JP2010048111A - Exhaust emission control system and exhaust emission control method - Google Patents

Exhaust emission control system and exhaust emission control method Download PDF

Info

Publication number
JP2010048111A
JP2010048111A JP2008211122A JP2008211122A JP2010048111A JP 2010048111 A JP2010048111 A JP 2010048111A JP 2008211122 A JP2008211122 A JP 2008211122A JP 2008211122 A JP2008211122 A JP 2008211122A JP 2010048111 A JP2010048111 A JP 2010048111A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
catalyst
valve
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008211122A
Other languages
Japanese (ja)
Other versions
JP5233499B2 (en
Inventor
Takayuki Sakamoto
隆行 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2008211122A priority Critical patent/JP5233499B2/en
Publication of JP2010048111A publication Critical patent/JP2010048111A/en
Application granted granted Critical
Publication of JP5233499B2 publication Critical patent/JP5233499B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control system and an exhaust emission control method making purification performances of catalysts quickly and efficiently usable with temperature dependence of purification performances of the catalysts and desulfurization treatment required for high temperature process considered in the exhaust emission control system provided with an exhaust emission control device using catalyst action of an NOx conversion catalyst device, an oxidation catalyst device, and a filter device with a catalyst. <P>SOLUTION: In the exhaust emission control system 1 provided with the exhaust emission control device 10 carrying catalyst converting harmful components in exhaust gas G, a section carrying catalyst of the exhaust emission control device 10 is divided into two of an outer circumference part 11 and a canter tube part 12 by a tubular partition wall 13, the exhaust gas G is made to flow to the outer circumference part 11 by opening a first valve 16 disposed between the outer circumference part 11 and an exhaust passage 2 of an internal combustion engine, the exhaust gas G is made to flow to the center tube part 12 by opening a second valve 18 disposed between the center tube part 12 and the exhaust passage 2, and the tubular partition wall 13 is formed in a heat insulating structure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排気ガス浄化装置の触媒を担持した部分を外周部と中央筒部の二つに分けて、外周部と中央筒部の間に遮熱構造の筒状の仕切り壁を形成した排気ガス浄化装置を備えた排気ガス浄化システム及び排気ガス浄化方法に関する。   The present invention relates to an exhaust gas in which a catalyst carrying part of an exhaust gas purifying device is divided into an outer peripheral part and a central cylindrical part, and a cylindrical partition wall having a heat insulating structure is formed between the outer peripheral part and the central cylindrical part. The present invention relates to an exhaust gas purification system provided with a gas purification device and an exhaust gas purification method.

内燃機関の排気ガスを浄化するための装置の一つに、排気ガス中のNOx(窒素酸化物)の浄化のためのNOx浄化触媒装置がある。このNOx浄化触媒装置の一つに、アルカリ金属又はアルカリ土類金属を貴金属と共に担持して、酸素過剰な排気ガス中のNO(一酸化窒素)を酸化して硝酸塩として触媒上に吸着させて、NOxを浄化するNOx吸蔵還元型触媒を担持した装置がある。このNOx吸蔵還元型触媒は、排気ガスが酸素過剰なリーン空燃比状態では、NOxを吸蔵し、酸素濃度が低いか、空燃比が1より小さいリッチ空燃比状態では、吸蔵したNOxを放出すると共に、この放出されたNOxを還元雰囲気中で還元して、NOxを低減する。   One device for purifying exhaust gas from an internal combustion engine is a NOx purification catalyst device for purifying NOx (nitrogen oxide) in the exhaust gas. In one of these NOx purification catalyst devices, an alkali metal or alkaline earth metal is supported together with a noble metal, NO (nitrogen monoxide) in exhaust gas containing excess oxygen is oxidized and adsorbed on the catalyst as a nitrate, There is an apparatus carrying a NOx occlusion reduction type catalyst for purifying NOx. This NOx occlusion reduction type catalyst occludes NOx when the exhaust gas is in a lean air-fuel ratio state with excess oxygen, and releases the occluded NOx in a rich air-fuel ratio state where the oxygen concentration is low or the air-fuel ratio is less than 1. The released NOx is reduced in a reducing atmosphere to reduce NOx.

また、排気ガス浄化装置の別の装置として、NOxを吸蔵することはできないが、貴金属を主に担持して、その酸化作用により、CO(一酸化炭素)やHC(炭化水素)を酸化除去する酸化触媒装置がある。更に、排気ガス中のPM(微粒子状物質)を捕集して、フィルタに担持した酸化触媒やPM酸化触媒により酸化除去する触媒付きフィルタ装置がある。   Moreover, as another device of the exhaust gas purification device, it cannot occlude NOx, but mainly carries precious metals and oxidizes and removes CO (carbon monoxide) and HC (hydrocarbon) by its oxidation action. There is an oxidation catalyst device. Furthermore, there is a filter device with a catalyst that collects PM (particulate matter) in exhaust gas and oxidizes and removes it with an oxidation catalyst supported on a filter or a PM oxidation catalyst.

これらの触媒装置と触媒付きフィルタ装置を使用して、内燃機関から排出される排気ガス中のNOx、CO、HC、PM等の有害成分を浄化して、これらの有害成分の大気中への放出量を排出基準以下にまで下げている。   Using these catalytic devices and filter devices with catalysts, the harmful gases such as NOx, CO, HC and PM in the exhaust gas discharged from the internal combustion engine are purified, and these harmful components are released into the atmosphere. The amount is reduced below the emission standard.

しかしながら、これらの触媒を使用した排気ガスの後処理システムでは、触媒が活性化して、浄化反応が可能となる温度まで触媒を昇温させる必要がある。触媒の種類にもよるが、概略、200℃〜250℃の温度に到達すると、その浄化反応を開始する。しかし、この活性化温度に到達するまでは排気ガス中の有害成分を触媒反応で除去することはできず、大気中へ有害成分がそのまま排出されてしまうという問題がある。言い換えれば、触媒を使った後処理システムでは、触媒が浄化反応を始める温度への到達時間が短ければ、その分だけ大気中へ放出される有害成分の量を減らすことができる。   However, in an exhaust gas aftertreatment system using these catalysts, it is necessary to raise the catalyst to a temperature at which the catalyst is activated and a purification reaction is possible. Although it depends on the type of the catalyst, when the temperature reaches approximately 200 ° C. to 250 ° C., the purification reaction is started. However, until the activation temperature is reached, harmful components in the exhaust gas cannot be removed by catalytic reaction, and there is a problem that the harmful components are discharged into the atmosphere as they are. In other words, in the aftertreatment system using a catalyst, if the time to reach the temperature at which the catalyst starts the purification reaction is short, the amount of harmful components released into the atmosphere can be reduced accordingly.

これに関連して、触媒の上流に流路制御機構を設けて、排気ガスの温度が低い時には触媒の中心部に排気ガスの流れを集中して、触媒温度の活性化温度への到達を早くし、排気ガスの温度が高い時には触媒の周辺部に集中して排気ガスを流し、排気ガスが高温となっても、触媒でのサルフェートの生成、及び堆積を防止するディーゼルエンジンの触媒コンバータが提案されている(例えば、特許文献1参照)。   In this connection, a flow path control mechanism is provided upstream of the catalyst, and when the exhaust gas temperature is low, the exhaust gas flow is concentrated at the center of the catalyst so that the catalyst temperature reaches the activation temperature quickly. In addition, when the exhaust gas temperature is high, the exhaust gas is concentrated in the periphery of the catalyst, and even if the exhaust gas becomes hot, a catalytic converter for a diesel engine that prevents the formation and accumulation of sulfate in the catalyst is proposed. (For example, refer to Patent Document 1).

このディーゼルエンジンの触媒コンバータでは、触媒コンバータのハウジングの外表面に複数の冷却ファンを設けると効果的であるとし、サルフェートの生成を抑えるために、排気ガスが高温状態になった時に、排気ガスを、触媒の中央部には流さずに、温度が低い触媒の周辺部に集中して通過させている。   In this diesel engine catalytic converter, it is considered effective to provide a plurality of cooling fans on the outer surface of the catalytic converter housing, and in order to suppress the generation of sulfate, the exhaust gas is discharged when the exhaust gas reaches a high temperature. Instead of flowing in the central part of the catalyst, the catalyst is passed through in a concentrated manner at the periphery of the catalyst having a low temperature.

しかしながら、外周部の温度を低温に保つことは、サルフェートの生成を抑えることには有効であると思われるが、NOx浄化の面では触媒の活性化温度以上に触媒全体の温度を上げる必要があるので、外周部の低温化はNOx浄化の面からは好ましくない。また、触媒内に生成したサルフェートを除去するために、外周部の温度を上げて脱硫させる場合に、触媒の外周部の温度上昇が難しく、脱硫再生が難しいという問題がある。   However, maintaining the temperature of the outer peripheral portion at a low temperature seems to be effective for suppressing the formation of sulfate, but in terms of NOx purification, the temperature of the entire catalyst needs to be raised above the activation temperature of the catalyst. Therefore, lowering the temperature of the outer peripheral portion is not preferable from the viewpoint of NOx purification. Further, when desulfurization is performed by raising the temperature of the outer peripheral portion in order to remove the sulfate generated in the catalyst, there is a problem that it is difficult to increase the temperature of the outer peripheral portion of the catalyst and desulfurization regeneration is difficult.

また、酸化触媒を担持させた高温排気ガス処理部を中央に、加熱手段を取り付けた低温排気ガス処理部を周辺に設けて、排気ガス温度が酸化触媒活性化温度以下である場合には、加熱手段を作動させて排気ガスを酸化触媒活性化温度以上に加熱して低温排気ガス処理部に流して、始動時や排気ガス温度が低下した場合における排気ガス浄化効率を向上させ、また、排気ガス温度が酸化触媒活性化温度以上である場合には、加熱手段の作動を停止し、排気ガスを高温排気ガス処理部に流して、酸化触媒による有害成分の浄化を行う自動車用排気ガス処理装置が提案されている(例えば、特許文献2参照)。   If the exhaust gas temperature is lower than the oxidation catalyst activation temperature, a high-temperature exhaust gas treatment unit carrying the oxidation catalyst is provided in the center and a low-temperature exhaust gas treatment unit equipped with heating means is provided in the periphery. The exhaust gas is heated above the oxidation catalyst activation temperature and flowed to the low temperature exhaust gas processing section to improve the exhaust gas purification efficiency at start-up and when the exhaust gas temperature decreases, and the exhaust gas When the temperature is equal to or higher than the oxidation catalyst activation temperature, an automobile exhaust gas treatment device that stops the operation of the heating means and flows exhaust gas to the high-temperature exhaust gas treatment unit to purify harmful components by the oxidation catalyst. It has been proposed (see, for example, Patent Document 2).

この自動車用排気ガス処理装置では、排気ガス温度が高い場合には高温排気ガス処理部と低温排気ガス処理部に排気ガスを流して浄化し、また、エンジンの始動時や排気ガスが高温から低温になった場合には、経路を切り換えて、加熱手段経由で周辺部の低温排気ガス処理部に流入させる。これにより排気ガスを加熱手段で触媒活性化温度以上に加熱し、この加熱された排気ガスを低温排気ガス処理部に流入させて浄化している。   In this automobile exhaust gas treatment device, when the exhaust gas temperature is high, the exhaust gas is flowed through the high temperature exhaust gas treatment unit and the low temperature exhaust gas treatment unit to purify it. In such a case, the path is switched to flow into the peripheral low temperature exhaust gas processing section via the heating means. As a result, the exhaust gas is heated to a temperature higher than the catalyst activation temperature by the heating means, and the heated exhaust gas flows into the low-temperature exhaust gas processing section for purification.

しかしながら、一般的には、放熱の関係から、触媒の中央部が高い温度に成り易く、周辺部は低い温度に成り易いので、低温排気ガス処理部を周辺側に設けているこの自動車用排気ガス処理装置の構成は熱効率が悪いという問題がある。   However, in general, because of the heat dissipation, the central part of the catalyst is likely to be at a high temperature, and the peripheral part is likely to be at a low temperature. The configuration of the processing apparatus has a problem of poor thermal efficiency.

これに対して、本発明者は、触媒を加熱する昇温時間を短くする手段として、触媒を担持した部分の熱容量を変化させて、エンジン始動直後など排気温度が低い場合には、触媒を担持した部分の中央部分のコアのみに排気ガスを流して、加熱される触媒を担持した部分の熱容量を小さくして昇温時間を短くすることを考えた。
特開平10−299465号公報 特開2002−295233号公報
In contrast, as a means of shortening the temperature raising time for heating the catalyst, the present inventor changes the heat capacity of the portion where the catalyst is supported, and supports the catalyst when the exhaust temperature is low, such as immediately after starting the engine. It was considered that the exhaust gas is allowed to flow only in the central part of the part that has been made to reduce the heat capacity of the part carrying the catalyst to be heated, thereby shortening the temperature raising time.
JP-A-10-299465 JP 2002-295233 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、NOx浄化触媒装置、酸化触媒装置、触媒付きフィルタ装置等の触媒作用を利用する排気ガス浄化装置を備えた排気ガス浄化システムにおいて、触媒の浄化性能の温度依存性と高温処理が必要とされる脱硫処理を考慮して、触媒の浄化性能を速やかに且つ効率よく利用できる排気ガス浄化システムと排気ガス浄化方法を提供することにある。   The present invention has been made in view of the above situation, and an object of the present invention is to purify an exhaust gas provided with an exhaust gas purification device that uses a catalytic action such as a NOx purification catalyst device, an oxidation catalyst device, and a filter device with a catalyst. Provided is an exhaust gas purification system and an exhaust gas purification method capable of quickly and efficiently using catalyst purification performance in consideration of temperature dependency of catalyst purification performance and desulfurization treatment that requires high-temperature treatment. There is.

上記の目的を達成するための本発明の排気ガス浄化システムは、排気ガス中の有害成分を浄化する触媒を担持した排気ガス浄化装置を備えた排気ガス浄化システムにおいて、前記排気ガス浄化装置の触媒を担持した部分を筒状の仕切り壁により外周部と中央筒部の二つに分けて、内燃機関の排気通路と前記外周部との間に第1バルブを、前記排気通路と前記中央筒部との間に第2バルブを設け、前記第1バルブを開くことにより排気ガスを前記外周部に流し、前記第2バルブを開くことにより排気ガスを前記中央筒部に流すように構成すると共に、前記筒状の仕切り壁を遮熱構造に形成して構成する。   In order to achieve the above object, an exhaust gas purification system of the present invention is an exhaust gas purification system comprising an exhaust gas purification device carrying a catalyst for purifying harmful components in the exhaust gas, the catalyst of the exhaust gas purification device. Is divided into an outer peripheral portion and a central cylindrical portion by a cylindrical partition wall, and a first valve is provided between the exhaust passage and the outer peripheral portion of the internal combustion engine, and the exhaust passage and the central cylindrical portion. A second valve is provided between the first and second valves, and exhaust gas is caused to flow to the outer peripheral portion by opening the first valve, and exhaust gas is caused to flow to the central cylinder portion by opening the second valve; The cylindrical partition wall is formed in a heat shield structure.

この構成によれば、触媒を担持した部分を遮熱構造の筒状の仕切り壁により2つに分けて、各部分における熱容量を減少したので、暖機運転の場合等、触媒の温度を速やかに活性化温度以上に昇温する必要がある場合には、熱容量が触媒の全体に比べて減少した一方の触媒側(例えば、中央筒部側)のみに排気ガスを流すことにより、速やかに触媒の温度を上昇して、触媒を活性化できる。   According to this configuration, the part carrying the catalyst is divided into two parts by the cylindrical partition wall of the heat-shielding structure, and the heat capacity in each part is reduced. When it is necessary to raise the temperature above the activation temperature, the exhaust gas is flowed only to one catalyst side (for example, the central cylinder side) whose heat capacity has decreased compared to the whole catalyst, thereby quickly The catalyst can be activated by increasing the temperature.

このときに、外周部と中央筒部との間の筒状の仕切り壁を遮熱構造に形成して、熱の移動を抑制して外周部への熱伝達で失われる熱量を減少するように構成しているので、排気ガスの熱を中央筒部の昇温に効率よく利用でき、中央筒部の触媒を迅速に昇温できる。   At this time, a cylindrical partition wall between the outer peripheral portion and the central cylindrical portion is formed in the heat shield structure so as to suppress heat transfer and reduce the amount of heat lost by heat transfer to the outer peripheral portion. Since it comprises, the heat | fever of exhaust gas can be utilized efficiently for temperature rising of a center cylinder part, and the catalyst of a center cylinder part can be heated up rapidly.

また、排気ガスの温度が高くなって排気ガスの容積流量が大きくなった場合には、他方の触媒(例えば、外周部側)にも排気ガスを流すことにより、排気ガスは通過する部分の容積を増やして、排気ガス浄化装置の排気ガスに対する空間速度を下げて、触媒との接触時間を長くして触媒反応を促進することができるので、排ガスの流量と共に増加した有害成分に対しても十分な浄化ができる。   Further, when the exhaust gas temperature increases and the volumetric flow rate of the exhaust gas increases, the volume of the portion through which the exhaust gas passes is also caused by flowing the exhaust gas through the other catalyst (for example, the outer peripheral side). To reduce the space velocity with respect to the exhaust gas of the exhaust gas purification device, and to increase the contact time with the catalyst to promote the catalytic reaction. Can be purified.

なお、この有害成分を浄化する触媒を担持した排気ガス浄化装置としては、NOx吸蔵還元型触媒、NOx直接還元型触媒、選択還元型NOx触媒(SCR触媒)、酸化触媒、三元触媒、触媒付きフィルタ等がある。   As an exhaust gas purifying device carrying a catalyst for purifying this harmful component, a NOx occlusion reduction type catalyst, a NOx direct reduction type catalyst, a selective reduction type NOx catalyst (SCR catalyst), an oxidation catalyst, a three-way catalyst, with a catalyst There are filters.

上記の排気ガス浄化システムにおいて、前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第1判定温度以下では、前記第1バルブを閉じると共に前記第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第1判定温度を越えたときには、前記第2バルブを開いたまま前記第1バルブを開いて排気ガスを前記中央筒部と前記外周部の両方に流すように構成される。   In the exhaust gas purification system described above, when the first index temperature indicating the temperature of the catalyst in the central cylinder portion is equal to or lower than a preset first determination temperature, the first valve is closed and the second valve is opened to exhaust gas. When the first index temperature exceeds the first determination temperature, the first valve is opened while the second valve is open, and exhaust gas is exhausted from the central cylinder portion and the outer periphery. Configured to flow to both of the parts.

この「第1指標温度」は、中央筒部の触媒の温度そのもの又はその温度を指標する温度のことを言う。これは、触媒の温度を直接計測するのは難しい場合が多いので、代わりにこの触媒の温度に密接な関係を持った温度、例えば、中央筒部に流入する排気ガスの温度や中央筒部から流出する排気ガスの温度を用いることもある。そのため、この代わりに用いる温度も含む表現として「第1指標温度」と表現している。   The “first index temperature” refers to the temperature of the catalyst in the central cylinder portion itself or a temperature indicating the temperature. This is because it is often difficult to directly measure the temperature of the catalyst. Instead, a temperature closely related to the temperature of the catalyst, for example, the temperature of the exhaust gas flowing into the central cylinder or the central cylinder is used. The temperature of the exhaust gas flowing out may be used. Therefore, “first index temperature” is expressed as an expression including the temperature used instead.

また、第1判定温度は触媒の活性化温度以上の温度であり、触媒の種類にもよるが、200℃〜300℃の範囲内の温度であり、例えば250℃に設定される。第1指標温度がこの第1判定温度になるまで、外周部には排気ガスが流れない。   The first determination temperature is a temperature equal to or higher than the activation temperature of the catalyst, and is a temperature within a range of 200 ° C. to 300 ° C., for example, set to 250 ° C., depending on the type of catalyst. Until the first index temperature reaches the first determination temperature, the exhaust gas does not flow in the outer peripheral portion.

この構成によれば、エンジン始動直後の暖機運転や低負荷運転のときには、第1指標温度が低く、排気ガスの容積流量も小さいので保温性が良い中央筒部に排気ガスを流して、中央筒部の触媒を迅速に昇温して、活性化までの時間を短縮することができる。また、第1指標温度が高く排気ガスの容積流量が大きいときには、中央筒部と外周部の両方に排気ガスを流して、排気ガスが通過する部分の容積を増やして、排気ガスに対する空間速度を下げて、排気ガスが触媒に接触する時間を長くして触媒反応を促進することができる。   According to this configuration, at the time of warm-up operation or low-load operation immediately after engine startup, the first index temperature is low and the exhaust gas volumetric flow rate is also small, so the exhaust gas is caused to flow through the central cylinder portion with good heat retention, It is possible to quickly raise the temperature of the catalyst in the tube portion and shorten the time until activation. In addition, when the first index temperature is high and the exhaust gas volume flow rate is large, the exhaust gas is flowed through both the central tube portion and the outer peripheral portion, the volume of the portion through which the exhaust gas passes is increased, and the space velocity relative to the exhaust gas is increased. The catalyst reaction can be promoted by increasing the time during which the exhaust gas contacts the catalyst.

上記の排気ガス浄化システムにおいて、前記触媒としてNOx吸蔵還元型触媒を用いると共に、前記中央筒部には、NOx吸蔵材としてカリウムを担持させ、前記外周部には、NOx吸蔵材としてバリウムを担持させて構成する。   In the above exhaust gas purification system, a NOx occlusion reduction type catalyst is used as the catalyst, potassium is supported as a NOx occlusion material in the central cylinder portion, and barium is carried as an NOx occlusion material in the outer peripheral portion. Configure.

この構成によれば、高温用(450℃〜550℃)のカリウムを高温の排気ガスの通過が多く、NOx浄化処理中に全体としての平均温度が高い中央筒部に設け、低温用(250℃〜450℃)のバリウムを、低温の排気ガスの通過が多く、NOx浄化処理中に全体としての平均温度が低い外周部に設けているので、異なった触媒成分を温度特性に合わせて配置することにより、より効率よくNOx吸蔵性能を発揮させることができる。   According to this configuration, high-temperature (450 ° C. to 550 ° C.) potassium is often passed through a high-temperature exhaust gas, and is provided in the central cylinder portion having a high average temperature during the NOx purification treatment. ˜450 ° C.) is provided in the outer peripheral portion where the passage of low-temperature exhaust gas is frequent and the average temperature is low during the NOx purification treatment, so that different catalyst components are arranged according to the temperature characteristics. Thus, the NOx occlusion performance can be exhibited more efficiently.

上記の排気ガス浄化システムにおいて、脱硫処理を行っている場合に、前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第2判定温度以下では、前記第1バルブを閉じると共に前記第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第2判定温度を超えてから、前記第1指標温度が前記第2判定温度を超えた時間の総和である第1脱硫処理時間が予め設定された第1判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態をそのまま継続し、前記第1脱硫処理時間が前記第1判定時間を経過したときに、前記第1バルブを開いて前記第2バルブを閉じて排気ガスを前記外周部のみに流し、更に、前記外周部の触媒の温度を指標する第2指標温度が予め設定した第3判定温度を超えると、前記第2指標温度が前記第3判定温度を超えた時間の総和である第2脱硫処理時間が予め設定した第2判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態をそのまま継続し、前記第2脱硫処理時間が前記第2判定時間を経過すると、脱硫処理を終了するように構成する。   In the exhaust gas purification system, when the desulfurization process is performed, the first valve is closed when the first index temperature indicating the temperature of the catalyst in the central cylinder portion is equal to or lower than a preset second determination temperature. When the second valve is opened and exhaust gas is allowed to flow only through the central tube portion, the first index temperature exceeds the second determination temperature, and the first index temperature exceeds the second determination temperature. The first valve and the second valve are kept open and closed until the first determination time set in advance, which is the sum, elapses, and the first desulfurization time is the first time. When the determination time has elapsed, the first valve is opened, the second valve is closed, exhaust gas is allowed to flow only to the outer peripheral portion, and a second index temperature indicating the temperature of the catalyst in the outer peripheral portion is preliminarily set. Set the third judgment temperature In other words, the first valve and the second valve until the second desulfurization treatment time, which is the sum of the times when the second index temperature exceeds the third determination temperature, passes a preset second determination time. The open / close state is continued as it is, and when the second desulfurization processing time has passed the second determination time, the desulfurization processing is terminated.

この「第1指標温度」は、中央筒部の触媒の温度そのもの又はその温度を指標する温度のことを言い、この「第2指標温度」は、外周部の触媒の温度そのもの又はその温度を指標する温度のことを言う。これは、触媒の温度を直接計測するのは難しい場合が多いので、代わりにこの触媒の温度に密接な関係を持った温度、例えば、中央筒部又は外周部に流入する排気ガスの温度や中央筒部又は外周部から流出する排気ガスの温度を用いることもある。そのため、この代わりに用いる温度も含む表現として「第1指標温度」「第2指標温度」と表現している。   The “first index temperature” refers to the temperature of the catalyst in the central cylinder portion itself or a temperature indicating the temperature thereof. The “second index temperature” refers to the temperature of the catalyst in the outer peripheral portion itself or the temperature thereof. Say the temperature to do. This is because it is often difficult to directly measure the temperature of the catalyst. Instead, a temperature closely related to the temperature of the catalyst, for example, the temperature of the exhaust gas flowing into the central cylinder or the outer periphery or the center The temperature of the exhaust gas flowing out from the cylinder part or the outer peripheral part may be used. Therefore, the expression including the temperature used instead is expressed as “first index temperature” and “second index temperature”.

また、第2判定温度及び第3判定温度は、中央筒部又は外周部の触媒の脱硫処理が可能となる温度以上の温度であり、触媒の種類にもよるが、650℃〜750℃の範囲内の温度であり、例えば700℃と650℃に設定される。なお、通常は熱劣化という理由から、第3判定温度は第2判定温度よりも低く設定される。   The second determination temperature and the third determination temperature are temperatures equal to or higher than the temperature at which the desulfurization treatment of the catalyst in the central cylinder portion or the outer peripheral portion can be performed, and depending on the type of the catalyst, a range of 650 ° C to 750 ° C For example, 700 ° C. and 650 ° C. Note that the third determination temperature is usually set lower than the second determination temperature because of thermal degradation.

また、第1判定時間は、中央筒部の触媒の脱硫処理が完了するまでの時間であり、第2判定時間は、外周部の触媒の脱硫処理が完了するまでの時間である。これらの時間は、予め行った実験の結果等に基づいて設定される。なお、通常は低温用のNOx吸蔵還元型触媒で使用するバリウムの方が高温用のNOx吸蔵還元型触媒で使用するカリウムよりも脱離し易いという理由から第2判定時間は第1判定時間よりも短く設定される。   The first determination time is the time until the desulfurization treatment of the catalyst in the central cylinder portion is completed, and the second determination time is the time until the desulfurization treatment of the catalyst in the outer peripheral portion is completed. These times are set based on the results of experiments conducted in advance. In general, the second determination time is longer than the first determination time because barium used in the NOx occlusion reduction catalyst for low temperature is more easily desorbed than potassium used in the NOx occlusion reduction catalyst for high temperature. Set short.

この構成によれば、触媒を高温にする必要がある脱硫処理において、第1指標温度が第2判定温度を超えてから第1判定時間を超えるまでは、筒状の仕切り壁の遮熱構造により保温性がよく昇温が早い中央筒部に排気ガスを流して、この中央筒部の脱硫処理を完了するまで行う。また、中央筒部の脱硫処理が完了したら、中央筒部に比べて触媒の昇温が遅れ易い外周部に排気ガスを流して外周部の脱硫処理を集中的に行う。そのため、触媒全体の脱硫を効率よく行うことができる。   According to this configuration, in the desulfurization treatment that requires the catalyst to be at a high temperature, from the first index temperature exceeding the second determination temperature until the first determination time is exceeded, the heat insulating structure of the cylindrical partition wall Exhaust gas is allowed to flow through the central tube portion where heat retention is high and the temperature rises quickly, and the desulfurization process of the central tube portion is completed. Further, when the desulfurization process of the central cylinder part is completed, the exhaust gas is flowed to the outer peripheral part where the temperature rise of the catalyst is likely to be delayed as compared with the central cylindrical part, and the desulfurization process of the outer peripheral part is concentrated. Therefore, desulfurization of the entire catalyst can be performed efficiently.

例えば、NOx吸蔵還元型触媒では、NOx浄化性能は硫黄の吸着により悪化する。この硫黄の吸着は約600℃以下の温度で生じるが、その一方で、脱硫には約650℃以上の高温を必要とする。従って、硫黄の吸着は高温には達し難い触媒の外周部にまで及ぶことになるが、脱硫では、触媒温度を更に高い温度にする必要がある。しかし、外周部は容易に高温に達しないため、硫黄が残留し易いという問題がある。   For example, in a NOx occlusion reduction type catalyst, the NOx purification performance deteriorates due to sulfur adsorption. This sulfur adsorption occurs at temperatures below about 600 ° C, while desulfurization requires high temperatures above about 650 ° C. Therefore, the adsorption of sulfur extends to the outer periphery of the catalyst which does not easily reach a high temperature. However, in the desulfurization, the catalyst temperature needs to be further increased. However, since the outer peripheral portion does not easily reach a high temperature, there is a problem that sulfur tends to remain.

この問題に対して、本発明では、筒状の遮熱構造(仕切り壁)を触媒を担持する部分の径方向の内側と外側の間に設けて、中央筒部と外周部を形成し、脱硫処理の後半で外周部だけの脱硫処理を行って、排気ガスが通過し難く温度も上がり難い外周部を、執拗に脱硫処理することで、触媒の全体に亘って十分な脱硫を行うことができるようになる。   In order to solve this problem, in the present invention, a cylindrical heat shield structure (partition wall) is provided between the inner side and the outer side in the radial direction of the portion supporting the catalyst to form a central cylindrical portion and an outer peripheral portion, and desulfurization is performed. In the latter half of the treatment, only the outer periphery is desulfurized, and the exhaust gas is difficult to pass through and the outer periphery where the temperature is difficult to rise is persistently desulfurized, so that sufficient desulfurization can be performed over the entire catalyst. It becomes like this.

その結果、触媒の浄化性能の維持に必要な還元処理、言い換えれば、触媒の浄化能力を回復する再生処理のための時間や回数を減少できるので、この再生処理で必要な燃料消費量を低減できる。従って、車両に搭載する触媒の容量を減少して、搭載性を確保すると共にコストを低減することができる。また、脱硫処理において、冷え易い触媒の外周部のみを高温に加熱することで中央筒部が過剰な高温に晒されて触媒が劣化することを抑制することができる。   As a result, it is possible to reduce the time and number of reduction processes necessary for maintaining the purification performance of the catalyst, in other words, the regeneration process for recovering the purification capacity of the catalyst, thereby reducing the fuel consumption required for the regeneration process. . Therefore, the capacity of the catalyst mounted on the vehicle can be reduced to ensure the mountability and reduce the cost. In addition, in the desulfurization treatment, it is possible to suppress the deterioration of the catalyst due to the central cylinder portion being exposed to an excessively high temperature by heating only the outer peripheral portion of the catalyst that is easily cooled to a high temperature.

また、更に、外周部の周囲に保温構造を設けると、脱硫処理時において外周部の触媒をより効率よく昇温することができるようになる。   Furthermore, if a heat retaining structure is provided around the outer periphery, the temperature of the catalyst at the outer periphery can be raised more efficiently during the desulfurization process.

また、脱硫処理を外周部と中央筒部とに分けて行うようにして、外周部と中央筒部の脱硫処理の回数を変化させるように構成でき、この場合は、比較的硫黄の吸着し難い外周部の処理回数を減らすことと、中央筒部分の加熱処理時間を減らすことで、脱硫処理に使用される燃料消費量を低減することも可能となる。   Further, the desulfurization treatment can be performed separately for the outer peripheral portion and the central cylindrical portion, and the number of desulfurization treatments of the outer peripheral portion and the central cylindrical portion can be changed. In this case, it is relatively difficult to adsorb sulfur. It is also possible to reduce the amount of fuel used for the desulfurization process by reducing the number of treatments in the outer peripheral part and reducing the heat treatment time of the central cylinder part.

そして、上記の目的を達成するための本発明の排気ガス浄化方法は、排気ガス中の有害成分を浄化する触媒を担持した排気ガス浄化装置を備えた排気ガス浄化システムの排気ガス浄化方法において、前記排気ガス浄化装置の触媒を担持した部分を筒状の仕切り壁により外周部と中央筒部の二つに分けて前記筒状の仕切り壁を遮熱構造に形成して前記外周部と前記中央筒部との間を遮熱し、前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第1判定温度以下では、内燃機関の排気通路と前記外周部との間に設けた第1バルブを閉じると共に、前記排気通路と前記中央筒部との間に設けた第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第1判定温度を越えたときには、前記第2バルブを開いたまま前記第1バルブを開いて排気ガスを前記中央筒部と前記外周部の両方に流すことを特徴とする方法である。この第1指標温度と第1判定温度は上記の第1指標温度と第1判定温度と同様である。   And the exhaust gas purification method of the present invention for achieving the above object is an exhaust gas purification method of an exhaust gas purification system comprising an exhaust gas purification device carrying a catalyst for purifying a harmful component in the exhaust gas. A portion of the exhaust gas purifying device that supports the catalyst is divided into an outer peripheral portion and a central cylindrical portion by a cylindrical partition wall, and the cylindrical partition wall is formed in a heat shield structure to form the outer peripheral portion and the central portion. Provided between the exhaust passage of the internal combustion engine and the outer peripheral portion when the first index temperature that shields heat from the cylinder portion and the first index temperature that indicates the temperature of the catalyst in the central cylinder portion is equal to or lower than a preset first determination temperature. While closing a 1st valve, the 2nd valve provided between the said exhaust passage and the said center cylinder part is opened, exhaust gas is flowed only to the said center cylinder part, and the said 1st parameter | index temperature uses the said 1st determination temperature. When exceeded, the second valve was opened Or is the exhaust gas by opening the first valve and wherein the flow into both of the outer peripheral portion and the central cylindrical portion. The first index temperature and the first determination temperature are the same as the first index temperature and the first determination temperature.

この方法によれば、エンジン始動直後の暖機運転や低負荷運転のときには、第1指標温度が低く、排気ガスの容積流量も小さいので保温性が良い中央筒部に排気ガスを流して、中央筒部の触媒を迅速に昇温して、活性化までの時間を短縮することができる。また、第1指標温度が高く排気ガスの容積流量が大きいときには、中央筒部と外周部の両方に排気ガスを流して、排気ガスが通過する部分の容積を増やして、排気ガスに対する空間速度を下げて、排気ガスが触媒に接触する時間を長くして触媒反応を促進することができる。   According to this method, at the time of warm-up operation or low load operation immediately after engine start, the first index temperature is low and the exhaust gas volumetric flow rate is also small. It is possible to quickly raise the temperature of the catalyst in the tube portion and shorten the time until activation. In addition, when the first index temperature is high and the exhaust gas volume flow rate is large, the exhaust gas is flowed through both the central tube portion and the outer peripheral portion, the volume of the portion through which the exhaust gas passes is increased, and the space velocity relative to the exhaust gas is increased. The catalyst reaction can be promoted by increasing the time during which the exhaust gas contacts the catalyst.

上記の排気ガス浄化方法において、脱硫処理を行っている場合に、前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第2判定温度以下では、前記第1バルブを閉じると共に前記第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第2判定温度を超えてから、前記第1指標温度が前記第2判定温度を超えた時間の総和である第1脱硫処理時間が予め設定された第1判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態をそのまま継続し、前記第1脱硫処理時間が前記第1判定時間を経過したときに、前記第1バルブを開いて前記第2バルブを閉じて排気ガスを前記外周部のみに流し、更に、前記外周部の触媒の温度を指標する第2指標温度が予め設定した第3判定温度を超えると、前記第2指標温度が前記第3判定温度を超えた時間の総和である第2脱硫処理時間が予め設定した第2判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態をそのまま継続し、前記第2脱硫処理時間が前記第2判定時間を経過すると、脱硫処理を終了するように構成する。   In the above exhaust gas purification method, when the desulfurization process is performed, the first valve is closed when the first index temperature indicating the temperature of the catalyst in the central cylinder portion is equal to or lower than the preset second determination temperature. When the second valve is opened and exhaust gas is allowed to flow only through the central tube portion, the first index temperature exceeds the second determination temperature, and the first index temperature exceeds the second determination temperature. The first valve and the second valve are kept open and closed until the first determination time set in advance, which is the sum, elapses, and the first desulfurization time is the first time. When the determination time has elapsed, the first valve is opened, the second valve is closed, exhaust gas is allowed to flow only to the outer peripheral portion, and a second index temperature indicating the temperature of the catalyst in the outer peripheral portion is preliminarily set. Exceeds the set third judgment temperature And until the second desulfurization processing time, which is the sum of the times when the second index temperature exceeds the third determination temperature, has passed a second determination time set in advance, the first valve and the second valve The open / close state is continued as it is, and when the second desulfurization processing time has passed the second determination time, the desulfurization processing is terminated.

この方法によれば、脱硫処理を完全に行うことができるようになるので、触媒の浄化能力を回復する再生処理のための時間や回数を減少できる。そのため、この再生処理で必要な燃料消費量を低減できる。従って、車両に搭載する触媒の容量を減少して、搭載性を確保すると共にコストを低減することができる。また、脱硫処理において、冷え易い触媒の外周部のみを高温に加熱することで中央筒部が過剰な高温に晒されて触媒が劣化することを抑制できる。   According to this method, since the desulfurization process can be performed completely, it is possible to reduce the time and number of times for the regeneration process to recover the purification ability of the catalyst. Therefore, the fuel consumption necessary for this regeneration process can be reduced. Therefore, the capacity of the catalyst mounted on the vehicle can be reduced to ensure the mountability and reduce the cost. Further, in the desulfurization treatment, only the outer peripheral portion of the catalyst that is easily cooled is heated to a high temperature, so that the central cylinder portion is exposed to an excessively high temperature and the catalyst can be prevented from deteriorating.

本発明に係る排気ガス浄化システム及び排気ガス浄化方法によれば、NOx浄化触媒装置、酸化触媒装置、触媒付きフィルタ装置等の触媒を用いた排気ガス浄化装置において、触媒の浄化性能の温度依存性を考慮して、触媒の浄化性能を速やかに且つ効率よく利用できる。   According to the exhaust gas purification system and the exhaust gas purification method of the present invention, in the exhaust gas purification device using a catalyst such as a NOx purification catalyst device, an oxidation catalyst device, and a filter device with a catalyst, the temperature dependence of the purification performance of the catalyst. Therefore, the purification performance of the catalyst can be utilized quickly and efficiently.

つまり、触媒担持した部分を遮熱構造の筒状の仕切り壁により2つに分けて、分割された部分の熱容量を減少したので、暖機運転の場合等に、触媒の温度を速やかに上げる必要がある場合には、熱容量の小さい部分に排気ガスを流すことにより、速やかに触媒の温度を上昇して活性化できる。   In other words, the part carrying the catalyst is divided into two parts by the cylindrical partition wall of the heat shield structure, and the heat capacity of the divided part is reduced, so it is necessary to quickly raise the temperature of the catalyst in the case of warm-up operation, etc. If there is, the temperature of the catalyst can be quickly raised and activated by flowing the exhaust gas through a portion having a small heat capacity.

このときに、中央筒部と外周部との間に筒状の仕切り壁を遮熱構造に形成して、熱の移動を抑制して中央筒部と外周部の間での熱移動で失われる熱量を減少しているので、排気ガスの熱を触媒担持部分の昇温に効率よく利用できる。従って、その分、触媒を迅速に昇温でき、活性化した触媒で効率よく排気ガス中の有害成分を浄化できる。   At this time, a cylindrical partition wall is formed in the heat-insulating structure between the central tube portion and the outer peripheral portion to suppress heat transfer and lost due to the heat transfer between the central tube portion and the outer peripheral portion. Since the amount of heat is reduced, the heat of the exhaust gas can be efficiently used to raise the temperature of the catalyst supporting portion. Therefore, the temperature of the catalyst can be raised quickly, and harmful components in the exhaust gas can be efficiently purified with the activated catalyst.

また、排気ガスの温度が上がり排気ガスの流量の容積が大きくなった場合には、全部の触媒に排気ガスを流すことにより、触媒の容積を増やして、触媒の排気ガスに対する空間速度を下げることができ、これにより、排気ガスが触媒と接触する時間を長くして触媒反応を促進することができる。   In addition, when the exhaust gas temperature rises and the volume of the exhaust gas flow increases, the exhaust gas flows through all the catalysts to increase the catalyst volume and reduce the space velocity of the catalyst with respect to the exhaust gas. As a result, the time during which the exhaust gas contacts the catalyst can be lengthened to promote the catalytic reaction.

以下、本発明に係る実施の形態の排気ガス浄化システム及び排気ガス浄化方法について、図面を参照しながら説明する。   Hereinafter, an exhaust gas purification system and an exhaust gas purification method according to embodiments of the present invention will be described with reference to the drawings.

図1に、本発明の実施の形態の排気ガス浄化システム1の構成を示す。この排気ガス浄化システム1は、エンジン(内燃機関)の排気通路2に、排気ガスG中の有害成分を浄化する触媒を担持したNOx浄化触媒装置、酸化触媒装置、触媒付きフィルタ装置のいずれか又は幾つかの組み合わせで形成される排気ガス浄化装置10を配置して構成される。   FIG. 1 shows a configuration of an exhaust gas purification system 1 according to an embodiment of the present invention. This exhaust gas purification system 1 is one of a NOx purification catalyst device, an oxidation catalyst device, a catalyst-equipped filter device in which an exhaust passage 2 of an engine (internal combustion engine) carries a catalyst that purifies harmful components in the exhaust gas G, or The exhaust gas purification device 10 formed by several combinations is arranged and configured.

この排気ガス浄化装置10が、酸化触媒を担持した酸化触媒装置の場合には、排気ガス中のHC(炭化水素)を酸化して排気ガス温度を上昇させたり、排気ガス中のNO(一酸化窒素)を酸化してNO2 (二酸化窒素)にしてNOx(窒素酸化物)を浄化し易くしたりするために、多孔質のセラミックのハニカム構造等の担持体に、白金等の酸化触媒を担持させて形成される。 When the exhaust gas purification device 10 is an oxidation catalyst device that supports an oxidation catalyst, the exhaust gas temperature is increased by oxidizing HC (hydrocarbon) in the exhaust gas, or NO (monooxide) in the exhaust gas. In order to facilitate the purification of NOx (nitrogen oxide) by oxidizing (nitrogen) to NO 2 (nitrogen dioxide), an oxidation catalyst such as platinum is supported on a support such as a porous ceramic honeycomb structure. Formed.

また、排気ガス浄化装置10がNOx吸蔵還元型触媒を担持したNOx浄化触媒装置の場合には、排気ガス中のNOxを浄化するために、モノリス触媒で形成される。このモノリス触媒のコージェライトハニカム等の担持体に酸化アルミニウム、酸化チタン等の触媒コート層を設ける。この触媒コート層に、白金(Pt)、パラジウム(Pd)等の触媒金属と、バリウム(Ba)等のNOx吸蔵材(NOx吸蔵物質)とからなるNOx吸蔵還元触媒を担持させて構成される。   When the exhaust gas purification device 10 is a NOx purification catalyst device carrying a NOx occlusion reduction type catalyst, the exhaust gas purification device 10 is formed of a monolith catalyst to purify NOx in the exhaust gas. A catalyst coat layer of aluminum oxide, titanium oxide or the like is provided on a carrier such as a cordierite honeycomb of the monolith catalyst. This catalyst coat layer is configured to carry a NOx occlusion reduction catalyst comprising a catalyst metal such as platinum (Pt) or palladium (Pd) and a NOx occlusion material (NOx occlusion material) such as barium (Ba).

このNOx吸蔵還元型触媒は、酸素濃度が高い排気ガスの状態、即ち、空燃比リーン状態の時に、排気ガス中のNOxをNOx吸蔵材が吸蔵することにより、排気ガス中のNOxを浄化し、酸素濃度が低いか空燃比が1より小さい空燃比リッチ状態か、あるいは、空燃比が1の空燃比ストイキ状態の時に、吸蔵したNOxを放出すると共に、この放出されたNOxを触媒金属の触媒作用により還元することにより、大気中へのNOxの流出を防止する。   This NOx occlusion reduction type catalyst purifies NOx in the exhaust gas by the NOx occlusion material storing NOx in the exhaust gas when the oxygen concentration is in a high exhaust gas state, that is, in an air-fuel ratio lean state, When the oxygen concentration is low, the air-fuel ratio is less than 1 or the air-fuel ratio is rich, or the air-fuel ratio is in the air-fuel ratio stoichiometric state, the stored NOx is released, and the released NOx is also catalyzed by the catalytic metal. By reducing with NO, the outflow of NOx to the atmosphere is prevented.

このNOx吸蔵還元型触媒は、空燃比リーン状態が継続すると、NOx吸蔵材が硝酸塩に変化してしまうため、NOx吸蔵能力が飽和する前に、排気ガスを空燃比リッチ状態にする再生制御を行って、吸蔵したNOxを放出及び還元して、NOx吸蔵能力を回復している。   When the air-fuel ratio lean state continues, the NOx occlusion reduction catalyst changes the NOx occlusion material to nitrate, and therefore performs regeneration control to make the exhaust gas rich in the air-fuel ratio before the NOx occlusion capacity is saturated. The NOx occlusion capacity is recovered by releasing and reducing the occluded NOx.

また、排気ガス浄化装置10が、触媒付きフィルタ装置の場合には、排気ガス中のPM(微粒子状物質)を浄化するために、多孔質のセラミックのハニカムのチャンネル(排気ガスの通路)の入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルタ等で形成される。このフィルタの部分に、比較的高温ではPMやHCの酸化を促進するように、また、比較的低温ではHCを吸着できるように、白金や酸化セリウム等の触媒が担持される。排気ガス中のPMは、この触媒付きフィルタ装置の多孔質セラミックの壁で捕集される。   When the exhaust gas purification device 10 is a filter device with a catalyst, an inlet of a porous ceramic honeycomb channel (exhaust gas passage) is used to purify PM (particulate matter) in the exhaust gas. And a monolith honeycomb wall flow type filter or the like in which the outlets are alternately sealed. A catalyst such as platinum or cerium oxide is supported on the filter so as to promote the oxidation of PM and HC at a relatively high temperature and to adsorb HC at a relatively low temperature. PM in the exhaust gas is collected by the porous ceramic wall of the catalyst-equipped filter device.

この触媒付きフィルタ装置では、PMの捕集量が増加して圧力損失が増加するのを防止するために、PMの捕集量が所定の捕集量を超えた場合や触媒付きフィルタ装置の前後差圧が所定の差圧量を超えた場合に、排気ガス温度を上昇して、触媒付きフィルタ装置をPMの燃料温度以上に昇温する排気昇温制御を行う。この排気昇温制御では、未燃燃料供給制御を含む空燃比リッチ制御が行われる。   In this filter device with a catalyst, in order to prevent the amount of collected PM from increasing and pressure loss to increase, when the collected amount of PM exceeds a predetermined collected amount or before and after the filter device with catalyst When the differential pressure exceeds a predetermined differential pressure amount, exhaust gas temperature control is performed to raise the exhaust gas temperature and raise the temperature of the catalyst-equipped filter device above the fuel temperature of PM. In the exhaust gas temperature raising control, air-fuel ratio rich control including unburned fuel supply control is performed.

本発明では、この排気ガス処理装置10の触媒を担持した部分を、図1及び図3に示すように、外周部11と中央筒部12の二つに分けて、その間隙に筒状のリングである仕切り壁13を遮熱構造に形成して配置する。更に、その外周部11の周囲に保温のための遮熱性を有する保温構造14を設けて構成する。この保温構造14は触媒の格納容器としての役割も果たすように構成される。   In the present invention, as shown in FIGS. 1 and 3, the portion of the exhaust gas treatment device 10 carrying the catalyst is divided into two parts, an outer peripheral part 11 and a central cylindrical part 12, and a cylindrical ring is formed in the gap. The partition wall 13 is formed in a heat shield structure and arranged. Further, a heat insulating structure 14 having a heat insulating property for heat insulation is provided around the outer peripheral portion 11. The heat retaining structure 14 is also configured to serve as a catalyst storage container.

この中央筒部12を円筒形状に形成し、外周部11をその周囲に設けて、排気ガス浄化装置10を円筒形状に形成した場合には、この中央筒部12の外径RAと、外周部の外径RBの比を、昇温時間を基にして、触媒の使用条件を考慮して設定する。言い換えれば、中央筒部の断面積と外周部の断面積の比を昇温時間を基にして触媒の使用条件を考慮して設定する。   When the central cylindrical portion 12 is formed in a cylindrical shape, the outer peripheral portion 11 is provided in the periphery thereof, and the exhaust gas purification device 10 is formed in a cylindrical shape, the outer diameter RA of the central cylindrical portion 12 and the outer peripheral portion The ratio of the outer diameter RB is set in consideration of the use conditions of the catalyst based on the temperature raising time. In other words, the ratio of the cross-sectional area of the central cylinder part to the cross-sectional area of the outer peripheral part is set in consideration of the use conditions of the catalyst based on the temperature rise time.

例えば、触媒を担持した部分の断面積を同じにして、中央筒部12の容積と外周部11の容積を等しいものとして形成し、触媒の加熱に必要な熱量を変えずに、触媒を担持した部分の熱容量を半減するようにして、中央筒部12にのみに排気ガスGを流すように構成すると、この場合には、エンジンの始動直後から触媒の温度Tc2を所定の温度(例えば、200℃)まで昇温させるのに必要な時間は約半分となり、触媒が活性化するまでの排気ガス中の有害成分の排出量を減らすことが可能となる。また、排気温度が高く排気ガスGの容積流量が増えた場合には外周部11の触媒にも排気ガスGを流す。これにより、増加した有害成分量に対して、排気ガスが通過する触媒を担持した部分の容積を増やして空間速度を下げて、排気ガスの有害成分が触媒に接触する時間を長くする。従って、排気ガスの有害成分に対する十分な浄化が可能となる。   For example, the cross-sectional area of the part supporting the catalyst is made the same, and the volume of the central cylindrical part 12 and the volume of the outer peripheral part 11 are formed to be equal, and the catalyst is supported without changing the amount of heat necessary for heating the catalyst. If the exhaust gas G is allowed to flow only through the central cylinder portion 12 so that the heat capacity of the portion is halved, in this case, the catalyst temperature Tc2 is set to a predetermined temperature (for example, 200 ° C.) immediately after the engine is started. The time required to raise the temperature to about 50% is reduced to about half, and the emission of harmful components in the exhaust gas until the catalyst is activated can be reduced. Further, when the exhaust gas temperature is high and the volumetric flow rate of the exhaust gas G is increased, the exhaust gas G is also caused to flow through the catalyst on the outer peripheral portion 11. As a result, the volume of the portion carrying the catalyst through which the exhaust gas passes is increased with respect to the increased amount of harmful component to lower the space velocity, and the time for the harmful component of the exhaust gas to contact the catalyst is lengthened. Therefore, it is possible to sufficiently purify harmful components of the exhaust gas.

筒状の仕切り壁13は、図4に示すように、波板13aを間に挟んだ二枚の板13b、13cで形成された二重壁構造を折り曲げてリング状に形成し、長さ方向の両端部を排気ガスが流入及び流出ができないように閉塞して構成する。このリング状の波板13aによって、二枚の板13b、13cとの接触面積を減少して熱伝導による熱の移動を減少すると共に、波板13aと二重壁13b、13cとの間に形成した空間部13dに空気を充填し、この熱伝導率の低い空気により遮熱性を増加する。   As shown in FIG. 4, the cylindrical partition wall 13 is formed in a ring shape by bending a double wall structure formed by two plates 13 b and 13 c sandwiching a corrugated plate 13 a therebetween. The both ends of the exhaust gas are closed so that the exhaust gas cannot flow in and out. The ring-shaped corrugated plate 13a reduces the contact area between the two plates 13b and 13c to reduce heat transfer due to heat conduction, and is formed between the corrugated plate 13a and the double walls 13b and 13c. The space portion 13d is filled with air, and the heat shielding property is increased by the air having low thermal conductivity.

外周部11を囲う保温構造14は、空気を多量に含む発泡材等で形成し、保温性と遮熱性(断熱性)を高めると共に、触媒の担持体を格納する容器としての役割も果たすように構成される。この保温構造14を設けることにより、触媒の活性化時や脱硫処理時において、触媒をより効率よく昇温することができるようになる。   The heat insulating structure 14 surrounding the outer peripheral portion 11 is formed of a foaming material containing a large amount of air so as to improve the heat insulating property and the heat insulating property (heat insulating property), and also serve as a container for storing the catalyst carrier. Composed. By providing the heat retaining structure 14, the temperature of the catalyst can be raised more efficiently during the activation of the catalyst and the desulfurization process.

更に、エンジンの排気通路2と外周部11との間の第1通路15に第1バルブ16を、排気通路2と中央筒部12との間の第2通路17に第2バルブ18を設ける。この第1バルブ16を開くことにより排気ガスGを外周部11に流し、第2バルブ18を開くことにより排気ガスGを中央筒部12に流すように構成する。   Further, a first valve 16 is provided in the first passage 15 between the exhaust passage 2 and the outer peripheral portion 11 of the engine, and a second valve 18 is provided in the second passage 17 between the exhaust passage 2 and the central cylinder portion 12. By opening the first valve 16, the exhaust gas G flows through the outer peripheral portion 11, and by opening the second valve 18, the exhaust gas G flows through the central cylinder portion 12.

また、中央筒部12の触媒の温度Tc1を測定するために、温度センサである熱電対19を中央筒部12の下流側の外周部位に配置すると共に、外周部11の触媒の温度Tc2を測定するために、熱電対20を外周部11の下流側の外周部位に配置する。更に、排気ガス浄化装置10に流入する排気ガスGの温度Tgを測定するために、熱電対21を排気ガス浄化装置10の上流側の排気通路2に配置する。   Further, in order to measure the temperature Tc1 of the catalyst in the central cylindrical portion 12, a thermocouple 19 as a temperature sensor is disposed at the outer peripheral portion on the downstream side of the central cylindrical portion 12, and the temperature Tc2 of the catalyst in the outer peripheral portion 11 is measured. In order to do this, the thermocouple 20 is arranged at the outer peripheral portion on the downstream side of the outer peripheral portion 11. Further, in order to measure the temperature Tg of the exhaust gas G flowing into the exhaust gas purification device 10, a thermocouple 21 is disposed in the exhaust passage 2 upstream of the exhaust gas purification device 10.

これらの熱電対19、20、21の計測値Tc1、Tc2、Tgは、エンジンの運転を制御するエンジン制御装置(ECU)3に入力され、これらの計測値Tc1、Tc2、Tgに基づいて、第1バルブ16と第2バルブ18の開閉操作が行われる。   The measured values Tc1, Tc2, and Tg of these thermocouples 19, 20, and 21 are input to an engine control unit (ECU) 3 that controls the operation of the engine. Based on these measured values Tc1, Tc2, and Tg, The opening and closing operation of the first valve 16 and the second valve 18 is performed.

この構成によれば、触媒を担持した部分11、12を遮熱構造の筒状の仕切り壁13により二つに分けて、各部分11、12の熱容量を減少したので、暖機運転の場合等、触媒の温度を速やかに活性化温度以上に上げる必要がある場合には、触媒を担持した部分の熱容量が全体に比べて減少した中央筒部12側のみに排気ガスGを流すことにより、速やかに触媒の温度を上昇して触媒を活性化できる。   According to this configuration, the parts 11 and 12 carrying the catalyst are divided into two parts by the cylindrical partition wall 13 having a heat shielding structure, and the heat capacity of each part 11 and 12 is reduced. When it is necessary to quickly raise the temperature of the catalyst to the activation temperature or higher, the exhaust gas G is flowed only to the central cylindrical portion 12 side where the heat capacity of the portion supporting the catalyst is reduced as compared with the whole. The catalyst can be activated by increasing the temperature of the catalyst.

このときに、外周部11と中央筒部12との間に設けた筒状の仕切り壁13を遮熱構造に形成して、熱の移動を抑制して中央筒部12から外周部11へ移動する熱量を減少しているので、排気ガスGの熱を中央筒部12の昇温に効率よく利用でき、その分中央筒部12の触媒の温度を迅速に昇温できる。また、保温構造14も中央筒部12の昇温に間接的に寄与する。   At this time, a cylindrical partition wall 13 provided between the outer peripheral portion 11 and the central cylindrical portion 12 is formed in a heat shield structure, and the movement of heat is suppressed to move from the central cylindrical portion 12 to the outer peripheral portion 11. Since the amount of heat to be reduced is reduced, the heat of the exhaust gas G can be efficiently used to raise the temperature of the central cylinder portion 12, and the temperature of the catalyst in the central cylinder portion 12 can be rapidly increased accordingly. Further, the heat retaining structure 14 also indirectly contributes to the temperature rise of the central cylinder portion 12.

また、排気ガスGの温度Tgが上がり排気ガスGの容積流量が大きくなった場合には、中央筒部12に排気ガスGを流しつつ、外周部11側にも排気ガスGを流すことにより、排気ガスが通過する触媒を担持した部分の容積を増やして、排気ガスGに対する空間速度を下げて、排気ガスGが触媒に接する時間を長くして触媒反応を促進することができる。この場合においては、保温構造14により、外周部11の触媒の温度の上昇が促進される。   Further, when the temperature Tg of the exhaust gas G increases and the volumetric flow rate of the exhaust gas G increases, the exhaust gas G is allowed to flow to the outer peripheral portion 11 side while flowing the exhaust gas G to the central cylinder portion 12. By increasing the volume of the portion carrying the catalyst through which the exhaust gas passes, the space velocity with respect to the exhaust gas G can be reduced, and the time for the exhaust gas G to contact the catalyst can be lengthened to promote the catalytic reaction. In this case, the heat retaining structure 14 promotes an increase in the temperature of the catalyst on the outer peripheral portion 11.

また、この排気ガス浄化システム1において、排気ガス浄化装置10がNOx浄化触媒装置であって、触媒としてNOx吸蔵還元型触媒を使用する場合には、中央筒部12には、NOx吸蔵材としてカリウムを担持させ、外周部11には、NOx吸蔵材としてバリウムを担持させて構成することが好ましい。   Further, in this exhaust gas purification system 1, when the exhaust gas purification device 10 is a NOx purification catalyst device and a NOx occlusion reduction type catalyst is used as the catalyst, the central cylinder portion 12 has potassium as the NOx occlusion material. It is preferable that the outer peripheral portion 11 is configured to support barium as a NOx storage material.

この構成によれば、高温用(450℃〜550℃)のカリウムを高温の排気ガスの通過が多く、NOx浄化処理中に全体としての平均温度が高い中央筒部12に設け、低温用(250℃〜450℃)のバリウムを、低温の排気ガスの通過が多く、NOx浄化処理中に全体としての平均温度が低い外周部11に設けているので、異なった触媒成分でより効率よくNOx吸蔵性能を発揮することができるようになる。   According to this configuration, high-temperature (450 ° C. to 550 ° C.) potassium is often passed through the high-temperature exhaust gas, and is provided in the central cylinder portion 12 having a high average temperature during the NOx purification treatment. Since the low temperature exhaust gas passes through the outer peripheral portion 11 where the average temperature is low during the NOx purification treatment, the NOx occlusion performance is more efficiently achieved with different catalyst components. Can be demonstrated.

次に、上記の構成の排気ガス浄化システム1における排気ガス浄化方法について説明する。通常の運転状態では、第1バルブ16と第2バルブ18の両方を開いて、排気ガスGを外周部11と中央筒部12の両方に流して、排気ガスG中の有害成分を触媒作用により浄化する。また、暖機運転や低負荷運転等の排気ガスGが低温であり、触媒を迅速に活性化させる必要がある場合と、触媒を硫黄被毒から回復させる脱硫処理で、触媒を高温にする必要がある場合は、第1バルブ16と第2バルブ18はそれぞれの場合に応じて次のように制御される。   Next, an exhaust gas purification method in the exhaust gas purification system 1 having the above configuration will be described. In a normal operation state, both the first valve 16 and the second valve 18 are opened, the exhaust gas G is caused to flow through both the outer peripheral portion 11 and the central cylinder portion 12, and harmful components in the exhaust gas G are catalyzed. Purify. In addition, the exhaust gas G for warm-up operation, low-load operation, etc. is low temperature, and it is necessary to activate the catalyst quickly, and desulfurization treatment to recover the catalyst from sulfur poisoning requires the catalyst to be at a high temperature. If there is, the first valve 16 and the second valve 18 are controlled as follows according to each case.

最初に、暖機運転や低負荷運転の場合について、図5の制御フローを参照しながら説明する。エンジンが始動されて、図5の制御フローが上級の制御フローから呼ばれてスタートすると、ステップS11で、排気ガスGの温度(第1指標温度)Tgと予め設定した第1判定温度T1が入力される。ステップS12で、排気ガスGの温度Tgが第1判定温度T1以下であるか否かが判定される。この図5の制御フローでは、中央筒部11の触媒の温度を指標する第1指標温度として、中央筒部11に流入する排気ガスGの温度Tgを用いている。なお、熱電対19で計測される温度Tc1を用いることもできる。   First, the case of warm-up operation and low-load operation will be described with reference to the control flow of FIG. When the engine is started and the control flow in FIG. 5 is called from the advanced control flow, the temperature (first index temperature) Tg of the exhaust gas G and the first determination temperature T1 set in advance are input in step S11. Is done. In step S12, it is determined whether or not the temperature Tg of the exhaust gas G is equal to or lower than the first determination temperature T1. In the control flow of FIG. 5, the temperature Tg of the exhaust gas G flowing into the central cylinder portion 11 is used as the first index temperature that indicates the temperature of the catalyst in the central cylinder portion 11. Note that the temperature Tc1 measured by the thermocouple 19 can also be used.

このステップS12の判定で、排気ガスGの温度Tgが第1判定温度T1以下であれば(YES)、ステップS13に行き、第1バルブ16を閉じて第2バルブ18を開く。これにより排気ガスGを中央筒部12のみに流す。この制御をした後、予め設定した時間(排気ガスの温度Tgのチェックのインターバルブ関係する時間)を経過した後に、ステップS11に戻る。   If it is determined in step S12 that the temperature Tg of the exhaust gas G is equal to or lower than the first determination temperature T1 (YES), the process goes to step S13, the first valve 16 is closed, and the second valve 18 is opened. As a result, the exhaust gas G is allowed to flow only through the central cylinder portion 12. After performing this control, after a predetermined time (time related to the interval for checking the exhaust gas temperature Tg) has elapsed, the process returns to step S11.

ステップS12の判定で、排気ガスGの温度Tgが第1判定温度T1を超えたときには(NO、ステップS14に行き、第1バルブ16を開いて第2バルブ18を開く、即ち、第2バルブ18を開いたまま、第1バルブ16を開く。これにより、排気ガスGを中央筒部12と外周部11の両方に流す。この制御をした後、予め設定した時間(排気ガスの温度Tgのチェックのインターバルブ関係する時間)を経過した後に、ステップS11に戻る。   If it is determined in step S12 that the temperature Tg of the exhaust gas G exceeds the first determination temperature T1 (NO, go to step S14, open the first valve 16 and open the second valve 18, that is, the second valve 18 Open the first valve 16. As a result, the exhaust gas G flows through both the central cylinder portion 12 and the outer peripheral portion 11. After this control, a preset time (check of the exhaust gas temperature Tg is checked). After the elapse of (interval related time), the process returns to step S11.

このステップS11〜ステップS13又はステップS11〜ステップS14を繰り返し実行し、エンジンが停止された場合には、割り込みが発生し、ステップS15の終了処理を行って、上級の制御フローに戻り、上級の制御フローの終了と共に、図5の制御フローも終了する。   If this step S11 to step S13 or step S11 to step S14 is repeatedly executed and the engine is stopped, an interrupt is generated, the end process of step S15 is performed, and the control flow returns to the advanced control flow. With the end of the flow, the control flow of FIG. 5 is also ended.

この構成によれば、エンジン始動直後の暖機運転や低負荷運転のときには、排気ガスGの温度Tgが低く、排気ガスGの容積流量も小さいので保温性が良い中央筒部12に排気ガスGを流して、中央筒部12の触媒を迅速に昇温することができる。また、排気ガスGの温度Tgが高く排気ガスGの容積流量が大きいときには、中央筒部12と外周部11の両方に排気ガスGを流して、排気ガスGが通過する部分の容積を増やして、排気ガスGに対する空間速度を下げて、排気ガスGが触媒に接触する時間を長くして触媒反応を促進することができる。   According to this configuration, at the time of warm-up operation or low load operation immediately after engine startup, the temperature Tg of the exhaust gas G is low and the volumetric flow rate of the exhaust gas G is small, so that the exhaust gas G is added to the central cylinder portion 12 with good heat retention. And the temperature of the catalyst in the central cylinder portion 12 can be quickly raised. Further, when the temperature Tg of the exhaust gas G is high and the volumetric flow rate of the exhaust gas G is large, the exhaust gas G is allowed to flow through both the central cylindrical portion 12 and the outer peripheral portion 11 to increase the volume of the portion through which the exhaust gas G passes. By reducing the space velocity with respect to the exhaust gas G, the time during which the exhaust gas G contacts the catalyst can be lengthened to promote the catalytic reaction.

この第1判定温度T1は触媒の活性化温度以上の温度であり、例えば、NOx浄化率が80%以上という温度である。この第1判定温度T1は触媒の種類にもよるが、200℃〜300℃の範囲内の温度であり、例えば250℃に設定される。   The first determination temperature T1 is a temperature equal to or higher than the activation temperature of the catalyst, for example, a temperature at which the NOx purification rate is 80% or higher. Although this 1st determination temperature T1 is based also on the kind of catalyst, it is the temperature in the range of 200 to 300 degreeC, for example, is set to 250 degreeC.

なお、エンジンの始動時や低負荷運転の場合には、この図5の制御フローが有効になるが、低負荷運転から高負荷運転に移って排気ガスの温度Tgが上昇したときは、ステップS14の第1バルブ16と第2バルブ18を共に開いた状態になるので、必ずしも、図5の制御フローを停止する必要はない。   Note that the control flow of FIG. 5 is effective when the engine is started or in a low load operation. However, when the temperature Tg of the exhaust gas rises from the low load operation to the high load operation, step S14 is performed. Since the first valve 16 and the second valve 18 are both opened, it is not always necessary to stop the control flow of FIG.

次に、触媒の温度を高い温度にする必要がある脱硫処理の場合について、図6及び図7の制御フローを参照しながら説明する。図6の制御フローと図7の制御フローとは、図6の下端のAと図7の上端のAとにより接続している一つの制御フローである。   Next, the case of desulfurization treatment in which the temperature of the catalyst needs to be increased will be described with reference to the control flow of FIGS. The control flow in FIG. 6 and the control flow in FIG. 7 are one control flow connected by A at the lower end of FIG. 6 and A at the upper end of FIG.

この排気ガス浄化システム1において、脱硫処理を行う場合には、上級の制御フローによって、図5の制御フローから、図6及び図7の制御フローに切替られる。ここでは、第1指標温度として、熱電対19の計測温度Tc1を用い、第2指標温度として熱電対20の計測温度Tc2を用いているが、第1指標温度かつ第2指標温度として熱排気ガスGの温度Tgを用いるようにしてもよい。   In the exhaust gas purification system 1, when the desulfurization process is performed, the control flow in FIG. 5 is switched to the control flow in FIGS. 6 and 7 by an advanced control flow. Here, the measured temperature Tc1 of the thermocouple 19 is used as the first index temperature, and the measured temperature Tc2 of the thermocouple 20 is used as the second index temperature. However, the hot exhaust gas is used as the first index temperature and the second index temperature. The temperature Tg of G may be used.

図6及び図7の制御フローは、脱硫処理を行う場合の制御であり、スタートすると、図6のステップS21で、中央筒部12の触媒の温度を指標する第1指標温度Tc1と予め設定した第2判定温度T2と予め設定された第1判定時間t1を入力する。次にステップS22で、第1指標温度Tc1が第2判定温度T2以下であるか否かを判定する。   The control flow in FIGS. 6 and 7 is a control in the case of performing the desulfurization process. When started, in step S21 in FIG. 6, a first index temperature Tc1 that indexes the temperature of the catalyst in the central cylinder portion 12 is preset. A second determination temperature T2 and a preset first determination time t1 are input. Next, in step S22, it is determined whether or not the first index temperature Tc1 is equal to or lower than the second determination temperature T2.

ステップS22の判定で、第1指標温度Tc1が第2判定温度T2以下である場合(YES)には、ステップS23に行き、第1バルブ16を閉じると共に第2バルブ18を開く。これにより、排気ガスGを中央筒部12のみに流す。この制御をした後、予め設定した時間(第1指標温度Tc1のチェックのインターバルブ関係する時間)の間経過した後に、ステップS21に戻る。   If it is determined in step S22 that the first index temperature Tc1 is equal to or lower than the second determination temperature T2 (YES), the process proceeds to step S23, where the first valve 16 is closed and the second valve 18 is opened. As a result, the exhaust gas G is allowed to flow only through the central cylinder portion 12. After performing this control, after a lapse of a preset time (time related to the interval for checking the first index temperature Tc1), the process returns to step S21.

ステップS22の判定で、第1指標温度Tc1が第2判定温度T2を超えた場合には(NO)、ステップS24で、第1指標温度Tc1が第2判定温度T2を超えた時間の総和である第1脱硫処理時間td1をカウントする。次のステップS25で、この第1脱硫処理時間td1が予め設定された第1判定時間t1を経過したか否かを判定する。このステップS25の判定で、この第1脱硫処理時間td1が第1判定時間t1を経過していない場合には(NO)、そのままの状態で、予め設定した時間(第1脱硫処理時間td1のチェックのインターバルブ関係する時間)を経過した後に、ステップS21に戻る。   If the first index temperature Tc1 exceeds the second determination temperature T2 in the determination in step S22 (NO), it is the sum of the times when the first index temperature Tc1 exceeds the second determination temperature T2 in step S24. The first desulfurization treatment time td1 is counted. In the next step S25, it is determined whether or not the first desulfurization treatment time td1 has passed a preset first determination time t1. If it is determined in step S25 that the first desulfurization treatment time td1 has not passed the first determination time t1 (NO), the preset time (the first desulfurization treatment time td1 is checked as it is). After the elapse of (interval related time), the process returns to step S21.

ステップS25の判定で、第1脱硫処理時間td1が第1判定時間t1を経過した場合には(YES)、A経由で、図7のステップS26に行き、第1バルブ16を開いて第2バルブ18を閉じて排気ガスGを外周部11のみに流す。   If it is determined in step S25 that the first desulfurization treatment time td1 has passed the first determination time t1 (YES), the process proceeds to step S26 of FIG. 7 via A, and the first valve 16 is opened to open the second valve. 18 is closed and the exhaust gas G is allowed to flow only to the outer peripheral portion 11.

次のステップS27で、外周部11の触媒の温度を指標する第2指標温度Tc2と予め設定した第3判定温度T3と予め設定した第2判定時間t2を入力する。次のステップS28で、第2指標温度Tc2が第3判定温度T3以下か否かを判定する。ステップS28の判定で、第2指標温度Tc2が第3判定温度T3以下で、第3判定温度T3を超えていない場合には(YES)、予め設定した時間(第2指標温度Tc2のチェックのインターバルブ関係する時間)を経過した後に、ステップS27に戻る。   In the next step S27, a second index temperature Tc2 that indicates the temperature of the catalyst on the outer peripheral portion 11, a preset third determination temperature T3, and a preset second determination time t2 are input. In the next step S28, it is determined whether or not the second index temperature Tc2 is equal to or lower than the third determination temperature T3. If it is determined in step S28 that the second index temperature Tc2 is equal to or lower than the third determination temperature T3 and does not exceed the third determination temperature T3 (YES), a preset time (interval for checking the second index temperature Tc2) is determined. After elapse of the valve-related time), the process returns to step S27.

ステップS28の判定で、第2指標温度Tc2が第3判定温度T3を超えた場合には(NO)、次のステップS29で、第2指標温度Tc2が第3判定温度T3を超えた時間の総和である第2脱硫処理時間td2をカウントする。次のステップS30で、この第2脱硫処理時間td2が予め設定された第2判定時間t2を経過したか否かを判定する。このステップS30の判定で、この第2脱硫処理時間td2が第2判定時間t2を経過していない場合には(NO)、そのままの状態で、予め設定した時間(第2脱硫処理時間td2のチェックのインターバルブ関係する時間)を経過した後に、ステップS27に戻る。   If it is determined in step S28 that the second index temperature Tc2 exceeds the third determination temperature T3 (NO), in the next step S29, the total time during which the second index temperature Tc2 exceeds the third determination temperature T3. The second desulfurization treatment time td2 is counted. In the next step S30, it is determined whether or not the second desulfurization treatment time td2 has passed a preset second determination time t2. If it is determined in step S30 that the second desulfurization treatment time td2 has not passed the second determination time t2 (NO), the preset time (check of the second desulfurization treatment time td2) is left as it is. After the elapse of (interval related time), the process returns to step S27.

ステップS30の判定で、この第2脱硫処理時間td2が第2判定時間t2を経過した場合には(YES)、ステップS31に行き、第1脱硫処理時間td1と第2脱硫処理時間td2のリセット等の脱硫処理の終了の処理を行ってから、上級の制御スローにリターンする。   If it is determined in step S30 that the second desulfurization processing time td2 has passed the second determination time t2 (YES), the process goes to step S31 to reset the first desulfurization processing time td1 and the second desulfurization processing time td2, etc. After completing the desulfurization process, return to the advanced control throw.

なお、通常は、第3判定温度は第2判定温度よりも低く、第2判定時間は第1判定時間よりも短く設定される。これは、低温用のNOx吸蔵還元型触媒で使用するバリウムの方が高温用のNOx吸蔵還元型触媒で使用するカリウムよりも脱離し易いからである。そして、触媒の種類や排気ガス浄化装置10にもよるが、例えば、第2判定温度T2は700℃〜750℃程度に、第3判定温度T3は650℃〜700℃程度に設定され、第1判定時間t1は480s〜600s程度に、第2判定時間t2は180s〜300s程度に設定される。   Normally, the third determination temperature is set lower than the second determination temperature, and the second determination time is set shorter than the first determination time. This is because barium used in the low-temperature NOx storage reduction catalyst is more easily desorbed than potassium used in the high-temperature NOx storage reduction catalyst. Depending on the type of catalyst and the exhaust gas purification device 10, for example, the second determination temperature T2 is set to about 700 ° C. to 750 ° C., and the third determination temperature T3 is set to about 650 ° C. to 700 ° C. The determination time t1 is set to about 480 s to 600 s, and the second determination time t2 is set to about 180 s to 300 s.

この脱硫処理の場合の排気ガス浄化方法によれば、触媒を高温にする必要がある脱硫処理において、第1指標温度Tc1が第2判定温度T2を超えてから第1判定時間t2を超えるまでは、筒状の仕切り壁13の遮熱構造により保温性がよく昇温が早い中央筒部12に排気ガスGを全量流して、この中央筒部11の脱硫処理を完了するまで行い、その後、保温構造により保温性がよいが中央筒部12に比べて触媒の昇温が遅れ易い外周部11に排気ガスGを全量流して外周部11の脱硫処理を集中的に行うことができる。   According to the exhaust gas purification method in the case of this desulfurization process, in the desulfurization process that requires the catalyst to be at a high temperature, from when the first index temperature Tc1 exceeds the second determination temperature T2 until it exceeds the first determination time t2. The exhaust gas G is completely flowed through the central cylindrical portion 12 that has high heat retention and quick temperature rise due to the heat insulating structure of the cylindrical partition wall 13, and is performed until the desulfurization treatment of the central cylindrical portion 11 is completed, and then the thermal insulation is performed. Although the heat retaining property is good depending on the structure, the exhaust gas G can be entirely flowed to the outer peripheral portion 11 where the temperature rise of the catalyst is likely to be delayed as compared with the central cylindrical portion 12, and the desulfurization treatment of the outer peripheral portion 11 can be performed intensively.

そのため、中央筒部12の脱硫処理に際しては、中央筒部12からの熱移動を仕切り壁13で抑制しているので、中央筒部12の加熱処理時間を減らすことができ、また、外周部11の脱硫処理に際しては、仕切り壁13と保温構造14とで外周部11からの熱移動を抑制しているので、外周部11の加熱処理時間も減らすことができる。そのため、各部分の昇温を迅速に行うことができ、触媒全体の脱硫処理を効率よく行うことができ、脱硫処理のために必要となる時間と燃料消費量を減少できる。   Therefore, in the desulfurization process of the central cylinder part 12, since the heat transfer from the central cylinder part 12 is suppressed by the partition wall 13, the heat treatment time of the central cylinder part 12 can be reduced, and the outer peripheral part 11 Since the heat transfer from the outer peripheral part 11 is suppressed by the partition wall 13 and the heat retaining structure 14 during the desulfurization process, the heat treatment time of the outer peripheral part 11 can also be reduced. Therefore, the temperature of each part can be quickly raised, the entire catalyst can be efficiently desulfurized, and the time and fuel consumption required for the desulfurization process can be reduced.

その上、脱硫処理の前半で、中央筒部12だけを脱硫処理し、脱硫処理の後半で外周部11だけを脱硫処理して、排気ガスが通過し難く温度も上がり難い触媒の外周部を、執拗に脱硫処理することで、触媒の全体に亘って十分な脱硫を行うことができる。そのため、浄化能力を良好な状態に維持できる。   In addition, in the first half of the desulfurization treatment, only the central cylinder portion 12 is desulfurized, and in the second half of the desulfurization treatment, only the outer peripheral portion 11 is desulfurized, and the outer peripheral portion of the catalyst, in which exhaust gas does not easily pass and the temperature does not easily rise, By performing the desulfurization treatment steadily, sufficient desulfurization can be performed over the entire catalyst. Therefore, the purification ability can be maintained in a good state.

その結果、触媒の浄化性能の維持に必要な還元処理、言い換えれば、触媒の浄化能力を回復する再生処理のための時間や回数を減少できるので、この再生処理で必要な燃料消費量を低減できる。従って、車両に搭載する触媒の容量を減少して、搭載性を確保すると共にコストを低減することができる。また、脱硫処理において、冷え易い触媒の外周部のみを高温に加熱することで中央筒部が過剰な高温に晒されて触媒が劣化することを抑制することができる。   As a result, it is possible to reduce the time and number of reduction processes necessary for maintaining the purification performance of the catalyst, in other words, the regeneration process for recovering the purification capacity of the catalyst, thereby reducing the fuel consumption required for the regeneration process. . Therefore, the capacity of the catalyst mounted on the vehicle can be reduced to ensure the mountability and reduce the cost. In addition, in the desulfurization treatment, it is possible to suppress the deterioration of the catalyst due to the central cylinder portion being exposed to an excessively high temperature by heating only the outer peripheral portion of the catalyst that is easily cooled to a high temperature.

なお、上記の図6及び図7の制御フローでは、脱硫処理の回数は、中央筒部12と外周部11とで同じ回数となるが、更に、硫黄処理を外周部11と中央筒部12とに分けて行うように構成すれば、比較的硫黄の吸着し難い外周部11の処理回数を減らすことができるので、より燃料消費量を低減することができるようになる。   In the control flow shown in FIGS. 6 and 7, the number of desulfurization treatments is the same for the central cylinder portion 12 and the outer peripheral portion 11, but further, the sulfur treatment is performed between the outer peripheral portion 11 and the central cylinder portion 12. If it is configured to perform the process separately, the number of treatments of the outer peripheral portion 11 which is relatively difficult to adsorb sulfur can be reduced, so that the fuel consumption can be further reduced.

本発明の実施の形態の排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust-gas purification system of embodiment of this invention. 排気ガス浄化装置の排気ガスの入口の構成を示す図である。It is a figure which shows the structure of the inlet_port | entrance of the exhaust gas of an exhaust gas purification apparatus. 排気ガス浄化装置の横断面を示す図である。It is a figure which shows the cross section of an exhaust-gas purification apparatus. 排気ガス浄化装置の筒状の仕切り壁の構成を示す図3のHで示す楕円部分の拡大図である。It is an enlarged view of the ellipse part shown by H of FIG. 3 which shows the structure of the cylindrical partition wall of an exhaust-gas purification apparatus. 本発明に係る排気ガス浄化方法の暖機運転及び低負荷運転の場合の制御フローの一例を示す図である。It is a figure which shows an example of the control flow in the case of warm-up operation and low load operation of the exhaust gas purification method according to the present invention. 本発明に係る排気ガス浄化方法の脱硫処理に場合の制御フローの一例の前半を示す図である。It is a figure which shows the first half of an example of the control flow in the case of the desulfurization process of the exhaust gas purification method which concerns on this invention. 図6の制御フローの後半を示す図である。It is a figure which shows the second half of the control flow of FIG.

符号の説明Explanation of symbols

1 排気ガス浄化システム
2 エンジンの排気通路
3 エンジン制御装置(ECU)
10 排気ガス浄化装置
11 外周部
12 中央筒部
13 仕切り壁
13a 波板
13b、13c 板(二重壁)
13d 空間部
14 保温構造
15 第1通路
16 第1バルブ
17 第2通路
18 第2バルブ
19、20、21 熱電対
G 排気ガス
T1 第1判定温度
T2 第2判定温度
T3 第3判定温度
Tc1 第1指標温度
Tc2 第2指標温度
Tg 排気ガスの温度
t1 第1判定時間
t2 第2判定時間
td1 第1脱硫処理時間
td2 第2脱硫処理時間
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification system 2 Engine exhaust passage 3 Engine control apparatus (ECU)
DESCRIPTION OF SYMBOLS 10 Exhaust gas purification apparatus 11 Outer peripheral part 12 Central cylinder part 13 Partition wall 13a Corrugated sheet 13b, 13c Board (double wall)
13d Space 14 Thermal insulation structure 15 First passage 16 First valve 17 Second passage 18 Second valve 19, 20, 21 Thermocouple G Exhaust gas T1 First judgment temperature T2 Second judgment temperature T3 Third judgment temperature Tc1 First Index temperature Tc2 Second index temperature Tg Exhaust gas temperature t1 First determination time t2 Second determination time td1 First desulfurization time td2 Second desulfurization time

Claims (6)

排気ガス中の有害成分を浄化する触媒を担持した排気ガス浄化装置を備えた排気ガス浄化システムにおいて、
前記排気ガス浄化装置の触媒を担持した部分を筒状の仕切り壁により外周部と中央筒部の二つに分けて、内燃機関の排気通路と前記外周部との間に第1バルブを、前記排気通路と前記中央筒部との間に第2バルブを設け、前記第1バルブを開くことにより排気ガスを前記外周部に流し、前記第2バルブを開くことにより排気ガスを前記中央筒部に流すように構成すると共に、
前記筒状の仕切り壁を遮熱構造に形成したことを特徴とする排気ガス浄化システム。
In an exhaust gas purification system equipped with an exhaust gas purification device carrying a catalyst for purifying harmful components in exhaust gas,
A portion carrying the catalyst of the exhaust gas purifying device is divided into an outer peripheral portion and a central cylindrical portion by a cylindrical partition wall, and a first valve is provided between the exhaust passage of the internal combustion engine and the outer peripheral portion, A second valve is provided between the exhaust passage and the central cylinder part, and the exhaust gas flows into the outer peripheral part by opening the first valve, and the exhaust gas is supplied to the central cylinder part by opening the second valve. While configuring to flow,
An exhaust gas purification system, wherein the cylindrical partition wall is formed in a heat shield structure.
前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第1判定温度以下では、前記第1バルブを閉じると共に前記第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第1判定温度を越えたときには、前記第2バルブを開いたまま前記第1バルブを開いて排気ガスを前記中央筒部と前記外周部の両方に流すことを特徴とする請求項1記載の排気ガス浄化システム。   When the first index temperature indicating the temperature of the catalyst in the central cylinder portion is equal to or lower than the first determination temperature set in advance, the first valve is closed and the second valve is opened to allow the exhaust gas to flow only in the central cylinder portion. When the first index temperature exceeds the first determination temperature, the first valve is opened while the second valve is open, and the exhaust gas is allowed to flow through both the central tube portion and the outer peripheral portion. The exhaust gas purification system according to claim 1. 前記触媒としてNOx吸蔵還元型触媒を用いると共に、前記中央筒部には、NOx吸蔵材としてカリウムを担持させ、前記外周部には、NOx吸蔵材としてバリウムを担持させたことを特徴とする請求項1又は2記載の排気ガス浄化システム。   The NOx occlusion reduction type catalyst is used as the catalyst, potassium is supported as a NOx occlusion material in the central cylindrical portion, and barium is supported as an NOx occlusion material in the outer peripheral portion. The exhaust gas purification system according to 1 or 2. 脱硫処理を行っている場合に、前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第2判定温度以下では、前記第1バルブを閉じると共に前記第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第2判定温度を超えてから、前記第1指標温度が前記第2判定温度を超えた時間の総和である第1脱硫処理時間が予め設定された第1判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態をそのまま継続し、前記第1脱硫処理時間が前記第1判定時間を経過したときに、前記第1バルブを開いて前記第2バルブを閉じて排気ガスを前記外周部のみに流し、更に、前記外周部の触媒の温度を指標する第2指標温度が予め設定した第3判定温度を超えると、前記第2指標温度が前記第3判定温度を超えた時間の総和である第2脱硫処理時間が予め設定した第2判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態をそのまま継続し、前記第2脱硫処理時間が前記第2判定時間を経過すると、脱硫処理を終了することを特徴とする請求項1、2又は3記載の排気ガス浄化システム。   When the desulfurization treatment is being performed, if the first index temperature indicating the temperature of the catalyst in the central cylinder portion is equal to or lower than the second determination temperature set in advance, the first valve is closed and the second valve is opened to exhaust the exhaust gas. A first desulfurization treatment time that is the sum of the time when the first index temperature exceeds the second determination temperature after the gas is allowed to flow only through the central cylinder portion and the first index temperature exceeds the second determination temperature. Until the first determination time set in advance has elapsed, the open and closed states of the first valve and the second valve are continued as they are, and when the first desulfurization processing time has passed the first determination time, The first valve is opened and the second valve is closed to allow the exhaust gas to flow only in the outer peripheral portion. Further, a second index temperature indicating the temperature of the catalyst in the outer peripheral portion exceeds a preset third determination temperature. And the second index temperature is the third Until the second desulfurization processing time, which is the sum of the times exceeding the constant temperature, passes the preset second determination time, the open and closed states of the first valve and the second valve are continued as they are, and the second desulfurization is continued. 4. The exhaust gas purification system according to claim 1, wherein the desulfurization treatment is terminated when the treatment time passes the second determination time. 排気ガス中の有害成分を浄化する触媒を担持した排気ガス浄化装置を備えた排気ガス浄化システムの排気ガス浄化方法において、
前記排気ガス浄化装置の触媒を担持した部分を筒状の仕切り壁により外周部と中央筒部の二つに分けて前記筒状の仕切り壁を遮熱構造に形成して前記外周部と前記中央筒部との間を遮熱し、
前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第1判定温度以下では、内燃機関の排気通路と前記外周部との間に設けた第1バルブを閉じると共に、前記排気通路と前記中央筒部との間に設けた第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第1判定温度を越えたときには、前記第2バルブを開いたまま前記第1バルブを開いて排気ガスを前記中央筒部と前記外周部の両方に流すことを特徴とする排気ガス浄化方法。
In an exhaust gas purification method of an exhaust gas purification system provided with an exhaust gas purification device carrying a catalyst for purifying harmful components in exhaust gas,
A portion of the exhaust gas purifying device that supports the catalyst is divided into an outer peripheral portion and a central cylindrical portion by a cylindrical partition wall, and the cylindrical partition wall is formed in a heat shield structure to form the outer peripheral portion and the central portion. Heat insulation between the tube,
When the first index temperature indicating the temperature of the catalyst in the central cylinder portion is equal to or lower than a first determination temperature set in advance, the first valve provided between the exhaust passage of the internal combustion engine and the outer peripheral portion is closed, and the exhaust When the second valve provided between the passage and the central cylinder part is opened to allow exhaust gas to flow only in the central cylinder part, the second valve is activated when the first index temperature exceeds the first determination temperature. An exhaust gas purification method, wherein the first valve is opened while the exhaust valve is opened, and the exhaust gas is allowed to flow through both the central cylindrical portion and the outer peripheral portion.
脱硫処理を行っている場合に、前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第2判定温度以下では、前記第1バルブを閉じると共に前記第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第2判定温度を超えてから、前記第1指標温度が前記第2判定温度を超えた時間の総和である第1脱硫処理時間が予め設定された第1判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態をそのまま継続し、前記第1脱硫処理時間が前記第1判定時間を経過したときに、前記第1バルブを開いて前記第2バルブを閉じて排気ガスを前記外周部のみに流し、更に、前記外周部の触媒の温度を指標する第2指標温度が予め設定した第3判定温度を超えると、前記第2指標温度が前記第3判定温度を超えた時間の総和である第2脱硫処理時間が予め設定した第2判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態をそのまま継続し、前記第2脱硫処理時間が前記第2判定時間を経過すると、脱硫処理を終了することを特徴とする請求項5記載の排気ガス浄化方法。   When the desulfurization treatment is being performed, if the first index temperature indicating the temperature of the catalyst in the central cylinder portion is equal to or lower than the second determination temperature set in advance, the first valve is closed and the second valve is opened to exhaust the exhaust gas. A first desulfurization treatment time that is the sum of the time when the first index temperature exceeds the second determination temperature after the gas is allowed to flow only through the central cylinder portion and the first index temperature exceeds the second determination temperature. Until the first determination time set in advance has elapsed, the open and closed states of the first valve and the second valve are continued as they are, and when the first desulfurization processing time has passed the first determination time, The first valve is opened and the second valve is closed to allow the exhaust gas to flow only in the outer peripheral portion. Further, a second index temperature indicating the temperature of the catalyst in the outer peripheral portion exceeds a preset third determination temperature. And the second index temperature is the third Until the second desulfurization processing time, which is the sum of the times exceeding the constant temperature, passes the preset second determination time, the open and closed states of the first valve and the second valve are continued as they are, and the second desulfurization is continued. The exhaust gas purification method according to claim 5, wherein the desulfurization treatment is terminated when the treatment time passes the second determination time.
JP2008211122A 2008-08-19 2008-08-19 Exhaust gas purification system and exhaust gas purification method Expired - Fee Related JP5233499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211122A JP5233499B2 (en) 2008-08-19 2008-08-19 Exhaust gas purification system and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211122A JP5233499B2 (en) 2008-08-19 2008-08-19 Exhaust gas purification system and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2010048111A true JP2010048111A (en) 2010-03-04
JP5233499B2 JP5233499B2 (en) 2013-07-10

Family

ID=42065392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211122A Expired - Fee Related JP5233499B2 (en) 2008-08-19 2008-08-19 Exhaust gas purification system and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP5233499B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207582A (en) * 2011-03-29 2012-10-25 Osaka Gas Co Ltd Engine system
WO2012151169A1 (en) * 2011-05-02 2012-11-08 General Electric Company Device, method, and system for emissions control
WO2014012174A1 (en) * 2012-07-19 2014-01-23 Vida Holdings Corp. Ltd. Apparatus and method for engine backpressure reduction
JP2015081554A (en) * 2013-10-22 2015-04-27 ヤンマー株式会社 Engine with supercharger
US9101881B2 (en) 2008-08-27 2015-08-11 Vida Holdings Ltd. Catalytic converter apparatus
CN109675410A (en) * 2019-03-11 2019-04-26 杨松 A kind of improvement VOCs waste gas circulation regeneration technology system operation method
CN117101403A (en) * 2023-10-24 2023-11-24 江苏星永邦环保工程技术有限公司 Ultralow temperature denitration device of heating furnace

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126017U (en) * 1989-03-27 1990-10-17
JPH03294614A (en) * 1990-04-09 1991-12-25 Riken Corp Exhaust emission purifier
JPH0561418U (en) * 1992-01-24 1993-08-13 三菱自動車工業株式会社 Exhaust gas treatment device
JP2003083028A (en) * 2001-09-12 2003-03-19 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2004114016A (en) * 2002-09-30 2004-04-15 Toyota Motor Corp Catalyst for cleaning exhaust gas and method for regenerating the same
JP2006226231A (en) * 2005-02-18 2006-08-31 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2008069727A (en) * 2006-09-15 2008-03-27 Toyota Motor Corp Exhaust emission control device, support base material for exhaust emission control catalyst and exhaust emission control catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126017U (en) * 1989-03-27 1990-10-17
JPH03294614A (en) * 1990-04-09 1991-12-25 Riken Corp Exhaust emission purifier
JPH0561418U (en) * 1992-01-24 1993-08-13 三菱自動車工業株式会社 Exhaust gas treatment device
JP2003083028A (en) * 2001-09-12 2003-03-19 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2004114016A (en) * 2002-09-30 2004-04-15 Toyota Motor Corp Catalyst for cleaning exhaust gas and method for regenerating the same
JP2006226231A (en) * 2005-02-18 2006-08-31 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2008069727A (en) * 2006-09-15 2008-03-27 Toyota Motor Corp Exhaust emission control device, support base material for exhaust emission control catalyst and exhaust emission control catalyst

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9101881B2 (en) 2008-08-27 2015-08-11 Vida Holdings Ltd. Catalytic converter apparatus
US9926824B2 (en) 2008-08-27 2018-03-27 Vida Fresh Air Corp. Catalytic converter apparatus
US9108156B2 (en) 2008-08-27 2015-08-18 Vida Holdings Ltd. Catalytic converter apparatus
JP2012207582A (en) * 2011-03-29 2012-10-25 Osaka Gas Co Ltd Engine system
WO2012151169A1 (en) * 2011-05-02 2012-11-08 General Electric Company Device, method, and system for emissions control
US20140290218A1 (en) * 2012-07-19 2014-10-02 Vida Holding Corp. Ltd. Apparatus and method for engine backpressure reduction
CN103917286A (en) * 2012-07-19 2014-07-09 维达控股股份有限公司 Apparatus and method for engine backpressure reduction
US9260999B2 (en) * 2012-07-19 2016-02-16 Vida Fresh Air Corp. Apparatus and method for engine backpressure reduction
EP2874731A4 (en) * 2012-07-19 2016-02-24 Vida Holdings Corp Ltd Apparatus and method for engine backpressure reduction
AU2013293025B2 (en) * 2012-07-19 2017-03-16 Vida Holdings Corp. Ltd. Apparatus and method for engine backpressure reduction
RU2628846C2 (en) * 2012-07-19 2017-08-22 Вайда Холдингз Корп. Лтд. Device and method for reducing counter-pressure in engine
WO2014012174A1 (en) * 2012-07-19 2014-01-23 Vida Holdings Corp. Ltd. Apparatus and method for engine backpressure reduction
JP2015081554A (en) * 2013-10-22 2015-04-27 ヤンマー株式会社 Engine with supercharger
US10006389B2 (en) 2013-10-22 2018-06-26 Yanmar Co., Ltd. Engine with supercharger
CN109675410A (en) * 2019-03-11 2019-04-26 杨松 A kind of improvement VOCs waste gas circulation regeneration technology system operation method
CN117101403A (en) * 2023-10-24 2023-11-24 江苏星永邦环保工程技术有限公司 Ultralow temperature denitration device of heating furnace
CN117101403B (en) * 2023-10-24 2024-02-06 江苏星永邦环保工程技术有限公司 Ultralow temperature denitration device of heating furnace

Also Published As

Publication number Publication date
JP5233499B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5256881B2 (en) Exhaust gas purification device
JP5251266B2 (en) Exhaust gas purification device and exhaust gas purification system
US7010910B2 (en) Exhaust gas purification apparatus
JP5233499B2 (en) Exhaust gas purification system and exhaust gas purification method
JP3885813B2 (en) Method for raising temperature of exhaust gas purification device and exhaust gas purification system
JP5141479B2 (en) Exhaust gas purification system and exhaust gas purification method
JP3885814B2 (en) Method for raising temperature of exhaust gas purification device and exhaust gas purification system
JP3852466B2 (en) NOx purification system
JP2015206274A (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP4561467B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2008175136A (en) Exhaust emission control system
JP2000045751A (en) Exhaust emission control device for internal combustion engine
JP2007198315A (en) Exhaust emission control device for internal combustion engine and exhaust emission control method
JP2010156277A (en) Exhaust emission purifying method and exhaust emission purifying system
JP5347372B2 (en) Exhaust gas purification system and exhaust gas purification method
JP2019157739A (en) Exhaust purifying device for internal combustion engine
JP4507018B2 (en) Exhaust gas purification device for internal combustion engine
JP6472991B2 (en) Heat storage body disposed in exhaust pipe of internal combustion engine and exhaust gas purification system
JP2007009810A (en) METHOD FOR CONTROLLING SULFUR PURGE OF NOx ELIMINATION SYSTEM AND NOx ELIMINATION SYSTEM
JP3402132B2 (en) Engine exhaust purification device
WO2014050361A1 (en) NOx REMOVAL SYSTEM
JP4529463B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2015151887A (en) SCR system
JP4630721B2 (en) Engine exhaust system
JP2019157738A (en) Exhaust purifying device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees