JP3849183B2 - Engine exhaust gas purification device - Google Patents

Engine exhaust gas purification device Download PDF

Info

Publication number
JP3849183B2
JP3849183B2 JP26501096A JP26501096A JP3849183B2 JP 3849183 B2 JP3849183 B2 JP 3849183B2 JP 26501096 A JP26501096 A JP 26501096A JP 26501096 A JP26501096 A JP 26501096A JP 3849183 B2 JP3849183 B2 JP 3849183B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
passage
engine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26501096A
Other languages
Japanese (ja)
Other versions
JPH1071324A (en
Inventor
礼子 百目木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP26501096A priority Critical patent/JP3849183B2/en
Publication of JPH1071324A publication Critical patent/JPH1071324A/en
Application granted granted Critical
Publication of JP3849183B2 publication Critical patent/JP3849183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は、エンジン、特に車両用エンジンから排出される排ガスの浄化装置に関するものである。
【0002】
【従来の技術】
エンジン、特に自動車等車両用エンジンから排出される排ガス中の有害成分である窒素酸化物(NOx)、一酸化炭素(CO)及び炭化水素(HC)を同時に効率的に浄化する触媒として、コージェライト等の耐熱多孔質担体に、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属の一種又は二種をベースとし、必要に応じニッケル(Ni)、コバルト(Co)等の酸化物を添加したものを触媒成分として担持させた三元触媒が広く使用されている。しかし、この種の三元触媒は、一般に300℃未満の低温領域では活性が低く、エンジンの始動直後に排出される低温の排ガス中の有害成分を十分に浄化することは困難である。
【0003】
また、上記三元触媒は、排ガス中の酸素濃度が略1%以下の所謂理論空燃比運転領域では、効率的に有害成分の浄化を行なうことができるが、排ガス中の酸素濃度が数%以上の場合、即ちオットーサイクルエンジンのリーン燃焼領域及び本質的に酸素過剰状態で運転されるディーゼルエンジンから排出される排ガスでは、有害成分の浄化効率が著しく低い。
一方、各種の天然ゼオライト又は合成ゼオライト等の分子篩構造を有する物質に、遷移金属を担持させることによって、排ガス中の酸素濃度が高い上記リーン燃焼領域でも、NOx及びHCを浄化することができるようにした触媒が開発されている。しかしながら、この種の分子篩構造の物質に遷移金属を担持させた触媒は、通常300℃〜500℃程度の温度領域で優れた活性を示すが、エンジンの始動直後に排出される300℃未満の温度の排ガス中の有害成分を効率良く浄化することは、現状の技術では十分の成果が得られていない。
【0004】
そこで、エンジンの始動直後等排ガス温度が低い運転領域で、上記三元触媒又は分子篩構造の物質に遷移金属を担持させた触媒による排ガス浄化効率を向上する手段として、これらの触媒を電熱により加熱して活性化の向上を図る手法が、既に提案されている。この既提案の排ガス浄化装置の概念的構成を、図2について説明する。
【0005】
図2において、符号1は触媒コンバータを総括的に示し、同コンバータは、その内部に、上記三元触媒又は分子篩構造の物質に遷移金属を担持させた触媒2が収容され、同触媒2の外周には、電熱装置3が設けられている。また、同コンバータ1の上流側は、図示しない車両用エンジンの排気マニホールドを含む排気通路に入口通路4を介し接続され、かつ下流側は、図示しないマフラ及びテールパイプ等を介して大気に連通する排出通路5に接続されている。
【0006】
上記入口通路4には排ガスの温度を検知する温度センサ6が設けられ、同温度センサ6によって検知された排ガス温度情報はコントロールユニット7に供給される。同コントロールユニット7は、上記温度センサ6により検知された排ガス温度Teと予め設定された設定温度Toとを比較し、排ガス温度Teが設定温度Toより低いときは、リレーコイル等のアクチュエータ8を付勢してスイッチ9を閉成し、電源例えば車載バッテリ10から上記電熱装置3に電力を供給する。
【0007】
電熱装置3により触媒2を加熱して昇温させることによって、触媒2の活性を高め、エンジンの始動直後に排出される低温の排ガス中の有害成分の浄化効率を改善することができる。
しかしながら、上記電熱装置3は、多大の電力を消費する不具合があり、特に電力容量に限界がある車両用エンジンの排ガス浄化装置には、好適とは謂えず、またエンジンの燃費が悪化する不具合があり、また電熱装置は屡々断線又はショート等の電気的故障が発生し易いので、耐久性及び信頼性に不安がある。
【0008】
【発明が解決しようとする課題】
本発明は、上記事情に鑑み創案されたもので、電力等の外部エネルギを用いることなく、触媒コンバータ内に収容されている三元触媒又は分子篩構造の物質に遷移金属を担持させた触媒を昇温させることによって活性を向上させ、始動直後のエンジンから排出される低温の排ガス中の有害成分を効果的に浄化することができ、かつ耐久性及び信頼性が優れた排ガス浄化装置を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明は、分子篩構造を有する物質に遷移金属を担持させた触媒又は三元触媒を内側に配置し、その外側に酸化触媒を配置した触媒コンバータを、エンジンの排気通路内に介装し、上記分子篩構造を有する物質に遷移金属を担持させた触媒又は三元触媒に流入する排ガスの温度が予め設定された設定温度よりも低い時、当該分子篩構造を有する物質に遷移金属を担持させた触媒又は三元触媒を通過した排ガスを、上記酸化触媒に導くと共に、当該酸化触媒における反応熱により上記分子篩構造を有する物質に遷移金属を担持させた触媒又は三元触媒を加熱するように構成したことを特徴とするエンジンの排ガス浄化装置を提案するものである。
【0010】
また、本発明は、エンジンの排気通路に接続され、その内部に分子篩構造を有する物質に遷移金属を担持させた触媒又は三元触媒を収容した第1の排ガス通路と、上記第1排ガス通路内の触媒を囲繞してその外側に配置されその内部に酸化触媒を収容した第2の排ガス通路と、上記第1及び第2排ガス通路間に介装され、その第1位置では上記第1排ガス通路を上記第2排ガス通路を介して排ガス排出通路に連通させると共に、第2位置では上記第1排ガス通路を直接排ガス排出通路に連通させる弁装置と、上記エンジンの排気通路又は第1の排ガス通路に設けられ排ガス温度を検知する温度センサと、同温度センサにより検知された排ガス温度が設定値未満のときに上記弁装置を第1位置に位置させ、かつ設定値以上のときに同弁装置を上記第2位置に位置させる弁制御装置とを具備していることを特徴とするエンジンの排ガス浄化装置を提案するものである。
【0011】
【発明の実施の形態】
以下本発明の好ましい実施形態を、図1の概略構成図を参照して説明する。図中符号10は概念的に示したエンジン、例えば自動車等車両用のエンジンであって、同エンジン10は、図示しないエアクリーナを介して外気を取入れる吸気マニホールド12、及び同エンジン10内で発生した燃焼ガスを外気に排出する排気マニホールド14を具え、同排気マニホールド14はその排出端に連結された排気管と共に、エンジン10の排気通路16を形成する。
【0012】
上記排気通路16の下流に、総括的に符号18で示した触媒コンバータが接続され、同触媒コンバータ18は、その内部に三元触媒又は分子篩構造を有する物質に遷移金属を担持させた触媒20(以下場合により、第1触媒という)を収容した第1排ガス通路22を具えている。同第1排ガス通路22の外周に第2の排ガス通路24が形成され、同第2排ガス通路24内には、上記第1触媒20を囲繞するように酸化触媒又は燃焼触媒26(以下場合により、第2触媒という)が環状をなして収容されている。
【0013】
上記第2排ガス通路24の外周に第3の排ガス通路28が形成され、同第3排ガス通路28は、図示を省略されているマフラ及びテールパイプを介して大気に連通する排ガス排出通路を形成している。
上記第1排ガス通路22、第2排ガス通路24及び第3排ガス通路又は排ガス排出通路28は、通常、耐熱性を有しかつ耐食性を有する薄鋼板によって作られている。
【0014】
図示のように、上記第1排ガス通路22の下流端は、直接、第2排ガス通路24の上流端に連通し、同第2排ガス通路24の下流端は、直接、第3排ガス通路又は排ガス排出通路28の上流端に連通する。上記第1排ガス通路22の下流開口端30に隣接する第2排ガス通路24の上流端付近の通路壁に、弁開口32が設けられ、同弁開口32はバタフライ弁34によって開閉される。
【0015】
上記触媒コンバータ18のケーシング18′の外部に突出したバタフライ弁34の弁軸36に、弁制御腕38の一端が固着され、同弁制御腕38の他端自由端部にはアクチュエータ40の作動ロッド42が枢着されている。同アクチュエータ40には、電磁式アクチュエータ、圧縮空気を作動媒体とするエアシリンダ、その他任意のアクチュエータを適宜採用することができる。
【0016】
上記第1排ガス通路22の第1触媒20より上流側の部分、又はエンジンの排気通路16の適所、好ましくは第1排ガス通路22に隣接した排気通路部分に、第1触媒20に流入する排ガス温度Teを検知するための温度センサ44が設けられ、同温度センサ44により検知された排ガス温度情報は、コントロールユニット46に供給される。
【0017】
同コントロールユニット46は、上記排ガス温度Teを予め設定された設定温度To、例えば300℃と比較し、排ガス温度Teが設定温度Toより低いときは、アクチュエータ40を消勢させて、図示のように、バタフライ弁34を閉弁位置に保持し、排ガス温度Teが設定温度To以上になると上記アクチュエータ40を付勢して、作動ロッド42を図において下方に変位させ、弁制御腕34を点線で示されているように時計方向に廻動させ、バタフライ弁34を開く。バタフライ弁34の開弁により、上記第1排ガス通路22の下流開口端30が弁開口32を介して直接第3排ガス通路又は排ガス排出通路28に連通される。なお、上記コントロールユニット46、アクチュエータ40、作動ロッド42及び弁制御腕38によって弁制御装置が構成される。
【0018】
上記第1触媒20は、既に説明したように、三元触媒又は分子篩構造を有する物質に遷移金属を担持させた触媒であるが、ここに三元触媒は、アルミナ、コージェライト等の耐熱性が優れた粒状又はモノリス担体に、触媒成分としての白金(Pt)、ロジウム(Rh)、パラジウム(Pd)等の貴金属の一種又は二種をベースとし、必要に応じて、ニッケル(Ni)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、セリウム(Ce)等の酸化物を添加したものを、担持させた触媒を意味するものである。
【0019】
また、上記分子篩構造を有する物質に遷移金属を担持させた触媒とは、一般にゼオライトと称せられ、主成分がシリカ及びアルミナで、Si/A1比が5〜100程度であり、結晶構造がX型、Y型、ZSM型等のメタロシリケート等、及びこれらのゼオライト、メタロシリケートを遷移金属でイオン交換したものを意味する。
【0020】
さらに、上記第2触媒26は、上述したように、酸化触媒又は燃焼触媒であるが、ここでは、排ガス中の酸素と炭化水素(HC)、一酸化炭素(CO)とを反応させてHC,COを酸化しCO,HOに分解する触媒であって、アルミナ、コージェライト等の粒状又はモノリス担体に、触媒成分として、白金(Pt)、パラジウム(Pd)、白金−パラジウム合金(Pt−Pd)、あるいはこれらに微量のロジウム(Rh)を加えた貴金属を担持させたものが典型的であるが、卑金属系のものも知られており、それらを総称した触媒を意味するものである。
【0021】
さて、上記構成の排ガス浄化装置において、エンジン10の始動直後、特に低温始動時には、同エンジン10がガソリンを燃料とするオットーサイクルエンジンであれ、また軽油を燃料とするディーゼルエンジンであれ、その排ガスは低温であり、かつ未燃燃料としてのHC、不完全燃焼に基づくCOを多く含んでいるのが通常であり、この低温の排ガスは、排気マニホールド14を含むエンジンの排気通路16を経て触媒コンバータ18に流入する。
【0022】
温度センサ44により検知される排ガス温度Teが、第1触媒20が十分な活性を有する温度を考慮して予め設定された設定温度To(例えば300℃)より低いときは、コントロールユニット46によりアクチュエータ40が消勢されバタフライ弁34が閉止されているので、第1排ガス通路221流れ第1触媒20を通過した排ガスは、第2排ガス通路24に流れて第2触媒26に接触する。排ガス温度Teが低いため、第1触媒20との接触によって、排ガス中の有害成分の浄化は十分には行なわれないが、第2排ガス通路24内の第2触媒26との接触によって、排ガス中のHC,COが酸化分解されて発熱する。
【0023】
第2触媒26において発生した熱は、その半径方向内側に配置された第1触媒20に伝達され、同第1触媒20が加熱されて迅速に昇温する。第2触媒26を通過した排ガスは、その中に含まれた有害成分のうちHC,COの相当部分が浄化されて第3排ガス通路又は排ガス排出通路28からマフラ、テールパイプを経て大気に排出されるので、第1触媒20の加熱手段として電熱装置を用いた従前の装置と較べ、第2触媒26によって排ガス中の有害成分が除去される分だけ浄化効率が増大する利点がある。
【0024】
上記第1触媒20の昇温により、同触媒20の活性が効果的に向上するので、同触媒との接触による排ガス中の有害成分の浄化効率が増大し、上記第2触媒26の酸化反応に基づく排ガス中の有害成分(HC,CO)の浄化と相俟って、最終的に大気に排出される排ガス中の有害成分の浄化が促進される。
【0025】
エンジン10の始動後、ウォームアップが進んで排ガス温度Teが設定温度To以上になると、コントロールユニット46によりアクチュエータ40が付勢されて作動ロッド42が図において下方に駆動され、弁制御腕38を介してバタフライ弁34が開かれる。同バタフライ弁34の開放により、第1排ガス通路22が弁開口32を介して、直接に第3排ガス通路又は排ガス排出通路28の下流側に連通することとなる。
【0026】
この結果、第1触媒20を通過した排ガスは、第2触媒26の存在により流通抵抗が大きい第2排ガス通路24側には殆んど流れず、実質的全量が直接第3排ガス通路又は排ガス排出通路28に流れ、マフラ及びテールパイプを経て大気に放出される。勿論、排ガス温度Teが、設定温度Toより高いので、第1触媒20による排出ガス中の有害成分の浄化は、エンジン10の始動直後排ガス温度Teが設定温度Toより低いときより、十分効果的に行なわれると共に、第2触媒26に高温の排ガスが流れないので、その耐久性を確保することができる。
【0027】
上記構成によれば、図2に示した従前の排ガス浄化装置のような電熱による触媒加熱装置を必要としないので、エンジン10の電気負荷を増大させることがなく、電気容量に限界がある車両用エンジンの排ガス浄化装置に採用されて極めて好適であり、エンジン10の電気負荷が少ない分だけ、上記従前の排ガス浄化装置より、エンジン10の燃費を向上することができる。さらに、電熱装置の場合、屡々発生する断線やショート等の故障の発生がなく、耐久性及び信頼性が優れている利点がある。
【0028】
なお、上記構成において、バタフライ弁34に代え、スライド弁、ロータリ弁等他の弁装置を採用することができ、また触媒コンバータ18の下流側に、1個以上の触媒コンバータを追加して設置することができる。なおまた、第1触媒20には、三元触媒又は分子篩構造を有する物質に遷移金属を担持させた触媒を、夫々単体で用いることができ、又は両者の触媒を組み合わせて配置することもできる。
【0029】
以上詳細に説明したように、本発明に係るエンジンの排ガス浄化装置は、分子篩構造を有する物質に遷移金属を担持させた触媒又は三元触媒を内側に配置し、その外側に酸化触媒を配置した触媒コンバータを、エンジンの排気通路内に介装し、上記分子篩構造を有する物質に遷移金属を担持させた触媒又は三元触媒を通過した排ガスを、上記酸化触媒に導くように構成したことを特徴とし、エンジンの始動時に排出される低温の排ガスを、電熱触媒加熱装置を用いることなく、効果的に浄化することができるので、電気容量に限界がある車両用エンジンに特に好適であり、同時に、エンジンの燃費を向上し得る利点があり、さらに優れた耐久性及び信頼性を確保し得る利点がある。
【0030】
また、本発明に係るエンジンの排ガス浄化装置は、エンジンの排気通路に接続され、その内部に分子篩構造を有する物質に遷移金属を担持させた触媒又は三元触媒を収容した第1の排ガス通路と、上記第1排ガス通路内の触媒を囲繞してその外側に配置されその内部に酸化触媒を収容した第2の排ガス通路と、上記第1及び第2排ガス通路間に介装され、その第1位置では上記第1排ガス通路を上記第2排ガス通路を介して排ガス排出通路に連通させると共に、第2位置では上記第1排ガス通路を直接排ガス排出通路に連通させる弁装置と、上記エンジンの排気通路又は第1の排ガス通路に設けられ排ガス温度を検知する温度センサと、同温度センサにより検知された排ガス温度が設定値未満のときに上記弁装置を第1位置に位置させ、かつ設定値以上のときに同弁装置を上記第2位置に位置させる弁制御装置とを具備していることを特徴とし、電熱装置等の外部エネルギを用いることなく、エンジンの始動直後における低温排ガス中の有害成分の浄化を効果的に行ない得ると共に、ウォームアップが進んで排ガス温度が上昇したときに、上記酸化触媒に高温の排ガスが流れないので、その耐久性を向上し得る利点がある。
【図面の簡単な説明】
【図1】本発明の好ましい実施形態を示す概略構成図である。
【図2】従来の電熱式触媒加熱装置を具えた排ガス浄化装置を示す概略構成図である。
【符号の説明】
10…エンジン、14…排気マニホールド、16…排気通路、18…触媒コンバータ、20…第1触媒、22…第1排ガス通路、24…第2排ガス通路、26…第2触媒、28…第3排ガス通路又は排ガス排出通路、34…バタフライ弁(弁装置)、38…弁制御腕、40…アクチュエータ、44…温度センサ、46…コントロールユニット。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a purification device for exhaust gas discharged from an engine, particularly a vehicle engine.
[0002]
[Prior art]
Cordierite as a catalyst for efficiently purifying nitrogen oxides (NOx), carbon monoxide (CO) and hydrocarbons (HC), which are harmful components in exhaust gas discharged from engines, particularly automobile engines such as automobiles, simultaneously. A heat-resistant porous carrier such as platinum (Pt), palladium (Pd), rhodium (Rh) or other precious metals as a base, and oxides such as nickel (Ni) or cobalt (Co) as required A three-way catalyst having a catalyst added with a catalyst as a catalyst component is widely used. However, this type of three-way catalyst generally has low activity in a low temperature region below 300 ° C., and it is difficult to sufficiently purify harmful components in the low temperature exhaust gas discharged immediately after the engine is started.
[0003]
The three-way catalyst can efficiently purify harmful components in a so-called theoretical air-fuel ratio operation region where the oxygen concentration in the exhaust gas is approximately 1% or less, but the oxygen concentration in the exhaust gas is several percent or more. In this case, that is, in exhaust gas discharged from a lean combustion region of an Otto cycle engine and a diesel engine operating in an essentially oxygen-excess state, the purification efficiency of harmful components is remarkably low.
On the other hand, NOx and HC can be purified even in the above lean combustion region where the oxygen concentration in the exhaust gas is high by loading a transition metal on a substance having a molecular sieve structure such as various natural zeolites or synthetic zeolites. Catalysts have been developed. However, a catalyst in which a transition metal is supported on a substance having a molecular sieve structure of this kind generally exhibits excellent activity in a temperature range of about 300 ° C. to 500 ° C., but the temperature is less than 300 ° C. discharged immediately after starting the engine. Efficient purification of harmful components in the exhaust gas has not been achieved with the current technology.
[0004]
Therefore, in an operating region where the exhaust gas temperature is low, such as immediately after the engine is started, these catalysts are heated by electric heating as a means to improve the exhaust gas purification efficiency by the catalyst having the transition metal supported on the three-way catalyst or the molecular sieve structure. A method for improving the activation has already been proposed. The conceptual configuration of the proposed exhaust gas purification apparatus will be described with reference to FIG.
[0005]
In FIG. 2, reference numeral 1 generally indicates a catalytic converter, in which a catalyst 2 in which a transition metal is supported on the above three-way catalyst or a substance having a molecular sieve structure is accommodated. Is provided with an electric heating device 3. Further, the upstream side of the converter 1 is connected to an exhaust passage including an exhaust manifold of a vehicle engine (not shown) via an inlet passage 4, and the downstream side communicates with the atmosphere via a muffler, a tail pipe and the like (not shown). It is connected to the discharge passage 5.
[0006]
The inlet passage 4 is provided with a temperature sensor 6 for detecting the temperature of the exhaust gas, and the exhaust gas temperature information detected by the temperature sensor 6 is supplied to the control unit 7. The control unit 7 compares the exhaust gas temperature Te detected by the temperature sensor 6 with a preset set temperature To. When the exhaust gas temperature Te is lower than the set temperature To, the control unit 7 is provided with an actuator 8 such as a relay coil. Then, the switch 9 is closed, and power is supplied to the electric heating device 3 from a power source, for example, the in-vehicle battery 10.
[0007]
By heating the catalyst 2 by the electric heating device 3 and raising the temperature, the activity of the catalyst 2 can be increased, and the purification efficiency of harmful components in the low-temperature exhaust gas discharged immediately after starting the engine can be improved.
However, the electric heating device 3 has a problem that it consumes a large amount of electric power, and it is not suitable for an exhaust gas purification device for a vehicle engine that has a limit in power capacity, and the fuel consumption of the engine deteriorates. In addition, since the electric heating device is often prone to electrical failure such as disconnection or short circuit, there is a concern about durability and reliability.
[0008]
[Problems to be solved by the invention]
The present invention was devised in view of the above circumstances. A catalyst in which a transition metal is supported on a three-way catalyst or a substance having a molecular sieve structure housed in a catalytic converter is used without using external energy such as electric power. To provide an exhaust gas purifying apparatus that can improve the activity by heating, effectively purify harmful components in the low temperature exhaust gas discharged from the engine immediately after starting, and has excellent durability and reliability It is intended.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a catalytic converter in which a catalyst or a three-way catalyst in which a transition metal is supported on a substance having a molecular sieve structure is arranged on the inside, and an oxidation catalyst is arranged on the outside of the catalyst. When the temperature of the exhaust gas flowing into the catalyst having the molecular sieve structure loaded with a transition metal or the three-way catalyst is lower than a preset temperature, the transition to the substance having the molecular sieve structure is made. The exhaust gas that has passed through the catalyst carrying the metal or the three-way catalyst is guided to the oxidation catalyst, and the catalyst or the three-way catalyst carrying the transition metal on the substance having the molecular sieve structure is heated by the reaction heat in the oxidation catalyst. The present invention proposes an exhaust gas purifying apparatus for an engine characterized by being configured as described above.
[0010]
The present invention is also directed to a first exhaust gas passage that is connected to an exhaust passage of an engine and contains therein a catalyst or a three-way catalyst in which a transition metal is supported on a substance having a molecular sieve structure, and the first exhaust gas passage. A second exhaust gas passage which is disposed outside the catalyst and contains an oxidation catalyst therein, and is interposed between the first and second exhaust gas passages, and at the first position, the first exhaust gas passage. Is connected to the exhaust gas exhaust passage through the second exhaust gas passage, and in the second position, the valve device that directly connects the first exhaust gas passage to the exhaust gas exhaust passage, and the engine exhaust passage or the first exhaust gas passage. A temperature sensor provided to detect the exhaust gas temperature; and when the exhaust gas temperature detected by the temperature sensor is lower than a set value, the valve device is positioned at the first position, and when the exhaust gas temperature is higher than the set value, the valve device is raised. It proposes a exhaust gas purifying apparatus for an engine, characterized in that it comprises a valve control device that is positioned at the second position.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the present invention will be described below with reference to the schematic configuration diagram of FIG. Reference numeral 10 in the figure is a conceptually shown engine, for example, an engine for a vehicle such as an automobile. The engine 10 is generated in an intake manifold 12 that takes in outside air via an air cleaner (not shown) and the engine 10. An exhaust manifold 14 for exhausting combustion gas to the outside air is provided, and the exhaust manifold 14 forms an exhaust passage 16 of the engine 10 together with an exhaust pipe connected to the exhaust end thereof.
[0012]
A catalytic converter generally indicated by reference numeral 18 is connected downstream of the exhaust passage 16, and the catalytic converter 18 has a catalyst 20 (a transition metal supported on a substance having a three-way catalyst or molecular sieve structure therein) ( In some cases, the first exhaust gas passage 22 containing the first catalyst) is provided. A second exhaust gas passage 24 is formed on the outer periphery of the first exhaust gas passage 22, and an oxidation catalyst or a combustion catalyst 26 (hereinafter, depending on the case) so as to surround the first catalyst 20 in the second exhaust gas passage 24. (Referred to as second catalyst) is accommodated in a ring shape.
[0013]
A third exhaust gas passage 28 is formed on the outer periphery of the second exhaust gas passage 24, and the third exhaust gas passage 28 forms an exhaust gas exhaust passage communicating with the atmosphere via a muffler and a tail pipe, which are not shown. ing.
The first exhaust gas passage 22, the second exhaust gas passage 24, and the third exhaust gas passage or the exhaust gas exhaust passage 28 are usually made of a thin steel plate having heat resistance and corrosion resistance.
[0014]
As shown in the drawing, the downstream end of the first exhaust gas passage 22 communicates directly with the upstream end of the second exhaust gas passage 24, and the downstream end of the second exhaust gas passage 24 directly connects to the third exhaust gas passage or exhaust gas exhaust. It communicates with the upstream end of the passage 28. A valve opening 32 is provided in a passage wall near the upstream end of the second exhaust gas passage 24 adjacent to the downstream opening end 30 of the first exhaust gas passage 22, and the valve opening 32 is opened and closed by a butterfly valve 34.
[0015]
One end of the valve control arm 38 is fixed to the valve shaft 36 of the butterfly valve 34 protruding outside the casing 18 ′ of the catalytic converter 18, and the operating rod of the actuator 40 is attached to the free end of the other end of the valve control arm 38. 42 is pivotally attached. As the actuator 40, an electromagnetic actuator, an air cylinder using compressed air as a working medium, and other arbitrary actuators can be appropriately employed.
[0016]
Exhaust gas temperature flowing into the first catalyst 20 in a portion upstream of the first catalyst 20 in the first exhaust gas passage 22 or in an appropriate position of the engine exhaust passage 16, preferably in an exhaust passage portion adjacent to the first exhaust gas passage 22. A temperature sensor 44 for detecting Te is provided, and the exhaust gas temperature information detected by the temperature sensor 44 is supplied to the control unit 46.
[0017]
The control unit 46 compares the exhaust gas temperature Te with a preset set temperature To, for example, 300 ° C., and when the exhaust gas temperature Te is lower than the set temperature To, the actuator 40 is deactivated, as shown in the figure. The butterfly valve 34 is held in the closed position, and when the exhaust gas temperature Te becomes equal to or higher than the set temperature To, the actuator 40 is energized to displace the operating rod 42 downward in the figure, and the valve control arm 34 is indicated by a dotted line. Rotate clockwise as shown to open the butterfly valve 34. By opening the butterfly valve 34, the downstream open end 30 of the first exhaust gas passage 22 is directly communicated with the third exhaust gas passage or the exhaust gas discharge passage 28 via the valve opening 32. The control unit 46, the actuator 40, the operating rod 42 and the valve control arm 38 constitute a valve control device.
[0018]
As described above, the first catalyst 20 is a catalyst in which a transition metal is supported on a three-way catalyst or a substance having a molecular sieve structure. Here, the three-way catalyst has heat resistance such as alumina and cordierite. Based on one or two kinds of noble metals such as platinum (Pt), rhodium (Rh), palladium (Pd), etc. as a catalyst component on an excellent granular or monolithic carrier, nickel (Ni), iron ( It means a catalyst on which an oxide such as Fe), cobalt (Co), manganese (Mn), or cerium (Ce) is added.
[0019]
The catalyst having a transition sieve supported on a substance having the molecular sieve structure is generally called zeolite, the main components are silica and alumina, the Si / A1 ratio is about 5 to 100, and the crystal structure is X-type. , Y-type, ZSM-type metallosilicates, and the like, and zeolites and metallosilicates ion-exchanged with transition metals.
[0020]
Further, as described above, the second catalyst 26 is an oxidation catalyst or a combustion catalyst. Here, the oxygen, hydrocarbon (HC), and carbon monoxide (CO) in the exhaust gas are reacted to generate HC, A catalyst that oxidizes CO and decomposes it into CO 2 and H 2 O, and is applied to a granular or monolithic carrier such as alumina or cordierite, and as a catalyst component, platinum (Pt), palladium (Pd), platinum-palladium alloy (Pt -Pd), or those in which a noble metal added with a small amount of rhodium (Rh) is supported, but base metal-based ones are also known and mean catalysts collectively. .
[0021]
In the exhaust gas purifying apparatus having the above-described configuration, immediately after the engine 10 is started, particularly at a low temperature start, whether the engine 10 is an Otto cycle engine using gasoline as fuel or a diesel engine using light oil as fuel, the exhaust gas is It is usually low-temperature and contains a large amount of HC as unburned fuel and CO based on incomplete combustion. This low-temperature exhaust gas passes through an exhaust passage 16 of the engine including the exhaust manifold 14 and is converted to a catalytic converter 18. Flow into.
[0022]
When the exhaust gas temperature Te detected by the temperature sensor 44 is lower than a preset temperature To (for example, 300 ° C.) that is set in consideration of the temperature at which the first catalyst 20 has sufficient activity, the control unit 46 controls the actuator 40. Is deactivated and the butterfly valve 34 is closed, so that the exhaust gas flowing through the first exhaust gas passage 221 and passing through the first catalyst 20 flows into the second exhaust gas passage 24 and contacts the second catalyst 26. Since the exhaust gas temperature Te is low, the contact with the first catalyst 20 does not sufficiently purify harmful components in the exhaust gas, but the exhaust gas temperature Te is in contact with the second catalyst 26 in the second exhaust gas passage 24. HC and CO are oxidized and decomposed to generate heat.
[0023]
The heat generated in the second catalyst 26 is transmitted to the first catalyst 20 disposed on the inner side in the radial direction, and the first catalyst 20 is heated to rapidly rise in temperature. Exhaust gas that has passed through the second catalyst 26 is purified from the third exhaust gas passage or the exhaust gas discharge passage 28 through the muffler and tail pipe, and is discharged into the atmosphere from the third exhaust gas passage or the exhaust gas discharge passage 28 after the toxic components contained therein are purified. Therefore, there is an advantage that the purification efficiency is increased by the amount by which harmful components in the exhaust gas are removed by the second catalyst 26, compared to the conventional apparatus using an electric heating device as the heating means of the first catalyst 20.
[0024]
As the temperature of the first catalyst 20 is increased, the activity of the catalyst 20 is effectively improved, so that the purification efficiency of harmful components in the exhaust gas by contact with the catalyst is increased, and the oxidation reaction of the second catalyst 26 is performed. Combined with the purification of harmful components (HC, CO) in the exhaust gas based on this, the purification of harmful components in the exhaust gas finally discharged to the atmosphere is promoted.
[0025]
When the exhaust gas temperature Te becomes equal to or higher than the set temperature To after the engine 10 is started, the actuator 40 is energized by the control unit 46 and the operating rod 42 is driven downward in the drawing, via the valve control arm 38. Then the butterfly valve 34 is opened. By opening the butterfly valve 34, the first exhaust gas passage 22 communicates directly with the downstream side of the third exhaust gas passage or the exhaust gas discharge passage 28 via the valve opening 32.
[0026]
As a result, the exhaust gas that has passed through the first catalyst 20 hardly flows to the second exhaust gas passage 24 side where the flow resistance is large due to the presence of the second catalyst 26, and a substantial amount of the exhaust gas directly passes through the third exhaust gas passage or exhaust gas exhaust. It flows into the passage 28 and is released to the atmosphere through the muffler and the tail pipe. Of course, since the exhaust gas temperature Te is higher than the set temperature To, the purification of harmful components in the exhaust gas by the first catalyst 20 is more effective than when the exhaust gas temperature Te immediately after the start of the engine 10 is lower than the set temperature To. In addition, since the high temperature exhaust gas does not flow through the second catalyst 26, the durability can be ensured.
[0027]
According to the above configuration, there is no need for an electric heating catalyst heating device like the conventional exhaust gas purification device shown in FIG. 2, so the electric load of the engine 10 is not increased and the electric capacity is limited. It is extremely suitable when employed in an exhaust gas purification device for an engine, and the fuel consumption of the engine 10 can be improved over the conventional exhaust gas purification device by the amount of electric load of the engine 10 being small. Furthermore, in the case of an electric heating device, there is an advantage that there is no occurrence of failure such as disconnection or short circuit that often occurs, and durability and reliability are excellent.
[0028]
In the above configuration, other valve devices such as a slide valve and a rotary valve can be employed in place of the butterfly valve 34, and one or more catalytic converters are additionally installed downstream of the catalytic converter 18. be able to. The first catalyst 20 may be a three-way catalyst or a catalyst in which a transition metal is supported on a substance having a molecular sieve structure. Each catalyst may be used alone, or a combination of both catalysts may be used.
[0029]
As described in detail above, the exhaust gas purifying apparatus for an engine according to the present invention has a catalyst or a three-way catalyst in which a transition metal is supported on a substance having a molecular sieve structure disposed inside, and an oxidation catalyst disposed outside thereof. A catalytic converter is disposed in the exhaust passage of the engine, and is configured to guide exhaust gas that has passed through a catalyst having a molecular sieve structure loaded with a transition metal or a three-way catalyst to the oxidation catalyst. And, since it is possible to effectively purify the low temperature exhaust gas discharged at the start of the engine without using an electrothermal catalyst heating device, it is particularly suitable for a vehicle engine having a limited electric capacity, There is an advantage that the fuel consumption of the engine can be improved, and there is an advantage that excellent durability and reliability can be secured.
[0030]
In addition, an exhaust gas purification apparatus for an engine according to the present invention includes a first exhaust gas passage that is connected to an exhaust passage of an engine and contains therein a catalyst having a molecular sieve structure loaded with a transition metal or a three-way catalyst. The first exhaust gas passage is interposed between the first exhaust gas passage and the second exhaust gas passage which surrounds the catalyst in the first exhaust gas passage and is disposed outside the first exhaust gas passage and accommodates the oxidation catalyst therein. A valve device that communicates the first exhaust gas passage with the exhaust gas exhaust passage via the second exhaust gas passage at the position, and a valve device that communicates the first exhaust gas passage directly with the exhaust gas exhaust passage at the second position; and an exhaust passage of the engine Or a temperature sensor that is provided in the first exhaust gas passage and detects the exhaust gas temperature; and when the exhaust gas temperature detected by the temperature sensor is less than a set value, the valve device is positioned at the first position; and And a valve control device that positions the valve device in the second position when the value is equal to or greater than a predetermined value, and without using external energy such as an electric heating device, There is an advantage that harmful components can be effectively purified, and when the warm-up proceeds and the exhaust gas temperature rises, high-temperature exhaust gas does not flow through the oxidation catalyst, so that the durability can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a preferred embodiment of the present invention.
FIG. 2 is a schematic configuration diagram showing an exhaust gas purifying device including a conventional electrothermal catalyst heating device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Engine, 14 ... Exhaust manifold, 16 ... Exhaust passage, 18 ... Catalytic converter, 20 ... First catalyst, 22 ... First exhaust passage, 24 ... Second exhaust passage, 26 ... Second catalyst, 28 ... Third exhaust Passage or exhaust gas discharge passage 34: Butterfly valve (valve device) 38 ... Valve control arm 40 ... Actuator 44 ... Temperature sensor 46 ... Control unit

Claims (2)

分子篩構造を有する物質に遷移金属を担持させた触媒又は三元触媒を内側に配置し、その外側に酸化触媒を配置した触媒コンバータを、エンジンの排気通路内に介装し、上記分子篩構造を有する物質に遷移金属を担持させた触媒又は三元触媒に流入する排ガスの温度が予め設定された設定温度よりも低い時、当該分子篩構造を有する物質に遷移金属を担持させた触媒又は三元触媒を通過した排ガスを、上記酸化触媒に導くと共に、当該酸化触媒における反応熱により上記分子篩構造を有する物質に遷移金属を担持させた触媒又は三元触媒を加熱するように構成したことを特徴とするエンジンの排ガス浄化装置。A catalyst converter in which a transition metal is supported on a substance having a molecular sieve structure or a three-way catalyst is disposed on the inside, and a catalytic converter having an oxidation catalyst disposed on the outside is disposed in the exhaust passage of the engine, and has the molecular sieve structure. When the temperature of the exhaust gas flowing into the catalyst or the three-way catalyst in which the transition metal is supported on the substance is lower than the preset set temperature, the catalyst or the three-way catalyst in which the transition metal is supported on the substance having the molecular sieve structure An engine characterized in that exhaust gas that has passed through is guided to the oxidation catalyst, and a catalyst or a three-way catalyst in which a transition metal is supported on a substance having the molecular sieve structure is heated by heat of reaction in the oxidation catalyst. Exhaust gas purification equipment. エンジンの排気通路に接続され、その内部に分子篩構造を有する物質に遷移金属を担持させた触媒又は三元触媒を収容した第1の排ガス通路と、上記第1排ガス通路内の触媒を囲繞してその外側に配置されその内部に酸化触媒を収容した第2の排ガス通路と、上記第1及び第2排ガス通路間に介装され、その第1位置では上記第1排ガス通路を上記第2排ガス通路を介して排ガス排出通路に連通させると共に、第2位置では上記第1排ガス通路を直接排ガス排出通路に連通させる弁装置と、上記エンジンの排気通路又は第1の排ガス通路に設けられ排ガス温度を検知する温度センサと、同温度センサにより検知された排ガス温度が設定値未満のときに上記弁装置を第1位置に位置させ、かつ設定値以上のときに同弁装置を上記第2位置に位置させる弁制御装置とを具備していることを特徴とするエンジンの排ガス浄化装置。Surrounding the first exhaust gas passage, which is connected to the exhaust passage of the engine and contains a catalyst or a three-way catalyst in which a transition metal is supported on a substance having a molecular sieve structure, and the catalyst in the first exhaust gas passage. A second exhaust gas passage disposed outside thereof and containing an oxidation catalyst therein and interposed between the first and second exhaust gas passages, and at the first position, the first exhaust gas passage is connected to the second exhaust gas passage. And a valve device for communicating the first exhaust gas passage directly with the exhaust gas exhaust passage at the second position, and detecting the exhaust gas temperature provided in the exhaust passage of the engine or the first exhaust gas passage. And when the exhaust gas temperature detected by the temperature sensor is lower than a set value, the valve device is positioned at the first position, and when the exhaust gas temperature is equal to or higher than the set value, the valve device is positioned at the second position. The exhaust gas purification apparatus for an engine, characterized in that it comprises a cell valve controller.
JP26501096A 1996-08-29 1996-08-29 Engine exhaust gas purification device Expired - Fee Related JP3849183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26501096A JP3849183B2 (en) 1996-08-29 1996-08-29 Engine exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26501096A JP3849183B2 (en) 1996-08-29 1996-08-29 Engine exhaust gas purification device

Publications (2)

Publication Number Publication Date
JPH1071324A JPH1071324A (en) 1998-03-17
JP3849183B2 true JP3849183B2 (en) 2006-11-22

Family

ID=17411332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26501096A Expired - Fee Related JP3849183B2 (en) 1996-08-29 1996-08-29 Engine exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP3849183B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030054918A (en) * 2001-12-26 2003-07-02 현대자동차주식회사 Catalyst for automobile
CN113446091B (en) * 2020-03-26 2023-11-14 比亚迪股份有限公司 Exhaust apparatus, engine and car

Also Published As

Publication number Publication date
JPH1071324A (en) 1998-03-17

Similar Documents

Publication Publication Date Title
CN101198774B (en) Method and system for regeneration of a catalyst
KR100590960B1 (en) System for purifying exhaust gas of automobile
JP5376519B2 (en) Nitrogen oxide reduction catalyst and exhaust device using the same
EP1313934B1 (en) Exhaust system for lean-burn engines
JPH0559942A (en) Cold hc adsorption removal device
TW200905066A (en) Exhaust-gas aftertreatment upstream of a turbocharger
EP0774054A1 (en) Combatting air pollution
JP3709953B2 (en) Exhaust gas purification device for internal combustion engine
WO2007010985A1 (en) Exhaust gas purifier
KR20200095295A (en) After treatment system and after treatment method for lean-burn engine
JP3849183B2 (en) Engine exhaust gas purification device
JP3767040B2 (en) Engine exhaust gas purification device
KR19980051022A (en) Bypass Auxiliary Catalytic Inverter
JPH05171921A (en) Exhaust gas purifying device
JP2717892B2 (en) Exhaust gas purification device
JP3834832B2 (en) Exhaust gas purification device for internal combustion engine
KR20110062625A (en) Denitrification catalyst and exhaust system using the same
JP4630721B2 (en) Engine exhaust system
KR100282601B1 (en) Exhaust aftertreatment device for lean burn cars
JP2005248892A (en) Exhaust emission control method and exhaust emission control system
KR20240009563A (en) Apparatus for purifying exhaust gas
KR20200114380A (en) After treatment system for lean-burn engine
JP3433461B2 (en) Exhaust gas purification device
JPH05321649A (en) Exhaust emission control device
JPH06241033A (en) Exhaust gas purifyer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees