JP4630721B2 - Engine exhaust system - Google Patents

Engine exhaust system Download PDF

Info

Publication number
JP4630721B2
JP4630721B2 JP2005123083A JP2005123083A JP4630721B2 JP 4630721 B2 JP4630721 B2 JP 4630721B2 JP 2005123083 A JP2005123083 A JP 2005123083A JP 2005123083 A JP2005123083 A JP 2005123083A JP 4630721 B2 JP4630721 B2 JP 4630721B2
Authority
JP
Japan
Prior art keywords
exhaust
heating element
engine
pipe
catalytic converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005123083A
Other languages
Japanese (ja)
Other versions
JP2006299935A (en
Inventor
孝彦 内藤
尚矢 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankei Giken Kogyo Co Ltd
Original Assignee
Sankei Giken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankei Giken Kogyo Co Ltd filed Critical Sankei Giken Kogyo Co Ltd
Priority to JP2005123083A priority Critical patent/JP4630721B2/en
Publication of JP2006299935A publication Critical patent/JP2006299935A/en
Application granted granted Critical
Publication of JP4630721B2 publication Critical patent/JP4630721B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は自動車等のエンジンの排気システムに関する。更に詳しくは、エンジンから排出される排気を浄化する触媒コンバータやDPF等の排気浄化装置を備えたエンジンの排気システムに関するものである。   The present invention relates to an exhaust system for an engine of an automobile or the like. More specifically, the present invention relates to an engine exhaust system equipped with an exhaust purification device such as a catalytic converter or a DPF that purifies exhaust discharged from the engine.

従来、上記のようなエンジンの排気システムにおいては、該エジンから排出される排気中の有害成分である窒素酸化物や一酸化炭素および炭化水素等を除去するために触媒コンバータを排気システムの途中に設けるのが一般的であり、またディーゼルエンジンにあっては該エンジンから排出される炭素を主成分とした粒子状物質(PM)を除去するために上記の触媒コンバータとは別にDPF(ディーゼル微粒子除去装置)を設けるのが一般的である。   Conventionally, in an engine exhaust system as described above, a catalytic converter is placed in the middle of the exhaust system in order to remove nitrogen oxides, carbon monoxide, hydrocarbons, and the like, which are harmful components in the exhaust discharged from the engine. In general, the diesel engine is provided with DPF (diesel particulate removal) separately from the catalytic converter in order to remove particulate matter (PM) mainly composed of carbon discharged from the engine. It is common to provide a device).

触媒コンバータは、排気中の有害物質を触媒で浄化するもので、例えば排気中の窒素酸化物や一酸化炭素および炭化水素を同時に効率的に浄化する触媒として、いわゆる三元触媒が広く使用されている。その三元触媒は、白金やパラジウムもしくはロジウム等の貴金属の1種又は2種以上をベースとし、これに必要に応じてニッケルやコバルト等の酸化物を添加したものを触媒成分としてコージェライト等の耐熱多孔質担体に担持させた構成である。   Catalytic converters purify harmful substances in exhaust gas with catalysts. For example, so-called three-way catalysts are widely used as catalysts for efficiently purifying nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas simultaneously. Yes. The three-way catalyst is based on one or more kinds of noble metals such as platinum, palladium, or rhodium, and an oxide such as nickel or cobalt is added to this as a catalyst component. The structure is supported on a heat resistant porous carrier.

しかし、上記の三元触媒は、一般に300℃未満の低温領域では活性が低く、エンジンの始動直後等に排出される低温の排気中の有害成分を十分に浄化することは困難である。また上記三元触媒は、排ガス中の酸素濃度が略1%以下のいわゆる理論空燃比運転領域では、有害成分の浄化を効率的に行なうことができるが、排ガス中の酸素濃度が数%以上の場合、すなわちオットーサイクルエンジンのリーン燃焼領域および本質的に酸素過剰状態で運転されるディーゼルエンジンから排出される排気に対しては有害成分の浄化効率が著しく低い。   However, the above three-way catalyst generally has low activity in a low temperature region below 300 ° C., and it is difficult to sufficiently purify harmful components in low temperature exhaust discharged immediately after the engine is started. The three-way catalyst can efficiently remove harmful components in a so-called stoichiometric air-fuel ratio operation region where the oxygen concentration in the exhaust gas is approximately 1% or less, but the oxygen concentration in the exhaust gas is several percent or more. In other words, the purification efficiency of harmful components is significantly lower for exhaust emissions from lean combustion regions of Otto cycle engines and diesel engines operating essentially in excess oxygen.

一方、各種の天然ゼオライトまたは合成ゼオライト等の分子篩構造を有する物質に、遷移金属を担持させることによって、排ガス中の酸素濃度が高い上記リーン燃焼領域でも、窒素酸化物および炭化水素を浄化することができるようにした触媒が開発されている。しかしながら、この種の分子篩構造の物質に遷移金属を担持させた触媒は、通常300℃〜500℃程度の温度領域で優れた活性を示すが、エンジンの始動直後に排出される300℃未満の温度の排ガス中の有害成分を効率良く浄化することは、現状の技術では充分な成果が得られていない。   On the other hand, nitrogen oxides and hydrocarbons can be purified even in the above lean combustion region where the oxygen concentration in the exhaust gas is high by loading a transition metal on a substance having a molecular sieve structure such as various natural zeolites or synthetic zeolites. Catalysts that can be made are being developed. However, a catalyst in which a transition metal is supported on a substance having a molecular sieve structure of this kind generally exhibits excellent activity in a temperature range of about 300 ° C. to 500 ° C., but the temperature is less than 300 ° C. discharged immediately after starting the engine. Efficient purification of harmful components in the exhaust gas has not been achieved with the current technology.

そこで、エンジン始動直後等の排気温度が低い運転領域でも、上記三元触媒または分子篩構造の物質に遷移金属を担持させた触媒による排気浄化効率を向上させる手段として、これらの触媒の周囲に電熱装置を配置し、その熱で触媒を活性化することが提案されている。しかし、電熱により加熱するには多大な電力を必要とするため、電力容量の少ない車両用エンジン等には不向きであり、しかもエンジンの燃費効率が低下したり、電気的故障で耐久性や信頼性が低下する等の不具合がある。   Therefore, even in an operating region where the exhaust temperature is low, such as immediately after the engine is started, as a means for improving exhaust purification efficiency by the catalyst having the transition metal supported on the three-way catalyst or the molecular sieve structure, an electric heating device is provided around these catalysts. It has been proposed to activate the catalyst with its heat. However, heating with electric heat requires a large amount of power, so it is not suitable for low-powered vehicle engines, etc., and the fuel efficiency of the engine is reduced, or electrical failure leads to durability and reliability. There are problems such as lowering.

また下記特許文献1には、上記のような電熱装置の代わりに酸化触媒や燃焼触媒等の第2の触媒を、上記三元触媒または分子篩構造の物質に遷移金属を担持させた触媒等の第1の触媒の周囲に配置して、その第1の触媒を通過した排気を上記第2の触媒に導いて、その第2の触媒と排気との発熱反応で上記第1の触媒を加熱することが提案されている。しかし、上記のものは第1の触媒を通過した排気を第2の触媒に導くための通路や制御装置等が必要で製作コストが増大すると共に、上記第2の触媒は、第1の触媒の外側で、しかも排気流に関しては下流側に位置するので、第1の触媒を必ずしも効率よく加熱することができない等の問題があった。   Further, in Patent Document 1 below, a second catalyst such as an oxidation catalyst or a combustion catalyst is used in place of the electric heating device as described above, and a catalyst such as a catalyst in which a transition metal is supported on a material having the above three-way catalyst or molecular sieve structure. An exhaust gas that is disposed around one catalyst, passes through the first catalyst, is guided to the second catalyst, and the first catalyst is heated by an exothermic reaction between the second catalyst and the exhaust gas. Has been proposed. However, the above-described one requires a passage and a control device for guiding the exhaust gas that has passed through the first catalyst to the second catalyst, which increases the manufacturing cost, and the second catalyst is the same as that of the first catalyst. There is a problem that the first catalyst cannot be heated efficiently because it is located outside and on the downstream side with respect to the exhaust flow.

一方、前記のDPFは、排気中のPMをフィルターで漉し取り、そのフィルターを再生装置等で再生して目詰まりを防ぐもので、フィルターの材質と再生方式の違いにより、いくつかの種類がある。例えばコージェライトと呼ばれるセラミックスのハニカム状フィルターを用いるもの、セラミックス繊維製の不織布を用いるもの、炭化ケイ素製のハニカム状フィルターを用いるもの等がある。   On the other hand, the DPF removes PM in the exhaust with a filter and regenerates the filter with a regenerator to prevent clogging. There are several types depending on the filter material and the regeneration method. . For example, there are one using a ceramic honeycomb filter called cordierite, one using a ceramic fiber non-woven fabric, and one using a silicon carbide honeycomb filter.

上記いずれの方式も、フィルターに詰まったPMを焼却してフィルターを再生するもので、その焼却方法としては、例えば電熱線などの外部からの熱で焼却するもの、またフィルター上に塗った触媒の効果でPMの燃焼温度を下げ、300°程度の排気熱で燃焼できるようにしたもの、さらに排気中の二酸化窒素を用いて排気熱でPMを焼却するもの等がある。   In any of the above methods, PM clogged in the filter is incinerated to regenerate the filter. As the incineration method, for example, incineration with external heat such as heating wire, or catalyst applied on the filter is used. There are those that lower the combustion temperature of PM by the effect and can burn with about 300 ° exhaust heat, and those that incinerate PM with exhaust heat using nitrogen dioxide in the exhaust.

しかし、上記いずれの方式も焼却温度が低いと、PMを良好に焼却できないおそれがある。特に排気熱で燃焼するものは、寒冷時やエンジン始動直後の排気温度が低い運転状態では良好に焼却することができず、フィルター上にPMが残留して目詰まりを起こす等の問題があった。   However, in any of the above methods, if the incineration temperature is low, PM may not be incinerated well. In particular, those that burn with exhaust heat cannot be incinerated well in cold weather or when the exhaust temperature is low immediately after starting the engine, causing problems such as clogging due to PM remaining on the filter. .

特開平10−71324号公報JP-A-10-71324

本発明は上記の問題点に鑑みて提案したもので、触媒コンバータやDPF等の排気浄化装置を備えたエンジンの排気システムにおいて、寒冷時やエンジン始動直後の排気温度が低い運転状態においても排気中の有害成分を良好に且つ効率よく浄化することのできるエンジンの排気システムを提供することを目的とする。   The present invention has been proposed in view of the above problems. In an engine exhaust system equipped with an exhaust purification device such as a catalytic converter or a DPF, exhaust gas is exhausted even in a cold state or in an operating state where the exhaust temperature is low immediately after the engine is started. It is an object of the present invention to provide an engine exhaust system that can effectively and efficiently purify harmful components.

本発明によるエンジンの排気システムは、エンジンから排出される排気を浄化する排気浄化装置を排気管の途中に設けたエンジンの排気システムにおいて、前記排気管を内管と外管とで構成し、前記排気浄化装置として、排気上流側から順に接続される触媒コンバータとディーゼル微粒子除去装置とを有し、前記触媒コンバータよりも排気上流側の前記内管内に、エンジンから排出された排気との接触で発熱し且つ周壁面に多数の貫通小孔を有する筒状の発熱体を前記排気管と略同心状に配置し、前記発熱体の排気上流側の端部を前記内管の内面に固着し、前記発熱体の前記端部以外の部分を前記内管の内面から離間させると共に、前記触媒コンバータの下流側で前記ディーゼル微粒子除去装置の上流側の前記内管内に、エンジンから排出された排気との接触で発熱し且つ周壁面に多数の貫通小孔を有する筒状の別の発熱体を前記排気管と略同心状に配置し、前記別の発熱体の排気上流側の端部を前記内管の内面に固着し、前記別の発熱体の前記端部以外の部分を前記内管の内面から離間させ、前記内管内の前記発熱体と前記別の発熱体の排気上流側に、排気上流側に向かって拡径する傾斜部と、拡径している前記端部とを設け、前記傾斜部と前記傾斜部より排気下流側の部分とに前記貫通小孔を形成することを特徴とする。また、本発明のエンジンの排気システムは、前記内管内の前記発熱体と前記別の発熱体の貫通小孔を、外側若しくは内側に突出する突出孔又は切り起し孔とすることを特徴とする Engine exhaust system according to the present invention, in the engine exhaust system of an exhaust gas purification apparatus provided in an exhaust pipe for purifying the exhaust gas discharged from the engine, constitute the exhaust pipe between the inner and outer tubes, the As an exhaust purification device, it has a catalytic converter and a diesel particulate removal device connected in order from the exhaust upstream side, and generates heat in contact with exhaust exhausted from the engine in the inner pipe upstream of the catalytic converter And a cylindrical heating element having a large number of through-holes on the peripheral wall surface is disposed substantially concentrically with the exhaust pipe, and the exhaust upstream end of the heating element is fixed to the inner surface of the inner pipe, the portion other than the end portion of the heating element causes away from the inner surface of the inner tube, within said tube upstream of the diesel particulate filter downstream of the catalytic converter, the exhaust of the engine Another cylindrical heating element that generates heat upon contact with the exhaust and has a large number of through-holes on the peripheral wall surface is arranged substantially concentrically with the exhaust pipe, and the exhaust upstream end of the additional heating element Is fixed to the inner surface of the inner tube, and a portion other than the end portion of the another heat generating element is separated from the inner surface of the inner tube, and the heat generating element in the inner tube and the exhaust heat upstream side of the other heat generating element Providing an inclined portion that expands toward the exhaust upstream side and the end portion that is expanded in diameter, and forming the through hole in the inclined portion and a portion on the exhaust downstream side of the inclined portion. Features. The exhaust system of the engine of the present invention, the feature that the projection hole or cut-and-raised hole protrudes through the small hole before Symbol heating element and said another heating element in said tube, on the outside or inside To do .

上記の発熱体としては、例えば酸化カルシウム/炭酸カルシウム系(CaO/CaCO3 )物質または白金(Pt)、ロジウム(Rh)、パラジウム(Pd)等の貴金属あるいはそれらを主体とした合金のうちの少なくともいずれか1つを選択して使用することができる。また上記発熱体の形状としては、例えば周壁面に多数の貫通小孔を有する筒状のものが排気内に設置するのに好適である。その場合、上記発熱体自体を多数の貫通小孔を有する筒状に形成したもの、あるいは周壁面に多数の貫通小孔を有する筒状の金属またはセラミック等よりなる担体の表面に上記発熱体を担持させた構成のものでもよい。   Examples of the heating element include at least one of a calcium oxide / calcium carbonate (CaO / CaCO3) substance, a noble metal such as platinum (Pt), rhodium (Rh), palladium (Pd), or an alloy mainly composed of these. Either one can be selected and used. Moreover, as a shape of the said heat generating body, the cylindrical thing which has many through-holes in a surrounding wall surface is suitable for installing in exhaust_gas | exhaustion, for example. In that case, the heating element itself is formed in a cylindrical shape having a large number of through holes, or the heating element is provided on the surface of a carrier made of a cylindrical metal or ceramic having a large number of through holes on the peripheral wall surface. A supported structure may be used.

上記のように本発明によるエンジンの排気システムは、該システムの途中に設けた触媒コンバータやDPF等の排気浄化装置よりも排気上流側の排気システム内に、エンジンから排出された排気との接触で発熱する発熱体を設けたことによって、上記の触媒コンバータやDPF等の排気浄化装置に導入される排気を事前に加熱することができる。特に前記特許文献1のものは第2の触媒で第1の触媒を外側から間接的に加熱するのに対し、本発明は触媒コンバータ等の排気浄化装置に導入される排気を、エンジンから触媒コンバータに至る排気システムの途中で上記発熱体により直接加熱するので効率がよい。また上記の発熱体として、例えば排気との接触で発熱する酸化触媒または燃焼触媒等の発熱性の触媒を用いると、その触媒によって排気の浄化効率を更に向上させることが可能となる。   As described above, the exhaust system of the engine according to the present invention is in contact with the exhaust discharged from the engine in the exhaust system upstream of the exhaust purification device such as a catalytic converter or DPF provided in the middle of the system. By providing the heat generating element that generates heat, the exhaust gas introduced into the exhaust gas purification device such as the catalytic converter or the DPF can be heated in advance. In particular, in Patent Document 1, the first catalyst is indirectly heated from the outside by the second catalyst, whereas the present invention allows the exhaust gas introduced into the exhaust purification device such as the catalytic converter to be sent from the engine to the catalytic converter. It is efficient because it is directly heated by the heating element in the middle of the exhaust system. Further, when an exothermic catalyst such as an oxidation catalyst or a combustion catalyst that generates heat upon contact with exhaust gas is used as the heating element, the exhaust gas purification efficiency can be further improved by the catalyst.

以下、本発明を図に示す実施形態に基づいて具体的に説明する。図1は本発明による排気システムの一実施形態を示す概略構成の斜視図、図2(a)および(b)は図1におけるa部およびb部の部分拡大断面図である。   Hereinafter, the present invention will be specifically described based on embodiments shown in the drawings. FIG. 1 is a perspective view of a schematic configuration showing an embodiment of an exhaust system according to the present invention, and FIGS. 2A and 2B are partially enlarged sectional views of a part and b part in FIG.

図に示す実施形態はディーゼルエンジンの排気システムに適用したもので、その排気システム1は、図に省略したエンジンの排気マニホールド2からマフラ5に至る排気管(排気管路)3の途中に、排気浄化装置4として触媒コンバータ41とDPF(ディーゼル微粒子除去装置)42とを、その順に連通接続した構成である。図中、6はフランジ継手である。   The embodiment shown in the figure is applied to an exhaust system of a diesel engine. The exhaust system 1 is arranged in the middle of an exhaust pipe (exhaust pipe) 3 extending from the exhaust manifold 2 of the engine to the muffler 5 (not shown). As the purification device 4, a catalytic converter 41 and a DPF (diesel particulate removal device) 42 are connected in communication in that order. In the figure, 6 is a flange joint.

上記の触媒コンバータ41に用いる触媒としては、例えば前記の三元触媒または分子篩構造を有する物質に遷移金属を担持させた触媒等を用いることができる。その三元触媒としては、例えば白金(Pt)、ロジウム(Rh)、パラジウム(Pd)等の貴金属の一種または二種以上をベースとし、これに必要に応じてニッケル(Ni)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、セリウム(Ce)等の酸化物を添加したものを触媒成分として、これをアルミナやコージェライト等の耐熱性が優れた粒状またはモノリス担体に担持させたものを使用することができる。   As the catalyst used in the catalytic converter 41, for example, the above-described three-way catalyst or a catalyst in which a transition metal is supported on a substance having a molecular sieve structure can be used. As the three-way catalyst, for example, one or more kinds of noble metals such as platinum (Pt), rhodium (Rh), palladium (Pd), etc. are used as a base, and nickel (Ni), iron (Fe) may be used as necessary. , Cobalt (Co), manganese (Mn), cerium (Ce) and other oxides added as catalyst components, which are supported on granular or monolithic carriers with excellent heat resistance such as alumina and cordierite Can be used.

また上記の分子篩構造を有する物質に遷移金属を担持させた触媒としては、一般にゼオライトと称せられ、主成分がシリカ及びアルミナで、Si/A1比が5〜100程度であり、結晶構造がX型、Y型、ZSM型等のメタロシリケート等、及びこれらのゼオライト、メタロシリケートを遷移金属でイオン交換したものを使用することができる。   In addition, as a catalyst in which a transition metal is supported on a substance having the above molecular sieve structure, it is generally called zeolite, the main components are silica and alumina, the Si / A1 ratio is about 5 to 100, and the crystal structure is X-type. , Y-type and ZSM-type metallosilicates, etc., and zeolites and metallosilicates obtained by ion exchange with transition metals can be used.

一方、DPF42は、前記従来のいずれの方式のものにも適用可能であり、特にフィルターの再生方式としては、前記のフィルター上に塗った触媒の効果でPMの燃焼温度を下げ、300°程度の排気ガスの熱で燃焼できるようにしたもの、およびフィルターの前に酸化触媒を配置して排出ガス中の二酸化窒素の量を増やし、その二酸化窒素の性質を利用して排気ガスの熱でPMを焼却するものに良好に適用することができる。   On the other hand, the DPF 42 can be applied to any of the conventional systems. Particularly, as a filter regeneration system, the PM combustion temperature is lowered by the effect of the catalyst applied on the filter, and is about 300 °. Combustible with the heat of exhaust gas and an oxidation catalyst placed in front of the filter to increase the amount of nitrogen dioxide in the exhaust gas. It can be applied well to what is incinerated.

そして本発明は、前記の触媒コンバータ41やDPF42等の排気浄化装置4よりも排気上流側の排気システム1内に、エンジンから排出された排気との接触で発熱する発熱体7を設けたもので、本実施形態においては触媒コンバータ41よりも上流側の図1におけるa部の排気管3内に図2(a)に示すような発熱体7を、またDPF42よりも上流側の図1におけるb部の排気管3内に図2(b)に示すような発熱体7を、それぞれ設けたものである。   In the present invention, a heating element 7 is provided in the exhaust system 1 on the exhaust upstream side of the exhaust purification device 4 such as the catalytic converter 41 or the DPF 42 to generate heat by contact with the exhaust discharged from the engine. In the present embodiment, the heating element 7 as shown in FIG. 2A is provided in the exhaust pipe 3 at the portion a in FIG. 1 upstream from the catalytic converter 41, and b in FIG. 1 upstream from the DPF 42. The heating elements 7 as shown in FIG. 2B are respectively provided in the exhaust pipe 3 of the part.

特に、図の場合は内外二重31,32に形成した排気管3の内管31内に、周壁面に多数の貫通小7aを有する筒状の発熱体7を上記排気管3と略同心状に配置したもので、その発熱体7の排気上流側の端部は拡径して上記内管31の内面に溶接等で固着され、その上流側の端部以外は内管31の内面から離間させることによって、上記貫通小7a内および発熱体7の内外両面に排気が流通して広い面で上記発熱体7と排気とが接触するようにしている。 In particular, in the case of the figure, a cylindrical heating element 7 having a large number of small through- holes 7 a on the peripheral wall surface is disposed substantially concentrically with the exhaust pipe 3 in the inner pipe 31 of the exhaust pipe 3 formed in the inner and outer doubles 31 and 32. The end of the heating element 7 on the upstream side of the exhaust is enlarged and fixed to the inner surface of the inner pipe 31 by welding or the like, and the other end than the upstream side is from the inner surface of the inner pipe 31. By separating them, the exhaust gas flows through the small through holes 7a and both the inner and outer surfaces of the heating element 7 so that the heating element 7 and the exhaust gas are in contact with each other on a wide surface.

上記の発熱体7としては、エンジンからの排気との接触で発熱するものであれば材質等は適宜であるが、例えば前述のように酸化カルシウム/炭酸カルシウム系(CaO/CaCO3 )物質または白金(Pt)、ロジウム(Rh)、パラジウム(Pd)等の貴金属あるいはそれらを主体とした合金、例えば白金−パラジウム合金(Pt−Pd)、あるいはこれらに微量のロジウム(Rh)を加えたもの等が使用可能であり、そのうちの少なくともいずれか1つを選択して使用すればよい。   The heating element 7 may be made of any material as long as it generates heat upon contact with exhaust from the engine. For example, as described above, a calcium oxide / calcium carbonate (CaO / CaCO3) substance or platinum ( Pt), rhodium (Rh), noble metals such as palladium (Pd) or alloys mainly composed thereof, for example, platinum-palladium alloy (Pt-Pd), or those obtained by adding a small amount of rhodium (Rh) It is possible to select and use at least one of them.

また上記発熱体の形状も適宜であるが、例えば前述のように周壁面に多数の貫通小孔を有する筒状のものが排気内に設置するのに好適である。その場合、上記の発熱体自体を多数の貫通小孔を有する筒状に形成したもの、あるいは周壁面に多数の貫通小孔を有する筒状の金属またはセラミック等よりなる担体の表面のほぼ全面に上記発熱体を担持させた構成のものでもよい。   The shape of the heating element is also appropriate. For example, as described above, a cylindrical member having a large number of through holes on the peripheral wall surface is suitable for installation in the exhaust. In that case, the heating element itself is formed in a cylindrical shape having a large number of through-holes, or on the substantially entire surface of a carrier made of a cylindrical metal or ceramic having a large number of through-holes on the peripheral wall surface. The structure which carried the said heat generating body may be sufficient.

上記の構成において、図に省略したエンジン1から排出された排気は、排気マニホールド2を経て排気管3内に導入された後、先ず、図1のa部における排気管3内に設けた図2(a)の発熱体7内に図中の矢印の方向から流入する。それによって上記発熱体7に排気が接触して両者が反応(発熱反応)し、その熱で排気が加熱されるもので、特に図示例においては発熱体7を周壁面に多数の貫通小孔7aを有する筒状に形成すると共に、その発熱体7の上流側の取付部を除くほぼ全長を排気管3(内管31)から離間させたことによって、発熱体7と排気とを、より広い面で接触させることができる。   In the above configuration, the exhaust discharged from the engine 1 not shown in the figure is introduced into the exhaust pipe 3 through the exhaust manifold 2 and then first provided in the exhaust pipe 3 in FIG. It flows into the heating element 7 of (a) from the direction of the arrow in the figure. As a result, exhaust is brought into contact with the heating element 7 and both react (exothermic reaction), and the exhaust is heated by the heat. In particular, in the illustrated example, the heating element 7 has a large number of through-holes 7a on the peripheral wall surface. And the heating element 7 and the exhaust are separated from each other on a wider surface by separating the exhaust pipe 3 (inner pipe 31) from the exhaust pipe 3 (inner pipe 31). Can be contacted.

すなわち、上記発熱体7の上流側から入った排気は、発熱体7の内周面に接触すると共に上記貫通小孔7aから発熱体7の外周面側に流入する。特に図2(a)においては上流側の傾斜部7bにも貫通小孔7aを形成したことによって、より多くの排気を発熱体7の外周面側に流入させることができる。その発熱体7の外周面側に流入した排気は、発熱体7の外周面と接触すると共に、その一部の排気は上記貫通小孔7aを介して再び発熱体7の内周面側に移動する。これを繰り返すことによって発熱体7と排気とが、より広い面で万遍なく接触して上記の反応が促進され、上記発熱体7の近傍を通過する排気を効率よく加熱することができるものである。   That is, the exhaust gas that has entered from the upstream side of the heating element 7 contacts the inner peripheral surface of the heating element 7 and flows into the outer peripheral surface side of the heating element 7 from the through small hole 7a. In particular, in FIG. 2A, by forming the through small hole 7a in the upstream inclined portion 7b, more exhaust gas can flow into the outer peripheral surface side of the heating element 7. The exhaust gas flowing into the outer peripheral surface side of the heating element 7 comes into contact with the outer peripheral surface of the heating element 7, and a part of the exhaust gas is moved again to the inner peripheral surface side of the heating element 7 through the through small holes 7a. To do. By repeating this, the heating element 7 and the exhaust are uniformly contacted on a wider surface, and the above reaction is promoted, and the exhaust passing through the vicinity of the heating element 7 can be efficiently heated. is there.

上記のようにして加熱された排気は、引き続き、排気浄化装置としての触媒コンバータ41内に導入されて排気が浄化されるもので、その際、例えば寒冷時やエンジン始動時等のエンジンから排出された排気の温度が低い場合でも上記発熱体7によって予め所定の温度以上に加熱した状態で上記コンバータ41内に導入することができる。それによって触媒コンバータ4による排気浄化性能を向上させることができるもので、特に本発明においては触媒コンバータ4に導入される排気を、その上流側で直接加熱できるので、熱効率や排気浄化効率が高く、極めて効率よく排気を浄化できるものである。   The exhaust gas heated as described above is continuously introduced into the catalytic converter 41 as an exhaust gas purification device to purify the exhaust gas. At that time, the exhaust gas is discharged from the engine, for example, when it is cold or when the engine is started. Even when the temperature of the exhaust gas is low, it can be introduced into the converter 41 in a state of being heated to a predetermined temperature or higher by the heating element 7 in advance. As a result, the exhaust gas purification performance of the catalytic converter 4 can be improved. In particular, in the present invention, the exhaust gas introduced into the catalytic converter 4 can be directly heated on the upstream side thereof, so that the thermal efficiency and the exhaust gas purification efficiency are high. The exhaust can be purified extremely efficiently.

次に、上記の触媒コンバータ41で浄化された排気は、引き続き、その下流側の図1におけるb部の排気管3内に設けた図2(b)の発熱体7によって、上記と同様の要領で加熱されてDPF42内に導かれ、例えばDPF42内のフィルターに詰まったPMを確実に焼却してフィルターを良好に再生することができるもので、寒冷時やエンジン始動時等のエンジンから排出された排気の温度が低い場合でも、上記DPF42による排気浄化性能を良好に向上させることができると共に、その性能を長期間安定に維持させることが可能となるものである。   Next, the exhaust gas purified by the catalytic converter 41 is continuously processed in the same manner as described above by the heating element 7 shown in FIG. 2B provided in the exhaust pipe 3 of the b part in FIG. It is heated in the DPF 42 and guided into the DPF 42, for example, PM that is clogged in the filter in the DPF 42 can be surely incinerated and the filter can be regenerated well, and is discharged from the engine during cold or engine start. Even when the temperature of the exhaust gas is low, the exhaust gas purification performance by the DPF 42 can be improved satisfactorily and the performance can be maintained stably for a long period of time.

なお、上記実施形態は、触媒コンバータ41の上流側と、DPF42の上流側との2箇所に発熱体7を設けたが、その配置位置や配置個数は適宜であり、例えば触媒コンバータ41およびDPF42の上流側の1箇所、例えば図1におけるa部またはc部に設ける、あるいはその両方に設けてもよい。さらに図1におけるa〜c部の3箇所もしくはそれ以上設けるようにしてもよい。   In the above embodiment, the heating elements 7 are provided at two locations on the upstream side of the catalytic converter 41 and the upstream side of the DPF 42. However, the arrangement position and the number of arrangements are appropriate. It may be provided at one upstream side, for example, at a part or c part in FIG. Further, three or more portions a to c in FIG. 1 may be provided.

また前記図2(a)のように排気管3内、特に図示例のように内外二重31,32に形成した排気管3の内管31内に、筒状の発熱体7を離間させて設けた場合に、その発熱体7の径が小さくなりすぎて排気抵抗が増大する場合には、例えば図3(a)または(b)のように排気管3(内外管31,32)の径を大きくし、それに合わせて発熱体7の径を大きくするようにしてもよい。前記図2(b)の排気管および発熱体7についても同様である。   2A, the cylindrical heating element 7 is spaced apart in the exhaust pipe 3, particularly in the inner pipe 31 of the exhaust pipe 3 formed in the inner and outer duplex 31, 32 as shown in the example. If the exhaust resistance is increased when the diameter of the heating element 7 becomes too small, the diameter of the exhaust pipe 3 (inner and outer pipes 31, 32) is, for example, as shown in FIG. 3 (a) or (b). And the diameter of the heating element 7 may be increased accordingly. The same applies to the exhaust pipe and the heating element 7 in FIG.

さらに発熱体7の貫通小孔7aは、図4に示すような筒状発熱体7の外側若しくは内側に突出する突出孔もしくは切り起し孔としてもよく、そのようにすると発熱体7の表面積が増大して排気との接触面積を増大させることができる。また上記発熱体7の形状は筒状に限らず、半円筒状、棒状その他適宜であり、排気管3(内管31)の内面に突起状に形成することもできる。 Further, the through hole 7a of the heating element 7 may be a protruding hole or a cut-and- raised hole protruding outside or inside the cylindrical heating element 7 as shown in FIG. It is possible to increase the contact area with the exhaust. The shape of the heating element 7 is not limited to a cylindrical shape, but may be a semi-cylindrical shape, a rod shape, or any other appropriate shape, and may be formed in a protruding shape on the inner surface of the exhaust pipe 3 (inner pipe 31).

また上記実施形態は、触媒コンバータ41とDPF42の両方を備えた排気システムに適用したが、触媒コンバータ41とDPF42のいずれか一方のみを備えたものにも適用できる。また図示例は自動車等のディーゼルエンジンに適用したが、通常の4サイクルエンジンや自動二輪車用のエンジン等にも適用できる。   Moreover, although the said embodiment was applied to the exhaust system provided with both the catalytic converter 41 and DPF42, it is applicable also to what is provided with only one of the catalytic converter 41 and DPF42. Although the illustrated example is applied to a diesel engine such as an automobile, it can also be applied to an ordinary four-cycle engine, an engine for a motorcycle, and the like.

以上のように、本発明によるエンジンの排気システムは、寒冷時やエンジン始動直後の排気温度が低い運転状態においても触媒コンバータやDPF等の排気浄化装置内に導入される排気を事前に加熱することによって排気浄化効率を上昇させることができるもので、この種のマフラの設計の自由度や産業上の利用可能性を増大させることができる。   As described above, the exhaust system of the engine according to the present invention preheats the exhaust introduced into the exhaust purification device such as the catalytic converter and the DPF even in a cold state or in an operating state where the exhaust temperature is low immediately after starting the engine. The exhaust purification efficiency can be increased by this, and the degree of freedom of design and industrial applicability of this type of muffler can be increased.

本発明によるエンジンの排気システムの一実施形態を示す斜視図。The perspective view which shows one Embodiment of the exhaust system of the engine by this invention. (a)および(b)は図1におけるa部およびb部の拡大断面図。(A) And (b) is an expanded sectional view of the a part and b part in FIG. (a)および(b)は変更例の図1におけるa部の拡大断面図。(A) And (b) is an expanded sectional view of the a part in FIG. 1 of the modification. (a)および(b)は発熱体の変更例を示す斜視図および断面図。(A) And (b) is the perspective view and sectional drawing which show the example of a change of a heat generating body.

1 エンジンの排気システム
2 排気マニホールド
3 排気管
31 内管
32 外管
4 排気浄化装置
41 触媒コンバータ
42 DPF
5 マフラ
6 フランジ継手
7 発熱体
7a 貫通小孔
DESCRIPTION OF SYMBOLS 1 Engine exhaust system 2 Exhaust manifold 3 Exhaust pipe 31 Inner pipe 32 Outer pipe 4 Exhaust purification device 41 Catalytic converter 42 DPF
5 Muffler 6 Flange joint 7 Heating element 7a Through hole

Claims (2)

エンジンから排出される排気を浄化する排気浄化装置を排気管の途中に設けたエンジンの排気システムにおいて、
前記排気管を内管と外管とで構成し、
前記排気浄化装置として、排気上流側から順に接続される触媒コンバータとディーゼル微粒子除去装置とを有し、
前記触媒コンバータよりも排気上流側の前記内管内に、エンジンから排出された排気との接触で発熱し且つ周壁面に多数の貫通小孔を有する筒状の発熱体を前記排気管と略同心状に配置し、
前記発熱体の排気上流側の端部を前記内管の内面に固着し、前記発熱体の前記端部以外の部分を前記内管の内面から離間させると共に、
前記触媒コンバータの下流側で前記ディーゼル微粒子除去装置の上流側の前記内管内に、エンジンから排出された排気との接触で発熱し且つ周壁面に多数の貫通小孔を有する筒状の別の発熱体を前記排気管と略同心状に配置し、
前記別の発熱体の排気上流側の端部を前記内管の内面に固着し、前記別の発熱体の前記端部以外の部分を前記内管の内面から離間させ、
前記内管内の前記発熱体と前記別の発熱体の排気上流側に、排気上流側に向かって拡径する傾斜部と、拡径している前記端部とを設け、前記傾斜部と前記傾斜部より排気下流側の部分とに前記貫通小孔を形成することを特徴とするエンジンの排気システム。
In an engine exhaust system in which an exhaust purification device for purifying exhaust exhausted from the engine is provided in the middle of the exhaust pipe,
The exhaust pipe is composed of an inner pipe and an outer pipe,
As the exhaust purification device, having a catalytic converter and a diesel particulate removal device connected in order from the exhaust upstream side,
A cylindrical heating element that generates heat in contact with the exhaust discharged from the engine and has a large number of through-holes on the peripheral wall surface in the inner pipe upstream of the catalytic converter is substantially concentric with the exhaust pipe. Placed in
An end portion on the exhaust upstream side of the heating element is fixed to the inner surface of the inner tube, and a portion other than the end portion of the heating element is separated from the inner surface of the inner tube ,
Another cylindrical heat generating in the inner pipe on the downstream side of the catalytic converter and in the upstream side of the diesel particulate removing device in contact with the exhaust discharged from the engine and having a large number of through holes on the peripheral wall surface Arranging the body substantially concentrically with the exhaust pipe,
The exhaust heat upstream end of the another heating element is fixed to the inner surface of the inner tube, and the other heating element other than the end is separated from the inner surface of the inner tube,
Provided on the exhaust upstream side of the heating element and the other heating element in the inner pipe is an inclined portion that expands toward the exhaust upstream side and the end that is expanded, and the inclined portion and the inclined An exhaust system for an engine , wherein the through hole is formed in a portion on the exhaust downstream side of the portion .
前記内管内の前記発熱体と前記別の発熱体の貫通小孔を、外側若しくは内側に突出する突出孔又は切り起し孔とすることを特徴とする請求項1記載のエンジンの排気システム。 2. The engine exhaust system according to claim 1, wherein the small through-holes of the heating element and the other heating element in the inner pipe are formed as a protruding hole or a cut-and-raised hole protruding outward or inward .
JP2005123083A 2005-04-21 2005-04-21 Engine exhaust system Expired - Fee Related JP4630721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005123083A JP4630721B2 (en) 2005-04-21 2005-04-21 Engine exhaust system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005123083A JP4630721B2 (en) 2005-04-21 2005-04-21 Engine exhaust system

Publications (2)

Publication Number Publication Date
JP2006299935A JP2006299935A (en) 2006-11-02
JP4630721B2 true JP4630721B2 (en) 2011-02-09

Family

ID=37468529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005123083A Expired - Fee Related JP4630721B2 (en) 2005-04-21 2005-04-21 Engine exhaust system

Country Status (1)

Country Link
JP (1) JP4630721B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334717A (en) * 1991-05-10 1992-11-20 Suzuki Motor Corp Exhaust emission control device for small engine
JPH0754642A (en) * 1993-08-16 1995-02-28 Suzuki Motor Corp Exhaust device of engine
JPH08303236A (en) * 1995-05-09 1996-11-19 Honda Motor Co Ltd Exhaust gas purifying device for internal combustion engine
JP2000170526A (en) * 1998-12-09 2000-06-20 Mitsubishi Motors Corp Exhaust emission control device for diesel engine
JP2000265829A (en) * 1999-03-16 2000-09-26 Honda Motor Co Ltd Exhaust emission control device
JP2000350935A (en) * 1999-06-11 2000-12-19 Suzuki Motor Corp Exhaust gas purifying catalyst
JP2003120273A (en) * 2001-08-08 2003-04-23 Honda Motor Co Ltd Exhaust emission control device
JP2005023856A (en) * 2003-07-03 2005-01-27 Nissan Motor Co Ltd Exhaust emission control device for engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334717A (en) * 1991-05-10 1992-11-20 Suzuki Motor Corp Exhaust emission control device for small engine
JPH0754642A (en) * 1993-08-16 1995-02-28 Suzuki Motor Corp Exhaust device of engine
JPH08303236A (en) * 1995-05-09 1996-11-19 Honda Motor Co Ltd Exhaust gas purifying device for internal combustion engine
JP2000170526A (en) * 1998-12-09 2000-06-20 Mitsubishi Motors Corp Exhaust emission control device for diesel engine
JP2000265829A (en) * 1999-03-16 2000-09-26 Honda Motor Co Ltd Exhaust emission control device
JP2000350935A (en) * 1999-06-11 2000-12-19 Suzuki Motor Corp Exhaust gas purifying catalyst
JP2003120273A (en) * 2001-08-08 2003-04-23 Honda Motor Co Ltd Exhaust emission control device
JP2005023856A (en) * 2003-07-03 2005-01-27 Nissan Motor Co Ltd Exhaust emission control device for engine

Also Published As

Publication number Publication date
JP2006299935A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
US7010910B2 (en) Exhaust gas purification apparatus
EP2290204B1 (en) Exhaust gas purifier and system for exhaust gas purification
JP2004532374A (en) Exhaust gas purification unit with reducing agent supply
EP2058480A1 (en) Exhaust gas purifying system
JP2007023997A (en) Exhaust emission control device
JP2000199423A (en) Exhaust emission control device for diesel engine
JP2010048111A (en) Exhaust emission control system and exhaust emission control method
JP2008511795A (en) Exhaust aftertreatment device and manufacturing method thereof
JP2011047395A (en) Exhaust system
JP2010521623A (en) Catalyst for exhaust gas aftertreatment system for internal combustion engines
JP4767909B2 (en) Exhaust gas purification device
JP2015206274A (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2012077693A (en) Exhaust emission control device
JPH10510023A (en) Catalytic exhaust gas purification device
JP2010156277A (en) Exhaust emission purifying method and exhaust emission purifying system
JP4631902B2 (en) Exhaust gas purification device
JP4630721B2 (en) Engine exhaust system
JP2013245606A (en) Exhaust gas purification system
JP2019157739A (en) Exhaust purifying device for internal combustion engine
KR100763411B1 (en) Catalytic converter with multi-arrangement type for diesel engine
JP2016109106A (en) Exhaust emission control system
JP4369655B2 (en) Exhaust gas purification device and method for manufacturing the same
JP4278964B2 (en) Exhaust gas purification device
JP5252904B2 (en) Exhaust purification device
JP3849183B2 (en) Engine exhaust gas purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4630721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees