JP2005248892A - Exhaust emission control method and exhaust emission control system - Google Patents

Exhaust emission control method and exhaust emission control system Download PDF

Info

Publication number
JP2005248892A
JP2005248892A JP2004062637A JP2004062637A JP2005248892A JP 2005248892 A JP2005248892 A JP 2005248892A JP 2004062637 A JP2004062637 A JP 2004062637A JP 2004062637 A JP2004062637 A JP 2004062637A JP 2005248892 A JP2005248892 A JP 2005248892A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
nox
passage
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004062637A
Other languages
Japanese (ja)
Inventor
Junichi Onuma
潤一 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2004062637A priority Critical patent/JP2005248892A/en
Publication of JP2005248892A publication Critical patent/JP2005248892A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control method and an exhaust emission control system capable of efficiently performing both of regeneration for recovery of NOx purification capacity of NOx direct reduction type catalyst and sulfur purge for removing sulfur adsorbed by the NOx direct reduction type catalyst. <P>SOLUTION: In the exhaust emission control system 1 having oxidation catalyst 3 and NOx direct reduction type catalyst 4 arranged in an exhaust gas passage 2 of an internal combustion engine E in an order from an upstream side and provided with a bypass circuit 5 bypassing the oxidation catalyst 3 and a passage change over means 6, exhaust gas is made pass through the oxidation catalyst 3 at a time of sulfur purge of the NOx direct reduction type catalyst 4 and exhaust gas is made pass through the bypass passage at a time of rich operation other than sulfur purge. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、NOx直接還元型触媒を備えた排気ガス浄化システムにおいて、NOx浄化能力の回復のための再生制御と硫黄被毒を解消するための硫黄パージ制御の両方の最適化を図る排気ガス浄化方法及び排気ガス浄化システムに関する。   The present invention relates to an exhaust gas purification system equipped with a NOx direct reduction catalyst, which is an exhaust gas purification system that optimizes both regeneration control for recovery of NOx purification capability and sulfur purge control for eliminating sulfur poisoning. The present invention relates to a method and an exhaust gas purification system.

自動車の内燃機関や据置式の内燃機関等の排気ガスから、PM(パテイキュレート・マター:粒子状物質)やNOx(窒素酸化物)を除去して排気ガスを浄化するための排気ガス浄化装置について種々の研究や提案がなされており、特に、自動車等の排気ガスを浄化するために、NOxに対しては、NOx吸蔵還元型触媒やNOx直接還元型触媒等が使用されている。   Exhaust gas purification device for purifying exhaust gas by removing PM (particulate matter) and NOx (nitrogen oxide) from exhaust gas of automobile internal combustion engine and stationary internal combustion engine, etc. Various studies and proposals have been made, and in particular, NOx occlusion reduction type catalysts and NOx direct reduction type catalysts are used for NOx in order to purify exhaust gas from automobiles and the like.

このNOx直接還元型触媒は、NOxを直接還元するNOx浄化触媒であり、β型ゼオライト等の担体に触媒成分であるロジウム(Rh)やパラジウム(Pd)等の金属を担持させたものである。更に、金属の酸化作用を軽減し、NOx還元能力の保持に寄与するセリウム(Ce)を配合したり、下層に三元触媒を設けて酸化還元反応、特にリッチ状態におけるNOxの還元反応を促進するようにしたり、NOxの浄化率を向上させるために担体に鉄(Fe)を加える等しているものもある。   This NOx direct reduction catalyst is a NOx purification catalyst that directly reduces NOx, and is a catalyst in which a catalyst component such as rhodium (Rh) or palladium (Pd) is supported on a support such as β-type zeolite. In addition, cerium (Ce) that contributes to maintaining the NOx reduction ability is reduced by reducing the metal oxidizing action, or a three-way catalyst is provided in the lower layer to promote the oxidation-reduction reaction, particularly NOx reduction reaction in a rich state. In some cases, iron (Fe) is added to the carrier in order to improve the NOx purification rate.

このNOx直接還元型触媒は、ディーゼルエンジン等の内燃機関の、空燃比がリーン状態の排気ガスのような酸素濃度が高い雰囲気では、NOxを分解してN2 に直接還元する。しかし、この還元の際に、触媒の活性物質である金属にO2 が吸着して還元性能が悪化する。そのため、排気ガスの空燃比が理論空燃比やリッチ状態になるように、排気ガス中の酸素濃度を略ゼロ%に低いリッチ状態にして、触媒の活性物質を再生して活性化する必要がある。この触媒再生のためのリッチ運転制御は、吸気絞り等の吸気量制御やポスト噴射(後噴射)等の燃料噴射制御やEGR制御等で実施することができる。この場合の排気温度は、例えば、400℃〜500℃の温度よりも高温とする。 This NOx direct reduction type catalyst decomposes NOx and directly reduces it to N 2 in an atmosphere of a high oxygen concentration such as an exhaust gas having a lean air-fuel ratio in an internal combustion engine such as a diesel engine. However, during this reduction, O 2 is adsorbed on the metal which is the active substance of the catalyst, and the reduction performance deteriorates. Therefore, it is necessary to regenerate and activate the active substance of the catalyst by setting the oxygen concentration in the exhaust gas to a rich state as low as approximately zero% so that the air-fuel ratio of the exhaust gas becomes a stoichiometric air-fuel ratio or a rich state. . The rich operation control for catalyst regeneration can be performed by intake amount control such as an intake throttle, fuel injection control such as post injection (post injection), EGR control, or the like. In this case, the exhaust temperature is set to be higher than, for example, 400 ° C. to 500 ° C.

このNOx直接還元型触媒では、排気ガスがリーン状態の時にはNOxを窒素と酸素に選択的に分解し、排気ガス中の酸素濃度を低下させたリッチ状態の時にはNOx直接還元型触媒が還元され再生される。従って、この直接還元型NOx触媒をエンジンの排気通路に設けたNOx浄化システムにおいて十分なNOx浄化性能を発揮させるためには、エンジン稼働中に通常運転のリーン条件制御と触媒再生用のリッチ条件制御を適宜切り換えて行う必要がある。更に、リッチ運転時における未燃燃料のNOx直接還元型触媒の後流への排出を抑えるため、噴射時期を大幅に進角させるPCI(予混合圧縮着火)リッチ運転制御とを組み合わせて使用する。   In this NOx direct reduction catalyst, NOx is selectively decomposed into nitrogen and oxygen when the exhaust gas is lean, and the NOx direct reduction catalyst is reduced and regenerated when the exhaust gas is in a rich state where the oxygen concentration in the exhaust gas is reduced. Is done. Therefore, in order to exhibit sufficient NOx purification performance in a NOx purification system in which this direct reduction type NOx catalyst is provided in the exhaust passage of the engine, lean condition control for normal operation and rich condition control for catalyst regeneration during engine operation Must be switched appropriately. Furthermore, in order to suppress discharge of unburned fuel to the downstream of the NOx direct reduction catalyst during rich operation, it is used in combination with PCI (premixed compression ignition) rich operation control that greatly advances the injection timing.

しかし、このNOx直接還元型触媒には、排気ガスが通過する際に燃料中に含まれている硫黄分が吸着され、硫黄分の吸着量の増加に伴ってNOx分解能力が低下するという硫黄被毒の問題がある。この硫黄被毒に関しては、模擬ガスを用いた試験から、硫黄被毒したNOx直接還元型触媒にリッチ状態の高温排気ガスを流通させると、吸着された硫黄分がSO2 及びH2 Sの形態となり除去できることが分かっている。 However, this NOx direct reduction catalyst adsorbs the sulfur content contained in the fuel when exhaust gas passes, and the NOx decomposition capacity decreases as the adsorption amount of the sulfur content increases. There is a poison problem. With regard to this sulfur poisoning, when a high-temperature exhaust gas in a rich state is circulated through a sulfur poisoned NOx direct reduction catalyst from a test using a simulated gas, the adsorbed sulfur content is in the form of SO 2 and H 2 S. It is known that it can be removed.

そのため、NOx直接還元型触媒においては、NOx還元能力の回復のための再生制御の時と硫黄被毒からの回復のための硫黄パージ制御の時に、ポスト噴射や排気管内噴射等の手段で排気ガスの空燃比をリッチ状態にし、かつ、排気温度及び触媒温度を上昇させるリッチ運転制御を行う。   Therefore, in the NOx direct reduction type catalyst, exhaust gas is emitted by means such as post-injection or in-pipe injection during the regeneration control for recovery of NOx reduction capability and the sulfur purge control for recovery from sulfur poisoning. The rich air-fuel ratio is made rich, and the rich operation control is performed to raise the exhaust gas temperature and the catalyst temperature.

また、排気温度の上昇を促進するために、NOx直接還元型触媒の上流に酸化触媒を設けて、この触媒作用で排気中のHC,CO等の未燃燃料を酸化して、排気温度を上昇させることが提案されている。   In addition, in order to promote the rise in exhaust temperature, an oxidation catalyst is provided upstream of the NOx direct reduction catalyst, and this catalyst action oxidizes unburned fuel such as HC and CO in the exhaust to raise the exhaust temperature. It has been proposed to let

しかし、再生制御の時に、排気ガスが酸化触媒を通過すると、触媒を還元するための還元剤、即ち、HC,COが酸化されてしまうため、触媒を還元する効果が低下し、NOx浄化能力の回復が不充分となり、NOx浄化率が低下するという問題がある。   However, when the exhaust gas passes through the oxidation catalyst during the regeneration control, the reducing agent for reducing the catalyst, that is, HC and CO are oxidized, so that the effect of reducing the catalyst is reduced and the NOx purification capacity is reduced. There is a problem that the recovery becomes insufficient and the NOx purification rate is lowered.

この問題を解決するため、酸化触媒を迂回するバイパス通路と切替弁を設けて、リッチ制御時、排気ガスが酸化触媒をバイパスする排気浄化装置が提案されている。この排気浄化装置の一つとして、排気通路に酸化触媒、DPF、NOx吸蔵還元型触媒を上流側から順次配置すると共に、酸化触媒をバイパスするバイパス通路と排気通路切替手段を有し、空燃比がリーン時に排気ガスを酸化触媒を通過させてDPFを連続再生し、リッチ時には排気ガスをバイパス通路に流通させて、排気ガス中の還元剤の酸化触媒による消費を回避しながらNOx吸蔵還元型触媒の再生を図る排気浄化装置がある(例えば、特許文献1参照。)。   In order to solve this problem, there has been proposed an exhaust purification device in which a bypass passage that bypasses the oxidation catalyst and a switching valve are provided so that exhaust gas bypasses the oxidation catalyst during rich control. As one of the exhaust emission control devices, an oxidation catalyst, a DPF, and a NOx storage reduction catalyst are sequentially arranged in the exhaust passage from the upstream side, and have a bypass passage and an exhaust passage switching means for bypassing the oxidation catalyst, and the air-fuel ratio is The exhaust gas passes through the oxidation catalyst during lean and continuously regenerates the DPF. When rich, the exhaust gas is circulated through the bypass passage, avoiding the consumption of the reducing agent in the exhaust gas by the oxidation catalyst, and the NOx storage reduction type catalyst. There is an exhaust emission control device which aims at regeneration (for example, refer to patent documents 1).

しかしながら、この排気浄化装置では、硫黄パージについては触れられておらず、リッチ運転制御であっても、NOx直接還元型触媒の硫黄パージの時には、再生制御時よりも高い触媒温度が必要になるにも係わらず、排気ガスがバイパス通路を通過すると、酸化触媒による排気温度上昇効果を得ることができなくなるという問題がある。また、この硫黄パージ制御時には、HC,CO等の還元剤を必要としないので、HC,CO等が触媒後流側に流出するという問題もある。
特開2002−188432号公報
However, in this exhaust purification device, the sulfur purge is not mentioned, and even in the rich operation control, a higher catalyst temperature is required during the sulfur purge of the NOx direct reduction catalyst than during the regeneration control. Nevertheless, when the exhaust gas passes through the bypass passage, there is a problem that the effect of increasing the exhaust temperature by the oxidation catalyst cannot be obtained. In addition, during the sulfur purge control, since a reducing agent such as HC or CO is not required, there is a problem that HC, CO, or the like flows out to the downstream side of the catalyst.
JP 2002-188432 A

本発明の目的は、内燃機関の排気通路に酸化触媒とNOx直接還元型触媒を備えた排気ガス浄化システムにおいて、NOx直接還元型触媒のNOx浄化能力の回復のための触媒再生と、NOx直接還元型触媒に吸着した硫黄分を除去する硫黄パージの両方を効率よく行うことができる排気ガス浄化方法及び排気ガス浄化システムを提案することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide catalyst regeneration for recovery of NOx purification ability of a NOx direct reduction type catalyst and NOx direct reduction in an exhaust gas purification system having an oxidation catalyst and a NOx direct reduction type catalyst in an exhaust passage of an internal combustion engine. The present invention is to propose an exhaust gas purification method and an exhaust gas purification system capable of efficiently performing both sulfur purges for removing sulfur components adsorbed on the catalyst.

上記の目的を達成するための排気ガス浄化方法は、内燃機関の排気通路に上流側から順に、酸化触媒と、リーン時にNOxを直接分解しリッチ時に再生されるNOx直接還元型触媒とを配置すると共に、前記酸化触媒を迂回するバイパス通路と、排気ガスの前記酸化触媒の通過と前記バイパス通路の通過とを切り替える通路切替手段を備えた排気ガス浄化システムにおいて、前記NOx直接還元型触媒の硫黄パージの場合には、排気ガスを前記酸化触媒を通過させ、前記硫黄パージ以外のリッチ運転の場合には、排気ガスを前記バイパス通路を通過させることを特徴とする方法として構成される。   In the exhaust gas purification method for achieving the above object, an oxidation catalyst and a NOx direct reduction type catalyst that directly decomposes NOx when lean and regenerates when rich are arranged in order from the upstream side in the exhaust passage of the internal combustion engine. In addition, in the exhaust gas purification system comprising a bypass passage that bypasses the oxidation catalyst and passage switching means that switches between passage of the exhaust gas through the oxidation catalyst and passage of the bypass catalyst, a sulfur purge of the NOx direct reduction catalyst In this case, the exhaust gas is passed through the oxidation catalyst, and in the case of rich operation other than the sulfur purge, the exhaust gas is passed through the bypass passage.

そして、上記の目的を達成するための排気ガス浄化システムは、内燃機関の排気通路に上流側から順に、酸化触媒と、リーン時にNOxを直接分解しリッチ時に再生されるNOx直接還元型触媒とを配置すると共に、前記酸化触媒を迂回するバイパス通路と、排気ガスの前記酸化触媒の通過と前記バイパス通路の通過とを切り替える通路切替手段を備えた排気ガス浄化システムにおいて、前記NOx直接還元型触媒の硫黄パージに際しての硫黄パージ制御時に、排気ガスを前記酸化触媒を通過させ、前記硫黄パージ制御以外のリッチ制御時には、排気ガスを前記バイパス通路に流通させる制御手段を備えて構成される。   An exhaust gas purification system for achieving the above-described object comprises, in order from the upstream side, an exhaust catalyst in an exhaust passage of an internal combustion engine, and an NOx direct reduction type catalyst that directly decomposes NOx when lean and regenerates when rich. And an exhaust gas purification system comprising a bypass passage that bypasses the oxidation catalyst and a passage switching means that switches between passage of the exhaust gas through the oxidation catalyst and passage of the bypass passage. At the time of sulfur purge control at the time of sulfur purge, the exhaust gas is passed through the oxidation catalyst, and at the time of rich control other than the sulfur purge control, a control means is provided for flowing the exhaust gas through the bypass passage.

つまり、酸化触媒とNOx直接還元型触媒を設けるエンジンの排気ガス浄化装置において、酸化触媒を迂回するバイパス通路を設けて、NOx直接還元型触媒を還元して再生する再生制御のリッチ運転制御時にはバイパス通路を開いて酸化触媒を迂回させるが、NOx直接還元型触媒の硫黄パージのリッチ運転制御時には、バイパス通路を閉じて排気が酸化触媒に通過するように制御する。   In other words, in an exhaust gas purifying apparatus for an engine provided with an oxidation catalyst and a NOx direct reduction catalyst, a bypass passage that bypasses the oxidation catalyst is provided to bypass the NOx direct reduction catalyst during the rich operation control of the regeneration control that reduces and regenerates the NOx direct reduction catalyst. The passage is opened to bypass the oxidation catalyst, but at the time of rich operation control of the sulfur purge of the NOx direct reduction catalyst, the bypass passage is closed and the exhaust gas is controlled to pass through the oxidation catalyst.

なお、通常運転のリーン運転では、バイパス通路は開かれ、排気ガスは酸化触媒を通過しないように構成され、圧力損失を少なくする。   In the normal lean operation, the bypass passage is opened and the exhaust gas is configured not to pass through the oxidation catalyst, thereby reducing pressure loss.

また、通路切替手段については、排気ガスの通路をバイパス通路と酸化触媒の一方に切り替える切替弁の他にも、バイパス通路を開閉する開閉弁も含む。このバイパス通路を開閉する開閉弁の場合には、バイパス通路を開くと酸化触媒の通路よりも流通抵抗(圧力損失)が少ないため、排気ガスの殆どはバイパス通路側を通過し、バイパス通路を閉じると、酸化触媒の通路のみとなり、排気ガスは酸化触媒を通過することになる。   Further, the passage switching means includes an opening / closing valve for opening and closing the bypass passage in addition to the switching valve for switching the exhaust gas passage to one of the bypass passage and the oxidation catalyst. In the case of the on-off valve that opens and closes the bypass passage, when the bypass passage is opened, the flow resistance (pressure loss) is less than that of the oxidation catalyst passage, so most of the exhaust gas passes through the bypass passage and closes the bypass passage. Then, only the passage of the oxidation catalyst is provided, and the exhaust gas passes through the oxidation catalyst.

本発明の排気ガス浄化方法及び排気ガス浄化システムによれば、内燃機関の排気通路にNOx直接還元型触媒を備えた排気ガス浄化システムにおいて、NOx直接還元型触媒に吸着した硫黄分を除去する硫黄パージ運転時のリッチ運転制御では排気ガスを酸化触媒を通過させるので、酸化触媒におけるHC,CO等の未燃燃料の酸化により効率よく排気温度を上昇させることができ、NOx直接還元型触媒の硫黄パージを効率よく行うことができる。   According to the exhaust gas purification method and the exhaust gas purification system of the present invention, in the exhaust gas purification system provided with the NOx direct reduction catalyst in the exhaust passage of the internal combustion engine, sulfur that removes the sulfur adsorbed on the NOx direct reduction catalyst. In rich operation control during purge operation, exhaust gas is allowed to pass through the oxidation catalyst, so that the exhaust temperature can be increased efficiently by oxidizing unburned fuel such as HC and CO in the oxidation catalyst, and sulfur in the NOx direct reduction catalyst Purge can be performed efficiently.

また、硫黄パージ以外のNOx浄化能力の回復のための再生運転時のリッチ運転制御では、排気ガスをバイパス通路を通過させ酸化触媒を迂回させるので、酸化触媒におけるHC,CO等の還元剤の消費を回避して還元剤をNOx直接還元型触媒に供給して再生を効率よく行うことができる。   Further, in the rich operation control during the regeneration operation for recovery of the NOx purification ability other than the sulfur purge, exhaust gas passes through the bypass passage and bypasses the oxidation catalyst, so that the consumption of reducing agents such as HC and CO in the oxidation catalyst Therefore, regeneration can be efficiently performed by supplying the reducing agent to the NOx direct reduction catalyst.

以下、本発明に係る実施の形態の排気ガス浄化システムについて図面を参照しながら説明する。   Hereinafter, an exhaust gas purification system according to an embodiment of the present invention will be described with reference to the drawings.

図1に、本発明の実施の形態の排気ガス浄化システム1の構成を示す。この排気ガス浄化システム1は、エンジン(内燃機関)Eの排気ガス通路2に酸化触媒3とNOx直接還元型触媒4が配置され、この酸化触媒3を迂回するためのバイパス通路5を設ける。更に、この排気ガスの通路を酸化触媒3とバイパス通路5のどちらか一方に切り替える切替弁(通路切替手段)6を設ける。   FIG. 1 shows a configuration of an exhaust gas purification system 1 according to an embodiment of the present invention. In this exhaust gas purification system 1, an oxidation catalyst 3 and a NOx direct reduction catalyst 4 are disposed in an exhaust gas passage 2 of an engine (internal combustion engine) E, and a bypass passage 5 for bypassing the oxidation catalyst 3 is provided. Further, a switching valve (passage switching means) 6 for switching the exhaust gas passage to either the oxidation catalyst 3 or the bypass passage 5 is provided.

なお、この切替弁6の代りに、バイパス通路5を開閉する開閉弁を設けてもよい。この開閉弁を使用した場合には、バイパス通路5を開くと酸化触媒3の通路よりも流通抵抗(圧力損失)が少ないため、排気ガスの殆どはバイパス通路5側を通過し、バイパス通路5を閉じると、酸化触媒3の通路のみとなり、排気ガスは酸化触媒3を通過することになる。   Note that an opening / closing valve for opening / closing the bypass passage 5 may be provided instead of the switching valve 6. When this on-off valve is used, since the flow resistance (pressure loss) is smaller than the passage of the oxidation catalyst 3 when the bypass passage 5 is opened, most of the exhaust gas passes through the bypass passage 5 side. When closed, only the passage of the oxidation catalyst 3 is provided, and the exhaust gas passes through the oxidation catalyst 3.

また、このNOx直接還元型触媒4の前後に第1及び第2排気濃度センサ11,12を設けると共に、排気温度を測定するための触媒入口排気温度センサ13と触媒入口排気温度センサ14を、NOx直接還元型触媒4の上流側と下流側の排気通路2に設置する。   Further, the first and second exhaust concentration sensors 11 and 12 are provided before and after the NOx direct reduction catalyst 4, and the catalyst inlet exhaust temperature sensor 13 and the catalyst inlet exhaust temperature sensor 14 for measuring the exhaust temperature are connected to the NOx. Installed in the exhaust passage 2 upstream and downstream of the direct reduction catalyst 4.

この第1及び第2排気濃度センサ11,12は、λ(空気過剰率)センサとNOx濃度センサと酸素濃度センサとが一体化したセンサであり、硫黄パージ制御におけるモニター用の酸素濃度、吸蔵される硫黄量等を算出するための空気過剰率(空燃比)と、NOxの浄化率を算出するためのNOx濃度を検出する。なお、空燃比(A/F)と空気過剰率(λ)との関係は、空気過剰率=供給空燃比/理論空燃比となっている。   The first and second exhaust concentration sensors 11 and 12 are sensors in which a λ (excess air ratio) sensor, a NOx concentration sensor, and an oxygen concentration sensor are integrated, and the oxygen concentration for monitoring in the sulfur purge control is stored. The excess air ratio (air-fuel ratio) for calculating the amount of sulfur and the like, and the NOx concentration for calculating the NOx purification rate are detected. The relationship between the air / fuel ratio (A / F) and the excess air ratio (λ) is excess air ratio = supply air / fuel ratio / theoretical air / fuel ratio.

なお、エンジンの制御用パラメータを決定するための試験を行う場合には、NOx浄化触媒装置4の内部の温度を直接計測するために触媒NOx浄化触媒装置4の内部に触媒用温度センサ15を設ける。この触媒用温度センサ15は、制御用パラメータの数値を得た後の実車搭載の段階では不要となる。   When a test for determining engine control parameters is performed, a catalyst temperature sensor 15 is provided inside the catalyst NOx purification catalyst device 4 in order to directly measure the temperature inside the NOx purification catalyst device 4. . The catalyst temperature sensor 15 is not required at the stage of actual vehicle mounting after the numerical values of the control parameters are obtained.

そして、これらのセンサ11〜15の出力値は、エンジンEの運転の全般的な制御を行うと共にNOx直接還元型触媒4のNOx浄化能力の回復制御も行う制御装置(ECU:エンジンコントロールユニット)7に入力され、この制御装置7から出力される制御信号により、切替弁6やエンジンEの燃料噴射用のコモンレール電子制御燃料噴射装置や絞り弁やEGR弁等が制御される。   The output values of these sensors 11 to 15 are a control device (ECU: engine control unit) 7 that performs overall control of the operation of the engine E and also performs recovery control of the NOx purification ability of the NOx direct reduction catalyst 4. The control valve 7, the common rail electronic control fuel injection device for fuel injection of the engine E, the throttle valve, the EGR valve, and the like are controlled by the control signal output from the control device 7.

また、酸化触媒3は、ハニカム状のコーディエライトあるいは耐熱鋼からなる担体の表面に、活性アルミナ等をコートしてウォッシュコート層を形成し、このウォッシュコート層に白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属からなる触媒活性成分を担持させて形成する。この酸化触媒3は排気ガス中のHC,CO等を酸化してこの燃焼熱により排気温度を上昇させる。   The oxidation catalyst 3 is formed by coating activated alumina or the like on the surface of a carrier made of honeycomb cordierite or heat-resistant steel to form a washcoat layer, and platinum (Pt), palladium (Pd) is formed on the washcoat layer. ) And a catalytically active component made of a noble metal such as rhodium (Rh). The oxidation catalyst 3 oxidizes HC, CO, etc. in the exhaust gas and raises the exhaust temperature by this combustion heat.

NOx直接還元型触媒4は、β型ゼオライト等の担体にロジウム(Rh)やパラジウム(Pd)等の特別な金属(活性物質)を担持させて構成される。そして、更に、金属の酸化作用を軽減し、NOx還元能力の保持に寄与するセリウム(Ce)を配合したり、下層に白金等を有する三元触媒を設けて酸化還元反応、特にリッチ状態におけるNOxの還元反応を促進するようにしたり、また、NOxの浄化率を向上させるために担持体に鉄(Fe)を加えたりする場合もある。   The NOx direct reduction catalyst 4 is configured by supporting a special metal (active substance) such as rhodium (Rh) or palladium (Pd) on a support such as β-type zeolite. Further, cerium (Ce) that contributes to maintaining the NOx reduction ability is reduced by reducing the oxidation action of the metal, or a three-way catalyst having platinum or the like is provided in the lower layer to provide an oxidation-reduction reaction, particularly NOx in a rich state. In some cases, iron (Fe) is added to the support in order to promote the reduction reaction, or to improve the NOx purification rate.

このNOx直接還元型触媒4は、ディーゼルエンジン等の内燃機関Eの空燃比がリーン状態にある排気ガスのように酸素濃度が高い雰囲気では、NOxと接触して、NOxをN2 に直接還元し、NOxを浄化する。但し、このNOxの還元と共に、触媒の活性物質にO2 が吸着し還元能力が低下する。この還元能力は、空燃比が理論空燃比やリッチである時のように、排気ガス中の酸素濃度が略ゼロ%の還元雰囲気にすることにより再生できる。 This NOx direct reduction type catalyst 4 is in contact with NOx and directly reduces NOx to N 2 in an atmosphere having a high oxygen concentration such as exhaust gas in which the air-fuel ratio of the internal combustion engine E such as a diesel engine is in a lean state. , Purifies NOx. However, along with the reduction of NOx, O 2 is adsorbed on the active substance of the catalyst and the reducing ability is lowered. This reduction capability can be regenerated by making the reducing atmosphere in which the oxygen concentration in the exhaust gas is substantially zero%, such as when the air-fuel ratio is the stoichiometric air-fuel ratio or rich.

また、このNOx直接還元型触媒4は、燃料中に含まれている硫黄分を吸着することによりNOx浄化能力が低下する。NOx浄化能力の回復は、NOx浄化触媒に流入する排気ガスを高温かつリッチ状態にする硫黄パージを行うことにより回復できる。   Further, the NOx direct reduction catalyst 4 has a reduced NOx purification capability by adsorbing the sulfur content contained in the fuel. The recovery of the NOx purification capacity can be recovered by performing a sulfur purge that brings the exhaust gas flowing into the NOx purification catalyst into a high temperature and rich state.

そして、排気ガス浄化システム1の制御装置が、エンジンEの制御装置7に組み込まれ、エンジンEの運転制御と共に、排気ガス浄化システム1の制御を行う。この排気ガス浄化システム1の制御装置は、図2に示すような、各制御手段C11〜C20等を有する排気ガス浄化システムの制御手段C1を備えて構成される。   And the control apparatus of the exhaust gas purification system 1 is incorporated in the control apparatus 7 of the engine E, and controls the exhaust gas purification system 1 together with the operation control of the engine E. The control device of the exhaust gas purification system 1 includes a control means C1 of an exhaust gas purification system having control means C11 to C20 as shown in FIG.

排気ガス成分検出手段C11は、排気ガス中の酸素濃度(又は空気過剰率λ)やNOx濃度を検出する手段であり、第1及び第2排気濃度センサ11,12等から構成される。   The exhaust gas component detection means C11 is a means for detecting the oxygen concentration (or excess air ratio λ) and the NOx concentration in the exhaust gas, and includes first and second exhaust concentration sensors 11, 12 and the like.

リーン運転制御手段C12は、リーン運転制御を行うための手段であり、エンジンの回転数や負荷に応じて、EGR制御や吸気絞り制御を併用しながら燃料噴射してリーン運転を行う。このリーン運転制御手段C12は、主として、通常のエンジン運転用として用いられる。   The lean operation control means C12 is a means for performing lean operation control, and performs lean operation by injecting fuel while using EGR control and intake throttle control according to the engine speed and load. The lean operation control means C12 is mainly used for normal engine operation.

リッチ運転制御手段C13は、排気ガスの空燃比をリッチにするためのリッチ運転制御を行うための手段であり、EGR制御や吸気絞り制御を併用しながら、燃料噴射で多段噴射やポスト噴射あるいは排気管内直接燃料噴射を行って、排気ガスを低酸素濃度状態にすると共に排気温度を上昇させるリッチ運転を行う。このリッチ運転制御手段C13は、排気昇温用、再生制御用、硫黄パージ用として用いられる。   The rich operation control means C13 is a means for performing rich operation control for making the air-fuel ratio of the exhaust gas rich, and in combination with EGR control and intake throttle control, multi-stage injection, post-injection, or exhaust is performed by fuel injection. In-pipe direct fuel injection is performed to bring the exhaust gas into a low oxygen concentration state and perform a rich operation in which the exhaust temperature is raised. The rich operation control means C13 is used for exhaust gas temperature raising, regeneration control, and sulfur purge.

通常運転手段C14は、通常のエンジン運転を行うための手段であり、車の運転のための要求に基づいて、リーン運転制御手段C12により通常のエンジン運転としてのリーン運転を行う。なお、通常運転のリーン運転では、バイパス通路は開かれ、排気ガスは酸化触媒を通過しないように構成され、圧力損失を少なくする。   The normal operation means C14 is means for performing normal engine operation, and the lean operation as the normal engine operation is performed by the lean operation control means C12 based on a request for driving the vehicle. In the normal lean operation, the bypass passage is opened and the exhaust gas is configured not to pass through the oxidation catalyst, thereby reducing pressure loss.

再生開始判定手段C15は、NOx浄化能力を回復させるための再生制御を開始するか否かを判定する手段であり、例えば、排気ガス成分検出手段C11で検出したNOx濃度からNOx浄化率を算出し、このNOx浄化率が所定の判定値より低くなった場合にNOx浄化触媒の再生を開始する。   The regeneration start determination means C15 is a means for determining whether or not regeneration control for recovering the NOx purification capacity is started. For example, the regeneration start determination means C15 calculates the NOx purification rate from the NOx concentration detected by the exhaust gas component detection means C11. When the NOx purification rate becomes lower than a predetermined determination value, regeneration of the NOx purification catalyst is started.

再生制御手段C16は、リッチ運転制御手段C13により、排気ガスの状態を所定のリッチ空燃比状態及び所定の温度範囲(触媒にもよるが、概ね200℃〜600℃)にして、NOx浄化能力を回復し、NOx浄化触媒の再生を行う。この再生制御では、NOx直接還元型触媒4で還元剤が必要であるので、切替弁6を操作してバイパス通路5を開いて、排気ガスが酸化触媒3を通過しないようにして、還元剤となるHC,CO等の未燃燃料が酸化触媒3で消費されるのを防止する。これにより、NOx直接還元型触媒4の還元を効率よく行い、NOx浄化能力を回復させNOx直接還元型触媒4を再生する。   The regeneration control means C16 sets the exhaust gas state to a predetermined rich air-fuel ratio state and a predetermined temperature range (approximately 200 ° C. to 600 ° C. depending on the catalyst) by the rich operation control means C13, thereby improving the NOx purification capability. It recovers and the NOx purification catalyst is regenerated. In this regeneration control, a reducing agent is required in the NOx direct reduction type catalyst 4, so that the bypass valve 5 is opened by operating the switching valve 6 so that the exhaust gas does not pass through the oxidation catalyst 3, and the reducing agent and The unburned fuel such as HC and CO is prevented from being consumed by the oxidation catalyst 3. Thereby, the NOx direct reduction catalyst 4 is efficiently reduced, the NOx purification ability is recovered, and the NOx direct reduction catalyst 4 is regenerated.

再生終了判定手段C17は、再生制御を終了するか否かを判定する手段であり、例えば、再生制御の継続時間が所定の再生終了時間を経過した時に再生終了であると判定する。   The reproduction end determination means C17 is a means for determining whether or not to end the reproduction control. For example, the reproduction end determination means C17 determines that the reproduction is complete when a predetermined reproduction end time has elapsed.

また、硫黄パージ開始判定手段C18は、硫黄パージ制御を開始するか否かの判定をする手段であり、例えば、燃料消費量と燃料中に含まれる硫黄量(市場実勢値サルファ濃度等)を基にエンジン排出硫黄量を算出し、このエンジン排出硫黄量からNOx浄化触媒に吸蔵された硫黄吸着量を算出して、これを積算して求めた積算硫黄吸着量が、所定の判定値よりも大きくなったか否かで判定する。   The sulfur purge start determining means C18 is a means for determining whether or not to start the sulfur purge control. For example, the sulfur purge start determining means C18 is based on the fuel consumption and the amount of sulfur contained in the fuel (market actual value sulfur concentration, etc.). The amount of sulfur discharged from the engine is calculated, the amount of sulfur adsorbed in the NOx purification catalyst is calculated from the amount of sulfur discharged from the engine, and the accumulated amount of sulfur obtained by integrating the amount of sulfur is larger than a predetermined judgment value. Judgment is made by whether or not.

硫黄パージ制御手段C19は、リッチ運転制御手段C13により、排気ガスの状態を所定のリッチ空燃比状態及び所定の温度範囲にして、NOx浄化能力を回復し、NOx浄化触媒の再生を行う。この所定の温度範囲は硫黄パージ可能な温度(触媒にもよるが、概ね600℃〜650℃)以上である。   The sulfur purge control means C19 restores the NOx purification capacity and regenerates the NOx purification catalyst by setting the exhaust gas state to a predetermined rich air-fuel ratio state and a predetermined temperature range by the rich operation control means C13. This predetermined temperature range is equal to or higher than the temperature at which sulfur purging is possible (although it depends on the catalyst, it is generally 600 ° C to 650 ° C).

本発明では、この硫黄パージ制御手段C19において、硫黄パージ制御を行う際に、排気温度を再生制御時よりも高くする必要があるため、切替弁6を操作してバイパス通路5を閉じて、排気ガスが酸化触媒3を通過するようにする。これにより、リッチ運転制御で排気ガス中に排出されるHC,CO等の未燃燃料を酸化触媒3で酸化させて、排気温度を触媒にもよるが、概ね600℃〜650℃以上に上昇させて、効率よくNOx直接還元型触媒4の硫黄パージを行えるようにする。   In the present invention, in the sulfur purge control means C19, when the sulfur purge control is performed, the exhaust temperature needs to be higher than that during the regeneration control. Therefore, the switching valve 6 is operated to close the bypass passage 5, Gas is allowed to pass through the oxidation catalyst 3. As a result, unburned fuel such as HC and CO discharged into the exhaust gas by rich operation control is oxidized by the oxidation catalyst 3, and the exhaust temperature is raised to approximately 600 ° C to 650 ° C or more depending on the catalyst. Thus, the sulfur purge of the NOx direct reduction catalyst 4 can be efficiently performed.

硫黄パージ終了判定手段C20は、硫黄パージ制御を終了するか否かの判定をする手段であり、例えば、硫黄パージ運転時間tp が、予め設定された硫黄パージ運転終了時間tpendよりも長くなったか否かで判定する。   The sulfur purge end determination means C20 is a means for determining whether or not to end the sulfur purge control. For example, whether or not the sulfur purge operation time tp is longer than a preset sulfur purge operation end time tpend. Judge by.

そして、この排気ガス浄化システム1において、本発明に係わる排気ガス浄化方法は、次のようにして行われる。   And in this exhaust gas purification system 1, the exhaust gas purification method concerning this invention is performed as follows.

通常のエンジン運転は通常運転手段C14により、リーン運転制御で行われる。この通常運転のリーン運転では、バイパス通路は開かれ、排気ガスは酸化触媒を通過しないように構成され、圧力損失を少なくする。   Normal engine operation is performed by lean operation control by the normal operation means C14. In the lean operation of the normal operation, the bypass passage is opened and the exhaust gas is configured not to pass through the oxidation catalyst, thereby reducing the pressure loss.

そして、通常のエンジン運転中に、再生開始判定手段C15により、NOx直接還元型触媒4の還元による再生が必要であると判定された時には、再生制御手段C16により、排気ガスをバイパス通路5を通過させながらリッチ運転制御を行い、NOx直接還元型触媒4に十分な還元剤を供給して還元し、再生する。これにより、酸化触媒3における還元剤の消費を回避できるので、効率よくNOx直接還元型触媒4を還元してNOx浄化能力を再生できる。この再生制御の終了は再生終了判定手段C17によって判定される。   During normal engine operation, when the regeneration start determining means C15 determines that regeneration by reduction of the NOx direct reduction catalyst 4 is necessary, the regeneration control means C16 passes the exhaust gas through the bypass passage 5. Then, rich operation control is performed, and a sufficient reducing agent is supplied to the NOx direct reduction catalyst 4 to reduce and regenerate. Thereby, consumption of the reducing agent in the oxidation catalyst 3 can be avoided, so that the NOx direct reduction catalyst 4 can be efficiently reduced to regenerate the NOx purification ability. The end of the reproduction control is determined by the reproduction end determination means C17.

また、通常のエンジン運転中に、硫黄パージ開始判定手段C18により、NOx直接還元型触媒4の硫黄パージが必要であると判定された時には、硫黄パージ制御手段C19により、排気ガスを酸化触媒3を通過させながら、リッチ運転制御を行い、酸化触媒3で排気ガス中の還元剤を酸化して排気温度を上昇し、触媒温度を高温にしながら、排気ガスの雰囲気を低酸素濃度状態にして硫黄パージを行う。これにより、酸化触媒における未燃燃料の酸化により効率よく排気温度を上昇させることができ、NOx直接還元型触媒の硫黄パージを効率よく行うことができる。この硫黄パージ制御の終了は硫黄パージ終了判断手段C20によって判定される。   Also, during normal engine operation, when the sulfur purge start determining means C18 determines that the sulfur purge of the NOx direct reduction catalyst 4 is necessary, the sulfur purge control means C19 converts the exhaust gas to the oxidation catalyst 3. The rich operation control is performed while passing the gas, and the oxidizing catalyst 3 oxidizes the reducing agent in the exhaust gas to raise the exhaust temperature. I do. Thereby, exhaust temperature can be raised efficiently by oxidation of unburned fuel in the oxidation catalyst, and sulfur purge of the NOx direct reduction catalyst can be performed efficiently. The end of this sulfur purge control is determined by the sulfur purge end determination means C20.

次に、この排気ガス浄化システム1における硫黄パージ制御について図3に例示するような制御フローを参照しながらもう少し詳しく説明する。この図3の制御フローは、NOx直接還元型触媒4の硫黄パージ(サルファパージ:脱硫)用の制御フローであり、NOx吸蔵能力の再生に関する制御も扱う上級の制御フローで、硫黄パージ制御が必要であると判断された時に呼ばれて、硫黄パージ制御を行うものとして示されている。なお、本発明は、主に硫黄パージ制御に関するものであるため、再生制御や硫黄パージ制御の開始判断等の詳細な説明は省略する。   Next, the sulfur purge control in the exhaust gas purification system 1 will be described in a little more detail with reference to a control flow illustrated in FIG. The control flow in FIG. 3 is a control flow for sulfur purge (sulfur purge: desulfurization) of the NOx direct reduction catalyst 4, and is an advanced control flow that also handles control related to regeneration of NOx storage capacity, and requires sulfur purge control. This is called when it is determined that the sulfur purge control is performed. Since the present invention mainly relates to sulfur purge control, detailed explanations such as regeneration control and determination of start of sulfur purge control are omitted.

この制御フローがスタートすると、ステップS11で、排気ガスが酸化触媒4を通過するように、切替6を操作してバイパス通路5を閉じる。次のステップS12で、触媒温度Tc が設定温度Tset 以上であるか否かを判定する。   When this control flow is started, the bypass 6 is closed by operating the switch 6 so that the exhaust gas passes through the oxidation catalyst 4 in step S11. In the next step S12, it is determined whether or not the catalyst temperature Tc is equal to or higher than the set temperature Tset.

このステップS12の判定で、触媒温度Tc が設定温度Tset 以上でない場合には、ステップS13で排気昇温制御を行う。この排気昇温制御は、リッチ運転制御等により所定の時間(触媒温度Tc のチェックインターバルに関係する時間)の間行う。そして、ステップS12に戻る。   If it is determined in step S12 that the catalyst temperature Tc is not equal to or higher than the set temperature Tset, exhaust gas temperature raising control is performed in step S13. This exhaust temperature raising control is performed for a predetermined time (time related to the check interval of the catalyst temperature Tc) by rich operation control or the like. Then, the process returns to step S12.

このステップS12の判定で、触媒温度Tc が設定温度Tset 以上である場合には、次のステップS14で、硫黄パージ運転条件の設定と硫黄パージ運転終了時間tpendの算出を行う。次のステップS15では、タイマーをONして硫黄パージ運転時間tp の計測を開始し、次のステップS16では、低酸素濃度及び高温の脱硫用のリッチ状態を保つように、触媒入口排気温度Tinや空気過剰率λ等をモニターしながら、燃料噴射量、燃料噴射タイミングをフィードバック制御して、硫黄パージ用のリッチ運転制御を行う。なお、この硫黄パージ用のリッチ運転制御においてもEGR制御や吸気絞り制御が併用される。   If it is determined in step S12 that the catalyst temperature Tc is equal to or higher than the set temperature Tset, the sulfur purge operation condition is set and the sulfur purge operation end time tpend is calculated in the next step S14. In the next step S15, the timer is turned on and measurement of the sulfur purge operation time tp is started. In the next step S16, the catalyst inlet exhaust temperature Tin or the like is maintained so as to maintain a rich state for low-oxygen concentration and high-temperature desulfurization. While monitoring the excess air ratio λ and the like, the fuel injection amount and the fuel injection timing are feedback controlled to perform rich operation control for sulfur purge. It should be noted that EGR control and intake throttle control are also used in this rich operation control for sulfur purge.

ステップS17では、硫黄パージ制御が終了か否かを、運転タイマーによって計測される硫黄パージ運転時間tp がステップS14で算出された硫黄パージ運転終了時間tpendより大きくなったか否かで判定し、小さい間は、ステップS16に戻り、硫黄パージ用のリッチ運転制御を行う。そして、硫黄パージ運転時間tp が硫黄パージ運転終了時間tpendより大きくなるまで、ステップS16の脱硫用のリッチ運転制御を行う。   In step S17, it is determined whether or not the sulfur purge control is ended based on whether or not the sulfur purge operation time tp measured by the operation timer is longer than the sulfur purge operation end time tpend calculated in step S14. Returns to step S16 and performs rich operation control for sulfur purge. Then, the rich operation control for desulfurization in step S16 is performed until the sulfur purge operation time tp becomes longer than the sulfur purge operation end time tpend.

そして、ステップS17で、硫黄パージ運転時間tp が硫黄パージ運転終了時間tpeより大きくなって硫黄パージ制御が終了したと判定された時に、ステップS18に行き、硫黄パージ制御の終了作業を行う。この硫黄パージ制御の終了作業では、脱硫用のリッチ運転制御を終了して通常運転制御のリーン運転制御に戻すと共に、タイマーをOFFして硫黄パージ運転時間tp の計測を終了したり、硫黄パージ開始判断用数値をリセットしたりする。   In step S17, when it is determined that the sulfur purge operation time tp is longer than the sulfur purge operation end time tpe and the sulfur purge control is terminated, the process goes to step S18 to perform the sulfur purge control termination operation. In this sulfur purge control completion operation, the rich operation control for desulfurization is terminated and returned to the lean operation control of the normal operation control, and the timer is turned off to complete the measurement of the sulfur purge operation time tp, or the sulfur purge is started. Reset the numerical value for judgment.

そして、次のステップS19で、排気ガスが酸化触媒4を通過しないように、切替弁6を操作してバイパス通路5を開く。このステップS19を終えるとリターンする。   In the next step S19, the bypass valve 5 is opened by operating the switching valve 6 so that the exhaust gas does not pass through the oxidation catalyst 4. When this step S19 is completed, the process returns.

この図3の制御フローに従う制御によれば、硫黄パージ運転制御に移行する時に、バイパス通路5を閉じて酸化触媒3を通過させるので、酸化触媒3における未燃燃料の酸化により効率よく排気温度を上昇させることができ、NOx直接還元型触媒4の硫黄パージを効果的に行うことができる。   According to the control according to the control flow of FIG. 3, when shifting to the sulfur purge operation control, the bypass passage 5 is closed and the oxidation catalyst 3 is allowed to pass, so that the exhaust temperature is efficiently increased by oxidizing the unburnt fuel in the oxidation catalyst 3. The sulfur purge of the NOx direct reduction catalyst 4 can be performed effectively.

上記の排気ガス浄化方法及び排気ガス浄化システム1によれば、NOx直接還元型触媒4に吸着した硫黄分を除去する硫黄パージ運転時のリッチ運転制御では排気ガスを酸化触媒3を通過させるので、酸化触媒3におけるHC,CO等の酸化により効率よく排気温度を上昇させることができ、NOx直接還元型触媒4の硫黄パージを効率よく行うことができる。   According to the exhaust gas purification method and the exhaust gas purification system 1 described above, the exhaust gas is allowed to pass through the oxidation catalyst 3 in the rich operation control during the sulfur purge operation that removes the sulfur content adsorbed on the NOx direct reduction catalyst 4. The exhaust temperature can be increased efficiently by oxidation of HC, CO, etc. in the oxidation catalyst 3, and the sulfur purge of the NOx direct reduction catalyst 4 can be performed efficiently.

また、硫黄パージ以外のNOx浄化能力の回復のための再生運転時のリッチ運転制御では、排気ガスをバイパス通路5を通過させて酸化触媒3を迂回させるので、酸化触媒3におけるHC,CO等の還元剤の消費を回避して還元剤をNOx直接還元型触媒4に供給して再生を効率よく行うことができる。   Further, in the rich operation control during the regeneration operation for recovery of the NOx purification ability other than the sulfur purge, the exhaust gas passes through the bypass passage 5 and bypasses the oxidation catalyst 3, so that the HC, CO, etc. in the oxidation catalyst 3 can be bypassed. Regeneration can be efficiently performed by avoiding consumption of the reducing agent and supplying the reducing agent to the NOx direct reduction catalyst 4.

本発明に係る実施の形態の排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust gas purification system of embodiment which concerns on this invention. 本発明に係る実施の形態の排気ガス浄化システムの制御手段の構成を示す図である。It is a figure which shows the structure of the control means of the exhaust gas purification system of embodiment which concerns on this invention. 本発明に係る実施の形態の硫黄パージ用の制御フローの一例を示す図である。It is a figure which shows an example of the control flow for sulfur purges of embodiment which concerns on this invention.

符号の説明Explanation of symbols

E エンジン
1 排気ガス浄化システム
2 排気通路
3 酸化触媒
4 NOx浄化触媒装置
5 バイパス通路
6 切替弁(通路切替手段)
7 制御装置(ECU)
11 第1排気濃度センサ
12 第2排気濃度センサ
13 触媒入口温度センサ
14 触媒出口温度センサ
15 触媒用温度センサ
E engine
1 Exhaust gas purification system
2 Exhaust passage
3 Oxidation catalyst
4 NOx purification catalyst device
5 Bypass passage
6 Switching valve (passage switching means)
7 Control unit (ECU)
11 First exhaust concentration sensor 12 Second exhaust concentration sensor 13 Catalyst inlet temperature sensor 14 Catalyst outlet temperature sensor 15 Catalyst temperature sensor

Claims (2)

内燃機関の排気通路に上流側から順に、酸化触媒と、リーン時にNOxを直接分解しリッチ時に再生されるNOx直接還元型触媒とを配置すると共に、前記酸化触媒を迂回するバイパス通路と、排気ガスの前記酸化触媒の通過と前記バイパス通路の通過とを切り替える通路切替手段を備えた排気ガス浄化システムにおいて、
前記NOx直接還元型触媒の硫黄パージの場合には、排気ガスを前記酸化触媒を通過させ、前記硫黄パージ以外のリッチ運転の場合には、排気ガスを前記バイパス通路を通過させることを特徴とする排気ガス浄化方法。
In order from the upstream side to the exhaust passage of the internal combustion engine, an oxidation catalyst and a NOx direct reduction type catalyst that directly decomposes NOx when lean and is regenerated when rich, a bypass passage that bypasses the oxidation catalyst, and exhaust gas In the exhaust gas purification system comprising passage switching means for switching between the passage of the oxidation catalyst and the passage of the bypass passage,
In the case of sulfur purge of the NOx direct reduction catalyst, exhaust gas is allowed to pass through the oxidation catalyst, and in the case of rich operation other than the sulfur purge, exhaust gas is allowed to pass through the bypass passage. Exhaust gas purification method.
内燃機関の排気通路に上流側から順に、酸化触媒と、リーン時にNOxを直接分解しリッチ時に再生されるNOx直接還元型触媒とを配置すると共に、前記酸化触媒を迂回するバイパス通路と、排気ガスの前記酸化触媒の通過と前記バイパス通路の通過とを切り替える通路切替手段を備えた排気ガス浄化システムにおいて、
前記NOx直接還元型触媒の硫黄パージに際しての硫黄パージ制御時に、排気ガスを前記酸化触媒を通過させ、前記硫黄パージ制御以外のリッチ制御時には、排気ガスを前記バイパス通路に流通させる制御手段を備えたことを特徴とする排気ガス浄化システム。
In order from the upstream side to the exhaust passage of the internal combustion engine, an oxidation catalyst and a NOx direct reduction type catalyst that directly decomposes NOx when lean and is regenerated when rich, a bypass passage that bypasses the oxidation catalyst, and exhaust gas In the exhaust gas purification system comprising passage switching means for switching between the passage of the oxidation catalyst and the passage of the bypass passage,
Control means is provided for passing exhaust gas through the oxidation catalyst during sulfur purge control during sulfur purge of the NOx direct reduction catalyst, and for passing exhaust gas through the bypass passage during rich control other than the sulfur purge control. An exhaust gas purification system characterized by that.
JP2004062637A 2004-03-05 2004-03-05 Exhaust emission control method and exhaust emission control system Pending JP2005248892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004062637A JP2005248892A (en) 2004-03-05 2004-03-05 Exhaust emission control method and exhaust emission control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004062637A JP2005248892A (en) 2004-03-05 2004-03-05 Exhaust emission control method and exhaust emission control system

Publications (1)

Publication Number Publication Date
JP2005248892A true JP2005248892A (en) 2005-09-15

Family

ID=35029599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004062637A Pending JP2005248892A (en) 2004-03-05 2004-03-05 Exhaust emission control method and exhaust emission control system

Country Status (1)

Country Link
JP (1) JP2005248892A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154769A (en) * 2005-12-06 2007-06-21 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2007297967A (en) * 2006-04-28 2007-11-15 Osaka Gas Co Ltd Engine
JP2008280872A (en) * 2007-05-09 2008-11-20 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154769A (en) * 2005-12-06 2007-06-21 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2007297967A (en) * 2006-04-28 2007-11-15 Osaka Gas Co Ltd Engine
JP2008280872A (en) * 2007-05-09 2008-11-20 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP4415648B2 (en) Sulfur purge control method and exhaust gas purification system
JP4417878B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4140636B2 (en) Exhaust gas purification method and exhaust gas purification system
WO2006027903A1 (en) Method of exhaust gas purification and exhaust gas purification system
KR101048112B1 (en) Exhaust gas purification device of internal combustion engine and desulfurization method thereof
JP2009092076A (en) Exhaust emission control device of diesel engine
WO2007058015A1 (en) Regeneration control method for exhaust gas purification system, and exhaust gas purification system
WO2009133771A1 (en) Exhaust gas purification method and exhaust gas purificaton system
KR101091626B1 (en) Method for purifying nitrogen oxide in exhaust gas and exhaust system operating the same
JP4168781B2 (en) NOx catalyst regeneration method for NOx purification system and NOx purification system
KR20070049859A (en) A exhaust gas purification system of diesel vehicle and method for regeneration thereof
JP4515217B2 (en) Exhaust gas purification device control method
KR101724453B1 (en) System for purifying exhaust gas and method for controlling the same
JP4345484B2 (en) Exhaust gas purification method and exhaust gas purification system
JP5177441B2 (en) Exhaust gas purification device for internal combustion engine
JP4027555B2 (en) Exhaust gas purification device for internal combustion engine
JP4093302B2 (en) NOx purification system catalyst deterioration judgment method and NOx purification system
JP4507018B2 (en) Exhaust gas purification device for internal combustion engine
JP2005248892A (en) Exhaust emission control method and exhaust emission control system
JP5070964B2 (en) NOx purification system and control method of NOx purification system
JP4075641B2 (en) Exhaust gas purification system for internal combustion engine
JP6743498B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
WO2007029339A1 (en) Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification
JP2007009810A (en) METHOD FOR CONTROLLING SULFUR PURGE OF NOx ELIMINATION SYSTEM AND NOx ELIMINATION SYSTEM
JP3896223B2 (en) Exhaust gas purification device for internal combustion engine