有用である。
実施形態1に係る光ファイバの接続部分の模式的な断面図である。 (a)は第2のシングルモードファイバの横断面模式図であり、(b)は屈折率の分布図である。 コネクタの模式図である。 実施形態に2に係る光ファイバの模式的な断面図である。 実施形態との比較のための光ファイバの接続部分の模式的な断面図である。
符号の説明
10a 第1のシングルモードファイバ
11 コア
20、27 第2のシングルモードファイバ
21 コア
22 クラッド
23 第1クラッド
24 第2クラッド
25 第3クラッド
28 空孔
61,62 コネクタ

Claims (6)

  1. 第1のシングルモードファイバから第2のシングルモードファイバへ伝送光を入力させる光ファイバの接続構造であって、
    前記第2のシングルモードファイバは、中心から順に同心円状にコア、第1クラッド及び該第1クラッドよりも前記伝送光の波長において屈折率の低い第2クラッドを有しているとともに、規格化周波数が2.405以上3.9以下であり、
    前記第2クラッドには前記コアに沿って延びる空孔が設けられており、
    前記第1のシングルモードファイバに接続される前記第2のシングルモードファイバの端部では、前記空孔が2mm以上30mm以下にわたって塞がれていて前記第2クラッドが中実な状態である、光ファイバの接続構造。
  2. 請求項1に記載されている光ファイバの接続構造であって、
    前記第2のシングルモードファイバは、前記第2クラッドの外側にさらに第3クラッドを有しており、
    前記コアは、径が8.2μm以上10.2μm以下であり、
    前記第1クラッドは、前記伝送光の波長において前記コアより屈折率が小さく且つ外径が30μm以上45μm以下であり、
    前記第2クラッドは、厚みが7.4μm以上であり、
    前記第1クラッドと前記第2クラッドとの比屈折率差が0.5%以上である、光ファイバの接続構造。
  3. 請求項1または2に記載されている光ファイバの接続構造であって、
    前記第1のシングルモードファイバと前記第2のシングルモードファイバとはコネクタにより接続されており、
    前記第2クラッドが中実な状態である第2シングルモードファイバの端部は、前記コネクタ内部に納められている、光ファイバの接続構造。
  4. 中心から順に同心円状にコア、第1クラッド及び第2クラッドを有しているとともに、規格化周波数が2.405以上3.9以下であり、
    前記第2クラッドには前記コアに沿って延びる空孔が設けられており、
    少なくとも長手方向の1箇所において、前記空孔が2mm以上30mm以下にわたって塞がれていて前記第2クラッドが中実な状態である部分が存する、シングルモードファイバ。
  5. 請求項4に記載されているシングルモードファイバであって、
    前記第2クラッドの外側にさらに第3クラッドを有しており、
    前記コアは、径が8.2μm以上10.2μm以下であり、
    前記第1クラッドは、前記伝送光の波長において前記コアより屈折率が小さく且つ外径が30μm以上45μm以下であり、
    前記第2クラッドは、前記伝送光の波長において前記第1クラッドより屈折率が小さく且つ厚みが7.4μm以上であり、
    前記第1クラッドと前記第2クラッドとの比屈折率差が0.5%以上である、シングルモードファイバ。
  6. 請求項4または5に記載されているシングルモードファイバであって、
    前記第2クラッドが中実な状態である部分は、熱により前記空孔を潰すことにより形成されている、シングルモードファイバ。
JP2008244567A 2008-09-24 2008-09-24 光ファイバの接続構造およびシングルモードファイバ Pending JP2010078701A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008244567A JP2010078701A (ja) 2008-09-24 2008-09-24 光ファイバの接続構造およびシングルモードファイバ
US13/120,745 US8111962B2 (en) 2008-09-24 2009-08-21 Optical fiber connection structure and single-mode fiber
PCT/JP2009/004030 WO2010035398A1 (ja) 2008-09-24 2009-08-21 光ファイバの接続構造およびシングルモードファイバ
CN2009801328928A CN102171594A (zh) 2008-09-24 2009-08-21 光纤的连接结构以及单模光纤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008244567A JP2010078701A (ja) 2008-09-24 2008-09-24 光ファイバの接続構造およびシングルモードファイバ

Publications (1)

Publication Number Publication Date
JP2010078701A true JP2010078701A (ja) 2010-04-08

Family

ID=42059412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008244567A Pending JP2010078701A (ja) 2008-09-24 2008-09-24 光ファイバの接続構造およびシングルモードファイバ

Country Status (4)

Country Link
US (1) US8111962B2 (ja)
JP (1) JP2010078701A (ja)
CN (1) CN102171594A (ja)
WO (1) WO2010035398A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103513A (ja) * 2010-11-10 2012-05-31 Fujikura Ltd 光ファイバ、及び、これを用いたレーザ装置
WO2015163348A1 (ja) * 2014-04-22 2015-10-29 株式会社フジクラ 光ファイバ接続構造体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033998B (zh) * 2015-03-16 2018-08-21 华为技术有限公司 一种检测多径干涉的方法及装置
US11650375B2 (en) 2019-02-04 2023-05-16 Sumitomo Electric Industries, Ltd. Ferrule and optical connector
CN116594100B (zh) * 2023-07-14 2023-10-20 江苏永鼎股份有限公司 一种弯曲不敏感光纤及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163707A (ja) * 1987-09-09 1989-06-28 Corning Glass Works 光ファイバ
JP2005062477A (ja) * 2003-08-12 2005-03-10 Sumitomo Electric Ind Ltd 光ファイバ、光部品、光ファイバの製造方法、及び光部品の製造方法
JP2005250068A (ja) * 2004-03-03 2005-09-15 Nippon Telegr & Teleph Corp <Ntt> 単一モード/マルチモード共用光ファイバ
JP2007025513A (ja) * 2005-07-21 2007-02-01 Mitsubishi Cable Ind Ltd 光ファイバ及びその接続方法
JP2007316480A (ja) * 2006-05-29 2007-12-06 Swcc Showa Device Technology Co Ltd 高屈曲性光ファイバ
JP2008164935A (ja) * 2006-12-28 2008-07-17 Tomoegawa Paper Co Ltd 光ファイバ接続方法、光ファイバ接続構造および融着接続機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543553A (en) * 1977-06-10 1979-01-11 Nippon Telegr & Teleph Corp <Ntt> Optical line
CA2334554A1 (en) * 1998-06-09 1999-12-16 Crystal Fibre A/S A photonic band gap fibre
JP2002528757A (ja) 1998-10-09 2002-09-03 ジーシー テクノロジーズ リミテッド 光ファイバシステムにおけるモーダルノイズを抑制するための方法及びシステム。
KR20000038939A (ko) * 1998-12-10 2000-07-05 서원석 광대역 광소자용 광섬유 및 이를 이용한 광섬유 소자
JP4329269B2 (ja) * 2001-02-07 2009-09-09 住友電気工業株式会社 光ファイバの接続構造および光ファイバの接続方法
JP3863866B2 (ja) * 2003-07-01 2006-12-27 日立電線株式会社 光ファイバの接続部及び光ファイバ接続器
US7403689B2 (en) * 2003-11-19 2008-07-22 Corning Incorporated Active photonic band-gap optical fiber
US7280730B2 (en) * 2004-01-16 2007-10-09 Imra America, Inc. Large core holey fibers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163707A (ja) * 1987-09-09 1989-06-28 Corning Glass Works 光ファイバ
JP2005062477A (ja) * 2003-08-12 2005-03-10 Sumitomo Electric Ind Ltd 光ファイバ、光部品、光ファイバの製造方法、及び光部品の製造方法
JP2005250068A (ja) * 2004-03-03 2005-09-15 Nippon Telegr & Teleph Corp <Ntt> 単一モード/マルチモード共用光ファイバ
JP2007025513A (ja) * 2005-07-21 2007-02-01 Mitsubishi Cable Ind Ltd 光ファイバ及びその接続方法
JP2007316480A (ja) * 2006-05-29 2007-12-06 Swcc Showa Device Technology Co Ltd 高屈曲性光ファイバ
JP2008164935A (ja) * 2006-12-28 2008-07-17 Tomoegawa Paper Co Ltd 光ファイバ接続方法、光ファイバ接続構造および融着接続機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103513A (ja) * 2010-11-10 2012-05-31 Fujikura Ltd 光ファイバ、及び、これを用いたレーザ装置
WO2015163348A1 (ja) * 2014-04-22 2015-10-29 株式会社フジクラ 光ファイバ接続構造体
JP2015206946A (ja) * 2014-04-22 2015-11-19 株式会社フジクラ 光ファイバ接続構造体

Also Published As

Publication number Publication date
US8111962B2 (en) 2012-02-07
CN102171594A (zh) 2011-08-31
US20110176766A1 (en) 2011-07-21
WO2010035398A1 (ja) 2010-04-01

Similar Documents

Publication Publication Date Title
US9088364B1 (en) Optical transmission system and multi-core optical fiber
US8094985B2 (en) Multi-core holey fiber and optical transmission system
JP5916525B2 (ja) マルチコアファイバ
EP2545400B1 (en) Multicore fibers and associated structures and techniques
US10948656B2 (en) Fiber-based mid-IR signal combiner and method of making same
US8295667B2 (en) Hole arranged photonic crystal fiber for low loss, tight fiber bending applications
DK2682793T3 (en) MULTI-CORE FIBER
US11960119B2 (en) Optical waveguide adapter assembly
JPWO2011024808A1 (ja) マルチコアファイバ
Hayashi et al. Six-mode 19-core fiber with 114 spatial modes for weakly-coupled mode-division-multiplexed transmission
WO2010035398A1 (ja) 光ファイバの接続構造およびシングルモードファイバ
JP7368089B2 (ja) マルチコアファイバ、光コネクタ、ファンイン/ファンアウトデバイス
JP4130424B2 (ja) 空孔アシスト光ファイバ
WO2010035399A1 (ja) 光ファイバの接続構造
JP5262639B2 (ja) 光学素子及びマッハツェンダ干渉器
Kumar et al. Design and cross talk optimization in single-mode high-core count multicore fiber under limited cladding diameter
JP2019152865A (ja) マルチコアファイバ、光コネクタ、ファンイン/ファンアウトデバイス
JP2017111173A (ja) ファイバヒューズ抑圧ファイバ及び光コネクタ
JP5952764B2 (ja) ファイバヒューズストッパ、光コネクタ、及び光伝送システム
Jung et al. Compact higher-order mode converter based on all-fiber phase plate segment
JP2012163802A (ja) ファイバヒューズストッパ、光コネクタ、光伝送システム、及びファイバヒューズ停止方法
JP2006099147A (ja) 分散補償光ファイバの接続構造
WO2020080385A1 (ja) 光ファイバケーブル
JP5216722B2 (ja) 光ファイバ
Thai New Development in Fiber Technologies

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309