JP2010062018A - Conductive paste and electrode using it - Google Patents

Conductive paste and electrode using it Download PDF

Info

Publication number
JP2010062018A
JP2010062018A JP2008226978A JP2008226978A JP2010062018A JP 2010062018 A JP2010062018 A JP 2010062018A JP 2008226978 A JP2008226978 A JP 2008226978A JP 2008226978 A JP2008226978 A JP 2008226978A JP 2010062018 A JP2010062018 A JP 2010062018A
Authority
JP
Japan
Prior art keywords
acid
electrode
conductive paste
conductive
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008226978A
Other languages
Japanese (ja)
Other versions
JP5236400B2 (en
Inventor
Hiroyuki Tokai
裕之 東海
Satoshi Okitsu
諭 興津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Holdings Co Ltd
Original Assignee
Taiyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Ink Mfg Co Ltd filed Critical Taiyo Ink Mfg Co Ltd
Priority to JP2008226978A priority Critical patent/JP5236400B2/en
Priority to KR1020090082745A priority patent/KR101120229B1/en
Priority to CN200910172123A priority patent/CN101667515A/en
Publication of JP2010062018A publication Critical patent/JP2010062018A/en
Application granted granted Critical
Publication of JP5236400B2 publication Critical patent/JP5236400B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/48Cold-cathode tubes with more than one cathode or anode, e.g. sequence-discharge tube, counting tube, dekatron
    • H01J17/49Display panels, e.g. with crossed electrodes, e.g. making use of direct current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/225Material of electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive paste forming an electrode excellent in acid resistance. <P>SOLUTION: This conductive paste for a plasma display contains (A) an organic binder, (B) conductive powder having an average primary particle size of 0.5-1.4 μm, and (C) glass powder content of 0.1-0.9 wt.% inan inorganic component. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、導電ペーストおよびそれを用いた電極に関し、特にプラズマディスプレイ(以下「PDP」と称する)用の前面基板或いは背面基板に用いられる電極を形成するのに有用な導電ペーストと、それを用いて形成した電極に関する。   The present invention relates to a conductive paste and an electrode using the same, and more particularly to a conductive paste useful for forming an electrode used for a front substrate or a rear substrate for a plasma display (hereinafter referred to as “PDP”), and using the same. Relates to the electrode formed.

一般に、PDPの背面基板は、ガラス基板上にパターニング及び焼成により形成されたアドレス電極と、このアドレス電極上に形成された誘電体層と、この誘電体層上に形成された放電空間を区画形成するリブ等から構成されている。   Generally, a rear substrate of a PDP partitions and forms an address electrode formed by patterning and firing on a glass substrate, a dielectric layer formed on the address electrode, and a discharge space formed on the dielectric layer. It is comprised from the rib etc. which do.

これらの部材のうち、リブを作製するに当たっては、サンドブラスト法やエッチング法が用いられている。
サンドブラスト法は、リブ用ガラス層上から、マスク(保護膜)を介して切削材等を吹き付けることにより、マスクで保護された部分以外を選択的に切削する方法である。この方法は、エッチング法に比べて処理時間が長く、さらには切削材の処理や切削されたガラス粉の処理の問題がある。
Of these members, a sandblasting method or an etching method is used for producing the rib.
The sand blasting method is a method of selectively cutting a portion other than the portion protected by the mask by spraying a cutting material or the like through a mask (protective film) from the rib glass layer. This method has a longer processing time than the etching method, and further has a problem of processing of the cutting material and processing of the cut glass powder.

他方、エッチング法は、リブ用ガラス層を、マスク(保護膜)を介して硝酸等の酸でエッチング処理することにより、マスクで保護された部分以外を選択的に溶解除去する方法である。この方法は、サンドブラスト法に比べて処理時間が短く、サンドブラスト法のような切削材の処理や切削されたガラス粉の処理の必要性がない。
しかしながら、ガラス基板上に形成されたアドレス電極は、この端子部分に電圧を付与する構造上、この端子部分の表面には誘電体層もリブも形成されないので、エッチング法を用いてリブを形成する際に、露出状態となる。そのため、このエッチング法では、この露出部分がエッチング処理の酸によって損傷を受け、断線などを引き起こす恐れがある。
それ故に、リブの形成方法としては、作業工数は多いものの電極等の信頼性に影響のないサンドブラスト法が主に用いられている。
On the other hand, the etching method is a method of selectively dissolving and removing portions other than those protected by the mask by etching the rib glass layer with an acid such as nitric acid through a mask (protective film). This method has a shorter processing time than the sand blast method, and there is no need for the processing of the cutting material and the processing of the cut glass powder as in the sand blast method.
However, the address electrode formed on the glass substrate has a structure in which a voltage is applied to the terminal portion, and neither a dielectric layer nor a rib is formed on the surface of the terminal portion. Therefore, the rib is formed using an etching method. In this case, it becomes an exposed state. For this reason, in this etching method, the exposed portion may be damaged by the acid of the etching process, causing disconnection or the like.
Therefore, as a method for forming the rib, a sand blast method that has a large number of work steps but does not affect the reliability of the electrode or the like is mainly used.

これに対し、最近では、エッチング法によるリブ形成方法を採用しても耐え得るような電極用ペーストとして、耐酸性を持つ鉛含有のガラス粉末を用いたペーストが提案されている(特許文献1参照)。
特開2007−012371号公報(特許請求の範囲)
On the other hand, recently, a paste using lead-containing glass powder having acid resistance has been proposed as an electrode paste that can withstand even if a rib forming method by an etching method is employed (see Patent Document 1). ).
JP 2007-012371 A (Claims)

本発明の目的は、耐酸性に優れた電極を形成することが可能な導電ペーストを提供することにある。   The objective of this invention is providing the electrically conductive paste which can form the electrode excellent in acid resistance.

発明者らは、前記課題を解決するために鋭意研究した結果、以下の内容を要旨構成とする発明を完成するに至った。
すなわち、本発明のPDP用導電ペーストは、有機バインダー(A)、平均一次粒径が0.5〜1.4μmの導電粉末(B)、及び無機成分中の含有量が0.1〜0.9wt%であるガラス粉末(C)を含むことを特徴とする。
As a result of intensive studies to solve the above-mentioned problems, the inventors have completed an invention having the following contents.
That is, the PDP conductive paste of the present invention has an organic binder (A), a conductive powder (B) having an average primary particle size of 0.5 to 1.4 μm, and a content in the inorganic component of 0.1 to 0.00. The glass powder (C) that is 9 wt% is included.

本発明によれば、耐酸性に優れ、密着性にも優れた電極を形成することが可能な導電ペーストを提供することができる。これにより、酸処理工程を含む電極の製造方法に適したPDP用電極が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the electrically conductive paste which can form the electrode excellent in acid resistance and excellent in adhesiveness can be provided. Thereby, the electrode for PDP suitable for the manufacturing method of the electrode including an acid treatment process is provided.

さて、発明者らの研究によれば、以下のようなメカニズムにより、電極が酸によって損傷を受けるものと推定される。
すなわち、エッチング処理によりリブを形成する際、硝酸等の酸が、露出している電極の内部に浸入し、電極と基材との間のガラスを侵食する結果、基材との密着性を失い電極が基材から剥離するという損傷を受けるものと推測される。
特に、導電粉末の粒径が大きいほど導電粉末間の隙間も大きくなる傾向があり、内部に浸入する酸の量も多くなる結果、電極の損傷も顕著となることを知見した。
そこで、このような電極の損傷の解決方法として、発明者らは導電粉末の粒径を細かくし、ガラス量をなるべく減らして電極内の導電粉末の密度を高くし、酸の電極内部への浸入を防ぐことに着目した。しかし、導電粉末の粒径が細かすぎるとフォト法において解像性が劣化し、また、ガラス粉末の量を減らしすぎると、基材との密着性が保てないという欠点がある。
そこで、発明者らは、酸の浸入を有効に防ぎ電極パターン形成時の解像性にも優れる導電粉末の粒径の範囲と、基材との優れた密着性を維持させるためのガラス粉末の最適な配合量を見出し、本発明に想到した。
According to the inventors' research, it is presumed that the electrode is damaged by the acid by the following mechanism.
That is, when the rib is formed by the etching process, acid such as nitric acid penetrates into the exposed electrode and corrodes the glass between the electrode and the substrate, resulting in loss of adhesion to the substrate. It is presumed that the electrode is damaged by peeling off from the substrate.
In particular, it has been found that the larger the particle size of the conductive powder, the larger the gap between the conductive powders, and the greater the amount of acid entering the interior, resulting in significant electrode damage.
Therefore, as a method for solving such electrode damage, the inventors reduced the particle size of the conductive powder, reduced the glass amount as much as possible to increase the density of the conductive powder in the electrode, and infiltrated the acid into the electrode. Focused on preventing. However, when the particle size of the conductive powder is too fine, the resolution is deteriorated in the photo method, and when the amount of the glass powder is excessively reduced, there is a disadvantage that the adhesion with the substrate cannot be maintained.
Therefore, the inventors of the present invention have developed a glass powder for maintaining an excellent adhesion to the substrate and a range of the particle size of the conductive powder that effectively prevents acid penetration and also has excellent resolution during electrode pattern formation. The optimum blending amount was found and the present invention was conceived.

以下本発明の各構成について説明する。
前記有機バインダー(A)としては、カルボキシル基を有する樹脂、具体的にはそれ自体がエチレン性不飽和二重結合を有するカルボキシル基含有感光性樹脂及びエチレン性不飽和二重結合を有さないカルボキシル基含有樹脂のいずれも使用可能である。好適に使用できる樹脂(オリゴマー及びポリマーのいずれでもよい。)としては、以下のようなものが挙げられる。
(1)(メタ)アクリル酸などの不飽和カルボン酸と、メチル(メタ)アクリレートなどの不飽和二重結合を有する化合物を共重合させることによって得られるカルボキシル基含有樹脂、
(2)(メタ)アクリル酸などの不飽和カルボン酸と、メチル(メタ)アクリレートなどの不飽和二重結合を有する化合物の共重合体に、グリシジル(メタ)アクリレートや(メタ)アクリル酸クロライドなどにより、エチレン性不飽和基をペンダントとして付加させることによって得られるカルボキシル基含有感光性樹脂、
(3)グリシジル(メタ)アクリレートなどのエポキシ基と不飽和二重結合を有する化合物と、メチル(メタ)アクリレートなどの不飽和二重結合を有する化合物の共重合体に、(メタ)アクリル酸などの不飽和カルボン酸を反応させ、生成した2級の水酸基にテトラヒドロフタル酸無水物などの多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂、
(4)無水マレイン酸などの不飽和二重結合を有する酸無水物と、スチレンなどの不飽和二重結合を有する化合物の共重合体に、2−ヒドロキシエチル(メタ)アクリレートなどの水酸基と不飽和二重結合を有する化合物を反応させて得られるカルボキシル基含有感光性樹脂、
(5)多官能エポキシ化合物と(メタ)アクリル酸などの不飽和モノカルボン酸を反応させ、生成した2級の水酸基にテトラヒドロフタル酸無水物などの多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂、
(6)メチル(メタ)アクリレートなどの不飽和二重結合を有する化合物とグリシジル(メタ)アクリレートの共重合体のエポキシ基に、1分子中に1つのカルボキシル基を有し、エチレン性不飽和結合を持たない有機酸を反応させ、生成した2級の水酸基に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂、
(7)ポリビニルアルコールなどの水酸基含有ポリマーに多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂、及び
(8)ポリビニルアルコールなどの水酸基含有ポリマーに、テトラヒドロフタル酸無水物などの多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂に、グリシジル(メタ)アクリレートなどのエポキシ基と不飽和二重結合を有する化合物をさらに反応させて得られるカルボキシル基含有感光性樹脂などが挙げられ、特に(1)、(2)、(3)、(6)の樹脂が好適に用いられる。
なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレート及びそれらの混合物を総称する用語で、他の類似の表現についても同様である。
Each configuration of the present invention will be described below.
Examples of the organic binder (A) include a resin having a carboxyl group, specifically, a carboxyl group-containing photosensitive resin having an ethylenically unsaturated double bond and a carboxyl having no ethylenically unsaturated double bond. Any of the group-containing resins can be used. Examples of the resin (which may be either an oligomer or a polymer) that can be suitably used include the following.
(1) a carboxyl group-containing resin obtained by copolymerizing an unsaturated carboxylic acid such as (meth) acrylic acid and a compound having an unsaturated double bond such as methyl (meth) acrylate,
(2) A copolymer of an unsaturated carboxylic acid such as (meth) acrylic acid and a compound having an unsaturated double bond such as methyl (meth) acrylate, glycidyl (meth) acrylate, (meth) acrylic acid chloride, etc. A carboxyl group-containing photosensitive resin obtained by adding an ethylenically unsaturated group as a pendant,
(3) A copolymer of an epoxy group such as glycidyl (meth) acrylate and an unsaturated double bond and a compound having an unsaturated double bond such as methyl (meth) acrylate, (meth) acrylic acid, etc. A carboxyl group-containing photosensitive resin obtained by reacting an unsaturated carboxylic acid of the product, and reacting a polybasic acid anhydride such as tetrahydrophthalic acid anhydride with the generated secondary hydroxyl group,
(4) To a copolymer of an acid anhydride having an unsaturated double bond such as maleic anhydride and a compound having an unsaturated double bond such as styrene, a hydroxyl group such as 2-hydroxyethyl (meth) acrylate and A carboxyl group-containing photosensitive resin obtained by reacting a compound having a saturated double bond,
(5) Carboxyl obtained by reacting a polyfunctional epoxy compound with an unsaturated monocarboxylic acid such as (meth) acrylic acid and reacting the resulting secondary hydroxyl group with a polybasic acid anhydride such as tetrahydrophthalic anhydride. Group-containing photosensitive resin,
(6) An epoxy group of a copolymer of an unsaturated double bond such as methyl (meth) acrylate and a glycidyl (meth) acrylate has one carboxyl group in one molecule, and an ethylenically unsaturated bond A carboxyl group-containing resin obtained by reacting an organic acid not having a hydrogen atom and reacting a polybasic acid anhydride with the generated secondary hydroxyl group,
(7) a carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a hydroxyl group-containing polymer such as polyvinyl alcohol; and (8) a polybasic acid such as tetrahydrophthalic anhydride with a hydroxyl group-containing polymer such as polyvinyl alcohol. Examples of carboxyl group-containing resins obtained by reacting anhydrides include carboxyl group-containing photosensitive resins obtained by further reacting a compound having an unsaturated double bond with an epoxy group such as glycidyl (meth) acrylate, In particular, the resins (1), (2), (3), and (6) are preferably used.
In addition, in this specification, (meth) acrylate is a term that collectively refers to acrylate, methacrylate, and mixtures thereof, and the same applies to other similar expressions.

前記有機バインダー(カルボキシル基含有感光性樹脂又はカルボキシル基含有樹脂)(A)は、単独で又は混合して用いてもよいが、いずれの場合でもこれらは合計で組成物全量の10〜50質量部の割合で配合することが好ましい。これらのポリマーの配合量が上記範囲よりも少な過ぎる場合、形成する皮膜中の上記樹脂の分布が不均一になり易く、充分な光硬化性及び光硬化深度が得られ難く、選択的露光、現像によるパターニングが困難となる。一方、上記範囲よりも多過ぎると、焼成時の電極のよれや線幅収縮を生じ易くなるので好ましくない。   The organic binder (carboxyl group-containing photosensitive resin or carboxyl group-containing resin) (A) may be used alone or in combination, but in any case, these are 10 to 50 parts by mass of the total amount of the composition. It is preferable to mix | blend in the ratio. When the blending amount of these polymers is less than the above range, the distribution of the resin in the film to be formed tends to be non-uniform, it is difficult to obtain sufficient photocurability and photocuring depth, and selective exposure and development. Makes patterning difficult. On the other hand, if the amount is more than the above range, it is not preferable because the electrodes are liable to be warped and the line width is shrunk during firing.

また、上記有機バインダー(A)としては、それぞれ重量平均分子量が1,000〜100,000、好ましくは5,000〜70,000であり、かつ酸価が50〜250mgKOH/gであることが好ましい。さらに、前記有機バインダー(A)がカルボキシル基含有感光性樹脂の場合、その二重結合当量が350〜2,000g/当量、好ましくは400〜1,500g/当量のものが好適に用いることができる。上記樹脂の重量平均分子量が1,000未満の場合、現像時の皮膜の密着性に悪影響を与え、一方、100,000を超えた場合、現像不良を生じ易いので好ましくない。また、酸価が50mgKOH/g未満の場合、アルカリ水溶液に対する溶解性が不充分で現像不良を生じ易く、一方、250mgKOH/gを超えた場合、現像時に皮膜の密着性の劣化や光硬化部(露光部)の溶解が生じるので好ましくない。さらに、カルボキシル基含有感光性樹脂の場合、感光性樹脂の二重結合当量が350g/当量未満の場合、焼成時に残渣が残り易くなり、一方、2,000g/当量を超えた場合、現像時の作業余裕度が狭く、また光硬化時に高露光量を必要とするので好ましくない。   The organic binder (A) has a weight average molecular weight of 1,000 to 100,000, preferably 5,000 to 70,000, and an acid value of 50 to 250 mgKOH / g. . Furthermore, when the organic binder (A) is a carboxyl group-containing photosensitive resin, those having a double bond equivalent of 350 to 2,000 g / equivalent, preferably 400 to 1,500 g / equivalent can be suitably used. . When the weight average molecular weight of the resin is less than 1,000, it adversely affects the adhesion of the film during development. On the other hand, when it exceeds 100,000, development failure tends to occur, which is not preferable. When the acid value is less than 50 mg KOH / g, the solubility in an alkaline aqueous solution is insufficient and the development is likely to be poor. On the other hand, when the acid value exceeds 250 mg KOH / g, the adhesion of the film is deteriorated during development or the photocured part ( This is not preferable because dissolution of the exposed portion) occurs. Furthermore, in the case of a carboxyl group-containing photosensitive resin, if the double bond equivalent of the photosensitive resin is less than 350 g / equivalent, a residue tends to remain during firing, whereas if it exceeds 2,000 g / equivalent, This is not preferable because the work margin is narrow and a high exposure amount is required during photocuring.

本発明では、酸の浸入を有効に防ぎ電極パターン形成時の解像性に優れる導電粉末として、平均一次粒径が0.5〜1.4μm、より好ましくは0.5〜1.2μmの導電粉末(B)を用いる。
ここで、導電粉末の平均一次粒径が0.5μmより小さいと、光の透過性が悪化し、電極パターン形成時の解像性が悪くなる。一方、導電粉末の平均一次粒径が1.4μmより大きいと、導電粉末の緻密性が悪化し、酸が電極内部に浸入しやすくなり損傷が顕著になる。更に抵抗値が高くなるので好ましくない。
なお、本発明における導電粉末の平均一次粒径とは、走査型電子顕微鏡(以下「SEM」という)により、5,000倍で撮影した導電粉末の写真から、任意で50個の導電粉末を選び出し、その長径を測定して平均値を算出したものをいう。
このような導電粉末(B)としては、Ag、Al、Pt、Au、Cu、Ni、In、Sn、Pb、Zn、Fe、Ir、Os、Rh、W、Mo、Ruからなる群から選ばれた少なくとも1種類の金属の他、その合金、その酸化物、さらには酸化錫(SnO2)、酸化インジウム(In23)、ITO(Indium Tin Oxide)等を用いることができる。
また、導電粉末の形状については、球状、フレーク状、デンドライト状など種々のものを用いることができるが、光特性や分散性を考慮すると球状のものを用いることが好ましい。
導電粉末(B)の配合量は、前記有機バインダー(A)100質量部当り50〜2,000質量部とすることが好ましい。前記導電粉末(B)の配合量が、上記範囲より少ない場合は充分な導電性が得られなくなり、上記範囲より多い場合はペースト化が困難になるため、好ましくない。
In the present invention, as an electrically conductive powder that effectively prevents acid penetration and has excellent resolution during electrode pattern formation, it has a mean primary particle size of 0.5 to 1.4 μm, more preferably 0.5 to 1.2 μm. Powder (B) is used.
Here, when the average primary particle size of the conductive powder is smaller than 0.5 μm, the light transmittance is deteriorated, and the resolution at the time of forming the electrode pattern is deteriorated. On the other hand, when the average primary particle size of the conductive powder is larger than 1.4 μm, the denseness of the conductive powder is deteriorated, and the acid is liable to penetrate into the electrode, resulting in remarkable damage. Further, the resistance value becomes high, which is not preferable.
The average primary particle size of the conductive powder in the present invention is an arbitrary selection of 50 conductive powders from a photograph of the conductive powder taken at 5,000 times with a scanning electron microscope (hereinafter referred to as “SEM”). The major axis is measured and the average value is calculated.
The conductive powder (B) is selected from the group consisting of Ag, Al, Pt, Au, Cu, Ni, In, Sn, Pb, Zn, Fe, Ir, Os, Rh, W, Mo, Ru. In addition to at least one metal, an alloy thereof, an oxide thereof, tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), ITO (Indium Tin Oxide), or the like can be used.
Various shapes such as a spherical shape, a flake shape, and a dendrite shape can be used as the shape of the conductive powder, but it is preferable to use a spherical shape in consideration of optical characteristics and dispersibility.
The blending amount of the conductive powder (B) is preferably 50 to 2,000 parts by mass per 100 parts by mass of the organic binder (A). When the blending amount of the conductive powder (B) is less than the above range, sufficient conductivity cannot be obtained, and when it is more than the above range, it becomes difficult to form a paste.

本発明では、基材との優れた密着性を維持させるために、無機成分中の含有量が0.1〜0.9wt%、より好ましくは0.3〜0.8wt%であるガラス粉末(C)を用いる。
ここで、無機成分中のガラス粉末の含有量が0.1wt%より少ないと、焼成後の基材との密着性を維持できなくなり、一方、無機成分中のガラス粉末の含有量が0.9wt%より多いと、酸処理後の基材との密着性が悪くなりやすく好ましくない。
このようなガラス粉末(C)としては、酸化鉛、酸化ビスマス、酸化亜鉛、酸化リチウム、又はアルカリホウケイ酸塩を主成分とするものが好適に用いられる。特に酸化ビスマスとしては、Biが30〜90質量%、Bが5〜30質量%、ZnOが1〜20質量%、Siが0〜20質量%、BaOが0〜35質量%の組成範囲からなるものが好適である。
また、ガラス粉末(C)のガラス軟化点は420〜580℃、ガラス転移点は360〜500℃、熱膨張係数α300は60×10−7〜110×10−7/℃であることが好ましい。
このガラス粉末(C)の粒径については、最大粒径1.0〜4.5μm、平均粒径0.2〜2.2μmであることが好ましい。
In this invention, in order to maintain the outstanding adhesiveness with a base material, the glass powder (content in an inorganic component is 0.1-0.9 wt%, More preferably, it is 0.3-0.8 wt%. C) is used.
Here, when the content of the glass powder in the inorganic component is less than 0.1 wt%, it becomes impossible to maintain the adhesion with the base material after firing, while the content of the glass powder in the inorganic component is 0.9 wt%. If it is more than%, the adhesion with the base material after acid treatment tends to deteriorate, which is not preferable.
As such glass powder (C), those containing lead oxide, bismuth oxide, zinc oxide, lithium oxide, or alkali borosilicate as a main component are suitably used. Particularly bismuth oxide, Bi 2 O 3 30 to 90 wt%, B 2 O 3 5 to 30 wt%, ZnO is 1 to 20 mass%, Si 2 0 to 20% by weight, BaO 0 to 35 What consists of a mass% composition range is suitable.
Further, the glass softening point of the glass powder (C) is preferably 420 to 580 ° C., the glass transition point is 360 to 500 ° C., and the thermal expansion coefficient α 300 is preferably 60 × 10 −7 to 110 × 10 −7 / ° C. .
About the particle size of this glass powder (C), it is preferable that they are a maximum particle size of 1.0-4.5 micrometers and an average particle diameter of 0.2-2.2 micrometers.

本発明の導電ペーストは、さらに必要に応じて黒色顔料(D)を配合し、黒色導電ペーストとして使用することもできる。
本発明に用いられる黒色顔料(D)は、PDPの電極作製工程で、500〜600℃という高温焼成を伴うため、高温での色調等の安定性を有するものである必要があり、例えばルテニウム酸化物やルテニウム化合物、銅−クロム系黒色複合酸化物、銅−鉄系黒色複合酸化物、コバルト系酸化物等が好適に用いられる。特に、四三酸化コバルトなどのコバルト系酸化物は、導電ペーストの安定性、コスト面に極めて優れることから最適である。
また、最大粒経5μm以下の四三酸化コバルトを溶剤に均一に分散したスラリーを用いることにより、二次凝集物のない導電ペーストを容易に得ることができる。
The conductive paste of the present invention can be used as a black conductive paste by further blending a black pigment (D) as necessary.
Since the black pigment (D) used in the present invention involves high-temperature firing at 500 to 600 ° C. in the electrode preparation process of the PDP, it is necessary to have stability such as color tone at high temperature, for example, ruthenium oxide Materials, ruthenium compounds, copper-chromium black composite oxides, copper-iron black composite oxides, cobalt oxides, and the like are preferably used. In particular, cobalt-based oxides such as tribasic cobalt oxide are optimal because they are extremely excellent in the stability and cost of the conductive paste.
Further, by using a slurry in which cobalt trioxide having a maximum particle size of 5 μm or less is uniformly dispersed in a solvent, a conductive paste free from secondary aggregates can be easily obtained.

このような黒色顔料(D)の形状については、球状、フレーク状、デンドライト状など種々のものを用いることができるが、光特性や分散性を考慮すると球状のものを用いることが好ましい。
このような黒色顔料(D)の配合量は、有機バインダー100質量部当り0.1〜100質量部、好ましくは0.1〜50質量部の範囲が適当である。この理由は、この黒色顔料(D)の配合量が上記範囲よりも少ないと、焼成後に充分な黒さが得られず、一方、上記範囲を超える配合量では、光の透過性が劣化する他に、コスト高となり好ましくないからである。
Various shapes such as a spherical shape, a flake shape, and a dendrite shape can be used as the shape of the black pigment (D), but it is preferable to use a spherical shape in consideration of optical characteristics and dispersibility.
The blending amount of such a black pigment (D) is suitably 0.1 to 100 parts by weight, preferably 0.1 to 50 parts by weight per 100 parts by weight of the organic binder. The reason for this is that if the amount of the black pigment (D) is less than the above range, sufficient blackness cannot be obtained after firing. On the other hand, if the amount exceeds the above range, the light transmittance deteriorates. In addition, this is not preferable because of high costs.

本発明の導電ペーストでは、さらに必要に応じて、光硬化性および現像性を向上させるために、光重合性モノマー(E)及び光重合開始剤(F)を配合することができる。
このような光重合性モノマー(E)としては、例えば、2−ヒドロキシエチルアクリレート,2−ヒドロキシプロピルアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ポリウレタンジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、トリメチロールプロパンエチレンオキサイド変性トリアクリレート、トリメチロールプロパンプロピレンオキサイド変性トリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート及び上記アクリレートに対応する各メタクリレート類;フタル酸、アジピン酸、マレイン酸、イタコン酸、こはく酸、トリメリット酸、テレフタル酸等の多塩基酸とヒドロキシアルキル(メタ)アクリレートとのモノ−、ジ−、トリ−又はそれ以上のポリエステルなどが挙げられるが、特定のものに限定されるものではなく、またこれらを単独で又は2種以上を組み合わせて用いることができる。これらの光重合性モノマーの中でも、1分子中に2個以上のアクリロイル基又はメタクリロイル基を有する多官能モノマーが好ましい。
In the conductive paste of the present invention, if necessary, a photopolymerizable monomer (E) and a photopolymerization initiator (F) can be blended in order to improve photocurability and developability.
Examples of such a photopolymerizable monomer (E) include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, polyethylene glycol diacrylate, polyurethane diacrylate, trimethylolpropane triacrylate. Acrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, trimethylolpropane ethylene oxide modified triacrylate, trimethylolpropane propylene oxide modified triacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate and each methacrylate corresponding to the above acrylate Phthalic acid, adipic acid, malein Mono-, di-, tri- or higher polyesters of polybasic acids such as itaconic acid, succinic acid, trimellitic acid, terephthalic acid and the like and hydroxyalkyl (meth) acrylates. It is not limited and these can be used alone or in combination of two or more. Among these photopolymerizable monomers, polyfunctional monomers having two or more acryloyl groups or methacryloyl groups in one molecule are preferable.

このような光重合性モノマー(E)の配合量は、前記有機バインダー(A)100質量部当り20〜100質量部が適当である。この光重合性モノマー(E)の配合量が上記範囲よりも少ない場合、組成物の充分な光硬化性が得られ難くなり、一方、上記範囲を超えて多量になると、皮膜の深部に比べて表面部の光硬化が早くなるため硬化むらを生じ易くなる。   The amount of such a photopolymerizable monomer (E) is suitably 20 to 100 parts by mass per 100 parts by mass of the organic binder (A). When the amount of the photopolymerizable monomer (E) is less than the above range, it is difficult to obtain sufficient photocurability of the composition. On the other hand, when the amount exceeds the above range, the amount is larger than the deep part of the film. Since photocuring of the surface portion is accelerated, uneven curing is likely to occur.

このような光重合開始剤(F)の具体例としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のベンゾインとベンゾインアルキルエーテル類;アセトフェノン、2,2−ジメトキシー2−フェニルアセトフェノン、2,2−ジエトキシー2−フェニルアセトフェノン、1,1−ジクロロアセトフェノン等のアセトフェノン類;2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルフォルニル)フェニル]−1−ブタノン等のアミノアセトフェノン類;2−メチルアントラキノン、2−エチルアントラキノン、2−t−ブチルアントラキノン、1−クロロアントラキノン等のアントラキノン類;2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2−クロロチオキサントン、2,4−ジイソプロピルチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン等のベンゾフェノン類;又はキサントン類;(2,6−ジメトキシベンゾイル)−2,4,4−ペンチルホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド、エチル−2,4,6−トリメチルベンゾイルフェニルフォスフィネイト等のフォスフィンオキサイド類;各種パーオキサイド類などが挙げられ、これら公知慣用の光重合開始剤を単独で又は2種以上を組み合わせて用いることができる。これらの光重合開始剤(F)の配合割合は、前記有機バインダー(A)100質量部当り0.3〜30質量部が適当であり、好ましくは、1〜20質量部である。   Specific examples of such photopolymerization initiator (F) include benzoin and benzoin alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, Acetophenones such as 2,2-diethoxy-2-phenylacetophenone and 1,1-dichloroacetophenone; 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl- 2-Dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-aminoacetophenones such as butanone; 2- Anthraquinones such as tilanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, 1-chloroanthraquinone; 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-diisopropylthioxanthone, etc. Thioxanthones; ketones such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone; or xanthones; (2,6-dimethoxybenzoyl) -2,4,4-pentylphosphine oxide, bis (2,4 , 6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ethyl-2,4,6-trimethylbenzoylphenylphosphine Phosphine oxide such as Fineito; various peroxides and the like can be used alone or in combination of two or more of these conventionally known photopolymerization initiator. The mixing ratio of these photopolymerization initiators (F) is suitably 0.3 to 30 parts by mass, preferably 1 to 20 parts by mass, per 100 parts by mass of the organic binder (A).

なお、上記光重合開始剤(F)は、N,N−ジメチルアミノ安息香酸エチルエステル、N,N−ジメチルアミノ安息香酸イソアミルエステル、ペンチル−4−ジメチルアミノベンゾエート、トリエチルアミン、トリエタノールアミン等の三級アミン類のような光増感剤の1種あるいは2種以上と組み合わせて用いることができる。
より深い光硬化深度を要求される場合には必要に応じて、可視領域でラジカル重合を開始するイルガキュアー784(チバ・スペシャルティ・ケミカルズ社製)等のチタノセン系光重合開始剤、ロイコ染料等を硬化助剤として組み合わせて用いることができる。
The photopolymerization initiator (F) is composed of N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethylamine, triethanolamine and the like. It can be used in combination with one or more of photosensitizers such as secondary amines.
If a deeper photocuring depth is required, titanocene photopolymerization initiators such as Irgacure 784 (manufactured by Ciba Specialty Chemicals) that initiate radical polymerization in the visible region, leuco dyes, etc. It can be used in combination as a curing aid.

本発明の導電ペーストでは、さらに必要に応じて、組成物の保存安定性向上のため、無機粉末の成分である金属あるいは酸化物粉末との錯体化あるいは塩形成などの効果のある化合物を、安定剤(G)として配合することができる。
このような安定剤(G)としては、硝酸、硫酸、塩酸等の各種無機酸;ギ酸、酢酸、アセト酢酸、クエン酸、ステアリン酸、マレイン酸、フマル酸、フタル酸、ベンゼンスルホン酸、スルファミン酸等の各種有機酸;リン酸、亜リン酸、次亜リン酸、リン酸メチル、リン酸エチル、リン酸ブチル、リン酸フェニル、亜リン酸エチル、亜リン酸ジフェニル、モノ(2−メタクリロイルオキシエチル)アシッドホスフェート、ジ(2−メタクリロイルオキシエチル)アシッドホスフェート等の各種リン酸化合物(無機リン酸、有機リン酸)などの酸が挙げられ、単独で又は2種以上を組み合わせて用いることができる。
このような安定剤(G)は、無機粉末100質量部当り0.1〜10質量部の割合で配合することが好ましい。
In the conductive paste of the present invention, if necessary, in order to improve the storage stability of the composition, a compound having an effect such as complexation or salt formation with a metal or oxide powder as a component of the inorganic powder is stabilized. It can mix | blend as an agent (G).
Such stabilizers (G) include various inorganic acids such as nitric acid, sulfuric acid and hydrochloric acid; formic acid, acetic acid, acetoacetic acid, citric acid, stearic acid, maleic acid, fumaric acid, phthalic acid, benzenesulfonic acid, sulfamic acid Various organic acids such as phosphoric acid, phosphorous acid, hypophosphorous acid, methyl phosphate, ethyl phosphate, butyl phosphate, phenyl phosphate, ethyl phosphite, diphenyl phosphite, mono (2-methacryloyloxy) Examples include acids such as various phosphoric acid compounds (inorganic phosphoric acid, organic phosphoric acid) such as ethyl) acid phosphate and di (2-methacryloyloxyethyl) acid phosphate, and these can be used alone or in combination of two or more. .
Such a stabilizer (G) is preferably blended at a ratio of 0.1 to 10 parts by mass per 100 parts by mass of the inorganic powder.

さらに必要に応じて、シリコーン系、アクリル系等の消泡・レベリング剤、皮膜の密着性向上のためのシランカップリング剤等の、他の添加剤を配合することもできる。また、必要に応じて、公知慣用の酸化防止剤や、保存時の熱的安定性を向上させるための熱重合禁止剤を配合することもできる。   Further, if necessary, other additives such as a defoaming / leveling agent such as silicone and acrylic, and a silane coupling agent for improving the adhesion of the film can be blended. Further, if necessary, a known and usual antioxidant and a thermal polymerization inhibitor for improving the thermal stability during storage can be blended.

次に、本発明の導電ペーストを用いた電極の形成方法について説明する。
本発明の導電ペーストは、予めフィルム状に成膜されている場合には基板上にラミネートすればよいが、例えばスクリーン印刷、バーコーター、ブレードコーターなど適宜の塗布方法で基板に塗布し、次いで指触乾燥性を得るために、熱風循環式乾燥炉や遠赤外線乾燥炉等を用い、例えば約70〜120℃で5〜40分間乾燥させて、タックフリーの塗膜を得る。その後、選択的露光、現像、焼成を行なって所定パターンの電極回路を形成する。
Next, a method for forming an electrode using the conductive paste of the present invention will be described.
The conductive paste of the present invention may be laminated on a substrate when it is previously formed into a film, but is applied to the substrate by an appropriate application method such as screen printing, bar coater, blade coater, etc. In order to obtain the touch drying property, a tack-free coating film is obtained by, for example, drying at about 70 to 120 ° C. for 5 to 40 minutes using a hot air circulating drying furnace or a far infrared drying furnace. Thereafter, selective exposure, development, and baking are performed to form an electrode circuit having a predetermined pattern.

ここで、露光工程としては、所定の露光パターンを有するネガマスクを用いた接触露光または非接触露光が可能である。露光光源としては、ハロゲンランプ、高圧水銀灯、レーザー光、メタルハライドランプ、ブラックランプ、無電極ランプなどが使用される。露光量としては50〜500mJ/cm程度が好ましい。 Here, as the exposure step, contact exposure or non-contact exposure using a negative mask having a predetermined exposure pattern is possible. As the exposure light source, a halogen lamp, a high-pressure mercury lamp, a laser beam, a metal halide lamp, a black lamp, an electrodeless lamp, or the like is used. The exposure amount is preferably about 50 to 500 mJ / cm 2 .

現像工程としてはスプレー法、浸漬法等が用いられる。現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、珪酸ナトリウムなどの金属アルカリ水溶液や、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン水溶液、特に約1.5質量%以下の濃度の希アルカリ水溶液が好適に用いられる。この場合、ペースト中のカルボキシル基含有樹脂のカルボキシル基がケン化され、未硬化部(未露光部)が除去されればよく、上記のような現像液に限定されるものではない。また、現像後に不要な現像液の除去のため、水洗や酸中和を行なうことが好ましい。   As the development process, a spray method, an immersion method, or the like is used. Developers include aqueous alkali metal solutions such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate and sodium silicate, and aqueous amine solutions such as monoethanolamine, diethanolamine and triethanolamine, especially about 1.5% by mass or less. A dilute alkaline aqueous solution having a concentration of 5 is preferably used. In this case, the carboxyl group of the carboxyl group-containing resin in the paste may be saponified and the uncured part (unexposed part) may be removed, and is not limited to the developer as described above. Further, it is preferable to perform washing with water and acid neutralization in order to remove unnecessary developer after development.

焼成工程においては、現像後の基板を空気中又は窒素雰囲気下で約400〜600℃の加熱処理を行い、所望の電極を形成する。なお、この時の昇温速度は、20℃/分以下に設定することが好ましい。   In the baking step, the substrate after development is subjected to heat treatment at about 400 to 600 ° C. in air or in a nitrogen atmosphere to form a desired electrode. In addition, it is preferable to set the temperature increase rate at this time to 20 degrees C / min or less.

以下に実施例および比較例を示して本発明について具体的に説明するが、本発明が下記実施例に限定されるものではないことはもとよりである。
なお、以下において「部」とあるのは、特に断りのない限り全て質量基準である。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.
In the following description, “parts” are all based on mass unless otherwise specified.

合成例:有機バインダーAの合成
温度計、攪拌機、滴下ロート、及び還流冷却器を備えたフラスコに、メチルメタクリレートとメタクリル酸を0.87:0.13のモル比で仕込み、溶媒としてジプロピレングリコールモノメチルエーテル、触媒としてアゾビスイソブチロニトリルを入れ、窒素雰囲気下、80℃で2〜6時間攪拌し、樹脂溶液を得た。この樹脂溶液を冷却し、重合禁止剤としてメチルハイドロキノン、触媒としてテトラブチルホスホニウムブロミドを用い、グリシジルメタクリレートを、95〜105℃で16時間の条件で、上記樹脂のカルボキシル基1モルに対し0.12モルの割合の付加モル比で付加反応させ、冷却後取り出し、有機バインダーAを得た。この有機バインダーAは、重量平均分子量が約20,000、酸価が74mgKOH/gであった。
なお、得られた有機バインダーAの重量平均分子量の測定は、島津製作所社製ポンプLC−6ADと昭和電工社製カラムShodex(登録商標)KF−804、KF−803、KF−802を三本つないだ高速液体クロマトグラフィーにより測定した。
Synthesis Example: Synthesis of Organic Binder A A flask equipped with a thermometer, stirrer, dropping funnel, and reflux condenser was charged with methyl methacrylate and methacrylic acid in a molar ratio of 0.87: 0.13, and dipropylene glycol as a solvent. Monomethyl ether and azobisisobutyronitrile as a catalyst were added and stirred at 80 ° C. for 2 to 6 hours under a nitrogen atmosphere to obtain a resin solution. The resin solution was cooled, methylhydroquinone as a polymerization inhibitor, tetrabutylphosphonium bromide as a catalyst, and glycidyl methacrylate was added at 0.12 to 1 mol of the carboxyl group of the resin under the conditions of 95 to 105 ° C. for 16 hours. Addition reaction was carried out at an addition molar ratio of a molar ratio, and after cooling, the organic binder A was obtained. This organic binder A had a weight average molecular weight of about 20,000 and an acid value of 74 mgKOH / g.
In addition, the measurement of the weight average molecular weight of the obtained organic binder A connects Shimadzu Corporation pump LC-6AD and Showa Denko Co., Ltd. column Shodex (trademark) KF-804, KF-803, KF-802. It was measured by high performance liquid chromatography.

このようにして得られた有機バインダーAを用い、表1に示す各成分及び配合割合にて配合し、攪拌機により攪拌後、3本ロールミルで練肉することにより、感光性導電ペーストを調製した。
銀粉は、平均一次粒径が0.96μmと1.48μmのものを使用した。
また、ガラス粉末は、Biが50質量%、Bが15質量%、ZnOが15質量%、Siが2質量%、BaOが18質量%の組成範囲からなり、ガラス転移点が444℃、ガラス軟化点が500℃、熱膨張係数α300が85×10−7/℃のものを用いた。
なお、ガラス粉末の粒径は湿式粒度測定器にて測定し、銀粉の粒径はSEMで測定した。
A photosensitive conductive paste was prepared by using the organic binder A thus obtained, blending with the components and blending ratios shown in Table 1, stirring with a stirrer and kneading with a three-roll mill.
Silver powder having an average primary particle size of 0.96 μm and 1.48 μm was used.
The glass powder has a composition range of 50% by mass of Bi 2 O 3 , 15% by mass of B 2 O 3 , 15% by mass of ZnO, 2 % by mass of Si 2 and 18% by mass of BaO. A material having a point of 444 ° C., a glass softening point of 500 ° C., and a thermal expansion coefficient α 300 of 85 × 10 −7 / ° C. was used.
In addition, the particle size of glass powder was measured with the wet particle size measuring device, and the particle size of silver powder was measured with SEM.

組成物例:有機バインダーAを用いた組成物
有機バインダーA 180.0部
トリメチロールプロパントリアクリレート 60.0部
2−ベンジル−2−ジメチルアミノ−1−
(4−モルフォリノフェニル)−ブタノン−1 10.0部
ジプロピレングリコールモノメチルエーテル 20.0部
銀粉(粒径は表1に記載) 400.0部
ガラス粉末(平均粒径(D50)=0.9μm、各配合量は表1に記載)
0.04〜4.04部
リン酸エステル 3.0部
消泡剤(BYK−354:ビックケミー・ジャパン(株)) 1.0部
Composition Example: Composition Using Organic Binder A Organic Binder A 180.0 parts Trimethylolpropane triacrylate 60.0 parts 2-Benzyl-2-dimethylamino-1-
(4-morpholinophenyl) -butanone-1 10.0 parts dipropylene glycol monomethyl ether 20.0 parts Silver powder (particle size is listed in Table 1) 400.0 parts Glass powder (average particle size (D 50 ) = 0 .9 μm, each compounding amount is listed in Table 1)
0.04 to 4.04 parts Phosphate ester 3.0 parts Antifoaming agent (BYK-354: Big Chemie Japan Co., Ltd.) 1.0 part

Figure 2010062018
Figure 2010062018

試験片作製:
ガラス基板上に、実施例1、2及び比較例1〜3の感光性導電ペーストを200メッシュのポリエステルスクリーンを用いて全面に塗布し、次いで熱風循環式乾燥炉にて90℃で30分間乾燥して指触乾燥性の良好な塗膜を形成した。次に、光源としてメタルハライドランプを用い、ネガマスクを介して、乾燥塗膜上の積算光量が300mJ/cm2となるように露光した後、液温30℃の0.5wt%NaCO水溶液を用いて現像を行い、水洗した。そして塗膜パターンを形成した基板を、空気雰囲気下にて5℃/分で580℃まで昇温して580℃で20分間焼成し、電極を形成した試験片を作製した。
このような方法で、密着性試験、マイグレーション試験、ライン抵抗値試験に用いるそれぞれの試験片を作製した。すなわち、密着性試験用には、L/S(配線幅/配線間隔)=100/300μmのストライプ電極、マイグレーション試験用にはL/S=120/120μmのくし型電極、ライン抵抗値試験用には、長さ×幅=100mm×0.1mmのライン電極を作製した。
Test piece preparation:
On the glass substrate, the photosensitive conductive pastes of Examples 1 and 2 and Comparative Examples 1 to 3 were applied to the entire surface using a 200-mesh polyester screen, and then dried at 90 ° C. for 30 minutes in a hot air circulation drying oven. As a result, a coating film with good dryness to the touch was formed. Next, using a metal halide lamp as a light source and exposing through a negative mask so that the integrated light amount on the dried coating film is 300 mJ / cm 2 , a 0.5 wt% Na 2 CO 3 aqueous solution with a liquid temperature of 30 ° C. It was used for development and washed with water. And the board | substrate with which the coating-film pattern was formed was heated up to 580 degreeC at 5 degree-C / min in air atmosphere, and baked at 580 degreeC for 20 minutes, and the test piece which formed the electrode was produced.
With such a method, each test piece used for the adhesion test, the migration test, and the line resistance value test was produced. That is, L / S (wiring width / wiring interval) = 100/300 μm stripe electrode for adhesion test, comb electrode of L / S = 120/120 μm for migration test, and line resistance value test Produced a line electrode of length × width = 100 mm × 0.1 mm.

(試験方法と各評価)
焼成後の密着性:
上記試験片作製にて得られたL/S=100/300μmのストライプ電極を、セロハンテープを用いてテープピーリング試験を行い、目視によりはがれの確認を行った。
評価基準は以下の通りである。
焼成後の密着性評価:
○・・・はがれなし
△・・・テープピールで一部電極がはがれた
(Test method and each evaluation)
Adhesion after firing:
The strip electrode of L / S = 100/300 μm obtained in the above test piece preparation was subjected to a tape peeling test using a cellophane tape, and peeling was confirmed visually.
The evaluation criteria are as follows.
Evaluation of adhesion after firing:
○ ・ ・ ・ No peeling △ ・ ・ ・ Partial electrode peeled off with tape peel

耐酸試験後の密着性:
上記試験片作製にて得られたL/S=100/300μmのストライプ電極基板を30℃に加温した3%硝酸水溶液に3分間浸漬した後、水道水で水洗した。それを十分乾燥させた後、セロハンテープでテープピール試験を行い、目視により電極のはがれの確認を行った。
評価基準は以下の通りである。
耐酸試験後の密着性評価:
○・・・はがれなし
△・・・テープピールで一部電極がはがれた
×・・・酸に浸漬中に電極がはがれた
Adhesion after acid resistance test:
The stripe electrode substrate of L / S = 100/300 μm obtained in the above test piece preparation was immersed in a 3% nitric acid aqueous solution heated to 30 ° C. for 3 minutes, and then washed with tap water. After sufficiently drying it, a tape peel test was performed with a cellophane tape, and the peeling of the electrode was confirmed visually.
The evaluation criteria are as follows.
Evaluation of adhesion after acid resistance test:
○ ・ ・ ・ No peeling △ ・ ・ ・ Partial electrode peeled off with tape peel × ・ ・ ・ Electrode peeled off while immersed in acid

マイグレーション試験:
上記試験片作製にて得られたL/S=120/120μmのくし型電極にUV防湿剤を塗布、硬化させ、マイグレーション試験用基板を作製した。その基板を85℃、85%RHの恒温恒湿槽で引加電圧=150V、試験時間=96時間の試験を行った。試験後の基板を光学顕微鏡で観察し、デントライトの評価を行った。
評価基準は以下の通りである。
マイグレーション評価:
○・・・デントライト発生なし
△・・・デントライト若干発生
×・・・ショート
Migration test:
A migration test substrate was prepared by applying and curing a UV desiccant to the L / S = 120/120 μm comb electrode obtained in the above test piece preparation. The substrate was tested in a constant temperature and humidity chamber at 85 ° C. and 85% RH with an applied voltage of 150 V and a test time of 96 hours. The substrate after the test was observed with an optical microscope, and dentlite was evaluated.
The evaluation criteria are as follows.
Migration assessment:
○ ・ ・ ・ Dent light not generated △ ・ ・ ・ Dent light generated slightly × ・ ・ ・ Short

ライン抵抗値試験:
上記試験片作製にて得られた、長さ×幅=100mm×0.1mmのライン電極を、日置電機社製ミリオームハイテスターを用いて測定したデータをライン抵抗値とした。
Line resistance test:
Data obtained by measuring a line electrode of length × width = 100 mm × 0.1 mm obtained by the above-mentioned test piece preparation using a milliohm high tester manufactured by Hioki Electric Co., Ltd. was taken as a line resistance value.

Figure 2010062018
Figure 2010062018

表2に示す結果から明らかなように、本発明の導電ペーストによれば、焼成後の基材との密着性や導電特性、耐マイグレーション特性を悪化させることなく、耐酸試験後の密着性に優れる電極を提供できることが分かった。   As is apparent from the results shown in Table 2, according to the conductive paste of the present invention, the adhesiveness after the acid resistance test is excellent without deteriorating the adhesiveness, conductive properties, and migration resistance properties with the base material after firing. It has been found that an electrode can be provided.

Claims (6)

(A)有機バインダー、(B)平均一次粒径が0.5〜1.4μmの導電粉末、及び(C)無機成分中の含有量が0.1〜0.9wt%であるガラス粉末を含むことを特徴とするプラズマディスプレイ用導電ペースト。   (A) an organic binder, (B) a conductive powder having an average primary particle size of 0.5 to 1.4 μm, and (C) a glass powder having a content in an inorganic component of 0.1 to 0.9 wt%. A conductive paste for plasma display, characterized in that. 前記導電粉末(B)がAg、Al、Pt、Au、Cu、Ni、In、Sn、Pt、Zn、Fe、Ir、Os、Rh、W、Mo、Ru、及びこれらの合金又は酸化物、さらにはSnO2、In23、及びITOからなる群から選ばれたいずれか少なくとも1種であることを特徴とする請求項1に記載のプラズマディスプレイ用導電ペースト。 The conductive powder (B) is Ag, Al, Pt, Au, Cu, Ni, In, Sn, Pt, Zn, Fe, Ir, Os, Rh, W, Mo, Ru, and alloys or oxides thereof, 2. The conductive paste for plasma display according to claim 1, wherein is at least one selected from the group consisting of SnO 2 , In 2 O 3 , and ITO. 前記ガラス粉末(C)が、酸化ビスマス、酸化亜鉛、酸化リチウム、及びアルカリホウケイ酸塩のいずれか少なくとも一種を主成分として含有していることを特徴とする請求項1に記載のプラズマディスプレイ用導電ペースト。   The conductive material for plasma display according to claim 1, wherein the glass powder (C) contains at least one of bismuth oxide, zinc oxide, lithium oxide, and alkali borosilicate as a main component. paste. 酸処理工程を含むプラズマディスプレイの製造方法に用いる導電ペーストであることを特徴とする請求項1〜3のいずれか1項に記載の電極用導電ペースト。   The conductive paste for an electrode according to any one of claims 1 to 3, which is a conductive paste used in a method for producing a plasma display including an acid treatment step. 請求項1〜3のいずれか1項に記載の導電ペーストを用いて作製されるプラズマディスプレイ用電極。   The electrode for plasma displays produced using the electrically conductive paste of any one of Claims 1-3. 平均一次粒径が0.5〜1.4μmの導電粉末を99.1〜99.9wt%の割合で含み、ガラス粉末を0.1〜0.9wt%の割合で含むことを特徴とするプラズマディスプレイ用電極。   A plasma comprising conductive powder having an average primary particle size of 0.5 to 1.4 μm in a proportion of 99.1 to 99.9 wt% and glass powder in a proportion of 0.1 to 0.9 wt%. Display electrode.
JP2008226978A 2008-09-04 2008-09-04 Conductive paste and electrode using the same Expired - Fee Related JP5236400B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008226978A JP5236400B2 (en) 2008-09-04 2008-09-04 Conductive paste and electrode using the same
KR1020090082745A KR101120229B1 (en) 2008-09-04 2009-09-03 Conductive paste and electrode using the same
CN200910172123A CN101667515A (en) 2008-09-04 2009-09-04 Conductive paste agent and electrode using the conductive paste agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226978A JP5236400B2 (en) 2008-09-04 2008-09-04 Conductive paste and electrode using the same

Publications (2)

Publication Number Publication Date
JP2010062018A true JP2010062018A (en) 2010-03-18
JP5236400B2 JP5236400B2 (en) 2013-07-17

Family

ID=41804082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226978A Expired - Fee Related JP5236400B2 (en) 2008-09-04 2008-09-04 Conductive paste and electrode using the same

Country Status (3)

Country Link
JP (1) JP5236400B2 (en)
KR (1) KR101120229B1 (en)
CN (1) CN101667515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699345A (en) * 2012-05-18 2012-10-03 西北稀有金属材料研究院 Preparation method of micron-sized high-activity spherical silver powder
US20160172166A1 (en) * 2013-07-03 2016-06-16 Oerlikon Surface Solutions Ag, Trübbach Target, adapted to an indirect cooling device, having a cooling plate

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9947809B2 (en) 2009-11-11 2018-04-17 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
CN102214497B (en) * 2010-04-07 2013-05-01 太阳控股株式会社 Conductive paste and conductive pattern
KR101615978B1 (en) * 2010-04-29 2016-04-28 엘지전자 주식회사 Solar cell
KR101814014B1 (en) 2011-03-25 2018-01-03 삼성전자주식회사 Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
JP2012227183A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, and solar cell element
KR101985929B1 (en) 2011-12-09 2019-06-05 삼성전자주식회사 Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
CN102568648B (en) * 2011-12-29 2014-06-18 广东爱康太阳能科技有限公司 Conductive silver paste and preparation method thereof
CN102568650B (en) * 2012-01-10 2014-03-12 华东微电子技术研究所合肥圣达实业公司 Silver electrode paste for negative temperature coefficient (NTC) thermistors and preparation method thereof
KR101315106B1 (en) * 2012-03-23 2013-10-07 (주)창성 Electrode paste for solar cell
KR102208100B1 (en) * 2014-05-13 2021-01-28 도레이 카부시키가이샤 Conductive paste, touch panel, and method for producing conductive pattern
CN107735840B (en) * 2015-07-10 2020-08-11 东丽株式会社 Conductive paste, touch sensor member, and method for manufacturing conductive pattern
CN108109719A (en) * 2017-12-21 2018-06-01 惠州市富济电子材料有限公司 A kind of electrocondution slurry and preparation method thereof
KR102238769B1 (en) * 2018-04-23 2021-04-09 삼성에스디아이 주식회사 Composition for forming electrode, electrode manufactured using the same and solar cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127529A (en) * 2002-09-30 2004-04-22 Taiyo Ink Mfg Ltd Photosensitive conductive paste and plasma display panel having electrode formed by using same
JP2006321976A (en) * 2005-03-09 2006-11-30 E I Du Pont De Nemours & Co Black conductive composition, black electrode and method for forming the same
JP2007012371A (en) * 2005-06-29 2007-01-18 E I Du Pont De Nemours & Co Method for manufacturing conductive composition and rear substrate of plasma display
JP2007084860A (en) * 2005-09-20 2007-04-05 Mitsui Mining & Smelting Co Ltd Method for producing flake silver powder and flake silver powder produced by the method
JP2008144151A (en) * 2006-11-15 2008-06-26 Mitsubishi Materials Corp Printing ink and its manufacturing method, and electrode for plasma display panel obtained by using printing ink and its manufacturing method
JP2010033742A (en) * 2008-07-25 2010-02-12 Noritake Co Ltd Method and material for producing bus electrode of plasma display panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902729B1 (en) * 2002-09-13 2009-06-15 다이요 잉키 세이조 가부시키가이샤 Photocurable Conductive Paste and Conductive Pattern Formed Thereof
JP4870959B2 (en) * 2005-09-26 2012-02-08 太陽ホールディングス株式会社 Method for producing photosensitive paste and plasma display panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127529A (en) * 2002-09-30 2004-04-22 Taiyo Ink Mfg Ltd Photosensitive conductive paste and plasma display panel having electrode formed by using same
JP2006321976A (en) * 2005-03-09 2006-11-30 E I Du Pont De Nemours & Co Black conductive composition, black electrode and method for forming the same
JP2007012371A (en) * 2005-06-29 2007-01-18 E I Du Pont De Nemours & Co Method for manufacturing conductive composition and rear substrate of plasma display
JP2007084860A (en) * 2005-09-20 2007-04-05 Mitsui Mining & Smelting Co Ltd Method for producing flake silver powder and flake silver powder produced by the method
JP2008144151A (en) * 2006-11-15 2008-06-26 Mitsubishi Materials Corp Printing ink and its manufacturing method, and electrode for plasma display panel obtained by using printing ink and its manufacturing method
JP2010033742A (en) * 2008-07-25 2010-02-12 Noritake Co Ltd Method and material for producing bus electrode of plasma display panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699345A (en) * 2012-05-18 2012-10-03 西北稀有金属材料研究院 Preparation method of micron-sized high-activity spherical silver powder
CN102699345B (en) * 2012-05-18 2014-01-15 西北稀有金属材料研究院 Preparation method of micron-sized high-activity spherical silver powder
US20160172166A1 (en) * 2013-07-03 2016-06-16 Oerlikon Surface Solutions Ag, Trübbach Target, adapted to an indirect cooling device, having a cooling plate
US10636635B2 (en) * 2013-07-03 2020-04-28 Oerlikon Surface Solutions Ag, Pfäffikon Target, adapted to an indirect cooling device, having a cooling plate

Also Published As

Publication number Publication date
JP5236400B2 (en) 2013-07-17
KR20100028493A (en) 2010-03-12
KR101120229B1 (en) 2012-03-16
CN101667515A (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP5236400B2 (en) Conductive paste and electrode using the same
JP5393402B2 (en) Photosensitive conductive paste and method for producing the same
JP2008176312A (en) Photosensitive resin composition and method for producing baked product pattern obtained using the same
JP2005306699A (en) Glass composition for silver paste, photosensitive silver paste using the same and electrode pattern
JP3538408B2 (en) Photocurable composition and plasma display panel formed with electrodes using the same
JP3986312B2 (en) Black paste composition and plasma display panel using the black paste composition
JP5825963B2 (en) Photosensitive conductive resin composition, photosensitive conductive paste, and conductor pattern
JP2002220551A (en) Photocurable resin composition and plasma display panel with electrode formation using the same
KR101311098B1 (en) Conductive paste and conductive pattern
JP2004063247A (en) Process of manufacture of plasma display panel
JP4751773B2 (en) Photocurable composition and fired product pattern formed using the same
JP3771916B2 (en) Alkali-developable photocurable conductive paste composition and plasma display panel using the same
JP2015184631A (en) Photosensitive resin composition, two-layer electrode structure, method for manufacturing the same, and plasma display panel
KR101250602B1 (en) Photosensitive conductive paste and method for producing the same
JP4214005B2 (en) Photocurable resin composition and front substrate for plasma display panel
JPH11224531A (en) Alkali developing type photo-curing conductive paste composition and plasma display panel having electrode formed by using therewith
JP5246808B2 (en) Conductive paste and conductive pattern
JP2006278221A (en) Photosensitive black paste for all together calcination, and manufacturing method of pdp front substrate using this paste
JP2000330269A (en) Photosensitive paste composition and panel with fired body pattern formed using same
JP2004190037A (en) Photocurable resin composition
JP2004053628A (en) Photosetting black composition and bus electrode formed using same
JP2006337707A (en) Photosensitive paste and baked object pattern formed by using the same
JP2003280181A (en) Photosensitive electrically conductive paste and electric conductor pattern formed using the same
JP2006030853A (en) Photosensitive paste and baked product pattern formed using the same
KR100785539B1 (en) Photosensitive paste and calcined pattern obtained by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees