WO2007029339A1 - Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification - Google Patents

Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification Download PDF

Info

Publication number
WO2007029339A1
WO2007029339A1 PCT/JP2005/016683 JP2005016683W WO2007029339A1 WO 2007029339 A1 WO2007029339 A1 WO 2007029339A1 JP 2005016683 W JP2005016683 W JP 2005016683W WO 2007029339 A1 WO2007029339 A1 WO 2007029339A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
nox
lean
hydrogen production
Prior art date
Application number
PCT/JP2005/016683
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Kamikawa
Hidehiro Iizuka
Toshiaki Nagayama
Yuichi Kitahara
Osamu Kuroda
Masato Kaneeda
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2007534233A priority Critical patent/JPWO2007029339A1/en
Priority to PCT/JP2005/016683 priority patent/WO2007029339A1/en
Publication of WO2007029339A1 publication Critical patent/WO2007029339A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides

Definitions

  • the present invention relates to an exhaust gas purification method and apparatus for an internal combustion engine, and more particularly, to an exhaust gas purification method and apparatus for purifying hydrocarbons, carbon monoxide, and nitrogen oxides contained in exhaust gas.
  • a NOx selective reduction type catalyst has been developed that can efficiently reduce and purify NOx under the exhaust gas flow of diesel engine, which has an excess of oxygen.
  • this catalyst has a problem that its temperature dependency is small, but its N O X purification ability is low, and sufficient N O X cannot be purified.
  • a NOx catalyst that captures NOX in a lean atmosphere and reduces and purifies the captured NOX in a lean or rich atmosphere for a gasoline engine (lean burn engine) that operates in a lean atmosphere.
  • a gasoline engine lean burn engine
  • NOx storage-reduction catalyst that can reduce and purify NO x, in a lean atmosphere
  • NOX adsorption reduction catalysts that can oxidize NOX to NO 2 and adsorb it on NOX adsorbents, and reduce and purify adsorbed NOX in a stiff or rich atmosphere. Therefore, by operating the engine in a lean atmosphere, which is most suitable for lean NO X catalyst, and operating the engine in a stoichiometric or rich atmosphere temporarily when NO X is sufficiently trapped by the NOX purification catalyst.
  • a system that reduces and purifies NO x using exhaust gas as a reducing atmosphere has also been developed.
  • the diesel engine has a lower exhaust temperature than the gasoline engine, and it is as low as about 200 ° C. Since the lean NO x catalyst is highly temperature dependent and the catalyst temperature at which it performs sufficiently is 300 ° C or higher, placing the lean NO X catalyst under the floor of a vehicle equipped with a diesel engine will There is a problem that it is not “warm enough” and NO x cannot be sufficiently captured, reduced or purified. Although is a NOX reducing agent than C_ ⁇ Pi HC 'H 9. Is closed criminal investigation, during diesel exhaust hardly contains.
  • Japanese Patent Laid-Open No. 2 0 3 -3 3 1 4 3 2 8 describes that H 2 , which is a reducing agent with high NOX reduction performance at low temperatures, has a stoichiometric or rejuvenating atmosphere.
  • an exhaust gas purifying device is disclosed, in which the hydrogen production catalyst is arranged upstream of the NOx occlusion reduction type catalyst.
  • Japanese Patent Laid-Open No. 2 00 0-2 7 6 2 5 is characterized in that a NOX selective reduction catalyst is arranged upstream of the lean NO X catalyst in order to improve the performance during leaning.
  • An exhaust gas purification device for an internal combustion engine is disclosed. Disclosure of the invention according to Patent Document 1, although the NOX reduction ability at the time of latching is improved, the NOX trapping ability at the time of leaning has not been improved, so if a large amount of NOX enters the NOX storage reduction type catalyst at the time of leaning, purification is performed. There is a fear that it cannot be exhausted. Also, in Patent Document 2, an Ir-based catalyst is used as the NOX selective reduction catalyst, but the NOX selective reduction ability at 300 ° C or lower is low, and at low temperatures of about 200 ° C. It is difficult to reduce and purify N 0 .X sufficiently.
  • the subject of the present invention is to provide an exhaust gas purification method and apparatus that eliminates the above-mentioned problems and that effectively purifies hydrocarbons, carbon monoxide, and nitrogen dioxide discharged during operation of an internal combustion engine.
  • the feature of the present invention that solves the above-mentioned problems is that the NOx selective reduction ability capable of reducing NOX during leaning from the upstream of the exhaust gas passage to the diesel engine exhaust gas passage and the CO shift reaction at the time of latching.
  • This is an exhaust gas purification system in which a catalyst having a hydrogen production function for generating hydrogen and a 'lean NOX catalyst' are arranged in the above order.
  • Figure 1 shows a schematic diagram.
  • Exhaust gas discharged from engine 1 passes through exhaust gas flow path 2 and is purified from upstream of the exhaust gas flow path by catalyst 3 having both NO 3 selective reduction ability and hydrogen production function, and lean NOX catalyst 4.
  • catalyst 3 having both NO 3 selective reduction ability and hydrogen production function
  • lean NOX catalyst 4 since the catalyst having both NOX selective reduction ability and hydrogen production function is arranged upstream of the lean NOX catalyst with respect to the exhaust gas flow, when the exhaust gas is in an oxidizing atmosphere, NOX Increase the amount of NOX purification by selective reduction.
  • CO is emitted from the engine; hydrogen is generated from HC and H 2 O by the CO shift reaction and steam reforming reaction, and the oxidizing atmosphere is switched to the reducing atmosphere.
  • the NOX trapped on the lean NOX catalyst can be sufficiently purified. And because it uses a catalyst with both Nx selective reduction ability and hydrogen production function, it can improve NOx purification performance when lean. With this catalyst, it is possible to efficiently reduce and purify NOx trapped in the lean by generating hydrogen during the latching. In addition, the NO X selective reduction ability of a catalyst having both NO X selective reduction ability and hydrogen production function is sufficiently exhibited even at 200 ° C.
  • the component of the catalyst having both the NO X selective reduction ability and the hydrogen production function in the present invention contains a 'CO reforming component that produces hydrogen by steam reforming CO.
  • the above-mentioned 0 O reforming component is composed of at least one kind of precious metal selected from R h, P t, and P d force, and Z r 0 2 , C e O 2 , T i O 2 or, characterized that you containing composite oxide carrier containing a Z r O 2 throat C e O 2.
  • a NO X storage reduction catalyst or a NOX adsorption reduction catalyst can be used as the lean NO X catalyst in the present invention.
  • the NO x adsorption and reduction type catalyst is chemically adsorbed after oxidizing the NO to NO 2 in the lean operation, a reducing atmosphere exhaust gas before the NO 2 adsorbed reach NO 2 equilibrium adsorption amount of NOX adsorption and reduction catalyst
  • An exhaust gas purifying catalyst that reduces and purifies the adsorbed N 0 2 to nitrogen (N 2 ), and the oxide carrier is at least one selected from alkaline metals, alkaline earth metals, and rare earth elements.
  • the NOx adsorbent is supported on at least one kind of noble metal selected from Rh, Pt, and Pd.
  • This can be achieved by using secondary fuel injection.
  • the exhaust gas or lean NO X catalyst is used so that the temperature of the lean NO X catalyst is sufficiently high while creating a state where there is more reducing agent compared to lean operation.
  • the timing for heating can be determined by the following methods.
  • Air-fuel ratio setting signal determined by E CU (Electric Control Unit), engine speed signal, intake air amount signal, 'intake pipe pressure chi no., Speed signal, throttle opening, exhaust gas temperature, etc. ⁇
  • FIG. 1 is a schematic view showing an embodiment of a diesel engine exhaust gas purification apparatus of the present invention.
  • FIG. 2 is a schematic view showing an embodiment of the diesel engine exhaust gas purification apparatus of the present invention. '
  • FIG. 3 is a schematic view showing an embodiment of the diesel engine exhaust gas purification apparatus of the present invention. '
  • FIG. 4 is a schematic view showing an embodiment of the diesel engine exhaust gas purification apparatus of the present invention. '
  • FIG. 5 is a schematic view showing an embodiment of the diesel engine exhaust gas purification apparatus of the present invention.
  • FIG. 6 is a block diagram showing an air-fuel ratio control method.
  • Fig. 7 is a flowchart of air-fuel ratio control.
  • FIG. 8 shows the N O X amount estimation part in the flowchart of Fig. 6.
  • Fig. 9 shows the N O X amount estimation part in the flowchart of Fig. 6.
  • FIG. 10 shows the NOx amount estimation part in the flowchart of FIG. Fig. 11 shows the NOx estimation part in the flowchart of Fig. 6.
  • Figure 12 shows the NOx amount estimation part of the flow chart in Figure 6.
  • FIG. 13 is a schematic view showing an embodiment of the diesel engine exhaust gas purification apparatus of the present invention. -Best mode for carrying out the invention
  • a catalyst having both NOX selective reduction ability and hydrogen production function, lean NO x catalyst is arranged in the above order in the middle of the exhaust path of the diesel engine. It is made up.
  • the catalyst that has both NO x selective reduction ability and hydrogen production function has the function of generating H 2 by an aqueous gas shift reaction between CO and H 2 O, which are abundant in the exhaust gas, when the exhaust gas is in a reducing atmosphere.
  • precious metal P t, P d, R h , etc.
  • Z r O 2 Z r O 2 as a carrier, C e O 2
  • T i 0 2 Moshiku is Z r ⁇ 2 and C e various catalysts containing a composite oxide containing 0 2, for example, P t ZC e ⁇ 2, P t / ceria one zirconate - ⁇ composite oxide, and the like P t ZT i O 2.
  • the carrier preferably has a high oxygen storage capacity, a large surface area and a large pore volume.
  • a high-specific surface area refractory inorganic material such as alumina supporting a noble metal is used.
  • Alkali metals such as N a
  • alkaline earth metals such as C a and B a
  • transition metals such as T i, Mn, F e, .C u, L a, Z r.
  • Fig. 2 shows (1) NO X adsorption reduction catalyst only, (2) NO x selective reduction catalyst and NOX adsorption reduction catalyst, (3) NOx selective reduction catalyst and hydrogen production function.
  • NO X adsorption-reduction catalyst shows the NO x purification rate at 2 ° C and lean of the three types of catalysts (1) Lean performance with NO X adsorption-reduction catalyst alone 51%, Rich performance 43%, Lean / Ritch total performance 47%.
  • (2) NOX selection When combined with a reduction catalyst, lean performance is 76%, rich performance 60%, Lean / Litch total performance was 68%, and the Lean performance was improved by 25 points, but the “Litch performance” was only improved by 1.7 points.
  • NOX selection When combined with a reduction catalyst, lean performance is 76%, rich performance 60%, Lean / Litch total performance was 68%, and the Lean performance was improved by 25 points, but the “Litch performance” was only improved by 1.7 points.
  • the NOx purification method of the present invention can greatly improve the lean Z-litch performance. Especially in the present invention, by deepening the richness (increasing air-fuel ratio fuel), CO production proceeds at low temperatures, sometimes reducing and purifying NOX inside at high temperatures, and purifying exhaust gas. Advances. 'On the other hand, fuel consumption increases by deepening the ridge.
  • lean NO' X catalyst and hydrogen were created separately and placed in series, but a catalyst having both NOX selective reduction ability and hydrogen production function was supported on the lean NOX catalyst, A two-layer catalyst can also be used.
  • a diesel particulate filter that oxidizes and removes PM in exhaust gas may be disposed upstream of a catalyst having both N O X selective reduction ability and hydrogen production function.
  • the filter means has a function of capturing a light.
  • the filter for example, various materials such as a ceramic sintered body, a ceramic fiber, and a metal can be used.
  • a filter in which a ceramic fiber is coiled and formed into a cylindrical shape a filter in which a fiber weave is formed into an appropriate shape, and made of ceramic, the upstream end is closed and the downstream side is closed
  • Exhaust gas passage with open end and upstream end open Various types and sizes, such as wall-flow type filters, in which exhaust gas passages with closed downstream ends are alternately arranged and porous saddle surfaces are formed between adjacent exhaust gas passages This filter can be selected appropriately according to the space used.
  • FIG. 1 An embodiment of the diesel engine exhaust gas purification apparatus of the present invention is shown in FIG.
  • the diesel engine exhaust gas purifying apparatus of the present embodiment includes an intake system having a diesel engine 1, an air flow sensor '6, a throttle valve 7', etc., a NOx adsorption reduction type catalyst 5, and an exhaust gas passage 2 catalyst.
  • the ECU consists of an I / O L S I as an input / output interface, an arithmetic processing unit MPU, a storage device RAM and R0 ⁇ that stores many control programs, and a timer counter.
  • exhaust gas discharged from the diesel engine 1 first flows into the catalyst 3 having both NO X selective reduction ability and hydrogen production functions.
  • Catalyst 3 which has both NO X selective reduction ability and hydrogen production function, reduces and purifies NOX by NO x selective reduction reaction with NOx and CO in the presence of high concentration of O 2 during lean operation, and at the time of rich operation H 2 is generated by the water gas shift reaction between CO and H 2 O, and the generated H 2 promotes the NO X reduction reaction of the NO X adsorption reduction catalyst 5.
  • the NO x adsorption and reduction type catalyst 5 is chemisorbed after oxidizing 'NO to NO 2 in the lean operation, NO 2 flat ⁇ of NO 2 adsorbed NO X adsorption and reduction catalyst 5 0
  • means for making the exhaust gas into a reducing atmosphere means for increasing the hydrocarbon concentration (such as engine secondary fuel injection), means for reducing the oxygen concentration, etc.
  • the catalyst temperature of the NOx adsorption reduction catalyst 5 was controlled from 25 ° C. to 500 ° C. This is because the NOx purification capacity of the NOx adsorption reduction catalyst is good at temperatures in the above range.
  • FIG. 4 shows an embodiment of the diesel engine exhaust gas purification device of the present invention.
  • FIG. 4 is a view of the NOx adsorption reduction catalyst 5 shown in FIG. 3 replaced with an absorption reduction catalyst.
  • NOX storage-reduction catalyst 1 3 oxidizes NO to NO 2 during lean operation and then reacts with the storage material to generate nitrate in the storage material.
  • the stored NOX is the NOX of NOX storage-reduction catalyst 1 3
  • the exhaust gas is made a reducing atmosphere, and the stored nitrate is reduced to nitrogen (N 2 ) and purified.
  • N 2 nitrogen
  • the adsorptive reduction catalyst 5 when the catalyst temperature is controlled from 2550 ° C. to 500 ° C., the NOX purification ability of the NOX storage reduction catalyst 13 is good. '(Example 3)
  • FIG. 5 shows an embodiment of the diesel engine exhaust gas purification apparatus of the present invention.
  • FIG. 5 shows an example in which the catalyst 3 and the catalyst 5 in FIG.
  • the two-layer catalyst 14 is a catalyst in which a catalyst having both NOX selective reduction ability and hydrogen production function is supported on a NOX adsorption reduction catalyst.
  • Exhaust gas flow path 4 1
  • the catalyst is arranged in the order of N O x selective reduction ability and hydrogen production function and N O x adsorption reduction catalyst.
  • the fuel concentration (hereinafter referred to as the air-fuel ratio) of the air-fuel mixture supplied to the engine can be controlled as follows.
  • Fig. 6 shows a block diagram of the air-fuel ratio control method.
  • Load sensor output that outputs a signal according to the depression of the accelerator pedal, output signal of intake air measured by the airflow sensor, engine speed signal detected by the crank angle sensor, exhaust gas temperature signal, throttle opening ECU 14 determines the air-fuel ratio (AZF) from the information on the throttle position sensor signal, engine coolant temperature signal, starter signal, etc., and this signal is fed back from the AZF sensor (or oxygen sensor).
  • the fuel injection amount is determined based on the corrected signal. Note that feedback control is stopped by signals from each sensor and switch at low temperatures, at idle, and at high loads.
  • the air / fuel ratio correction learning function can be used to accurately cope with subtle or sudden changes in the air / fuel ratio.
  • the injection condition of the injector is determined by the instruction of ECU and the rich operation is performed.
  • the lean operation it is determined whether or not the lean NOX catalyst has NOX trapping ability, and the trapping ability is determined to be equal to or higher than a predetermined specified value (for example, 50% of the equilibrium trap amount). If the fuel injection amount is determined to perform the lean operation as instructed and the adsorption capacity is determined to be less than the predetermined specified value, the air-fuel ratio is shifted for a predetermined period to activate the lean NOX catalyst. Reproduce.
  • Fig. 7 shows the flowchart of air-fuel ratio control.
  • steps 1 0 0 2 Reads signals for instructing various operating conditions or detecting operating conditions. Based on these signals, the air-fuel ratio is determined in step 1003, and the determined air-fuel ratio is detected in step 1004. Compare the air-fuel ratio determined in Step 1 0 0 5 with the theoretical air-fuel ratio.
  • the theoretical air-fuel ratio to be compared here is precisely the air-fuel ratio at which the NOX catalytic reduction reaction rate exceeds the capture rate in the lean NO X catalyst, and the characteristics of the lean NOX catalyst are evaluated in advance. The air / fuel ratio near the stoichiometric air / fuel ratio is selected.
  • step 106 the routine proceeds to step 106, and the air-fuel ratio operation is performed as instructed without performing the regeneration operation of the lean NOX catalyst.
  • step 106 the routine proceeds to step 106, and the air-fuel ratio operation is performed as instructed without performing the regeneration operation of the lean NOX catalyst.
  • step 1007 the estimated amount of Nx is estimated. The estimation calculation method will be described later. Subsequently, in step 1 0 0 8, it is determined whether or not the estimated NO X trapping amount is equal to or less than a predetermined limit amount.
  • the limit trapping amount is set to a value that can sufficiently purify NX in the exhaust gas by evaluating the NOx trapping characteristics of the lean NOx catalyst by experiments in advance and considering the exhaust gas temperature and lean NOX catalyst temperature, etc. Is set. If NO x trapping capability exists, proceed to step 106, and perform the air-fuel ratio operation as instructed without regenerating the lean NO X catalyst. If NO X trapping ability is not available, proceed to step 1 0 9 and shift the air-fuel ratio to the latch side. In steps 1 0 1 0, the latch shift time is counted, and when the elapsed time T r exceeds a predetermined time (T r) c, the latch shift is terminated.
  • the determination of the NO x trapping capacity in the above steps 1 0 0 8 can be performed as follows.
  • FIG. 8 shows a method for accumulating NO x emissions from various operating conditions during lean operation.
  • Step 1 0 0 7—E 0 1 reads the signals related to the operating conditions of the lean NOX catalyst, such as the exhaust gas temperature, and signals related to various engine operating conditions that affect the NOX concentration in the exhaust gas. to estimate the amount of NO X E N to.
  • Step 1 0 0 7- E monument 2 integrates the E N, compares the magnitude of the step 1 0 0 8- E 0 1 integrated value sigma E N and holding amount upper limit value at (E N) c. If ⁇ E N ⁇ (E N ) c, continue to accumulate, if ⁇ E N > (E N ) c, step 1 0 0 8 — cancel accumulation at E 0 2 and proceed to step 1 0 0 9 .
  • ⁇ Fig. 9 shows the method for judging from the accumulated lean operation time.
  • Step 1 0 0 7 Accumulate the lean operation time HL at H 0 1, and compare the magnitude of the accumulated value ⁇ and the upper limit value of accumulated time (H r .) C at Step 1 0 0 8 — H 0 1 . If ⁇ H L ⁇ (H L ) c, continue integration. If ⁇ H L > (H L ) c, cancel integration at step 1 0 0 8-H 0 2 and proceed to step 1 0 0 9.
  • Fig. 10 ⁇ is a method of judging from the AZF sensor (or oxygen sensor) signal during lean operation.
  • Step 1 0 0 7-O 0 1 The amount of oxygen Q in lean operation.
  • 'Step 1 0 0 8 — O 0 1 is the integrated value! : Q.
  • ⁇ Q. ⁇ (Q.) In case of c, continue integration and ⁇ ⁇ Q. > (Q.) In the case of c, the integration is canceled at step 1 0 0 8—O 0 2 and the process proceeds to steps 1 0 0, 9.
  • Fig. 11 shows the determination method based on the NO X concentration sensor signal detected at the lean NO X catalyst inlet during the line operation.
  • Step 1 0 0 7 N 0 1
  • Step 1 0 0 8 Compare the accumulated value ⁇ Q N with the accumulated NO X upper limit value (Q N ) c at NO 1. ⁇ If Q N ⁇ (Q N ) c, continue the integration. If ⁇ Q N > (Q N ) c, cancel the integration at step 1 0 0 8—N 0 2 and proceed to step 1 0 0 9
  • Fig. 12 shows the method of judgment based on the NO X concentration sensor signal detected at the lean NOO catalyst outlet during lean operation.
  • Step 1 0 0 7 C 0 1 detects the NO x concentration C N at the lean NO x catalyst inlet based on the NOx dark sensor signal.
  • Step 1 0 0 8 Compare the size of C N and the upper limit of C N (Q N ) c at CO 1. If C N ⁇ (Q N ) c, continue detection, and if C N > (Q N ) c, go to step 1 0 0 9.
  • FIG. 1 One embodiment of the diesel engine exhaust gas purification apparatus of the present invention is shown in FIG.
  • a three-way catalyst 15 from the upstream side into the exhaust gas passage 4 a diesel particulate filter that oxidizes and removes particulate matter in the exhaust gas.
  • catalyst that has NO X selective reduction ability and hydrogen production function 3 are arranged, and AZ corresponding to each catalyst
  • F sensors or oxygen concentration sensors 8 8 10 and 17, exhaust temperature sensors, 11, 18 and 20, pressure sensors 19 and 21, etc. are installed.
  • the exhaust gas discharged from the diesel engine 1 is first heated by the three-way catalyst 15 to decompose HC in the exhaust gas. Since hydrocarbons in diesel engine exhaust gas are relatively high in higher hydrocarbons with 7 or more carbon atoms, they are decomposed by the three-way catalyst 15 to increase the proportion of lower hydrocarbons with 6 or less carbon atoms.
  • the NO X reduction reaction at the NOX adsorption reduction catalyst 5 on the downstream side of the flow path can be efficiently advanced.
  • the three-way catalyst 15 can slightly purify NOx, HC, and C0.
  • DPF 16 is a ceramic honeycomb filter.
  • the exhaust gas flow path with the upstream end closed and the downstream end open, and the exhaust gas flow path with the upstream end open and the downstream end closed are alternately Porous wall surfaces are formed between adjacent exhaust gas flow paths (wall flow filter).
  • Exhaust gas flowing into DPF 16 flows into an exhaust gas passage whose upstream side end is open and downstream end is closed, and is then placed between adjacent exhaust gas passages. From the porous wall surface, the upstream end is blocked, the downstream end is opened, and the gas flows into the downstream, and flows out downstream. In this process, PM in diesel exhaust gas is collected by collision and adsorption on the wall.
  • PM collected in DPF 16 is removed by burning by raising the exhaust gas temperature after a certain amount of deposition.
  • the method of raising the exhaust gas temperature can be engine control, electric heater, or the reaction heat of the catalyst placed upstream.
  • Part of the combusted PM becomes' CO due to incomplete combustion, and unburned HC is also emitted, but these are adsorbed on the catalyst 3 and N 3 X that have both NOX selective reduction ability and hydrogen production function on the downstream side. It will be purified by the reduced catalyst 5. .
  • a hydrogen sensor can be installed in front of the NOX catalyst to switch between lean and rich when a predetermined amount of H 2 is detected.
  • Coating slurry to Kojerai bets made Ha second cam includes a C E_ ⁇ 2 Was coated, and drying and firing, was coated C E_ ⁇ 2 volumes 1 Li Tsu Torr per 1 9 0 g of the honeycomb apparent.
  • C E_ ⁇ 2 Kotoha second cam dried and impregnated with Jiniro Torojianmi emissions P t nitric acid solution 2 0 0 ° C, and calcined followed by 6 0 0 ° C.
  • Example Catalyst 1 containing Pt: 2.8 g in terms of metal with respect to an apparent volume of 1 L of the honeycomb was obtained.
  • Example Catalyst 1 Using Example Catalyst 1, a test was performed assuming that the engine was stopped by purging the residual exhaust gas after operation below the stoichiometric air-fuel ratio.
  • the gas used in the test was a lean model gas that simulated lean lean exhaust gas and a rich model gas that simulated combustion below the stoichiometric air-fuel ratio.
  • the lean model gas is composed of NOX: 100 ppm, C 3 H 8 : 500 ppm C 1, CO: 0.1%, O 2 : 5%, H 2 O: 10%, N 2 : Remaining.
  • the N O X purification rate is the N O X concentration supplied as the lean model gas of Equation 1.
  • Equation 1 The rate of decrease in N O X concentration before and after circulation of the catalyst layer relative to (100 ppm). The definition is shown in Equation 1.
  • Table 1 shows the steady value of the NOx purification rate in the lean of Example catalyst 1 and the CO purification rate in the rich. It is clear that NOx is selectively reduced in lean because the steady NOx purification rate in lean is 25 ° / 0 . It was also calculated from the C0 purification rate in the Rich. The amount of hydrogen produced and the hydrogen concentration in the Rich gas after the Example Catalyst 1 flowed were almost identical. From the above, it is clear that Example Catalyst 1 has hydrogen generation in the rich and has selective reduction performance in lean.
  • the slurry one adjusted to the precursor value Nari nitric acidic alumina powder and alumina M g O (average particle size: specific surface area: lm 2 / g) M g O- alumina mixed slurry prepared by adding the Kojerai bets made ha - cam After coating with (400 cell Zinc 2 ), drying and firing, M was coated with 190 g of alumina and 10 g of MgO per 1 liter of Herck's apparent volume. g O-alumina coat hammer was obtained. The MgO-alumina-coated honeycomb was impregnated with Ni nitrate / Ce aqueous solution, dried at 200 ° C., and then fired at 60 ° C.
  • Example catalyst 2 containing K: 5.2 g, Na: 4.1 g, Li: 0.05 g, Ti: 4.3 g, Mn: 1 3.7 g was obtained. . Table 2 shows the catalyst composition.
  • a slurry made of alumina powder and an alumina precursor and adjusted to nitric acid acidity was coated on cordierite hercum (400 Senore Zinc 2 ), then dried and fired, and the apparent volume of fly cam was 1 liter.
  • An alumina-coated hard coat coated with 190 g of alumina was obtained.
  • the alumina coated honeycomb was impregnated with titania sol, dried at 20'0 ° C, and then fired at 60 ° C.
  • Example Catalyst 3 containing Ti: 0.1 g, Rh: 0.14 g, Pt: 2.8 g in metal conversion with respect to the apparent volume of 1 L of the honeycomb was obtained. It was.
  • Example Catalysts 1 to 3 were used to carry out a test assuming that the engine was stopped by purging residual exhaust gas after operation below the stoichiometric air-fuel ratio.
  • the gas used in the test was a lean model simulating lean burn exhaust gas.
  • Lean modenolegus yarn is composed of NO x: 100 ppm, C 3 H 8 : 500 ppm
  • Figure 2 shows the results of the three combinations.
  • the catalyst volume used for each combination was 6 CC .
  • Example catalyst 2 (NO x adsorption reduction catalyst) only.
  • Example catalyst 2 (NO x adsorption reduction catalyst) was placed downstream of Example catalyst 3 (NO x selective reduction catalyst).
  • Example catalyst 1 catalyst having hydrogen production function in the downstream of Example catalyst 3 (NO x selective reduction type catalyst), and Example catalyst 2 (NO X adsorption reduction type catalyst) in the subsequent stream was placed.
  • the NOx adsorption reduction catalyst alone had a lean performance of 51%, a rich performance of 43%, and a total lean / rich performance of 47%.
  • the NOX purification performance at low temperatures is greatly improved.
  • the catalyst with hydrogen production function since the catalyst with hydrogen production function also has the ability to selectively reduce NOx, it also improves the NOx purification ability during lean. As a result, it is possible to reduce the frequency of switching the engine operating state to the rich operation, and to improve fuel efficiency.
  • the NOx selective reduction catalyst and the hydrogen production catalyst are arranged in series, it is possible to reduce the amount of precious metal used, reduce the heat content, and improve the space efficiency.
  • a diesel engine exhaust gas purification catalyst capable of sufficiently reducing and purifying NOx in exhaust gas even in diesel engine having a low exhaust temperature, and an exhaust using the same A gas purification device can be provided.

Abstract

This invention provides an exhaust gas purifying apparatus for purifying hydrocarbons, carbon monoxide and nitrogen oxide discharged during the operation of a diesel engine. The exhaust gas purifying apparatus for a diesel engine comprises a diesel engine exhaust gas flow passage (2). A catalyst (3) having both an NOx selective reduction capability and a hydrogen production function and a lean NOx catalyst (4) are provided in that order along the diesel engine exhaust gas flow passage (2) from the upstream of the exhaust gas flow passage. The exhaust gas purifying apparatus can efficiently purify an exhaust gas discharged from diesel engines.

Description

内燃機関の排ガス浄化装置及ぴ排ガス浄化方法 技術分野  Technical field of exhaust gas purification apparatus and exhaust gas purification method for internal combustion engine
本発明は、 内燃機関の排気ガス浄化方法及び装置に係り、 特に、 排ガ ス中に含まれる炭化水素, 一酸化炭素、 及ぴ窒素酸化物を浄化せしめる 排気ガス浄化方法及び装置に関する。 背景技術  The present invention relates to an exhaust gas purification method and apparatus for an internal combustion engine, and more particularly, to an exhaust gas purification method and apparatus for purifying hydrocarbons, carbon monoxide, and nitrogen oxides contained in exhaust gas. Background art
近年、 地球温暖化問題に対する意識が高まると ともに、 自動車,等の内 燃機関から排出される排ガス中の c o 2が問題とされ、 その解決策と し ては酸素過剰雰囲気において燃料を希薄燃焼させるディーゼルエンジン が有望視されている。 これらのエンジンにおいては、 燃料の使用量が低 減されるため、 燃焼排ガスである C O 2の発生を抑制することが可能と なる。 In recent years, awareness of global warming has increased, and co 2 in exhaust gas emitted from internal combustion engines such as automobiles has become a problem, and the solution is to burn fuel lean in an oxygen-rich atmosphere. Diesel engines are promising. In these engines, since the amount of fuel used is reduced, the generation of CO 2 as combustion exhaust gas can be suppressed.
このため、 酸素過剰 (リー、ン) 雰囲気であるディーゼルエン ンの排 ガス流通下で、 N O Xを効率よく還元浄化することのできる N O X選択 還元型触媒が開発された。 しかしこの触媒は、 温度依存性は小さいもの の N O X浄化能が低く、 十分な N O Xの浄化ができないという問題があ つた。  For this reason, a NOx selective reduction type catalyst has been developed that can efficiently reduce and purify NOx under the exhaust gas flow of diesel engine, which has an excess of oxygen. However, this catalyst has a problem that its temperature dependency is small, but its N O X purification ability is low, and sufficient N O X cannot be purified.
また、 リーン雰囲気で運転するガソリ ンエンジン (リーンバーンェン ジン) に対し、 リーン雰囲気で N O Xを捕捉し、 捕捉された N O Xをス 卜ィキ若しく はリ ツチ雰囲気で還元 ·浄化するリーン N O X.触媒が開発 された。 リーン N O x触媒には、 リーン雰囲気では N O Xを N O 2に酸 化して N O X吸蔵材に吸蔵させ、 ス トイキ若しくはリ ツチ雰囲気で吸蔵 NO xを還元 · 浄化できる N O X吸蔵還元型触媒、 リーン雰囲気では In addition, a NOx catalyst that captures NOX in a lean atmosphere and reduces and purifies the captured NOX in a lean or rich atmosphere for a gasoline engine (lean burn engine) that operates in a lean atmosphere. Has been developed. For lean NO x catalysts, NOX is oxidized to NO 2 in a lean atmosphere and stored in a NO X storage material, and stored in a stoichiometric or rich atmosphere. NOx storage-reduction catalyst that can reduce and purify NO x, in a lean atmosphere
N O Xを N O 2に酸化して N O X吸着材に吸着させ、 ス トィギ若しく は リ ツチ雰囲気で吸着 N O Xを還元 ·浄化できる N O X吸着還元型触媒等 ' がある。 そのためリーン NO X触媒に最適な、 常時はリーン雰囲気でェ ンジンを運転し、 NO Xが N O X浄化触媒に十分捕捉されたところで一 , 時的にス トィキ若しくはリ ツチ雰囲気でエンジンを運転することにより 排ガズを還元雰囲気と して N O xを還元 · 浄化するシステムも開発され た。 There are NOX adsorption reduction catalysts that can oxidize NOX to NO 2 and adsorb it on NOX adsorbents, and reduce and purify adsorbed NOX in a stiff or rich atmosphere. Therefore, by operating the engine in a lean atmosphere, which is most suitable for lean NO X catalyst, and operating the engine in a stoichiometric or rich atmosphere temporarily when NO X is sufficiently trapped by the NOX purification catalyst. A system that reduces and purifies NO x using exhaust gas as a reducing atmosphere has also been developed.
しかしながら、 デイーゼルエンジンはガソリ ンェ'ンジンと比較すると 排気温度が低く 2 0 0 °C程度の低温で る。 リーン NO x触媒は温度依 存性が大きく、 十分に性能を発揮する触媒温度は 3 0 0 °C以上であるた め、 リーン NO X触媒をディーゼルエンジン搭載車両の床下,に配置する と触媒が十分に'暖まらず、 NO xを十分に捕捉及び還元 ·浄化ができな いとレ、'う問題がある。 また N O Xの還元剤と しては C〇及ぴ H Cより も' H9.が有劾であるが、 ディーゼル排ガス中には殆ど含まれていない。 However, the diesel engine has a lower exhaust temperature than the gasoline engine, and it is as low as about 200 ° C. Since the lean NO x catalyst is highly temperature dependent and the catalyst temperature at which it performs sufficiently is 300 ° C or higher, placing the lean NO X catalyst under the floor of a vehicle equipped with a diesel engine will There is a problem that it is not “warm enough” and NO x cannot be sufficiently captured, reduced or purified. Although is a NOX reducing agent than C_〇及Pi HC 'H 9. Is closed criminal investigation, during diesel exhaust hardly contains.
この問題.を解決するために、特開 2 0 0 3— 3 1 4 3 2 8号公報では、 低温での N O X還元性能が高い還元剤である H 2をス トイキ若しく はリ' ツチ雰囲気で N O X吸蔵還元型触媒に供給するために、 水素製造触媒を NO x吸蔵還元型触媒上流に配置することを特徴とする排気ガス浄化装 置が開示されている。 また、 特開 2 0 0 0— 2 7 6 2 5号公報では、 リ ーン時の性能を向上させるために'、 N O X選択還元触媒をリーン NO X 触媒上流に配置するこどを特徴とする内燃機関の排気ガス浄化装置が開 示されている。 発明の開示 特許文献 1では、 リ ッチ時の N O X還元能は向上するものの、 リーン 時の N O X捕捉能に関しては改善されていないため、 リーン時に大量の N O Xが N O X吸蔵還元型触媒に琉入した場合、 浄化しきれない恐れが ある。 また,、 特許文献 2では N O X選択還元触媒と _して I r系触媒を用 いているが、 3 0 0 °C以下での N O X .選択還元能が低く、 2 0 0 °C程度 の低温では十分に N 0 .Xを還元 ·浄化することが難しい。 In order to solve this problem, Japanese Patent Laid-Open No. 2 0 3 -3 3 1 4 3 2 8 describes that H 2 , which is a reducing agent with high NOX reduction performance at low temperatures, has a stoichiometric or rejuvenating atmosphere. In order to supply the NOx occlusion reduction type catalyst to the NOx occlusion reduction type catalyst, an exhaust gas purifying device is disclosed, in which the hydrogen production catalyst is arranged upstream of the NOx occlusion reduction type catalyst. Japanese Patent Laid-Open No. 2 00 0-2 7 6 2 5 is characterized in that a NOX selective reduction catalyst is arranged upstream of the lean NO X catalyst in order to improve the performance during leaning. An exhaust gas purification device for an internal combustion engine is disclosed. Disclosure of the invention According to Patent Document 1, although the NOX reduction ability at the time of latching is improved, the NOX trapping ability at the time of leaning has not been improved, so if a large amount of NOX enters the NOX storage reduction type catalyst at the time of leaning, purification is performed. There is a fear that it cannot be exhausted. Also, in Patent Document 2, an Ir-based catalyst is used as the NOX selective reduction catalyst, but the NOX selective reduction ability at 300 ° C or lower is low, and at low temperatures of about 200 ° C. It is difficult to reduce and purify N 0 .X sufficiently.
本発明の課,題は、 上記問題を解消し、 内燃機関運転時に排出される炭 化水素, 一酸化炭素及び窒素 .化物を良好に浄化させる排ガス浄化方法 及び装置を提供することである。  The subject of the present invention is to provide an exhaust gas purification method and apparatus that eliminates the above-mentioned problems and that effectively purifies hydrocarbons, carbon monoxide, and nitrogen dioxide discharged during operation of an internal combustion engine.
上記課題を解決する本発明の特徴は、 ディーゼルエンジン排気ガ 流 路に、 排気ガス流路の上流から、 リーン時に N O Xを還元することので きる N O X選択還元能と、 リ ツチ時には C Oシフ ト反応により水素を発 生する水素製造機能を併せ持つ触媒と、' リーン N O X触媒とを上記の順 番で配置された排ガス浄化装置にある。  The feature of the present invention that solves the above-mentioned problems is that the NOx selective reduction ability capable of reducing NOX during leaning from the upstream of the exhaust gas passage to the diesel engine exhaust gas passage and the CO shift reaction at the time of latching. This is an exhaust gas purification system in which a catalyst having a hydrogen production function for generating hydrogen and a 'lean NOX catalyst' are arranged in the above order.
第 1図にその概略図を示す。 エンジン 1から排出される排気 スは排 気ガス流路 2を通過し排気ガス流'路の上流から N O 3 選択還元能と水素 製造機能を併せ持つ触媒 3, リーン N O X触媒 4により浄化される。 上 記構成によれば、 N O X選択還元能と水素製造機能を併せ持つ触媒が、 排気ガスの流れに対してリーン N O X触媒の上流側に配置されているた め、 排気ガスが酸化雰囲気であるときには N O X選択還元により N O X 浄化量を増大させる。 また、 排気ガスが還元雰囲気であるときに,はェン ジンから排出される C O ; H C及び H 2 Oから C Oシフ ト反応や水蒸気 改質反応により水素が生成し、 酸化雰囲気から還元雰囲気に切り換える 際にもリーン N O X触媒上に捕捉された N O Xを十分に浄化することが できる。 そして N〇 x選択還元能と水素.製造機能を併せ持つ触媒を用いている ため、 'リーン時の N O X浄化性能を向上させるごとができる。 この触媒 では、 リ ッチ時に水素を発生させることにより、 リーンに捕捉した NOx を効率よく還元 · 浄化することができる。 また、 NO X選択還元能と水 素製造機能を併せ持つ触媒の NO X選択還元能は 2 0 0 °Cでも十分に発 揮される。 Figure 1 shows a schematic diagram. Exhaust gas discharged from engine 1 passes through exhaust gas flow path 2 and is purified from upstream of the exhaust gas flow path by catalyst 3 having both NO 3 selective reduction ability and hydrogen production function, and lean NOX catalyst 4. According to the above configuration, since the catalyst having both NOX selective reduction ability and hydrogen production function is arranged upstream of the lean NOX catalyst with respect to the exhaust gas flow, when the exhaust gas is in an oxidizing atmosphere, NOX Increase the amount of NOX purification by selective reduction. When exhaust gas is in a reducing atmosphere, CO is emitted from the engine; hydrogen is generated from HC and H 2 O by the CO shift reaction and steam reforming reaction, and the oxidizing atmosphere is switched to the reducing atmosphere. In particular, the NOX trapped on the lean NOX catalyst can be sufficiently purified. And because it uses a catalyst with both Nx selective reduction ability and hydrogen production function, it can improve NOx purification performance when lean. With this catalyst, it is possible to efficiently reduce and purify NOx trapped in the lean by generating hydrogen during the latching. In addition, the NO X selective reduction ability of a catalyst having both NO X selective reduction ability and hydrogen production function is sufficiently exhibited even at 200 ° C.
本発明における NO X選択還元能と水素製造機能を併せ持つ触媒の成 分は、 C Oを水蒸気改質して水素を生成する' C O改質成分を含有してい る。 具'体的には、 '上記 0 O改質成分は、 R h, P t , P d力 ら選ばれる 少なく とも一種の貴金属と、 これらを担持した、 Z r 〇 2, C e O 2, T i O 2若しくは Z r O 2ど C e O 2を含む複合酸化物担体を含有するこ とを特徴とする。 The component of the catalyst having both the NO X selective reduction ability and the hydrogen production function in the present invention contains a 'CO reforming component that produces hydrogen by steam reforming CO. In concrete terms, the above-mentioned 0 O reforming component is composed of at least one kind of precious metal selected from R h, P t, and P d force, and Z r 0 2 , C e O 2 , T i O 2 or, characterized that you containing composite oxide carrier containing a Z r O 2 throat C e O 2.
本発明におけるリーン NO X触媒と しては、 NO X吸蔵還元型触媒や N O X吸着還元型触媒を用いることができる。 NO x吸着還元型触媒は、 リーン運転時に N Oを N O 2に酸化した後化学吸着し、吸着された NO 2 が N O X吸着還元型触媒の N O 2平衡吸着量に達する以前に排気ガスを 還元雰囲気と し、 吸着 N 02を窒素 (N2) に還元, 浄化する排ガス浄化 用触媒であって、 酸化物担体にアルカ リ金属, アルカ リ土類金属及び希 土類元素から選ばれる少なく とも 1種の NO x吸着材と R h , P t , P dから選ばれる少なく とも一種の貴金属とを担持してなることを特徴 とする。 As the lean NO X catalyst in the present invention, a NO X storage reduction catalyst or a NOX adsorption reduction catalyst can be used. The NO x adsorption and reduction type catalyst is chemically adsorbed after oxidizing the NO to NO 2 in the lean operation, a reducing atmosphere exhaust gas before the NO 2 adsorbed reach NO 2 equilibrium adsorption amount of NOX adsorption and reduction catalyst An exhaust gas purifying catalyst that reduces and purifies the adsorbed N 0 2 to nitrogen (N 2 ), and the oxide carrier is at least one selected from alkaline metals, alkaline earth metals, and rare earth elements. The NOx adsorbent is supported on at least one kind of noble metal selected from Rh, Pt, and Pd.
排気ガスを還元雰囲気にするためには、, 特別な還元剤添加装置を備え ずとも、 ディ,ーゼルエンジンでの通常の燃料噴射に加えて膨張行程また は排気行程にエンジンシリンダ内に 2回目の燃料を噴射する燃料 2次嘖 射等を用いることで可能になる。 '本発明において NO x 還元浄化するためリーン運転時と比較して還 元剤が多い状態を作ると ともに、 リーン NO X触媒が十分に機能する温 度になるよう排気ガス若しくはリーン NO X触媒を加熱するタイ ミング は以下の各方法等 ίこよることができる。 In order to make the exhaust gas into a reducing atmosphere, the fuel for the second time in the engine cylinder in the expansion stroke or exhaust stroke in addition to the normal fuel injection in diesel engines, without special reducing agent addition device. This can be achieved by using secondary fuel injection. In the present invention, in order to reduce and purify NO x, the exhaust gas or lean NO X catalyst is used so that the temperature of the lean NO X catalyst is sufficiently high while creating a state where there is more reducing agent compared to lean operation. The timing for heating can be determined by the following methods.
( 1 ) E CU (Electric Control Unit) で決定される空燃比設定信号, エンジン回転数信号, 吸入空気量信号,' 吸気管圧カイ前号, 速度信号, ス 口ッ トル開度, 排ガス温度等からリ一 ^運転時における NO x 出量を 推定し、' その積算値が所定の設定値'を超えたとき。  (1) Air-fuel ratio setting signal determined by E CU (Electric Control Unit), engine speed signal, intake air amount signal, 'intake pipe pressure chi no., Speed signal, throttle opening, exhaust gas temperature, etc. ^ When the NO x output during operation is estimated and the accumulated value exceeds the preset value.
( 2 ) 排気流路の NO X浄化触媒上流または下流に置かれた AZFセン サ (若しくは酸素センサ) の信号により検出された累積酸素量が所定の 量を超えたとき、 またはリーン運転時のみの累積酸素量が所定の量を超 えたとき。  (2) When the cumulative oxygen amount detected by the signal of the AZF sensor (or oxygen sensor) placed upstream or downstream of the NO X purification catalyst in the exhaust passage exceeds a predetermined amount, or only during lean operation When the cumulative amount of oxygen exceeds the specified amount.
( 3 ) 排気流路のリーン NO X触媒上流に置かれた NO Xセンサ信号に より累積 NO x量を算出し、 リーン運転時における累積 NO x量が所定 の量を超えたとき。  (3) When the accumulated NO x amount is calculated based on the NO X sensor signal placed upstream of the lean NO X catalyst in the exhaust flow path and the accumulated NO x amount exceeds the predetermined amount during lean operation.
(4 ) 排気流路の NO X吸着還元型触媒後流に置かれた NO Xセンサの 信号により リーン運転時における NO X濃度を検出し、 NO x濃度が所 定濃度を超えたとき。  (4) When the NOx concentration during lean operation is detected by the signal from the NOx sensor placed downstream of the NOx adsorption / reduction catalyst in the exhaust passage, and the NOx concentration exceeds the specified concentration.
リーン運転時と比較して還元剤が多い状態を維 i する時間や、 その状 態を維持すべく投入する還元剤量は、 前述のごとく、 予めリーン NO x 触媒の特性, '内燃機関の諸元や特性を考慮して決めることができるが、 これらと ともに、 燃料噴射弁のス トローク, 噴射時間及び噴射間隔等を 調整して実現できる。 図面の簡単な説明 第 1図は本発明のディーゼルエンジン排気ガス浄化装置の一実施形態 を示す概略図である。 As described above, the time for maintaining a state where the amount of reducing agent is higher than that during lean operation and the amount of reducing agent to be charged to maintain the state are as follows. Although it can be determined in consideration of the origin and characteristics, it can be realized by adjusting the stroke, injection time, and injection interval of the fuel injection valve. Brief Description of Drawings FIG. 1 is a schematic view showing an embodiment of a diesel engine exhaust gas purification apparatus of the present invention.
第 2図は本発明のディーゼルエンジン排気ガス浄化装置の一実施形態 を示す概略図である。 '  FIG. 2 is a schematic view showing an embodiment of the diesel engine exhaust gas purification apparatus of the present invention. '
第 3図は本発明のディーゼルエンジン排気ガス浄化装置の一実施形態 を示す概略図である。 '  FIG. 3 is a schematic view showing an embodiment of the diesel engine exhaust gas purification apparatus of the present invention. '
第 4図は本発明のディーゼルエンジン排気ガス浄化装置の一実施形態 を示す概略図である。 '  FIG. 4 is a schematic view showing an embodiment of the diesel engine exhaust gas purification apparatus of the present invention. '
第 5図は本発明のディーゼルエンジン排気ガス浄化装置の一実施形態 を示す概略図である。  FIG. 5 is a schematic view showing an embodiment of the diesel engine exhaust gas purification apparatus of the present invention.
第.6図は空燃比の制御方法を示すプロック線図である。  FIG. 6 is a block diagram showing an air-fuel ratio control method.
第 7図は空燃比制御のフローチャー トである。  Fig. 7 is a flowchart of air-fuel ratio control.
第 8図は第 6図のフ ロ チヤ一トにおける N O X量推算部分である。 第 9図は第 6図のフローチヤ一トにおける N O X量推算部分である。 第 1 0図は第 6図のフローチャートにおける N O x量推算部分である。 . 第 1 1図は第 6図のフローチヤ トにおける N O x量推算部分である。 第 1 2図は第 6図のフローチャー トにおける N O X量推算部分である。 第 1 3図は本発明のディー'ゼルエンジン排気ガス浄化装置の一実施形 態を示す概略図である。 - 発明を実施するための最良の形態  Fig. 8 shows the N O X amount estimation part in the flowchart of Fig. 6. Fig. 9 shows the N O X amount estimation part in the flowchart of Fig. 6. FIG. 10 shows the NOx amount estimation part in the flowchart of FIG. Fig. 11 shows the NOx estimation part in the flowchart of Fig. 6. Figure 12 shows the NOx amount estimation part of the flow chart in Figure 6. FIG. 13 is a schematic view showing an embodiment of the diesel engine exhaust gas purification apparatus of the present invention. -Best mode for carrying out the invention
以下、 図面及び表に'より本発明の実施形態について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings and tables.
本発明のディーゼルエンジン排気ガス浄化装置はディーゼルエンジン 排気ガス流路の途中に、 排気ガス流路の上流から N O X選択還元能及び 水素製造機能を併せ持つ触媒、 リーン N O x触 が上記の順番で配置さ れて成る。 In the diesel engine exhaust gas purification apparatus of the present invention, a catalyst having both NOX selective reduction ability and hydrogen production function, lean NO x catalyst, is arranged in the above order in the middle of the exhaust path of the diesel engine. It is made up.
上記 NO x選択還元能及び水素製造機能を併せ持つ触媒は、'排ガスが 還元雰囲気であるとき、 排ガス中に多く含まれる C Oと H20の水性ガ スシフ ト反応により、 H 2を発生ざせる機能を有する。 このよ うな触媒 と して、 貴金属 (P t, P d , R hなど) と、 担体と して Z r O 2, C e O 2 , T i 02若しく は Z r 〇 2と C e 02を含む複合酸化物を含有 している各種触媒、 例えば、 P t ZC e 〇 2, P t /セリア一ジルコ - ァ複合酸化物, P t ZT i O 2などが挙げられる。 担体は、 酸素吸蔵能 力が高く、 ¾表面積及ぴ細孔容積が大きいものが望ましい。 The catalyst that has both NO x selective reduction ability and hydrogen production function has the function of generating H 2 by an aqueous gas shift reaction between CO and H 2 O, which are abundant in the exhaust gas, when the exhaust gas is in a reducing atmosphere. Have And this good UNA catalyst, precious metal (P t, P d, R h , etc.) and, Z r O 2 as a carrier, C e O 2, T i 0 2 Moshiku is Z r 〇 2 and C e various catalysts containing a composite oxide containing 0 2, for example, P t ZC e 〇 2, P t / ceria one zirconate - § composite oxide, and the like P t ZT i O 2. The carrier preferably has a high oxygen storage capacity, a large surface area and a large pore volume.
なお、本発明の触媒において、リ ツチにおいて水素生成が起きること、 リーン,において選択還元性能を有することは別途確認済み (後述) であ る。  In the catalyst of the present invention, it has been confirmed separately (described later) that hydrogen generation occurs in the rich and that the lean has selective reduction performance.
上記 NO X選択還元能及び水素製造機能を併せ持つ触媒の下流側に配 置されるリーン NO X触媒と しては、 貴金属を担持したアルミナのよ う な高比表面積の耐火性無機材料に、 K, N a等のアルカリ金属、, C a, B a等のアルカ リ土類金属、 T i , Mn , F e, .C u等の遷移金属、 L a, Z r.,. C e等の希土類金属、 又はこれらの任意の組み,合わせを添 加して成るハ,二カム状モノ リス型触媒を用いることができる。  As a lean NO X catalyst placed on the downstream side of the catalyst having both the NO X selective reduction ability and the hydrogen production function, a high-specific surface area refractory inorganic material such as alumina supporting a noble metal is used. , Alkali metals such as N a, alkaline earth metals such as C a and B a, transition metals such as T i, Mn, F e, .C u, L a, Z r.,. It is possible to use a rare earth metal, or a combination of these, a combination of these, a two-cam monolith type catalyst.
第 2図に ( 1 ) NO X吸着還元型触媒のみ、 ( 2 ) NO x選択還元触媒 と N O X吸着還元型触媒との組み合わせ、 ( 3 ) N O X選択還元能及ぴ水 素製造機能を併せ持つ触媒と. NO X吸着還元型触媒との組み合わせ、 の 3種類の触媒の 2 0 0 °Cでのリーン及ぴリ ツチでの NO x浄化率を示す ( 1 ) NO X吸着還元型触媒のみではリーン性能 5 1 %, リ ッチ性能 4 3 %, .リーン/リ ツチトータル性能 4 7 %であった。 ( 2 ) N O X選択 還元触媒との組み合わせでは、 リーン性能 7 6 %, リ ツチ性能 6 0 %, リ ーン/リ ッチ トータル性能 6 8 %で、 リ ーン性能に 2 5 ポイ ン トの向 上が見られたが、リ ツチ性 "能は 1 .7ボイン トの向上にと どまつた。一方、Fig. 2 shows (1) NO X adsorption reduction catalyst only, (2) NO x selective reduction catalyst and NOX adsorption reduction catalyst, (3) NOx selective reduction catalyst and hydrogen production function. In combination with NO X adsorption-reduction catalyst, shows the NO x purification rate at 2 ° C and lean of the three types of catalysts (1) Lean performance with NO X adsorption-reduction catalyst alone 51%, Rich performance 43%, Lean / Ritch total performance 47%. (2) NOX selection When combined with a reduction catalyst, lean performance is 76%, rich performance 60%, Lean / Litch total performance was 68%, and the Lean performance was improved by 25 points, but the “Litch performance” was only improved by 1.7 points. On the other hand,
( 3 ) N O X選択還元能及び水.素製造機能を併せ持つ触媒との組み合わ せでは、 リーン性能 8 2 %, リ ッチ性'能 7 8 % , リーンノリ ツチトータ ル性能 8 0 %であつ,た。 リーン性能は 2 9ポイント, リ ツチ性能は 3 5 ボイン トの向上がみられ、 N. O X選択還元触媒との'組み合わせと比較す ると リ ツチ性能は 1 8 ,ボイント上回っており 、 これは水素製造機能によ るものである'。 (3) When combined with a catalyst having both NO X selective reduction ability and hydrogen production function, the lean performance was 82%, the richness performance was 78%, and the lean-notch total performance was 80%. The lean performance improved by 29 points, and the Rich performance improved by 35 points. Compared with the combination with N. OX selective reduction catalyst, the Rich performance was 18 points higher than the point. It depends on the hydrogen production function.
以上のことから、 本発明の N O X浄化方法により リーン Zリ ッチ性能 を大幅に.改善でぎることが判った。 特に本発明においては、. リ ッチを深 くする (空燃比の燃料を多くする) ことにより、 低温 ,時は C O製造が進 み、高温時には N O Xの内部まで還元浄化がされ、排ガスの浄化が進む。' 一方、 リ ッチの深くすることによ り、 燃費は高くなる。  From the above, it has been found that the NOx purification method of the present invention can greatly improve the lean Z-litch performance. Especially in the present invention, by deepening the richness (increasing air-fuel ratio fuel), CO production proceeds at low temperatures, sometimes reducing and purifying NOX inside at high temperatures, and purifying exhaust gas. Advances. 'On the other hand, fuel consumption increases by deepening the ridge.
'上記の例においてはリーン N O ' X触媒と水素.製造機能触媒を別に作成 して直列に配置したが、 リーン N O X触媒上に N O X選択還元能及ぴ水 素製造機能を併せ持つ触媒を担持させ、二層型触媒とすることもできる。  'In the above example, lean NO' X catalyst and hydrogen. A production function catalyst was created separately and placed in series, but a catalyst having both NOX selective reduction ability and hydrogen production function was supported on the lean NOX catalyst, A two-layer catalyst can also be used.
また、 N O X選択還元能及び水素製造機能を併せ持つ触媒の上流に、 '排ガス中の P Mを酸化除去せしめるディーゼルパティキュレートフィル タ (D P F ) を配置してもよい。 上記フィルタ手段は、 Ρ Μίΐ捉機能を 有する。  Further, a diesel particulate filter (D PF) that oxidizes and removes PM in exhaust gas may be disposed upstream of a catalyst having both N O X selective reduction ability and hydrogen production function. The filter means has a function of capturing a light.
上記フィルタと しては、 例えば、 セラミ ック焼結体, セラミ ックファ ィバ及び金属などの各種材料を使用できる。 具体的には、 セラミ ックフ アイバをコイル状に卷いて円筒型に成形したフィルタ, ファイバを織つ たものを適当な形状に成形したフィルタ, セラミ ック製で上流側端部が 閉塞され下流側端部が開放された排気ガス通路と、 上流側端部が開放さ れ下流側端部が閉塞された排気ガス通路とが交互に配列され、 隣接する 排気ガス通路間には多孔質の甓面が形成されているウォールフロー型フ ィルタなど、.様々な形態や大きさのフィルタを使用空間に応じて適宜選 択できる。 As the filter, for example, various materials such as a ceramic sintered body, a ceramic fiber, and a metal can be used. Specifically, a filter in which a ceramic fiber is coiled and formed into a cylindrical shape, a filter in which a fiber weave is formed into an appropriate shape, and made of ceramic, the upstream end is closed and the downstream side is closed Exhaust gas passage with open end and upstream end open Various types and sizes, such as wall-flow type filters, in which exhaust gas passages with closed downstream ends are alternately arranged and porous saddle surfaces are formed between adjacent exhaust gas passages This filter can be selected appropriately according to the space used.
〔実施例 1〕  Example 1
本発明のディーゼルエンジン排気ガス浄化装置の一実施形態^第 3図 に示す。  An embodiment of the diesel engine exhaust gas purification apparatus of the present invention is shown in FIG.
本実施形態のディーゼルエンジン排気ガス浄化装置は、 ディ一ゼルェ ンジン 1,エアフローセンサ' 6,スロッ トルバルブ 7'等を.擁する吸 ¾系、 NO x吸着還元型触媒 5 , 排気ガス流路 2の触媒 5 よ り上流側に設置さ れた NO X選択還元能及び水素製造機能を併せ持つ触媒 3, AZFセン サ (若しくは酸素濃度センサ) 8及び 1 0; 排気温度センサ 9及び 1 1 等を擁する排気系及び制御ユニッ ト (E CU) 1 2等から構成される。 E CUは入出力インターフェイスと しての I /O L S I , 演算処理装 置 MP U, 多数の制御プログラムを記憶させた記憶装置 RAMおよび R〇Μ,, タイマーカウンタ一等より構成きれる。  The diesel engine exhaust gas purifying apparatus of the present embodiment includes an intake system having a diesel engine 1, an air flow sensor '6, a throttle valve 7', etc., a NOx adsorption reduction type catalyst 5, and an exhaust gas passage 2 catalyst. 5 Exhaust system with NOx selective reduction ability and hydrogen production function installed upstream from 5 AZF sensor (or oxygen concentration sensor) 8 and 10; Exhaust temperature sensor 9 and 11 And control unit (ECU) 1 2 etc. The ECU consists of an I / O L S I as an input / output interface, an arithmetic processing unit MPU, a storage device RAM and R0Μ that stores many control programs, and a timer counter.
本実施形態のディーゼルエンジン排気ガス浄化装置では、 ディーゼル エンジン 1から排出された排気ガスは、 まず NO X選択還元能及ぴ水素 製造機能を併せ持つ触媒 3に流入する。 NO X選択還元能及び水素製造 機能を併せ持つ触媒 3はリーン運転時には高濃度の O 2存在下での NOx と C Oによる NO x選択還元反応によ り N O Xを還元 · 浄化し、 リ ッチ 運転時には C Oと H 2〇の水性ガスシフ ト反応により H 2を発生し、発生' した H2が NO X吸着還元型触媒 5の NO X還元反応を促進させる。 In the diesel engine exhaust gas purification apparatus of the present embodiment, exhaust gas discharged from the diesel engine 1 first flows into the catalyst 3 having both NO X selective reduction ability and hydrogen production functions. Catalyst 3, which has both NO X selective reduction ability and hydrogen production function, reduces and purifies NOX by NO x selective reduction reaction with NOx and CO in the presence of high concentration of O 2 during lean operation, and at the time of rich operation H 2 is generated by the water gas shift reaction between CO and H 2 O, and the generated H 2 promotes the NO X reduction reaction of the NO X adsorption reduction catalyst 5.
NO x吸着還元型触媒 5はリーン運転時に N Oを N O 2に酸化'した後 化学吸着し、 吸着された NO 2が NO X吸着還元型触媒 5の NO 2平衡吸 0 The NO x adsorption and reduction type catalyst 5 is chemisorbed after oxidizing 'NO to NO 2 in the lean operation, NO 2 flat衡吸of NO 2 adsorbed NO X adsorption and reduction catalyst 5 0
着量に達する以前に排気ガスを還元雰囲気と し、吸着 N〇 2を窒素(N 2 ) に還元, 浄化する。, Previously exhaust gas reaching the wear amount and a reducing atmosphere, reducing the adsorbed N_〇 2 nitrogen (N 2), to purify. ,
また、 排気ガスを還元雰囲気にする手段と しては、 炭化水素濃度を増 大させる手段 (エンジンの燃料二次噴射等), 酸素濃度を低減させる手段 In addition, as means for making the exhaust gas into a reducing atmosphere, means for increasing the hydrocarbon concentration (such as engine secondary fuel injection), means for reducing the oxygen concentration, etc.
(吸気絞り等) 等があるが、 これらを同期させて行った。 また、 上記炭 化水素濃度を増大させる処理及ぴ酸素濃度を低減させる処理時には上記 N O X吸着還元型触媒 5.の触媒温度を 2 5 0 °Cから 5 0 0 °Cに制御した。 これは、 上記範囲の温度で、 N〇 X吸着還元型触媒ちの N O X浄化能が よいためである。 (Intake throttling, etc.) etc. In addition, during the treatment for increasing the hydrocarbon concentration and the treatment for reducing the oxygen concentration, the catalyst temperature of the NOx adsorption reduction catalyst 5 was controlled from 25 ° C. to 500 ° C. This is because the NOx purification capacity of the NOx adsorption reduction catalyst is good at temperatures in the above range.
〔実施例 2〕  Example 2
本発明のディーゼルエンジン排 ガス浄化装置の一実施形態を第 4図 に示す。 第 4図は、 第 3図の N O X吸着還元型触媒 5を吸収還元型触媒 に変更したもめである。  FIG. 4 shows an embodiment of the diesel engine exhaust gas purification device of the present invention. FIG. 4 is a view of the NOx adsorption reduction catalyst 5 shown in FIG. 3 replaced with an absorption reduction catalyst.
N O X吸蔵還元型触媒 1 3はリーン運転時に N Oを N O 2に酸化した 後吸蔵材と化学反応を起こすことで吸蔵材の硝酸塩を生成し、 吸蔵され た N O Xが N O X吸蔵還元型触媒 1 3の N O X平衡吸蔵量に達する以前 に排気ガスを還元雰囲気と し、 ¾蔵硝酸塩を窒素(N 2 )に還元,· 浄化す る。吸着還元型触媒 5の場合と同様に、触媒温度を 2 5 0 °Cから 5 0 0 °C に制御すると、 N O X吸蔵還元型触媒 1 3の N O X浄化能がよい。' 〔実施例 3〕 NOX storage-reduction catalyst 1 3 oxidizes NO to NO 2 during lean operation and then reacts with the storage material to generate nitrate in the storage material. The stored NOX is the NOX of NOX storage-reduction catalyst 1 3 Before reaching the equilibrium storage amount, the exhaust gas is made a reducing atmosphere, and the stored nitrate is reduced to nitrogen (N 2 ) and purified. As in the case of the adsorptive reduction catalyst 5, when the catalyst temperature is controlled from 2550 ° C. to 500 ° C., the NOX purification ability of the NOX storage reduction catalyst 13 is good. '(Example 3)
本発明のディーゼルエンジン排気ガス浄化装置の一実施形態を第 5図 に示す。 ½ 5図は、 第 3図の触媒 3 , 触媒 5を二層型触媒 1 4 とする例 である。  FIG. 5 shows an embodiment of the diesel engine exhaust gas purification apparatus of the present invention. FIG. 5 shows an example in which the catalyst 3 and the catalyst 5 in FIG.
二層型触媒 1 4は N O X吸着還元型触媒上に N O X選択還元能及び水 素製造機能を併せ持つ触媒を担持させたものである。 排気ガス流路 4の 1 The two-layer catalyst 14 is a catalyst in which a catalyst having both NOX selective reduction ability and hydrogen production function is supported on a NOX adsorption reduction catalyst. Exhaust gas flow path 4 1
上流側から N O x選択還元能及.び水素製造機能を併せ持つ触媒、 N O X 吸着還元型触媒の順'に配置されている。 From the upstream side, the catalyst is arranged in the order of N O x selective reduction ability and hydrogen production function and N O x adsorption reduction catalyst.
〔実施例 4〕  Example 4
(空燃比制御方法)  (Air-fuel ratio control method)
実施例 1から 3においてエンジンに供給される混合気の燃料濃度 (以 下空燃比) は次の様に制御することができる。  In Examples 1 to 3, the fuel concentration (hereinafter referred to as the air-fuel ratio) of the air-fuel mixture supplied to the engine can be controlled as follows.
第 6図に空燃比制御方法をプロック線図で示した。 ァクセルペダルの 踏み込みに応じた信号を.出力する負荷センサ'出力, エアフローセンサに より計量された吸気量の出力信号, クランク角センサにより検出される エンジン回転数信号, 排ガス温度信号, スロ ッ トル開度を検出するスロ ッ トルポジショ ンセンサ信号, ェ'ンジン冷却水温信号., スタータ信号等 の情報から E C U 1 4は空燃比 (A Z F ) を决定し、 さらにこの信号は A Z Fセンサ (若しくは酸素センサ) からフィードパックされる信号に 基づき補正され、 燃料噴射量を決定する。 なお、 低温時, アイ ドル時, 高負荷時等では各センサ及びスィッチの信号によりフィードバック制御 を停止する。 また、 空燃比補正学習機能により空'燃比の微妙な変化や急 な変化にも正確に対応できるよう空燃比補正学習機能で対応する。  Fig. 6 shows a block diagram of the air-fuel ratio control method. Load sensor output that outputs a signal according to the depression of the accelerator pedal, output signal of intake air measured by the airflow sensor, engine speed signal detected by the crank angle sensor, exhaust gas temperature signal, throttle opening ECU 14 determines the air-fuel ratio (AZF) from the information on the throttle position sensor signal, engine coolant temperature signal, starter signal, etc., and this signal is fed back from the AZF sensor (or oxygen sensor). The fuel injection amount is determined based on the corrected signal. Note that feedback control is stopped by signals from each sensor and switch at low temperatures, at idle, and at high loads. In addition, the air / fuel ratio correction learning function can be used to accurately cope with subtle or sudden changes in the air / fuel ratio.
決定された空燃比が還元雰囲気のとき E C Uの指示によりィンジェク タの嘖射条件が決定されリ ッチ運転が行われる。 一方、 リーン運転が決 定された場合、' リーン N O X触媒の N O X捕捉能の有無の判定を行い捕 捉能が所定の規定値 (例えば、 平衡捕捉量の 5 0 % ) 以上であると判定 された場合に指示通りのリーン運転を行うべく燃料噴射量が決定され、 吸着能が所定の規定値未満であると判定された場合には空燃比を所定期 間リ ッチシフ トしてリーン N O X触媒を再生する。  When the determined air-fuel ratio is a reducing atmosphere, the injection condition of the injector is determined by the instruction of ECU and the rich operation is performed. On the other hand, when the lean operation is determined, it is determined whether or not the lean NOX catalyst has NOX trapping ability, and the trapping ability is determined to be equal to or higher than a predetermined specified value (for example, 50% of the equilibrium trap amount). If the fuel injection amount is determined to perform the lean operation as instructed and the adsorption capacity is determined to be less than the predetermined specified value, the air-fuel ratio is shifted for a predetermined period to activate the lean NOX catalyst. Reproduce.
第 7図に空燃比制御のフローチヤ一 'トを示した。 ステップ 1 0 0 2で 各種の運転条件を指示するあるいは運転状態を検出する信号を読み込む。 これらの信号に基づぎステップ 1 0 0 3で空燃比を決定、 ステップ 1004 では決定された空燃比を検出する。 ステップ 1 0 0 5で決定された空燃 比と理論空燃比との大小を比較する。 ここでの比較対象.となる理論空燃 比は、 正確にはリーン NO X触媒'において N O Xの接触還元反応の速度 が捕捉速度を上回る空燃比であり、 予めリーン N O X触媒の特性を評価 して決定されるもので、理論空燃比近傍の空燃.比が選定される。ここで、 設定空燃比≤理論空燃比の場合ステップ 1 0 0 6に進みリーン N O X触 媒の再生操作を行うことなく指示通りの空燃比運転を行う。 設定空,燃比 >理論空燃比の場合ステップ 1 0 0 7に進む。 ステップ 1007では N〇x 捕捉量の推定演算を行う。 推定演算方法については後述する。 続いてス テツプ 1 0 0 8で推定 NO X捕捉量が所定限界量以下であるか否かを判' 定する。 限界捕捉量は予め実験等によ り リーン NO x触媒の NO X捕捉 特性を評価して、 また排気ガス温度ゃリーン N O X触媒温度等を考慮し て、 排ガス中の N Xが十分に浄化できる値に設定される。 NO x捕捉 能がある場合にはステップ 1 0 0 6に進み、 リーン NO X触媒の再生操 作を行うことなく指示通りの空燃比運転を行う。 NO X捕捉能がない場 合にはステップ 1 0 0 9に進み、 空燃比をリ ッチ側にシフ トする。 ステ ップ 1 0 1 0ではリ ツチシフ ト時間をカウン ト し、 経過時間 T rが所定 の時間(T r ) cを超えればリ ッチシフ トを終了する。 Fig. 7 shows the flowchart of air-fuel ratio control. In steps 1 0 0 2 Reads signals for instructing various operating conditions or detecting operating conditions. Based on these signals, the air-fuel ratio is determined in step 1003, and the determined air-fuel ratio is detected in step 1004. Compare the air-fuel ratio determined in Step 1 0 0 5 with the theoretical air-fuel ratio. The theoretical air-fuel ratio to be compared here is precisely the air-fuel ratio at which the NOX catalytic reduction reaction rate exceeds the capture rate in the lean NO X catalyst, and the characteristics of the lean NOX catalyst are evaluated in advance. The air / fuel ratio near the stoichiometric air / fuel ratio is selected. Here, if the set air-fuel ratio ≤ the stoichiometric air-fuel ratio, the routine proceeds to step 106, and the air-fuel ratio operation is performed as instructed without performing the regeneration operation of the lean NOX catalyst. If set air / fuel ratio> stoichiometric air / fuel ratio, go to step 1 0 7 In step 1007, the estimated amount of Nx is estimated. The estimation calculation method will be described later. Subsequently, in step 1 0 0 8, it is determined whether or not the estimated NO X trapping amount is equal to or less than a predetermined limit amount. The limit trapping amount is set to a value that can sufficiently purify NX in the exhaust gas by evaluating the NOx trapping characteristics of the lean NOx catalyst by experiments in advance and considering the exhaust gas temperature and lean NOX catalyst temperature, etc. Is set. If NO x trapping capability exists, proceed to step 106, and perform the air-fuel ratio operation as instructed without regenerating the lean NO X catalyst. If NO X trapping ability is not available, proceed to step 1 0 9 and shift the air-fuel ratio to the latch side. In steps 1 0 1 0, the latch shift time is counted, and when the elapsed time T r exceeds a predetermined time (T r) c, the latch shift is terminated.
(NO x捕捉能の判定)  (Determination of NO x capture ability)
上記ステップ 1 0 0 8の NO x捕捉能の判定は次のよ'うに行うことが できる。  The determination of the NO x trapping capacity in the above steps 1 0 0 8 can be performed as follows.
' 第 8図はリーン運転時の各種運転条件から N O x排出量を積算し、 判 定ずる方法である。 ステップ 1 0 0 7— E 0 1で排気ガス温度等のリーン N O X触媒の作 動条件に関する信号と排ガス中の N O X濃度に影響する各種の機関運転 条件に関する信号とを読み込.み単位時間に吸着する NO X量 ENを推算 する。 ステップ 1 0 0 7— E ひ 2で E Nを積算し、 ステップ 1 0 0 8— E 0 1で積算値∑ ENと捕捉量の上限値(EN) c との大小を比較する。 ∑ E N≤ (EN) c の場合は積算を継続し、 ∑ E N > (E N) c の場合ステッ プ 1 0 0 8— E 0 2で積算を解除しステップ 1 0 0 9に進む。 'Fig. 8 shows a method for accumulating NO x emissions from various operating conditions during lean operation. Step 1 0 0 7—E 0 1 reads the signals related to the operating conditions of the lean NOX catalyst, such as the exhaust gas temperature, and signals related to various engine operating conditions that affect the NOX concentration in the exhaust gas. to estimate the amount of NO X E N to. Step 1 0 0 7- E monument 2 integrates the E N, compares the magnitude of the step 1 0 0 8- E 0 1 integrated value sigma E N and holding amount upper limit value at (E N) c. If ∑ E N ≤ (E N ) c, continue to accumulate, if ∑ E N > (E N ) c, step 1 0 0 8 — cancel accumulation at E 0 2 and proceed to step 1 0 0 9 .
■ 第 9図はリーン運転の積算時間より判定する方法である。 ステップ 1 0 0 7— H 0 1 でリーン運転時間 HLを積算し、 ステップ 1 0 0 8 — H 0 1で積算値∑ と積算時間の上限値(Hr.) c との大小を比較する。 ∑ HL≤ (HL) c の場合積算を継続し、 ∑ HL > (HL) c の場合ステップ 1 0 0 8 - H 0 2で積算を解除しステップ 1 0 0 9に進む。 ■ Fig. 9 shows the method for judging from the accumulated lean operation time. Step 1 0 0 7 — Accumulate the lean operation time HL at H 0 1, and compare the magnitude of the accumulated value ∑ and the upper limit value of accumulated time (H r .) C at Step 1 0 0 8 — H 0 1 . If ∑ H L ≤ (H L ) c, continue integration. If ∑ H L > (H L ) c, cancel integration at step 1 0 0 8-H 0 2 and proceed to step 1 0 0 9.
第 1 0図 ·はリーン運転時の AZFセンサ (若しくは酸素センサ) 信号 より判定する方法である。 ステップ 1 0 0 7 - O 0 1でリーン運転にお. ける酸素量 Q。を積算し、'ステツプ 1 0 0 8 — O 0 1で積算値!: Q。と積 算酸素量の上限値(Q。) c との大小を比較する。 ∑ Q。≤ (Q。) cの場合 積算を継続し、 ∑ Q。 > (Q。) cの場合ステップ 1 0 0 8— O 0 2で積算 を解除しステップ 1 0 0, 9に進む。  Fig. 10 · is a method of judging from the AZF sensor (or oxygen sensor) signal during lean operation. Step 1 0 0 7-O 0 1 The amount of oxygen Q in lean operation. 'Step 1 0 0 8 — O 0 1 is the integrated value! : Q. And the upper limit (Q.) c of the accumulated oxygen amount. ∑ Q. ≤ (Q.) In case of c, continue integration and 積 算 Q. > (Q.) In the case of c, the integration is canceled at step 1 0 0 8—O 0 2 and the process proceeds to steps 1 0 0, 9.
第 1 1図はリ ン運転時のリーン NO X触媒入口で検出した NO X濃 度センサ信号より判定する方法である。 ステップ 1 0 0 7— N 0 1で NO X濃度センサ信号に基づきリーン N O X触媒入口における N O X量 QNを積算する。 ステップ 1 0 0 8— N O 1で積算値∑ QNと積算 NO X 量の上限値(QN) c との大小を比較する。 ∑ QN≤ (QN) cの場合積算を 継続し、 ∑ QN> (QN) cの場合ステツプ 1 0 0 8— N 0 2で積算を解除 しステップ 1 0 0 9に進む„ 4 Fig. 11 shows the determination method based on the NO X concentration sensor signal detected at the lean NO X catalyst inlet during the line operation. Step 1 0 0 7—N 0 1 Based on the NO X concentration sensor signal, add the NOX amount Q N at the lean NOX catalyst inlet. Step 1 0 0 8— Compare the accumulated value ∑ Q N with the accumulated NO X upper limit value (Q N ) c at NO 1. ∑ If Q N ≤ (Q N ) c, continue the integration. If ∑ Q N > (Q N ) c, cancel the integration at step 1 0 0 8—N 0 2 and proceed to step 1 0 0 9 Four
第 1 2図はリーン運転時のリーン N〇 X触媒出口で検出した NO X濃 度センサ信号より判定する方法である。 ステップ 1 0 0 7— C 0 1で N O X濃虔センサ信号に基づきリーン N〇 X触媒入口における N〇 X濃 度 CNを検出する。 ステップ 1 0 0 8— C O 1で CNと CNの上限値 (QN) c と の大小を比較する。 CN≤ (QN) c の場合検出を継続し、 C N > (QN) cの場合ステップ 1 0 0 9に進む。 Fig. 12 shows the method of judgment based on the NO X concentration sensor signal detected at the lean NOO catalyst outlet during lean operation. Step 1 0 0 7 — C 0 1 detects the NO x concentration C N at the lean NO x catalyst inlet based on the NOx dark sensor signal. Step 1 0 0 8—Compare the size of C N and the upper limit of C N (Q N ) c at CO 1. If C N ≤ (Q N ) c, continue detection, and if C N > (Q N ) c, go to step 1 0 0 9.
〔実施例 5〕  Example 5
本発明のディーゼルエンジン排気ガス浄化装置の一実施形態を第 1 3 図に示す。  One embodiment of the diesel engine exhaust gas purification apparatus of the present invention is shown in FIG.
本実施例は、 排気ガス流路 4に上流側から三元触媒 1 5 , 排ガス中の 粒子状物質を酸化除去せしめるディーゼルパティキュレートフィルタ In this embodiment, a three-way catalyst 15 from the upstream side into the exhaust gas passage 4, a diesel particulate filter that oxidizes and removes particulate matter in the exhaust gas.
1 6, NO X選択還元能及び水素製造機能を併せ持つ触媒 3 , NO x吸 着還元型触媒 5を配置しているものであって、 各触媒に対応させた AZ1 6, catalyst that has NO X selective reduction ability and hydrogen production function 3, NO x adsorption reduction type catalyst 5 are arranged, and AZ corresponding to each catalyst
Fセンサ (若しく は酸素濃度センサ,) 8 , 1 0及び 1 7, 排気温度セン サ¾, 1 1 , 1 8及び 2 0, 圧力センサ 1 9及ぴ 2 1等を設置する例で ある。 In this example, F sensors (or oxygen concentration sensors) 8, 10 and 17, exhaust temperature sensors, 11, 18 and 20, pressure sensors 19 and 21, etc. are installed.
本実施形態のディーゼルエンジン排気ガス浄化装置では、 ディーゼル エンジン 1から排出された排気ガスは、 まず三元触媒 1 5により熱せら れ、 排ガス中の H Cが分解される。 ディーゼルエンジン排ガス中の炭化 水素は炭素数が 7以上の高級炭化水素が比較的多いため、 三元触媒 1 5 により分解して炭素数が 6以下の低級炭化水素の割合を増大させること により、 排ガス流路下流側の N O X吸着還元型触媒 5での NO X還元反 応を効率良く進行させることができる。 また三元触媒 1 5では N O X, H C, C〇を若干浄化することができる。  In the diesel engine exhaust gas purification apparatus of the present embodiment, the exhaust gas discharged from the diesel engine 1 is first heated by the three-way catalyst 15 to decompose HC in the exhaust gas. Since hydrocarbons in diesel engine exhaust gas are relatively high in higher hydrocarbons with 7 or more carbon atoms, they are decomposed by the three-way catalyst 15 to increase the proportion of lower hydrocarbons with 6 or less carbon atoms. The NO X reduction reaction at the NOX adsorption reduction catalyst 5 on the downstream side of the flow path can be efficiently advanced. The three-way catalyst 15 can slightly purify NOx, HC, and C0.
D P F 1 6はセラミ ック製ハニカム型フィルタである。 D P F 1 6内 には、上流側端部が閉塞され、下流側端部が開放された排気ガス流路と、 上流側端部が開放され、 下流側端部が閉塞された排.気ガス流路と 交互 に配列され、 隣接する排気ガス流路間には多孔質の壁面が.形成されてい る (ウォールフロー型フィルタ)。 D P F 1 6に流入する排気ガスは、 上 流側端部が開放され下流側端部が閉塞され'た排気ガス流路に流入し、 '次 に、 隣接する排気ガス流路の間に設けられた多孔質の壁面から、 上流側 端部が閉塞ざれ、 下流側端部が開故された 気ガス流路に流入し、 下流 側に流出する。 この過程において、 ディーゼル排気ガス中の P Mは壁面 への衝突や吸着により捕集される。 DPF 16 is a ceramic honeycomb filter. Within DPF 1 6 The exhaust gas flow path with the upstream end closed and the downstream end open, and the exhaust gas flow path with the upstream end open and the downstream end closed are alternately Porous wall surfaces are formed between adjacent exhaust gas flow paths (wall flow filter). Exhaust gas flowing into DPF 16 flows into an exhaust gas passage whose upstream side end is open and downstream end is closed, and is then placed between adjacent exhaust gas passages. From the porous wall surface, the upstream end is blocked, the downstream end is opened, and the gas flows into the downstream, and flows out downstream. In this process, PM in diesel exhaust gas is collected by collision and adsorption on the wall.
なお、 D P F 1 6に捕集された P Mは、 一定量堆積後に排気ガス温度 を高めることによ,り燃焼除去をす ¾。 排気ガス温度を高める方法はェン ジン制御,. 電気ヒータ、 上流に配置した'触媒の反応熱等のいずれでもよ レ、。 燃焼した P Mの一部は不完全燃焼によ り ' C Oとなり、 また未燃の H Cが排出されるが、 これらは下流側の N O X選択還元能及び水素製造 機能を併せ持つ触媒 3及び Nひ X吸着還元型触媒 5で浄化されることに なる。 .  Note that PM collected in DPF 16 is removed by burning by raising the exhaust gas temperature after a certain amount of deposition. The method of raising the exhaust gas temperature can be engine control, electric heater, or the reaction heat of the catalyst placed upstream. Part of the combusted PM becomes' CO due to incomplete combustion, and unburned HC is also emitted, but these are adsorbed on the catalyst 3 and N 3 X that have both NOX selective reduction ability and hydrogen production function on the downstream side. It will be purified by the reduced catalyst 5. .
以上、 本発明を実施例により説明したが、 本発明は上記実施例に限定 されるものではなく、 本発明の開示の範囲内で種々変形して実施するこ とができる。  While the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the disclosure of the present invention.
例えば、図示していない力 、水素センサを N O X触媒の前段に設置'し、 所定量の H 2を検知した場合にリーンと リ ツチの切り換えをさせること ができる。 For example, with a force not shown, a hydrogen sensor can be installed in front of the NOX catalyst to switch between lean and rich when a predetermined amount of H 2 is detected.
〔実施例 6〕  Example 6
(実施例触媒 1 )  (Example catalyst 1)
コージェライ ト製ハ二カムに C e〇 2を含むコーティング用スラリー をコーティングした後、 乾燥焼成して、 ハニカムの見掛けの容積 1 リ ツ トルあたり 1 9 0 gの C e〇 2をコーティングした。該 C e〇 2コートハ 二カムに、ジニロ トロジアンミ ン P t硝酸溶液を含浸し 2 0 0 °Cで乾燥、 続いて 6 0 0 °Cで焼成した。 以上により、 ハニカムの見掛けの容積 1 L に対して、 金属換算で P t : 2. 8 gを含有する実施例触媒 1を得た。 (試験例) Coating slurry to Kojerai bets made Ha second cam includes a C E_〇 2 Was coated, and drying and firing, was coated C E_〇 2 volumes 1 Li Tsu Torr per 1 9 0 g of the honeycomb apparent. To the C E_〇 2 Kotoha second cam, dried and impregnated with Jiniro Torojianmi emissions P t nitric acid solution 2 0 0 ° C, and calcined followed by 6 0 0 ° C. Thus, Example Catalyst 1 containing Pt: 2.8 g in terms of metal with respect to an apparent volume of 1 L of the honeycomb was obtained. (Test example)
実施例触媒 1を用いて、 理論空燃比以下の運転後に残存排ガスのパー ジ処理を実施してエンジンを停止した場合を想定した試験を行った。 試 験に用いたガスは、リーンパーン排ガスを模擬したリーンモデルガスと、 理論空燃比以下の燃焼を模擬したリ ツチモデルガ と した。  Using Example Catalyst 1, a test was performed assuming that the engine was stopped by purging the residual exhaust gas after operation below the stoichiometric air-fuel ratio. The gas used in the test was a lean model gas that simulated lean lean exhaust gas and a rich model gas that simulated combustion below the stoichiometric air-fuel ratio.
リーンモデルガスの糸且成は、 N O X : 1 0 0 ppm, C 3 H 8 : 5 0 0 ppm C 1 , C O : 0. 1 % , O 2 : 5 % , H 2 O : 1 0 %, N 2 : 残部と した。 The lean model gas is composed of NOX: 100 ppm, C 3 H 8 : 500 ppm C 1, CO: 0.1%, O 2 : 5%, H 2 O: 10%, N 2 : Remaining.
リ ツチモデルガスの糸且成は、 N O X : 1 0 0 ppm, C 3 H 8 : 5 0 0 ppm C 1 , C O : 2 % , O 2 : 0 % , H 2 O : 1 0 % , N 2 : 残部と した。 以下の手順で試験した。 Yarn且成of Li Tutsi model gas, NOX: 1 0 0 ppm, C 3 H 8: 5 0 0 ppm C 1, CO: 2%, O 2: 0%, H 2 O: 1 0%, N 2 : Remaining. The following procedure was used for testing.
① 4 0 0 °Cにてリ ツチモデルガスを 3分間流通させた。  ① Rich model gas was circulated at 400 ° C for 3 minutes.
② 2 0 0 °Cに冷却した後、 リ ーンモデルガスの流通を開始した。 ② After cooling to 200 ° C, the flow of lean model gas was started.
N O X浄化率は、 式 1のリーンモデルガスとして供給しだ N O X濃度The N O X purification rate is the N O X concentration supplied as the lean model gas of Equation 1.
( 1 0 0 ppm) に対する触媒層流通前後の N O X濃度の減少率と し 。 定 義式を式 1に示した。 The rate of decrease in N O X concentration before and after circulation of the catalyst layer relative to (100 ppm). The definition is shown in Equation 1.
(160 ppm—触媒層流通後の NO X濃度)  (160 ppm—NO X concentration after catalyst bed)
N〇x浄化率 = X I 00 ··· (式 1)  N〇x purification rate = X I 00 (Equation 1)
(触媒層流通前の N O X濃度)  (N O X concentration before catalyst layer distribution)
また、.' C O浄化率は式 2 と定義した。  Also,. 'C 2 O purification rate was defined as Equation 2.
(0. 1%—触媒層流通後の CO濃度)  (0.1% —CO concentration after distribution in the catalyst layer)
CO浄化率 = X 100 … (式 2)  CO purification rate = X 100… (Formula 2)
. (触媒層流通前の CO濃度) (試験結果) (CO concentration before catalyst layer distribution) (Test results)
実施例触媒 1 のリ ーンにおける NO X浄化率の定常値, リ ツチにおけ る C O浄化率を第 1表に示す。 リ ーンにおける NO X浄化率の定常値が 2 5 °/0であることよ り、 リーンにおいて選択的に N〇 Xが還元されてい ることは明らかである。 また、 リ ッチにおける C〇浄化率から算出した. 水素生成量と実施例触媒 1流通後のリ ツチガス中の水素濃度とはほぼ一 致した。 以上のことから、 実施例触媒 1において、 リ ッチにおいて水素 生成が起きること、' リーンにおいて選択還元性能を有することは明らか である。 Table 1 shows the steady value of the NOx purification rate in the lean of Example catalyst 1 and the CO purification rate in the rich. It is clear that NOx is selectively reduced in lean because the steady NOx purification rate in lean is 25 ° / 0 . It was also calculated from the C0 purification rate in the Rich. The amount of hydrogen produced and the hydrogen concentration in the Rich gas after the Example Catalyst 1 flowed were almost identical. From the above, it is clear that Example Catalyst 1 has hydrogen generation in the rich and has selective reduction performance in lean.
丄 ^
Figure imgf000019_0001
丄 ^
Figure imgf000019_0001
〔実施例 7〕 Example 7
(実施例触媒 2 )  (Example catalyst 2)
アルミナ粉末とアルミナの前駆体かちなり硝酸酸性に調整したスラリ 一に M g O (平均粒径 : 比表面積 : l m2/ g ) を添加した M g O—アルミナ混合スラリーをコージェライ ト製ハ-カム ( 4 0 0セ ル Zinc2) にコーティングした後、 乾燥焼成して、 ハ-カムの見掛けの 容積 1 リ ッ トルあたり 1 9 0 gのアルミナと 1 0 gの M g Oをコーティ ングした M g O—アルミナコートハ-カムを得た。 該 M g O—アルミナ コートハニカムに、 硝酸 C e水溶解を含浸した後、 2 0 0 °Cで乾燥、 続 いて 6 0 0 °Cで焼成した。 The slurry one adjusted to the precursor value Nari nitric acidic alumina powder and alumina M g O (average particle size: specific surface area: lm 2 / g) M g O- alumina mixed slurry prepared by adding the Kojerai bets made ha - cam After coating with (400 cell Zinc 2 ), drying and firing, M was coated with 190 g of alumina and 10 g of MgO per 1 liter of Herck's apparent volume. g O-alumina coat hammer was obtained. The MgO-alumina-coated honeycomb was impregnated with Ni nitrate / Ce aqueous solution, dried at 200 ° C., and then fired at 60 ° C.
次に、 ジ-ロ トロジア ミン p t硝酸溶液と硝酸 R hと硝酸 d と硝 酸 Mnと酢酸 Kと硝酸 Mnの混合液を含浸し 2 0 0 °Cで乾燥、 続いて 6 0 0 °Cで焼成した。 最後に、 酢酸 Kと硝酸 N a と硝酸 L i とチタユア ゾルの混合液を含浸し 2 0 0 °Cで乾燥、 続いて 6 0 0 °Cで焼成した。 以上により、ハニカムの見掛けの容積 1 Lに対して、金属換算で C e : 4 1 g , R h : 0. 1 4 g , P t : 1. 2 g , P d : 3'. 0 g, K : 5. 2 g , N a : 4. 1 g , L i : 0. 0 5 g , T i : 4. 3 g , M n : 1 3. 7 gを含有する実施例触媒 2を得た。 第 2表に触媒組成を示す。 Next, impregnated with a mixture of di-rotrodiamin pt nitric acid solution, nitric acid Rh, nitric acid d, nitric acid Mn, acetic acid K and nitric acid Mn, dried at 200 ° C, followed by 60 ° C. Baked. Finally, acetic acid K, nitric acid Na, nitric acid Li, and titaure The mixture was impregnated with a sol mixture, dried at 200 ° C., and then calcined at 60 ° C. From the above, for the apparent volume of 1 L of the honeycomb, in terms of metal, C e: 41 g, R h: 0.14 g, P t: 1.2 g, P d: 3 '. 0 g, Example catalyst 2 containing K: 5.2 g, Na: 4.1 g, Li: 0.05 g, Ti: 4.3 g, Mn: 1 3.7 g was obtained. . Table 2 shows the catalyst composition.
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0001
Figure imgf000020_0002
(実施例触媒 3 ) (Example catalyst 3)
アルミナ粉末とアルミナの前駆体からなり硝酸酸性に調整したスラリ ーをコージェライ ト製ハ-カム ( 4 0 0セノレ Zinc 2 ) にコーティングし た後、 乾燥焼成し 、 ハエ'カムの見掛けの容積 1 リ ッ トルあたり 1 9 0 gのアルミナをコートしたアルミナコートハ-カムを得た。 該ァルミナ コートハニカムに、 チタニアゾルを含浸した後、 2 0'0°Cで乾燥、 続い て 6 0 0 °Cで焼成した。 A slurry made of alumina powder and an alumina precursor and adjusted to nitric acid acidity was coated on cordierite hercum (400 Senore Zinc 2 ), then dried and fired, and the apparent volume of fly cam was 1 liter. An alumina-coated hard coat coated with 190 g of alumina was obtained. The alumina coated honeycomb was impregnated with titania sol, dried at 20'0 ° C, and then fired at 60 ° C.
次に、 ジュロ トロジアンミン P t硝酸溶液と硝酸 R hの混合液を含浸 し 2 0 0 °Cで乾燥、 続いて 6 0 0 °Cで焼成した。  Next, it was impregnated with a mixed solution of durodilodiamin Pt nitric acid solution and nitric acid R h, dried at 200 ° C., and then calcined at 60 ° C.
以上により、ハニカムの見掛けの容積 1 Lに対して、金属換算で T i : 0. 1 g , R h : 0. 1 4 g , P t : 2. 8 gを含有する実施例触媒 3を得 た。  Thus, Example Catalyst 3 containing Ti: 0.1 g, Rh: 0.14 g, Pt: 2.8 g in metal conversion with respect to the apparent volume of 1 L of the honeycomb was obtained. It was.
(試験例)  (Test example)
実施例触媒 1から 3を用いて、 理論空燃比以下の運転後に残存排ガス のパージ処理を実施してエンジンを停止した場合を想定した試験を行つ た。 試験に用いたガスは、 リーンバーン排ガスを模擬したリーンモデル ガスと、 理論空燃比以下の燃焼を模擬したリ ツチモデルガスと した。 リーンモデノレガスの糸且成は、 N O x : 1 0 0 ppm, C 3 H 8 : 5 0 0 ppmExample Catalysts 1 to 3 were used to carry out a test assuming that the engine was stopped by purging residual exhaust gas after operation below the stoichiometric air-fuel ratio. The gas used in the test was a lean model simulating lean burn exhaust gas. A gas and a rich model gas that simulates combustion below the stoichiometric air-fuel ratio. Lean modenolegus yarn is composed of NO x: 100 ppm, C 3 H 8 : 500 ppm
C 1, C〇 : 0. 1 % , O 2 : 5 % , H 2 O : 1 0 % , N 2 : 残部と した。 C 1, C_〇: 0. 1%, O 2: 5%, H 2 O: 1 0%, N 2: was the remainder.
リ ツチモデノレガ の糸且成は、 NO x : 1 0 0 ppm, C 3 H 8 : 5 0 0 ppmYarn且成of Li Tsuchimodenorega is, NO x: 1 0 0 ppm , C 3 H 8: 5 0 0 ppm
C 1, C O : 2 % , O 2 : 0 % , H 2 O : 1 0 % , N 2 : 残部と した。 ■以下の手順で試験した。 C 1, CO: 2%, O 2: 0%, H 2 O: 1 0%, N 2: was the remainder. ■ Tested by the following procedure.
① 4.0 0 °Cにてリ ツチモデルガスを流通させた。  ① Rich model gas was circulated at 4.0 0 ° C.
② 2 0 0 °Cに冷却した後、 リ ツチモデルガスを 3分間—流通させた後、 リーンモデルガスを 3,分間流通させた。 このリ ツチモデルガスと リーン ② After cooling to 200 ° C, the Rich model gas was allowed to flow for 3 minutes, and then the lean model gas was allowed to flow for 3 minutes. This rich model gas and lean
'モデルガスの交互に流通させる操作を 1 8分間.繰り返した。 'The operation of circulating the model gas alternately was repeated for 18 minutes.
(試験結果).  (Test results).
第 2図に 3種類の組み合わせ結果を示す。 各組み合わせに使用 た触 媒容積は 6 CC とした。 Figure 2 shows the results of the three combinations. The catalyst volume used for each combination was 6 CC .
( 1 ) 実施例触媒 2 (NO x吸着還元型触媒) のみ。  (1) Example catalyst 2 (NO x adsorption reduction catalyst) only.
( 2 )実施例触媒 3 (NO X選択還元触媒)の後流に実施例触媒 2 (NO x 吸着還元型触媒)を配置させた。  (2) Example catalyst 2 (NO x adsorption reduction catalyst) was placed downstream of Example catalyst 3 (NO x selective reduction catalyst).
( 3 ) 実施例触媒 3 (NO x選択還元型触媒) の後流に実施例触媒 1 (水 素製造機能を併せ持つ触媒)、 さらにその後流に実施例触媒 2 (N O X吸 着還元型触媒) を配置させた。 (3) Example catalyst 1 (catalyst having hydrogen production function) in the downstream of Example catalyst 3 (NO x selective reduction type catalyst), and Example catalyst 2 (NO X adsorption reduction type catalyst) in the subsequent stream Was placed.
上記の 3種類の触媒の 2 0 0 °Cでのリ一ン及ぴリ ツチでの N O 浄化 率を示す。  The N 2 purification rates of the above three types of catalysts at 200 ° C and at the lean and rich are shown.
( 1 ) N O x吸着還元型触媒のみではリーン性能 5 1 %, リ ツチ性能 4 3 %, リーン/リ ッチトータル性能 4 7 %であった。  (1) The NOx adsorption reduction catalyst alone had a lean performance of 51%, a rich performance of 43%, and a total lean / rich performance of 47%.
( 2 ) N O X選択還元触媒との組み合わせでは、 リーン性能 7 6 %, リ ッチ性能 6 0 %, リーンノリ ツチトータル性能 6 8 %。 ( 1 ) に対して、 リーン性能に 2 5ポイン トの向上が見られたが、 リ ツチ性能は 1 7ボイ ントの向上。 (2) In combination with NOX selective reduction catalyst, lean performance 76%, rich performance 60%, lean norich total performance 68%. (1) Lean performance improved by 25 points, but rich performance improved by 17 points.
( 3 ) N 0 X選択還元能及び水素製造機能を併せ持つ触媒との組み合わ せでは、 リーン性能 8 2 % , リ ッチ性能 7 8 % , リーンノリ ッチトータ ル性^ 8 0 %であった。 ( 1 ) に対して、 リーン性能は 2 9ポイント、 リ ッチ性能は 3 5ポイン トの向上がみられた。 また、 ( 2 ) に対してリ ッチ 性能は 1 8ポイント上回っており、 これは水素製造機能によるものであ る。 産業上の利用可能性  (3) In combination with a catalyst having both N 0 X selective reduction ability and hydrogen production function, it had a lean performance of 82%, a rich performance of 78%, and a lean norich totality of 80%. Compared to (1), the lean performance improved by 29 points and the rich performance improved by 35 points. In contrast to (2), the Litch performance is 18 points higher, which is due to the hydrogen production function. Industrial applicability
本発明によ り低温での N〇 X浄化性能が大幅に改善される。 'さらに、 水素製造機能を有する触媒は N O X選択還元能も併せ持つため、 リーン 時の N O X浄化能も向上する。 その結果、 エンジンの運転状態をリ ッチ 運転に切り換える頻度を減少させることが可能となり、 燃費を向上させ ることができる。 また、 N O X選択還元触媒と水素製造触媒を直列に配 置した場合と比較すると、 貴金属使用量の低減, 熱容童の低減, 空間 率の効率を図ることができる。 '  According to the present invention, the NOX purification performance at low temperatures is greatly improved. 'Furthermore, since the catalyst with hydrogen production function also has the ability to selectively reduce NOx, it also improves the NOx purification ability during lean. As a result, it is possible to reduce the frequency of switching the engine operating state to the rich operation, and to improve fuel efficiency. Compared with the case where the NOx selective reduction catalyst and the hydrogen production catalyst are arranged in series, it is possible to reduce the amount of precious metal used, reduce the heat content, and improve the space efficiency. '
また、 本発明によれば、 排気温度が低温であるディ一ゼルェンジンに おいても、 排気ガス中の N〇 Xを十分に還元浄化することができるディ ーゼルエンジン排気ガス浄化触媒及びこれを用いた排気ガス浄化装置を 提供することができる。  Further, according to the present invention, a diesel engine exhaust gas purification catalyst capable of sufficiently reducing and purifying NOx in exhaust gas even in diesel engine having a low exhaust temperature, and an exhaust using the same A gas purification device can be provided.

Claims

請 求 の 範 囲 ' The scope of the claims '
1. 'リーン NO X触媒を用いた内燃機関排気ガス浄化装置であって、 排 気ガスの流路のリーン N O X触媒の上流側に、 水素製造機能及び N O X 選択還元能を有する触媒が配置されていることを特徴とする排気ガス浄 化装置。  1. An internal combustion engine exhaust gas purification apparatus using a lean NO X catalyst, in which a catalyst having a hydrogen production function and NOX selective reduction ability is disposed upstream of the lean NOX catalyst in the exhaust gas flow path. Exhaust gas purification device characterized by that.
2. リーン NO X触媒を用いた内燃機関排気ガス浄化装置であって、 前 記リーン N〇 X触媒は、 リ ン NO X触媒成分上に水素製造機能及び N O X選択還元能を有する'触媒成分が担持された二層型触媒であること を'特徴とする排気ガス浄化装置。  2. An exhaust gas purification apparatus for an internal combustion engine using a lean NO X catalyst, wherein the lean NOx catalyst has a catalyst component having a hydrogen production function and NOX selective reduction ability on the phosphorus NO X catalyst component. An exhaust gas purifier characterized by being a supported two-layer catalyst.
3. 請求項 1または 2に記載された排気ガス浄化装置において、 リーン NO X型触媒は N O X吸着遼元型触媒または N O X吸蔵還元型触媒であ る排気ガス浄化装置。  3. The exhaust gas purifying apparatus according to claim 1 or 2, wherein the lean NO X type catalyst is a NOx adsorption catalyst or an NOx occlusion reduction type catalyst.
4. 請求項 1または 2に記載された排気ガス浄化装置であって、  4. An exhaust gas purifying device according to claim 1 or 2,
排気ガスの流路の前記水素製造機能及び NO X選択還元能を有する.触 媒の上流側にディーゼルパティキ-ュレー トフィルタが配置されているこ とを特徴とする排ガス浄化装置。  An exhaust gas purifying device characterized in that a diesel particulate filter is disposed upstream of the catalyst having the hydrogen production function and NO X selective reduction ability of the exhaust gas flow path.
5. 請求項 4に記載された排気ガス浄化装置であって、  5. The exhaust gas purifying device according to claim 4,
排気ガスの流路の前記ディーゼルパティキュレー トフィルタの上流側 に三元触媒が配置されていることを特徴とする排気ガス浄化装置。  An exhaust gas purification apparatus, wherein a three-way catalyst is disposed upstream of the diesel particulate filter in an exhaust gas flow path.
6. リーン'条件下での水素製造機能及び NO X選択還元能を有する触媒 であって、  6. A catalyst having a hydrogen production function and NO X selective reduction ability under lean conditions,
担体成分として Z r 〇 2, C e 〇 2, T i 〇 2, Z r 〇 2と C e〇 2を含 む複合酸化物、 のいずれかを用い、 触媒成分と して R h , P t, P dか ら選ばれる少なく とも一種の貴金属を用いたことを特徴とする排気ガス 浄化用触媒。 Z r 〇 2 as support component, C e 〇 2, T i 〇 2, Z r 〇 2 and C E_〇 2 including composite oxides, used either, as the catalyst component R h, P t An exhaust gas purifying catalyst characterized by using at least one kind of noble metal selected from Pd.
7 . 水素製造機能触媒により排ガスを浄化し、 前記水素製造機能触媒で 浄化された排ガスをリーン N O X触媒により浄化し、 前記 N O X触媒の 前段に設置された水素'センサによ り N O X触媒に流入した水素量を検出 し、 7. Purify the exhaust gas with the hydrogen production functional catalyst, purify the exhaust gas purified with the hydrogen production functional catalyst with the lean NOX catalyst, and flow into the NOX catalyst with the hydrogen 'sensor installed in the preceding stage of the NOX catalyst Detect the amount of hydrogen,
前記水素量の'積算が所定値を超えた場合にリーン運転をリ ツチ運転に 切り換えることを特徴とする排ガス浄化システム。  An exhaust gas purification system that switches lean operation to rich operation when the 'integration of the hydrogen amount exceeds a predetermined value.
PCT/JP2005/016683 2005-09-05 2005-09-05 Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification WO2007029339A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007534233A JPWO2007029339A1 (en) 2005-09-05 2005-09-05 Exhaust gas purification device and exhaust gas purification method for internal combustion engine
PCT/JP2005/016683 WO2007029339A1 (en) 2005-09-05 2005-09-05 Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/016683 WO2007029339A1 (en) 2005-09-05 2005-09-05 Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification

Publications (1)

Publication Number Publication Date
WO2007029339A1 true WO2007029339A1 (en) 2007-03-15

Family

ID=37835476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016683 WO2007029339A1 (en) 2005-09-05 2005-09-05 Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification

Country Status (2)

Country Link
JP (1) JPWO2007029339A1 (en)
WO (1) WO2007029339A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525579A (en) * 2008-02-05 2011-09-22 ビー・エイ・エス・エフ、コーポレーション Gasoline engine exhaust gas treatment system with particulate trap
JP2016148319A (en) * 2015-02-13 2016-08-18 トヨタ自動車株式会社 Deterioration diagnosis device for exhaust emission control device
WO2017208744A1 (en) * 2016-06-02 2017-12-07 株式会社デンソー Apparatus for reducing-agent addition control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330314A (en) * 1991-04-30 1992-11-18 Isuzu Motors Ltd Catalyst type exhaust purifying device for diesel engine
JP2000015101A (en) * 1998-06-30 2000-01-18 Toyota Motor Corp Catalyst for purifying exhaust gas
JP2003314328A (en) * 2002-02-19 2003-11-06 Nissan Motor Co Ltd Exhaust emission control device
JP2004209386A (en) * 2002-12-27 2004-07-29 Valtion Teknillinen Tutkimuskeskus Method and catalyst therefor for reducing nitrogen oxide catalytically
JP2004218475A (en) * 2003-01-10 2004-08-05 Isuzu Motors Ltd Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
JP2005030282A (en) * 2003-07-10 2005-02-03 Ibiden Co Ltd Holding seal material for catalyst carrier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330314A (en) * 1991-04-30 1992-11-18 Isuzu Motors Ltd Catalyst type exhaust purifying device for diesel engine
JP2000015101A (en) * 1998-06-30 2000-01-18 Toyota Motor Corp Catalyst for purifying exhaust gas
JP2003314328A (en) * 2002-02-19 2003-11-06 Nissan Motor Co Ltd Exhaust emission control device
JP2004209386A (en) * 2002-12-27 2004-07-29 Valtion Teknillinen Tutkimuskeskus Method and catalyst therefor for reducing nitrogen oxide catalytically
JP2004218475A (en) * 2003-01-10 2004-08-05 Isuzu Motors Ltd Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
JP2005030282A (en) * 2003-07-10 2005-02-03 Ibiden Co Ltd Holding seal material for catalyst carrier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525579A (en) * 2008-02-05 2011-09-22 ビー・エイ・エス・エフ、コーポレーション Gasoline engine exhaust gas treatment system with particulate trap
JP2016148319A (en) * 2015-02-13 2016-08-18 トヨタ自動車株式会社 Deterioration diagnosis device for exhaust emission control device
WO2017208744A1 (en) * 2016-06-02 2017-12-07 株式会社デンソー Apparatus for reducing-agent addition control
JP2017218894A (en) * 2016-06-02 2017-12-14 株式会社デンソー Reductant addition control device

Also Published As

Publication number Publication date
JPWO2007029339A1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP4263711B2 (en) Exhaust gas purification device for internal combustion engine
JP2009092076A (en) Exhaust emission control device of diesel engine
CN112867563B (en) Exhaust gas purification system for gasoline engine
KR20110076950A (en) Regulating strategy for a catalytic converter concept for exhaust-gas aftertreatment having a plurality of nitrogen oxide storage catalytic converters
WO2006080187A1 (en) Method of raising temperature of exhaust-gas purifier and exhaust-gas purification system
CN112867562B (en) Exhaust gas purification system for gasoline engine
CN112867561B (en) Exhaust gas purification system for gasoline engine
CN112867553B (en) Exhaust gas purification system for gasoline engine
CN116291803A (en) Exhaust gas purification system for gasoline engine
JP4736724B2 (en) Exhaust gas purification device for internal combustion engine
KR101807053B1 (en) Apparatus of purifying exhaust gas and regeneration method thereof
WO2014128860A1 (en) Exhaust purification device of internal combustion engine
JP3885814B2 (en) Method for raising temperature of exhaust gas purification device and exhaust gas purification system
JP3613083B2 (en) Exhaust purification control device
JP2001050042A (en) Exhaust gas emission control system
JP3746179B2 (en) Exhaust gas purification device for internal combustion engine
WO2007029339A1 (en) Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification
JP2007327460A (en) Exhaust emission control device
JP5332664B2 (en) Engine exhaust purification system
JP4019867B2 (en) Exhaust gas purification device for internal combustion engine
JP4341351B2 (en) How to recover the purification capacity of an exhaust purifier
JP4147702B2 (en) NOx adsorption catalyst for exhaust gas purification of internal combustion engine
JP4019891B2 (en) Exhaust gas purification device for internal combustion engine
JP2010281266A (en) Exhaust emission control device for internal combustion engine
JP3896223B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007534233

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05782123

Country of ref document: EP

Kind code of ref document: A1