WO2017208744A1 - Apparatus for reducing-agent addition control - Google Patents
Apparatus for reducing-agent addition control Download PDFInfo
- Publication number
- WO2017208744A1 WO2017208744A1 PCT/JP2017/017506 JP2017017506W WO2017208744A1 WO 2017208744 A1 WO2017208744 A1 WO 2017208744A1 JP 2017017506 W JP2017017506 W JP 2017017506W WO 2017208744 A1 WO2017208744 A1 WO 2017208744A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amount
- nox
- catalyst
- reducing agent
- weak
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/36—Arrangements for supply of additional fuel
Definitions
- the present disclosure relates to a reducing agent addition control device that controls the reducing agent addition device.
- a purification device having a catalyst for adsorbing and reducing NOx (nitrogen oxide) in the exhaust gas is disposed in the exhaust passage of the internal combustion engine.
- NOx is adsorbed by the adsorbing component at a low temperature when the catalyst is not activated.
- a reducing agent is supplied to the exhaust passage to reduce and purify NOx on the catalyst.
- Patent Document 1 estimates the amount of NOx adsorbed on the catalyst in a system including a fuel reformer upstream of the catalyst.
- the reducing agent species is selected according to the reduction temperature range of the catalyst. For example, a reforming / reducing agent is selected when the catalyst is at a low temperature, and post-injection fuel is selected from the internal combustion engine for reduction when the catalyst is at a high temperature.
- NOx adsorbed on the catalyst is NO 2 or NO 3 , but NO 2 has a weaker adsorbing power than NO 3 . Therefore, NOx adsorbed in the state of NO 2 (hereinafter referred to as weak NOx) is desorbed from the catalyst at an early timing of low temperature in the process of temperature rise of the catalyst.
- the reducing agent type and timing are determined based on the catalyst temperature when the estimated NOx adsorption amount reaches a predetermined value.
- NOx adsorbed in a state where the catalyst is at a low temperature is often adsorbed by NO 2 (nitrogen dioxide) having a weak adsorbing power, and the thermal desorption start temperature of NOx is low. Therefore, if the necessity for reduction and the reducing agent type are determined at the timing when the adsorption amount reaches the threshold value, there is a possibility that weak NOx having a weak adsorption power has already desorbed from the catalyst.
- the present disclosure has been made in view of the above-described problems, and an object thereof is to provide a reducing agent addition control device that controls to add a reducing agent before NOx having a weak adsorption power is desorbed from the catalyst. To do.
- a reducing agent addition control device includes a reducing agent addition that adds a reducing agent to an upstream side of a catalyst in an exhaust passage in which a catalyst that adsorbs and reduces NOx in exhaust gas of an internal combustion engine is disposed. Control the operation of the device.
- the reducing agent addition control device is acquired by the acquisition unit among the calculation unit that calculates the adsorption amount of NOx adsorbed on the catalyst, the acquisition unit that acquires the catalyst temperature, and the adsorption amount calculated by the calculation unit.
- An estimation unit that estimates the amount of weak NOx having a weak adsorption power according to the catalyst temperature, and a control unit that controls the amount of reducing agent added to the exhaust passage, and the control unit is estimated by the estimation unit Control is performed so that the reducing agent is added on condition that the amount of weak NOx has reached a predetermined threshold value.
- the amount of weak NOx is estimated using the NOx adsorption amount and the catalyst temperature. Then, the control is performed so that the reducing agent is added on the condition that the amount of weak NOx having a weak adsorption force reaches a predetermined threshold value. Therefore, since the addition timing of the reducing agent is controlled by paying attention to the amount of weak NOx, the reducing agent can be added and the weak NOx can be reduced by the catalyst before the weak NOx having weak adsorption power is desorbed. Therefore, desorption before weak NOx is reduced can be suppressed.
- FIG. 1 is a diagram illustrating a combustion system according to a first embodiment.
- FIG. 2 is a graph showing the relationship between the NOx adsorption amount and the NOx adsorption rate
- FIG. 3 is a graph showing the relationship between the catalyst temperature and the NOx thermal desorption amount.
- FIG. 4 is a flowchart showing the reducing agent addition process.
- FIG. 5 is a graph showing the relationship between the catalyst temperature and the distribution coefficient
- FIG. 6 is a graph showing the relationship between the catalyst temperature and the transfer coefficient
- FIG. 7 is a diagram illustrating a combustion system according to the second embodiment.
- a combustion system 10 shown in FIG. 1 includes an engine 11 that is an internal combustion engine, a supercharger 12, a NOx purification device 13, and a reducing agent addition device 14.
- the combustion system 10 is mounted on a vehicle. The vehicle travels using the output of the engine 11 as a drive source.
- the engine 11 is a compression self-ignition diesel engine. Light oil, which is a hydrocarbon compound, is used as the fuel for combustion.
- the engine 11 basically operates to burn in a lean state. That is, combustion is performed with the air-fuel ratio, which is the ratio between the fuel injected into the combustion chamber and the air sucked into the combustion chamber, set to an excess of air, that is, lean combustion is performed.
- the supercharger 12 includes a turbine 21, a rotating shaft 22 and a compressor 23.
- the turbine 21 is disposed in the exhaust passage 15 of the engine 11 and rotates by the kinetic energy of the exhaust.
- the rotary shaft 22 couples the impellers of the turbine 21 and the compressor 23 to transmit the rotational force of the turbine 21 to the compressor 23.
- the compressor 23 is disposed in the intake passage 16 of the engine 11, compresses intake air, and supercharges the engine 11.
- a cooler (not shown) is disposed on the downstream side of the compressor 23 in the intake passage 16.
- the cooler cools the pressurized air that is the intake air compressed by the compressor 23.
- the compressed intake air cooled by the cooler is adjusted in flow rate by a throttle valve (not shown) and distributed to a plurality of combustion chambers of the engine 11.
- a NOx purification device 13 is disposed downstream of the turbine 21 in the exhaust passage 15, and a particulate collection device (hereinafter referred to as DPF) (not shown) is disposed further downstream thereof.
- the DPF collects fine particles contained in the exhaust.
- the supply passage 31 of the reducing agent addition device 14 is connected to the upstream side of the NOx purification device 13 in the exhaust passage 15.
- the reformed fuel generated by the reducing agent adding device 14 is added from the supply passage 31 to the exhaust passage 15 as a reducing agent.
- the reformed fuel is obtained by partially oxidizing a hydrocarbon compound (fuel) used as a reducing agent to reform a partially oxidized hydrocarbon containing aldehyde, olefin, hydrogen, CO and the like.
- the NOx purification device 13 has a purification catalyst that is provided in the exhaust passage 15 and purifies nitrogen oxides in the exhaust gas using a reducing agent generated by the reforming catalyst 32.
- the NOx purification device 13 purifies the exhaust using, for example, a NOx storage reduction catalyst (LNT: Lean NOx Trap) as the purification catalyst.
- LNT NOx storage reduction catalyst
- the LNT occludes NOx in the exhaust gas by the occlusion material in a lean atmosphere.
- NOx is reduced to N 2 (nitrogen molecules) using aldehyde and active HC as a reducing agent and purified.
- the aldehyde shown here represents a hydrocarbon having an aldehyde group
- the active HC represents an unsaturated hydrocarbon having a double or triple bond.
- the NOx purification device 13 is configured by housing a honeycomb-shaped carrier in a housing.
- a coating material is provided on the surface of the carrier, and a NOx adsorbing material and a reduction catalyst are supported on the coating material.
- the adsorbent is preferably an alkaline earth metal such as K, Li, or Ba
- the reduction catalyst is preferably a platinum group such as Pt, Pd, Rh, Ru, or Ir. Further, this reduction catalyst has a function of adsorbing active oxygen in addition to the NOx adsorption function.
- the reducing agent addition device 14 adds the reformed fuel as a reducing agent to the upstream side of the NOx purification device 13 in the exhaust passage 15.
- the reducing agent addition device 14 includes a supply passage 31, an injection valve 33, a regulating valve 34, a reforming catalyst 32, and an electronic control unit (Electronic Control Unit: abbreviated ECU) 35.
- ECU Electronic Control Unit
- the supply passage 31 is supplied with air from the upstream side and connected to the exhaust passage 15 on the downstream side.
- the reforming catalyst 32, the injection valve 33, and the adjustment valve 34 are provided in the supply passage 31.
- the adjustment valve 34 is provided on the most upstream side of the supply passage 31.
- the opening degree of the adjustment valve 34 is controlled by the ECU 35. Therefore, the amount of air passing through the supply passage 31 is controlled by the adjustment valve 34.
- the injection valve 33 is disposed on the downstream side of the adjustment valve 34.
- the injection valve 33 functions as an addition unit that adds fuel that is a pre-reforming additive before reforming to the supply passage 31.
- the injection valve 33 includes a body in which an injection hole is formed, an electric actuator, and a valve body.
- the electric actuator When the electric actuator is energized, the valve element is opened to inject fuel into the supply passage 31 from the nozzle hole.
- the electric actuator is deenergized, the valve element is closed to stop the fuel injection. Therefore, the ECU 35 controls the fuel injection amount per unit time to the supply passage 31 by controlling the energization to the electric actuator.
- the liquid fuel in the fuel tank 36 is supplied to the injection valve 33 by the fuel pump 37.
- the fuel in the fuel tank 36 is also used as the combustion fuel described above, and the fuel used for the combustion of the engine 11 and the fuel used as the reducing agent are shared.
- the fuel injected from the injection valve 33 into the supply passage 31 collides with the reforming catalyst 32 together with air.
- the reforming catalyst 32 reforms the fuel added from the injection valve 33 to generate a reducing agent.
- the microcomputer included in the ECU 35 includes a storage device that stores a program, and a processor such as a central processing unit that executes arithmetic processing according to the stored program.
- the storage device is a non-transitional tangible storage medium that stores a computer-readable program and data in a non-temporary manner.
- the storage medium is realized by a semiconductor memory or a magnetic disk.
- the ECU 35 controls the operation of the engine 11 based on various detection values such as the engine speed per unit time and the engine load.
- the engine speed is detected by a crank angle sensor attached in the vicinity of the output shaft of the engine 11.
- Examples of the physical quantity representing the engine load include intake pressure, intake air amount, accelerator pedal depression amount, and the like.
- the intake pressure is detected by an intake pressure sensor attached to the downstream portion of the compressor 23 in the intake passage 16.
- the intake air amount is detected by an air flow meter attached to an upstream portion of the compressor 23 in the intake passage 16.
- the accelerator pedal depression amount is detected by an accelerator sensor attached to the accelerator pedal.
- ECU35 acquires the physical quantity detected by the reaction chamber temperature sensor, the catalyst temperature sensor 38, the exhaust temperature sensor, the exhaust pressure sensor, etc. in addition to the detected value of the operating state of the engine 11 such as the engine speed and the engine load. Based on these physical quantities, the operation of the reducing agent adding device 14 is controlled.
- the catalyst temperature sensor 38 is a temperature detection unit, is attached to the NOx purification device 13, and detects the atmospheric temperature of the catalyst, that is, the catalyst temperature.
- the exhaust temperature sensor is attached to the exhaust passage 15 and detects the exhaust temperature.
- the exhaust pressure sensor is attached to the exhaust passage 15 and detects the exhaust pressure.
- the exhaust temperature sensor and the exhaust pressure sensor are attached to the upstream side of the NOx purification device 13 in the exhaust passage 15.
- the NOx adsorption amount on the horizontal axis is the amount of NOx adsorbed by the NOx purification device 13 and is the mass of NOx adsorbed per liter volume of the NOx purification device 13.
- the NOx adsorption rate on the vertical axis is the ratio of the NOx adsorption amount to the NOx amount that has flowed into the NOx purification device 13.
- the NOx adsorption amount and the NOx adsorption rate when NOx is flowed into the NOx purification device 13 with the catalyst temperature maintained at a predetermined temperature are measured.
- the predetermined temperature is set to 100 ° C., 150 ° C., and 200 ° C., the test is performed to obtain the test results shown in FIG.
- the test results in FIG. 2 indicate that the NOx adsorption rate decreases as the NOx adsorption amount increases at any catalyst temperature, and the lower the catalyst temperature, the weaker the NOx adsorption power. It shows that the decrease in the NOx adsorption rate accompanying the increase in the NOx adsorption amount becomes significant.
- the reason for such a test result is considered that the lower the catalyst temperature, the lower the degree of activation of the catalyst and the lower the oxidizing power of the catalyst.
- FIG. 3 shows the test results of measuring the NOx thermal desorption amount by raising the temperature of the catalyst in a state where a sufficient amount of NOx is adsorbed.
- the solid line (1) in FIG. 3 is the result of measuring the NOx thermal desorption amount by adsorbing a sufficient amount of NOx while maintaining the catalyst temperature at 100 ° C.
- the one-dot chain line (2) in FIG. 3 is the result of measuring the NOx thermal desorption amount by adsorbing a sufficient amount of NOx while maintaining the catalyst temperature at 200 ° C.
- thermal adsorption starts at 150 ° C. when adsorbed at 100 ° C.
- thermal desorption starts at 225 ° C. when adsorbed at 200 ° C.
- NOx adsorbed on the catalyst is NO 2 or NO 3 , but NO 2 has a weaker adsorbing power than NO 3 .
- weak NOx which is NOx adsorbed in the state of NO 2 , starts desorbing from the catalyst at an early timing of low temperature, for example, 150 degrees as shown in FIG. To do. Therefore, the desorbed weak NOx is released to the atmosphere without being reduced.
- strong NOx which is NOx adsorbed in the state of NO 3 , has a strong adsorbing power, and most of it remains adsorbed without being desorbed. Then, strong NOx starts to desorb from, for example, 250 ° C.
- the ECU 35 is a control unit, and controls the reducing agent adding device 14 to control the amount of reducing agent added. Since the control of the addition amount includes control of the addition amount 0, it also includes control of the timing of addition. The ECU 35 controls the timing of adding the reducing agent based on the characteristics such as the NOx adsorption amount of FIGS. 2 and 3.
- the operation of the reducing agent adding device 14 is controlled by the microcomputer repeatedly executing the program of the procedure shown in FIG. 4 at a predetermined cycle.
- the NOx adsorption amount in the catalyst of the NOx purification device 13 is estimated, and the process proceeds to S2.
- the NOx adsorption amount includes both weak NOx and strong NOx.
- estimation according to the operating state of the engine 11 is given. For example, NOx emission amounts with respect to engine 11 operating state values such as engine load, engine speed, EGR rate, supercharging pressure, etc. are obtained by testing in advance, and the test results are mapped and stored. .
- the NOx emission amount is calculated with reference to the map. Then, based on the correlation between the NOx emission amount and the NOx adsorption amount, the NOx adsorption amount is calculated from the calculated NOx emission amount. For example, the NOx adsorption amount is calculated by multiplying the NOx adsorption amount by a predetermined coefficient.
- the catalyst temperature is acquired from the catalyst temperature sensor 38, and the process proceeds to S3.
- the amount of weak NOx is estimated based on the NOx adsorption state based on the signal from the catalyst temperature sensor 38, and the process proceeds to S4.
- the characteristic shown in FIG. 5 is used.
- the distribution coefficient is set based on the catalyst temperature. The distribution coefficient is the ratio of the amount of weak NOx to the NOx adsorption amount. For example, the value of the distribution coefficient with respect to the catalyst temperature is obtained by testing in advance, and the test result is stored as a map shown in FIG. Then, based on the actually detected catalyst temperature, the distribution coefficient is calculated with reference to the map of FIG.
- the distribution coefficient is set to a smaller value as the catalyst temperature is higher. However, as shown in the map of FIG. 5, if the catalyst temperature is high, for example, 250 ° C. or higher, the distribution coefficient is set to the minimum value. If the catalyst temperature is low, for example, less than 100 ° C., the distribution coefficient is set to the maximum value.
- the amount of weak NOx is calculated by multiplying the NOx adsorption amount calculated in S1 by the distribution coefficient.
- the amount of weak NOx calculated in S3 is instantaneous and is the amount adsorbed by the catalyst per unit time.
- the transfer coefficient is set based on the current catalyst temperature.
- the movement coefficient is the ratio of the amount of transition from weak NOx to strong NOx with respect to the amount of weak NOx. For example, the value of the transfer coefficient with respect to the catalyst temperature is obtained by testing in advance, and the test result is stored in a map as shown in FIG. Then, based on the actually detected catalyst temperature, the movement coefficient is calculated with reference to the map.
- the transfer coefficient is set to a larger value as the catalyst temperature is higher. Therefore, the higher the catalyst temperature is, the smaller the amount of transition to strong NOx is estimated, and the amount of weak NOx is estimated. Then, the shift amount, which is the amount of transition from weak NOx to strong NOx, is calculated by multiplying the amount of the previous integrated weak NOx by the set movement coefficient.
- S6 it is determined whether or not the amount of accumulated weak NOx is larger than a predetermined threshold value. If it is larger, the process proceeds to S7, and if it is not larger, this flow is terminated.
- the threshold is set to an amount that can suppress the desorption of weak NOx.
- S7 it is determined whether or not the catalyst temperature is higher than the reformable temperature. If so, the process proceeds to S8, and if not, the flow ends. This is because when the catalyst temperature is lower than the reformable temperature, for example, 200 ° C., it cannot be reduced even if a reducing agent is added.
- the reducing agent adding device 14 is controlled to add the reducing agent, and this flow is finished. By S8, the weak NOx and the strong NOx adsorbed on the catalyst are reduced.
- the ECU 35 functions as a calculation unit that calculates the adsorption amount of NOx adsorbed on the catalyst. Further, the ECU 35 functions as an estimation unit that estimates the amount of weak NOx that is the amount of adsorption adsorbed as NO 2 when the catalyst temperature is equal to or lower than a predetermined temperature, using the adsorption amount and the catalyst temperature.
- the adsorption force of NOx adsorbed differs depending on the catalyst temperature during adsorption, and NO 2 having a weak adsorption force is desorbed from a low temperature and the catalyst cannot hold NOx.
- the adsorption amount of strong NOx and weak NOx is estimated as the adsorption state according to the catalyst temperature, and the timing of adding the reducing agent is controlled based on the amount of integrated weak NOx.
- the ECU 35 of the present embodiment functions as a reducing agent addition control device, and estimates the amount of weak NOx using the adsorption amount and the catalyst temperature.
- NO 2 and NO 3 are present in NOx adsorbed on the catalyst.
- the adsorption power of NO 2 is weaker than the adsorption power of NO 3.
- the catalyst temperature at the time of adsorption is lower, the adsorption is more difficult in the state of NO 3 , and the amount of weak NOx with respect to the strong adsorption amount The ratio of becomes higher. Control is performed so that the reducing agent is added on the condition that the amount of such weak NOx having a weak adsorption force reaches a predetermined threshold value.
- the addition timing of the reducing agent is controlled by paying attention to the amount of weak NOx, the reducing agent can be added and weak NOx can be reduced by the catalyst before the weak NOx is desorbed. Therefore, it is possible to suppress weak NOx from desorbing.
- the threshold value is preferably set so that the amount of reducing agent added is reduced while suppressing the desorption of weak NOx. This is because, as the reducing agent addition interval is shorter, the desorption of weak NOx can be suppressed, but the consumption of the reducing agent increases. Therefore, the threshold value is preferably set so as to satisfy the target purification rate.
- the value obtained by integrating the instantaneous adsorption amount of NO 2 on the catalyst is estimated as the weak NOx amount.
- the instantaneous adsorption amount of NO 2 is estimated by estimating the amount ratio to be small.
- the most of NOx adsorbed in the catalyst is adsorbed in the state of NO 2 and NO 3 are as described above, the lower the catalyst temperature at the time of adsorption, less likely to be adsorbed in the form of NO 3, The ratio of weak NOx to strong NOx increases.
- the proportion of weak NOx increases as the catalyst temperature at that time decreases.
- the catalyst temperature at the time of NOx adsorbed is high as described above, since the estimated small percentage of the instantaneous amount of adsorption of NO 2 with respect to the instantaneous amount of adsorbed NOx, high catalyst temperature during adsorption It is estimated that the amount of weak NOx is small. Therefore, since the amount of weak NOx is estimated in consideration of the catalyst temperature during adsorption, the amount of weak NOx can be estimated with high accuracy.
- the amount of transition from NO 2 to NO 3 as the temperature rises is taken as the shift amount that is the NO 3 transition amount, and the value obtained by integrating the instantaneous adsorption amount of NO 2
- the amount of weak NOx is estimated using the value obtained by subtracting the shift amount from.
- a predetermined temperature for example, 100 ° C.
- the amount of weak NOx is estimated in consideration of the shift amount thus shifted, that is, the amount of strong NOx transition, so that the amount of weak NOx can be accurately estimated.
- the temperature at which the reducing agent exhibits the reduction effect by the catalyst is defined as the reformable temperature
- the estimated amount of weak NOx reaches the threshold value
- the catalyst temperature is equal to or higher than the reformable temperature.
- the reducing agent addition device 14 modifies the pre-reforming additive added from the injection valve 33 and the injection valve 33 that adds the pre-reforming additive before reforming, and reduces the reducing agent. And a reforming catalyst 32 to be generated.
- the pre-reform additive is a fuel used for the engine 11. As a result, the fuel used for the engine 11 and the additive before reforming can be shared. Therefore, the configuration can be simplified as compared with the case of separately preparing an additive.
- the configuration of the supply passage 312 of the reducing agent addition device 14 is different.
- the supply passage 312 is a passage that branches off from the branch portion 41 of the exhaust passage 15 and joins at the joining portion 42 of the exhaust passage 15 that is located downstream of the branch portion 41. Accordingly, a part of the exhaust gas flowing through the exhaust passage 15 flows into the supply passage 312.
- An adjustment valve 34 is provided in the supply passage 312 on the upstream side of the reforming catalyst 32.
- the adjustment valve 34 adjusts the flow rate of the exhaust gas that passes through the supply passage 312.
- the regulating valve 34 is constituted by, for example, a cantilever door and a butterfly door, and the supply passage 312 is opened and closed when the door is angularly displaced.
- the adjustment valve 34 may be provided on the downstream side of the reforming catalyst 32.
- the reforming catalyst 32 can be heated by the heat of the exhaust gas. Therefore, exhaust gas can be used to increase the temperature of the reforming catalyst 32.
- the additive added from the reducing agent addition device 14 is fuel, but is not limited to fuel, and may be a dedicated additive for the reducing agent.
- the reducing agent addition device 14 is applied to a compression self-ignition diesel engine, and light oil used as a fuel for combustion is used as the reducing agent.
- gasoline used as a fuel for combustion may be used as a reducing agent by applying the reducing agent addition device 14 to an ignition ignition type gasoline engine.
- the reducing agent adding device 14 includes the reforming catalyst 32, but is not limited to such a configuration.
- fuel may be supplied to the exhaust passage 15 by post injection, and the fuel may be reformed by the heat of the exhaust.
- the NOx emission amount of the internal combustion engine is estimated according to the operating state of the engine 11, but is not limited to such an estimation method.
- a NOx sensor may be mounted upstream of the catalyst and the NOx emission amount may be directly detected.
- the amount of adsorption that includes weak NOx and strong NOx is first estimated, but the present invention is not limited to such a configuration.
- the amount of weak NOx may be estimated using the catalyst temperature from a map or the like without using the NOx adsorption amount.
- the reducing agent addition control device is realized by the ECU 35, but is not limited to such a configuration.
- the means and / or function provided by the ECU 35 as the reducing agent addition control device is provided by software recorded in a substantial storage medium and a computer that executes the software, software only, hardware only, or a combination thereof. Can do.
- the controller is provided by a circuit that is hardware, it can be provided by a digital circuit including a number of logic circuits, or an analog circuit.
- it replaces with ECU35 and a microcomputer may provide an ozone supply control apparatus, and the processor which a microcomputer has may provide a reducing agent addition control apparatus.
- the exhaust gas discharged from the in-vehicle internal combustion engine is purified.
- the exhaust gas is not limited to the in-vehicle internal combustion engine, and may be an internal combustion engine mounted on a ship, a railway vehicle, an aircraft, or the like.
- the present invention can also be applied to an exhaust purification system that purifies the exhaust of a fuel engine.
- the present invention is also applicable to an exhaust purification system that purifies exhaust from internal combustion engines and external combustion engines installed for power generation.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Toxicology (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Provided is an apparatus for reducing-agent addition control that controls the operation of a reducing-agent addition device (14). The reducing-agent addition device (14) adds a reducing agent to an upstream side of a catalyst (13) disposed in an exhaust passage (15) where the catalyst adsorbs NOx contained in the exhaust gas of an internal combustion engine (11) for reduction. The apparatus for reducing-agent addition control comprises: a calculation unit (S1) which calculates the adsorption amount of NOx adsorbed by the catalyst (13); an acquisition unit (S2) which acquires the catalyst temperature; an estimation unit (S3) which estimates, according to the catalyst temperature acquired by the acquisition unit, the amount of a weak NOx having a weak adsorption force, such amount being of the absorption amount calculated by the calculation unit; and a control unit (S8) which controls the amount of the reducing agent to be added to the exhaust passage. The control unit performs control such that the reducing agent is added on the condition that the weak NOx amount estimated by the estimation unit reaches a prescribed threshold.
Description
本出願は、2016年6月2日に出願された日本特許出願番号2016-111204号に基づくもので、ここにその記載内容を援用する。
This application is based on Japanese Patent Application No. 2016-111204 filed on June 2, 2016, the contents of which are incorporated herein by reference.
本開示は、還元剤添加装置を制御する還元剤添加制御装置に関する。
The present disclosure relates to a reducing agent addition control device that controls the reducing agent addition device.
内燃機関の排気を浄化するため、内燃機関の排気通路には排気中のNOx(窒素酸化物)を吸着して還元する触媒を有した浄化装置が配置されている。このような浄化装置では、触媒が活性化していない低温時にはNOxを吸着成分に吸着させる。一方、触媒が活性化温度に達している時には、還元剤を排気通路へ供給して、触媒上でNOxを還元させて浄化させる。
In order to purify the exhaust gas of the internal combustion engine, a purification device having a catalyst for adsorbing and reducing NOx (nitrogen oxide) in the exhaust gas is disposed in the exhaust passage of the internal combustion engine. In such a purification device, NOx is adsorbed by the adsorbing component at a low temperature when the catalyst is not activated. On the other hand, when the catalyst has reached the activation temperature, a reducing agent is supplied to the exhaust passage to reduce and purify NOx on the catalyst.
また特許文献1には、触媒の上流に燃料改質器を備えるシステムにおいて、触媒に吸着されているNOxの吸着量を推定している。そして推定した吸着量が所定の閾値に到達した際に触媒の還元温度域に応じて還元剤種を選択している。たとえば触媒が低温では改質還元剤を選択し、触媒が高温では内燃機関からポスト噴射による燃料を選択し還元している。
Patent Document 1 estimates the amount of NOx adsorbed on the catalyst in a system including a fuel reformer upstream of the catalyst. When the estimated adsorption amount reaches a predetermined threshold value, the reducing agent species is selected according to the reduction temperature range of the catalyst. For example, a reforming / reducing agent is selected when the catalyst is at a low temperature, and post-injection fuel is selected from the internal combustion engine for reduction when the catalyst is at a high temperature.
さて、触媒に吸着されているNOxの多くはNO2やNO3であるが、NO2はNO3に比べて吸着力が弱い。そのため、NO2の状態で吸着しているNOx(以下、弱NOxと記載)は、触媒が温度上昇していく過程で、低温の早いタイミングで触媒から脱離する。
Now, most of NOx adsorbed on the catalyst is NO 2 or NO 3 , but NO 2 has a weaker adsorbing power than NO 3 . Therefore, NOx adsorbed in the state of NO 2 (hereinafter referred to as weak NOx) is desorbed from the catalyst at an early timing of low temperature in the process of temperature rise of the catalyst.
前述の特許文献1に記載の技術では、推定したNOx吸着量が所定値に到達した際の触媒温度で還元剤種およびタイミングを決定している。しかし触媒が低温の状態で吸着されたNOxは、吸着力が弱いNO2(二酸化窒素)で吸着される割合が多く、NOxの熱脱離開始温度が低い。そのため吸着量が閾値に到達したタイミングで還元要否および還元剤種を決定すると、吸着力の弱い弱NOxが既に触媒から脱離しているおそれがある。
In the technique described in Patent Document 1, the reducing agent type and timing are determined based on the catalyst temperature when the estimated NOx adsorption amount reaches a predetermined value. However, NOx adsorbed in a state where the catalyst is at a low temperature is often adsorbed by NO 2 (nitrogen dioxide) having a weak adsorbing power, and the thermal desorption start temperature of NOx is low. Therefore, if the necessity for reduction and the reducing agent type are determined at the timing when the adsorption amount reaches the threshold value, there is a possibility that weak NOx having a weak adsorption power has already desorbed from the catalyst.
本開示は前述の問題点を鑑みてなされたものであり、弱い吸着力のNOxが触媒から脱離する前に還元剤を添加するように制御する還元剤添加制御装置を提供することを目的とする。
The present disclosure has been made in view of the above-described problems, and an object thereof is to provide a reducing agent addition control device that controls to add a reducing agent before NOx having a weak adsorption power is desorbed from the catalyst. To do.
本開示の一態様による還元剤添加制御装置は、内燃機関の排気中のNOxを吸着して還元する触媒が配置されている排気通路のうち、触媒の上流側へ還元剤を添加する還元剤添加装置の作動を制御する。還元剤添加制御装置は、触媒に吸着されているNOxの吸着量を算出する算出部と、触媒温度を取得する取得部と、算出部によって算出された吸着量のうち、取得部にて取得された触媒温度に応じて吸着力の弱い弱NOxの量を推定する推定部と、還元剤の排気通路への添加量を制御する制御部と、を含み、制御部は、推定部によって推定された弱NOxの量が所定の閾値に達したことを条件として、還元剤を添加するように制御する。
A reducing agent addition control device according to an aspect of the present disclosure includes a reducing agent addition that adds a reducing agent to an upstream side of a catalyst in an exhaust passage in which a catalyst that adsorbs and reduces NOx in exhaust gas of an internal combustion engine is disposed. Control the operation of the device. The reducing agent addition control device is acquired by the acquisition unit among the calculation unit that calculates the adsorption amount of NOx adsorbed on the catalyst, the acquisition unit that acquires the catalyst temperature, and the adsorption amount calculated by the calculation unit. An estimation unit that estimates the amount of weak NOx having a weak adsorption power according to the catalyst temperature, and a control unit that controls the amount of reducing agent added to the exhaust passage, and the control unit is estimated by the estimation unit Control is performed so that the reducing agent is added on condition that the amount of weak NOx has reached a predetermined threshold value.
このような本開示に従えば、NOx吸着量と触媒温度とを用いて弱NOxの量を推定する。そして吸着力が弱い弱NOxの量が、所定の閾値に達したことを条件として、還元剤を添加するように制御される。したがって弱NOxの量に着目して還元剤の添加タイミングが制御されるので、吸着力の弱い弱NOxが脱離する前に還元剤を添加して弱NOxを触媒にて還元することができる。したがって弱NOxが還元される前に脱離することを抑制することができる。
According to this disclosure, the amount of weak NOx is estimated using the NOx adsorption amount and the catalyst temperature. Then, the control is performed so that the reducing agent is added on the condition that the amount of weak NOx having a weak adsorption force reaches a predetermined threshold value. Therefore, since the addition timing of the reducing agent is controlled by paying attention to the amount of weak NOx, the reducing agent can be added and the weak NOx can be reduced by the catalyst before the weak NOx having weak adsorption power is desorbed. Therefore, desorption before weak NOx is reduced can be suppressed.
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の燃焼システムを示す図であり、
図2は、NOx吸着量とNOx吸着率との関係を示すグラフであり、
図3は、触媒温度とNOx熱脱離量との関係を示すグラフであり、
図4は、還元剤添加処理を示すフローチャートであり、
図5は、触媒温度と分配係数との関係を示すグラフであり、
図6は、触媒温度と移動係数との関係を示すグラフであり、
図7は、第2実施形態の燃焼システムを示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram illustrating a combustion system according to a first embodiment. FIG. 2 is a graph showing the relationship between the NOx adsorption amount and the NOx adsorption rate, FIG. 3 is a graph showing the relationship between the catalyst temperature and the NOx thermal desorption amount. FIG. 4 is a flowchart showing the reducing agent addition process. FIG. 5 is a graph showing the relationship between the catalyst temperature and the distribution coefficient, FIG. 6 is a graph showing the relationship between the catalyst temperature and the transfer coefficient, FIG. 7 is a diagram illustrating a combustion system according to the second embodiment.
以下、図面を参照しながら本開示を実施するための形態を、複数の形態を用いて説明する。各実施形態で先行する実施形態で説明している事項に対応している部分には同一の参照符号を付すか、または先行の参照符号に一文字追加し、重複する説明を略する場合がある。また各実施形態にて構成の一部を説明している場合、構成の他の部分は、先行して説明している実施形態と同様とする。各実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組合せることも可能である。
Hereinafter, modes for carrying out the present disclosure will be described using a plurality of modes with reference to the drawings. In some embodiments, portions corresponding to the matters described in the preceding embodiments may be given the same reference numerals, or one character may be added to the preceding reference numerals, and overlapping descriptions may be omitted. In addition, when a part of the configuration is described in each embodiment, the other parts of the configuration are the same as those of the embodiment described in advance. In addition to the combination of parts specifically described in each embodiment, the embodiments may be partially combined as long as the combination does not hinder the combination.
(第1実施形態)
本開示の第1実施形態に関して、図1~図6を用いて説明する。図1に示す燃焼システム10は、内燃機関であるエンジン11、過給機12、NOx浄化装置13および還元剤添加装置14を備える。燃焼システム10は、車両に搭載されたものである。車両は、エンジン11の出力を駆動源として走行する。エンジン11は、圧縮自着火式のディーゼルエンジンである。燃焼に用いる燃料には、炭化水素化合物である軽油を用いている。エンジン11は、基本的にはリーン状態で燃焼させるように作動する。つまり、燃焼室に噴射された燃料と燃焼室に吸入される空気との比率である空燃比が、空気過剰に設定された状態で燃焼、つまりリーン燃焼させている。 (First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. Acombustion system 10 shown in FIG. 1 includes an engine 11 that is an internal combustion engine, a supercharger 12, a NOx purification device 13, and a reducing agent addition device 14. The combustion system 10 is mounted on a vehicle. The vehicle travels using the output of the engine 11 as a drive source. The engine 11 is a compression self-ignition diesel engine. Light oil, which is a hydrocarbon compound, is used as the fuel for combustion. The engine 11 basically operates to burn in a lean state. That is, combustion is performed with the air-fuel ratio, which is the ratio between the fuel injected into the combustion chamber and the air sucked into the combustion chamber, set to an excess of air, that is, lean combustion is performed.
本開示の第1実施形態に関して、図1~図6を用いて説明する。図1に示す燃焼システム10は、内燃機関であるエンジン11、過給機12、NOx浄化装置13および還元剤添加装置14を備える。燃焼システム10は、車両に搭載されたものである。車両は、エンジン11の出力を駆動源として走行する。エンジン11は、圧縮自着火式のディーゼルエンジンである。燃焼に用いる燃料には、炭化水素化合物である軽油を用いている。エンジン11は、基本的にはリーン状態で燃焼させるように作動する。つまり、燃焼室に噴射された燃料と燃焼室に吸入される空気との比率である空燃比が、空気過剰に設定された状態で燃焼、つまりリーン燃焼させている。 (First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. A
過給機12は、タービン21、回転軸22およびコンプレッサ23を備える。タービン21は、エンジン11の排気通路15に配置され、排気の運動エネルギにより回転する。回転軸22は、タービン21およびコンプレッサ23の各インペラを結合することで、タービン21の回転力をコンプレッサ23に伝達する。コンプレッサ23は、エンジン11の吸気通路16に配置され、吸気を圧縮してエンジン11へ過給する。
The supercharger 12 includes a turbine 21, a rotating shaft 22 and a compressor 23. The turbine 21 is disposed in the exhaust passage 15 of the engine 11 and rotates by the kinetic energy of the exhaust. The rotary shaft 22 couples the impellers of the turbine 21 and the compressor 23 to transmit the rotational force of the turbine 21 to the compressor 23. The compressor 23 is disposed in the intake passage 16 of the engine 11, compresses intake air, and supercharges the engine 11.
吸気通路16のうちコンプレッサ23の下流側には、図示しない冷却器が配置されている。冷却器は、コンプレッサ23で圧縮された吸気である加圧空気を冷却する。冷却器により冷却された圧縮吸気は、図示しないスロットルバルブにより流量調整され、エンジン11が有する複数の燃焼室へ分配される。排気通路15のうちタービン21の下流側にはNOx浄化装置13が配置され、さらにその下流側には図示しない微粒子捕集装置(以下、DPF)が配置されている。DPFは、排気に含まれている微粒子を捕集する。
A cooler (not shown) is disposed on the downstream side of the compressor 23 in the intake passage 16. The cooler cools the pressurized air that is the intake air compressed by the compressor 23. The compressed intake air cooled by the cooler is adjusted in flow rate by a throttle valve (not shown) and distributed to a plurality of combustion chambers of the engine 11. A NOx purification device 13 is disposed downstream of the turbine 21 in the exhaust passage 15, and a particulate collection device (hereinafter referred to as DPF) (not shown) is disposed further downstream thereof. The DPF collects fine particles contained in the exhaust.
排気通路15のうちNOx浄化装置13の上流側には、還元剤添加装置14の供給通路31が接続されている。この供給通路31から排気通路15へ、還元剤添加装置14により生成された改質燃料が還元剤として添加される。改質燃料とは、還元剤として用いる炭化水素化合物(燃料)を部分的に酸化して、アルデヒド、オレフィン、水素およびCO等を含む部分酸化炭化水素に改質したものである。
The supply passage 31 of the reducing agent addition device 14 is connected to the upstream side of the NOx purification device 13 in the exhaust passage 15. The reformed fuel generated by the reducing agent adding device 14 is added from the supply passage 31 to the exhaust passage 15 as a reducing agent. The reformed fuel is obtained by partially oxidizing a hydrocarbon compound (fuel) used as a reducing agent to reform a partially oxidized hydrocarbon containing aldehyde, olefin, hydrogen, CO and the like.
NOx浄化装置13は、排気通路15に設けられ、改質触媒32によって生成された還元剤を用いて、排気中の窒素酸化物を浄化する浄化触媒を有する。NOx浄化装置13は、浄化触媒として、たとえばNOx吸蔵還元触媒(LNT:Lean NOx Trap)を用いて排気を浄化する。具体的には、LNTは、リーン雰囲気時に吸蔵材によって排気中のNOxを吸蔵する。そしてNOxの吸蔵量が十分な量となったら、例えばアルデヒドおよび活性HCを還元剤としてNOxをN2(窒素分子)に還元し、浄化する。ここで示すアルデヒドはアルデヒド基をもつ炭化水素を示し、活性HCとは2重、3重結合を持つ不飽和炭化水素を示す。このようにNOx浄化装置13および還元剤添加装置14によって、排気が浄化される。したがってNOx浄化装置13および還元剤添加装置14は、排気浄化装置として機能する。
The NOx purification device 13 has a purification catalyst that is provided in the exhaust passage 15 and purifies nitrogen oxides in the exhaust gas using a reducing agent generated by the reforming catalyst 32. The NOx purification device 13 purifies the exhaust using, for example, a NOx storage reduction catalyst (LNT: Lean NOx Trap) as the purification catalyst. Specifically, the LNT occludes NOx in the exhaust gas by the occlusion material in a lean atmosphere. When the stored amount of NOx becomes a sufficient amount, for example, NOx is reduced to N 2 (nitrogen molecules) using aldehyde and active HC as a reducing agent and purified. The aldehyde shown here represents a hydrocarbon having an aldehyde group, and the active HC represents an unsaturated hydrocarbon having a double or triple bond. Thus, the exhaust gas is purified by the NOx purification device 13 and the reducing agent addition device 14. Therefore, the NOx purification device 13 and the reducing agent addition device 14 function as an exhaust purification device.
NOx浄化装置13は、ハウジング内にハニカム状の担体を収容して構成される。担体の表面にはコーティング材が設けられており、そのコーティング材にはNOx吸着材と還元触媒が担持されている。吸着剤としてはアルカリ土類金属であるK、Li、Ba等であり、還元触媒としてはPt、Pd、Rh、Ru、Irなどの白金族であることが望ましい。さらに、この還元触媒は、NOx吸着機能に加えて活性酸素を吸着する機能も有している。
The NOx purification device 13 is configured by housing a honeycomb-shaped carrier in a housing. A coating material is provided on the surface of the carrier, and a NOx adsorbing material and a reduction catalyst are supported on the coating material. The adsorbent is preferably an alkaline earth metal such as K, Li, or Ba, and the reduction catalyst is preferably a platinum group such as Pt, Pd, Rh, Ru, or Ir. Further, this reduction catalyst has a function of adsorbing active oxygen in addition to the NOx adsorption function.
次に、還元剤添加装置14について説明する。還元剤添加装置14は、排気通路15のうちNOx浄化装置13の上流側へ還元剤として改質燃料を添加する。還元剤添加装置14は、供給通路31、噴射弁33、調整弁34、改質触媒32および電子制御装置(Electronic Control Unit:略称ECU)35を備える。供給通路31は、図1に示すように、上流側から空気が供給されて、下流側が排気通路15に接続されている。改質触媒32、噴射弁33および調整弁34は、供給通路31に設けられている。
Next, the reducing agent addition device 14 will be described. The reducing agent addition device 14 adds the reformed fuel as a reducing agent to the upstream side of the NOx purification device 13 in the exhaust passage 15. The reducing agent addition device 14 includes a supply passage 31, an injection valve 33, a regulating valve 34, a reforming catalyst 32, and an electronic control unit (Electronic Control Unit: abbreviated ECU) 35. As shown in FIG. 1, the supply passage 31 is supplied with air from the upstream side and connected to the exhaust passage 15 on the downstream side. The reforming catalyst 32, the injection valve 33, and the adjustment valve 34 are provided in the supply passage 31.
調整弁34は、供給通路31の最も上流側に設けられる。調整弁34は、ECU35によって開度が制御される。したがって供給通路31を通過する空気量は、調整弁34によって制御される。
The adjustment valve 34 is provided on the most upstream side of the supply passage 31. The opening degree of the adjustment valve 34 is controlled by the ECU 35. Therefore, the amount of air passing through the supply passage 31 is controlled by the adjustment valve 34.
噴射弁33は、調整弁34の下流側に配置される。噴射弁33は、供給通路31に対して、改質前の改質前添加剤である燃料を添加する添加部として機能する。噴射弁33は、図示は省略するが、噴孔が形成されたボデー、電気アクチュエータおよび弁体を有する。電気アクチュエータを通電オンさせると、弁体が開弁作動して噴孔から供給通路31へ燃料が噴射され、通電オフさせると弁体が閉弁作動して燃料噴射が停止される。したがってECU35は、電気アクチュエータへの通電を制御することで、供給通路31への単位時間当たりの燃料噴射量を制御する。燃料タンク36内の液体燃料は、燃料ポンプ37により噴射弁33へ供給される。燃料タンク36内の燃料は、前述した燃焼用の燃料としても用いられており、エンジン11の燃焼に用いる燃料と、還元剤として用いる燃料は共用される。噴射弁33から供給通路31へ噴射された燃料は、空気とともに改質触媒32に衝突する。改質触媒32は、噴射弁33から添加された燃料を改質して還元剤を生成する。
The injection valve 33 is disposed on the downstream side of the adjustment valve 34. The injection valve 33 functions as an addition unit that adds fuel that is a pre-reforming additive before reforming to the supply passage 31. Although not shown, the injection valve 33 includes a body in which an injection hole is formed, an electric actuator, and a valve body. When the electric actuator is energized, the valve element is opened to inject fuel into the supply passage 31 from the nozzle hole. When the electric actuator is deenergized, the valve element is closed to stop the fuel injection. Therefore, the ECU 35 controls the fuel injection amount per unit time to the supply passage 31 by controlling the energization to the electric actuator. The liquid fuel in the fuel tank 36 is supplied to the injection valve 33 by the fuel pump 37. The fuel in the fuel tank 36 is also used as the combustion fuel described above, and the fuel used for the combustion of the engine 11 and the fuel used as the reducing agent are shared. The fuel injected from the injection valve 33 into the supply passage 31 collides with the reforming catalyst 32 together with air. The reforming catalyst 32 reforms the fuel added from the injection valve 33 to generate a reducing agent.
次に、ECU35に関して説明する。ECU35が備えるマイクロコンピュータは、プログラムを記憶する記憶装置と、記憶されたプログラムにしたがって演算処理を実行する中央演算処理装置等のプロセッサと、を備える。記憶装置は、コンピュータによって読み取り可能なプログラムおよびデータを非一時的に格納する非遷移的実体的記憶媒体である。記憶媒体は、半導体メモリまたは磁気ディスクなどによって実現される。
Next, the ECU 35 will be described. The microcomputer included in the ECU 35 includes a storage device that stores a program, and a processor such as a central processing unit that executes arithmetic processing according to the stored program. The storage device is a non-transitional tangible storage medium that stores a computer-readable program and data in a non-temporary manner. The storage medium is realized by a semiconductor memory or a magnetic disk.
ECU35は、単位時間当りのエンジン回転数およびエンジン負荷等の各種検出値に基づき、エンジン11の作動を制御する。エンジン回転数は、エンジン11の出力軸近傍に取り付けられたクランク角センサにより検出される。エンジン負荷を表す物理量としては、吸気圧、吸気量、アクセルペダル踏込量等が挙げられる。吸気圧は、吸気通路16のうちコンプレッサ23の下流側部分に取り付けられた吸気圧センサにより検出される。吸気量は、吸気通路16のうちコンプレッサ23の上流側部分に取り付けられたエアフロメータにより検出される。アクセルペダル踏込量は、アクセルペダルに取り付けられたアクセルセンサにより検出される。
The ECU 35 controls the operation of the engine 11 based on various detection values such as the engine speed per unit time and the engine load. The engine speed is detected by a crank angle sensor attached in the vicinity of the output shaft of the engine 11. Examples of the physical quantity representing the engine load include intake pressure, intake air amount, accelerator pedal depression amount, and the like. The intake pressure is detected by an intake pressure sensor attached to the downstream portion of the compressor 23 in the intake passage 16. The intake air amount is detected by an air flow meter attached to an upstream portion of the compressor 23 in the intake passage 16. The accelerator pedal depression amount is detected by an accelerator sensor attached to the accelerator pedal.
ECU35は、エンジン回転数やエンジン負荷等のエンジン11の作動状態の検出値に加え、反応室温度センサ、触媒温度センサ38、排気温度センサ、および排気圧センサなどにより検出された物理量を取得する。そして、これらの物理量に基づき、還元剤添加装置14の作動を制御する。
ECU35 acquires the physical quantity detected by the reaction chamber temperature sensor, the catalyst temperature sensor 38, the exhaust temperature sensor, the exhaust pressure sensor, etc. in addition to the detected value of the operating state of the engine 11 such as the engine speed and the engine load. Based on these physical quantities, the operation of the reducing agent adding device 14 is controlled.
触媒温度センサ38は、温度検出部であって、NOx浄化装置13に取り付けられ、触媒の雰囲気温度、つまり触媒温度を検出する。排気温度センサは、排気通路15に取り付けられて排気温度を検出する。排気圧センサは、排気通路15に取り付けられて排気圧力を検出する。排気温度センサおよび排気圧センサは、排気通路15のうちNOx浄化装置13の上流側に取り付けられている。
The catalyst temperature sensor 38 is a temperature detection unit, is attached to the NOx purification device 13, and detects the atmospheric temperature of the catalyst, that is, the catalyst temperature. The exhaust temperature sensor is attached to the exhaust passage 15 and detects the exhaust temperature. The exhaust pressure sensor is attached to the exhaust passage 15 and detects the exhaust pressure. The exhaust temperature sensor and the exhaust pressure sensor are attached to the upstream side of the NOx purification device 13 in the exhaust passage 15.
さて、本開示者らがNOx吸着量、NOx吸着率および触媒温度の関係を試験したところ、図2に示す結果が得られた。横軸のNOx吸着量とは、NOx浄化装置13で吸着されているNOx量のことであり、NOx浄化装置13の1リットル容積当りに吸着されているNOxの質量である。縦軸のNOx吸着率とは、NOx浄化装置13へ流入させたNOx量に対するNOx吸着量の割合のことである。この試験では、所定温度に触媒温度を維持させた状態で、NOx浄化装置13へNOxを流入させた時のNOx吸着量およびNOx吸着率を計測している。上記所定温度を100℃、150℃、200℃の各々に設定した場合について、上記試験を実施して図2に示す試験結果を得ている。
When the present inventors tested the relationship between the NOx adsorption amount, the NOx adsorption rate, and the catalyst temperature, the results shown in FIG. 2 were obtained. The NOx adsorption amount on the horizontal axis is the amount of NOx adsorbed by the NOx purification device 13 and is the mass of NOx adsorbed per liter volume of the NOx purification device 13. The NOx adsorption rate on the vertical axis is the ratio of the NOx adsorption amount to the NOx amount that has flowed into the NOx purification device 13. In this test, the NOx adsorption amount and the NOx adsorption rate when NOx is flowed into the NOx purification device 13 with the catalyst temperature maintained at a predetermined temperature are measured. When the predetermined temperature is set to 100 ° C., 150 ° C., and 200 ° C., the test is performed to obtain the test results shown in FIG.
図2の試験結果は、いずれの触媒温度であっても、NOx吸着量の増大に伴いNOx吸着率が低下していくことを示し、また、触媒温度が低いほど、NOx吸着力が弱くなり、NOx吸着量の増大に伴うNOx吸着率の低下が顕著になることを示す。このような試験結果になる理由は、触媒温度が低いほど、触媒の活性化度合いが低く、触媒の酸化力が低下していることが原因と考察される。
The test results in FIG. 2 indicate that the NOx adsorption rate decreases as the NOx adsorption amount increases at any catalyst temperature, and the lower the catalyst temperature, the weaker the NOx adsorption power. It shows that the decrease in the NOx adsorption rate accompanying the increase in the NOx adsorption amount becomes significant. The reason for such a test result is considered that the lower the catalyst temperature, the lower the degree of activation of the catalyst and the lower the oxidizing power of the catalyst.
次に、本開示者らがNOx熱脱離量および触媒温度の関係を試験したところ、図3に示す結果が得られた。縦軸のNOx熱脱離とは、触媒に吸着されているNOxが、触媒の温度上昇に伴い触媒から脱離を開始する現象のことである。図3は、十分な量のNOxが吸着された状態の触媒を温度上昇させていき、NOx熱脱離量を計測した試験結果である。図3中の実線(1)は、触媒温度を100℃に維持させた状態で十分な量のNOxを吸着させて、NOx熱脱離量を計測した結果である。図3中の一点鎖線(2)は、触媒温度を200℃に維持させた状態で十分な量のNOxを吸着させて、NOx熱脱離量を計測した結果である。
Next, when the present inventors tested the relationship between the NOx thermal desorption amount and the catalyst temperature, the results shown in FIG. 3 were obtained. The NOx thermal desorption on the vertical axis is a phenomenon in which NOx adsorbed on the catalyst starts desorbing from the catalyst as the temperature of the catalyst rises. FIG. 3 shows the test results of measuring the NOx thermal desorption amount by raising the temperature of the catalyst in a state where a sufficient amount of NOx is adsorbed. The solid line (1) in FIG. 3 is the result of measuring the NOx thermal desorption amount by adsorbing a sufficient amount of NOx while maintaining the catalyst temperature at 100 ° C. The one-dot chain line (2) in FIG. 3 is the result of measuring the NOx thermal desorption amount by adsorbing a sufficient amount of NOx while maintaining the catalyst temperature at 200 ° C.
そして、図3の(1)(2)に示す試験結果から、NOx吸着時の触媒温度が低いほど、NOx吸着力が弱いことに起因して、NOx熱脱離の開始温度が低くなる。具体的には、100℃で吸着した場合には150℃で熱脱離を開始し、200℃で吸着した場合には225℃で熱脱離を開始する。
From the test results shown in (1) and (2) of FIG. 3, the lower the catalyst temperature during NOx adsorption, the lower the NOx thermal desorption start temperature due to the weaker NOx adsorption power. Specifically, thermal adsorption starts at 150 ° C. when adsorbed at 100 ° C., and thermal desorption starts at 225 ° C. when adsorbed at 200 ° C.
触媒に吸着されているNOxの多くはNO2やNO3であるが、NO2はNO3に比べて吸着力が弱い。そのため、NO2の状態で吸着しているNOxである弱NOxは、触媒が温度上昇していく過程で、図3に示すように、低温の早いタイミング、たとえば150度で触媒から脱離を開始する。したがって、脱離した弱NOxは還元されずに大気へ放出されることになる。これに対してNO3の状態で吸着しているNOxである強NOxは、吸着力が強いので、大部分は脱離せずに吸着されたままである。そして強NOxは、たとえば250℃から脱離を開始する。
Most of NOx adsorbed on the catalyst is NO 2 or NO 3 , but NO 2 has a weaker adsorbing power than NO 3 . For this reason, weak NOx, which is NOx adsorbed in the state of NO 2 , starts desorbing from the catalyst at an early timing of low temperature, for example, 150 degrees as shown in FIG. To do. Therefore, the desorbed weak NOx is released to the atmosphere without being reduced. On the other hand, strong NOx, which is NOx adsorbed in the state of NO 3 , has a strong adsorbing power, and most of it remains adsorbed without being desorbed. Then, strong NOx starts to desorb from, for example, 250 ° C.
次に、ECU35の制御に関して説明する。ECU35は、制御部であって、還元剤添加装置14を制御して、還元剤の添加量を制御する。添加量の制御とは、添加量0の制御も含むので、添加するタイミングの制御も含む。ECU35は、図2および図3のNOx吸着量などの特性を踏まえて、還元剤を添加するタイミングを制御する。
Next, the control of the ECU 35 will be described. The ECU 35 is a control unit, and controls the reducing agent adding device 14 to control the amount of reducing agent added. Since the control of the addition amount includes control of the addition amount 0, it also includes control of the timing of addition. The ECU 35 controls the timing of adding the reducing agent based on the characteristics such as the NOx adsorption amount of FIGS. 2 and 3.
具体的には、図4に示す手順のプログラムをマイクロコンピュータが所定周期で繰り返し実行することで、還元剤添加装置14の作動を制御する。S1では、NOx浄化装置13の触媒におけるNOx吸着量を推定し、S2に移る。NOx吸着量には、弱NOxおよび強NOxの両方が含まれている。算出手法の一例としては、エンジン11の運転状態に応じた推定が挙げられる。例えば、エンジン負荷、エンジン回転数、EGR率、過給圧等のエンジン11運転状態の値に対するNOxの排出量を、予め試験して取得しておき、その試験結果をマップ化して記憶させておく。そして、実際に検出されたエンジン11運転状態の値に基づき、上記マップを参照してNOx排出量を算出する。そして、NOx排出量とNOx吸着量との相関に基づき、算出されたNOx排出量からNOx吸着量を算出する。例えば、NOx吸着量に所定の係数を乗算してNOx吸着量を算出する。
Specifically, the operation of the reducing agent adding device 14 is controlled by the microcomputer repeatedly executing the program of the procedure shown in FIG. 4 at a predetermined cycle. In S1, the NOx adsorption amount in the catalyst of the NOx purification device 13 is estimated, and the process proceeds to S2. The NOx adsorption amount includes both weak NOx and strong NOx. As an example of the calculation method, estimation according to the operating state of the engine 11 is given. For example, NOx emission amounts with respect to engine 11 operating state values such as engine load, engine speed, EGR rate, supercharging pressure, etc. are obtained by testing in advance, and the test results are mapped and stored. . Then, based on the actually detected value of the engine 11 operating state, the NOx emission amount is calculated with reference to the map. Then, based on the correlation between the NOx emission amount and the NOx adsorption amount, the NOx adsorption amount is calculated from the calculated NOx emission amount. For example, the NOx adsorption amount is calculated by multiplying the NOx adsorption amount by a predetermined coefficient.
S2では、触媒温度センサ38から触媒温度を取得し、S3に移る。S2の処理を実施することによって、触媒温度を取得する取得部として機能する。S3では、触媒温度センサ38からの信号を基にNOxの吸着状態として、弱NOxの量を推定し、S4に移る。弱NOxの量を推定するために、たとえば図5の特性を用いる。図5では、触媒温度に基づき分配係数を設定する。分配係数とは、NOx吸着量に対する弱NOxの量の割合のことである。例えば、触媒温度に対する分配係数の値を、予め試験して取得しておき、その試験結果を図5に示すマップにして記憶させておく。そして、実際に検出された触媒温度に基づき、図5のマップを参照して分配係数を算出する。
In S2, the catalyst temperature is acquired from the catalyst temperature sensor 38, and the process proceeds to S3. By performing the process of S2, it functions as an acquisition unit that acquires the catalyst temperature. In S3, the amount of weak NOx is estimated based on the NOx adsorption state based on the signal from the catalyst temperature sensor 38, and the process proceeds to S4. In order to estimate the amount of weak NOx, for example, the characteristic shown in FIG. 5 is used. In FIG. 5, the distribution coefficient is set based on the catalyst temperature. The distribution coefficient is the ratio of the amount of weak NOx to the NOx adsorption amount. For example, the value of the distribution coefficient with respect to the catalyst temperature is obtained by testing in advance, and the test result is stored as a map shown in FIG. Then, based on the actually detected catalyst temperature, the distribution coefficient is calculated with reference to the map of FIG.
分配係数は、触媒温度が高いほど小さい値に設定される。但し、図5のマップに示すように、触媒温度が高温のたとえば250℃以上であれば、分配係数は最小値に設定される。また、触媒温度が低温のたとえば100℃未満であれば、分配係数は最大値に設定される。
The distribution coefficient is set to a smaller value as the catalyst temperature is higher. However, as shown in the map of FIG. 5, if the catalyst temperature is high, for example, 250 ° C. or higher, the distribution coefficient is set to the minimum value. If the catalyst temperature is low, for example, less than 100 ° C., the distribution coefficient is set to the maximum value.
したがってS3では、S1で算出したNOx吸着量に分配係数を乗算することで、弱NOxの量を算出する。このS3で算出される弱NOxの量は瞬時的なものであり、単位時間あたりに触媒に吸着される量である。
Therefore, in S3, the amount of weak NOx is calculated by multiplying the NOx adsorption amount calculated in S1 by the distribution coefficient. The amount of weak NOx calculated in S3 is instantaneous and is the amount adsorbed by the catalyst per unit time.
S4では、触媒温度センサ38の信号に基づき、前回の積算弱NOxの量が強吸着状態へシフトする量を推定し、S5に移る。弱NOxの量は、弱吸着状態のNO2が触媒温度に応じて強吸着状態のNO3へ反応が進むので、このシフト量を考慮する必要がある。そこで具体的には、まず現時点での触媒温度に基づき移動係数を設定する。移動係数とは、弱NOxの量に対する、弱NOxから強NOxに遷移した量の割合のことである。例えば、触媒温度に対する移動係数の値を、予め試験して取得しておき、その試験結果を図6に示すようなマップにして記憶させておく。そして、実際に検出された触媒温度に基づき、上記マップを参照して移動係数を算出する。
In S4, based on the signal from the catalyst temperature sensor 38, the amount by which the previous accumulated weak NOx amount shifts to the strong adsorption state is estimated, and the process proceeds to S5. The amount of weak NOx because NO 2 weak adsorption state is strongly reactive to NO 3 adsorption state proceeds according to the catalyst temperature, it is necessary to consider the amount of shift. Specifically, first, the transfer coefficient is set based on the current catalyst temperature. The movement coefficient is the ratio of the amount of transition from weak NOx to strong NOx with respect to the amount of weak NOx. For example, the value of the transfer coefficient with respect to the catalyst temperature is obtained by testing in advance, and the test result is stored in a map as shown in FIG. Then, based on the actually detected catalyst temperature, the movement coefficient is calculated with reference to the map.
移動係数は、触媒温度が高いほど大きい値に設定される。よって、触媒温度が高いほど、強NOxへの遷移量を小さく見積もって弱NOxの量が推定される。そして前回の積算弱NOxの量に設定した移動係数を乗算することで、弱NOxから強NOxへ遷移した量であるシフト量を算出する。
The transfer coefficient is set to a larger value as the catalyst temperature is higher. Therefore, the higher the catalyst temperature is, the smaller the amount of transition to strong NOx is estimated, and the amount of weak NOx is estimated. Then, the shift amount, which is the amount of transition from weak NOx to strong NOx, is calculated by multiplying the amount of the previous integrated weak NOx by the set movement coefficient.
S5では、前回の積算弱NOxの量に対してS3で求めた今回の弱NOxの量を加算し、S4で求めたシフト量を減算することで、積算弱NOxの量を求め、S6に移る。これによって、還元されてから、いままでに触媒に吸着されているNO2の量を推定する。
In S5, the current weak NOx amount obtained in S3 is added to the previous accumulated weak NOx amount, and the shift amount obtained in S4 is subtracted to obtain the accumulated weak NOx amount, and the process proceeds to S6. . As a result, the amount of NO 2 that has been adsorbed on the catalyst since the reduction has been estimated.
S6では、積算弱NOxの量が所定の閾値よりも大きいか否かを判断し、大きい場合には、S7に移り、大きくない場合には、本フローを終了する。閾値は、弱NOxの脱離を抑制できる量に設定される。
In S6, it is determined whether or not the amount of accumulated weak NOx is larger than a predetermined threshold value. If it is larger, the process proceeds to S7, and if it is not larger, this flow is terminated. The threshold is set to an amount that can suppress the desorption of weak NOx.
S7では、触媒温度が改質可能温度よりも大きいか否かを判断し、大きい場合には、S8に移り、大きくない場合には、本フローを終了する。触媒温度が改質可能温度、たとえば200℃よりも小さい場合には、還元剤を添加しても還元できないからである。S8では、還元剤を添加するように還元剤添加装置14を制御し、本フローを終了する。S8によって、触媒に吸着されている弱NOxおよび強NOxが還元される。
In S7, it is determined whether or not the catalyst temperature is higher than the reformable temperature. If so, the process proceeds to S8, and if not, the flow ends. This is because when the catalyst temperature is lower than the reformable temperature, for example, 200 ° C., it cannot be reduced even if a reducing agent is added. In S8, the reducing agent adding device 14 is controlled to add the reducing agent, and this flow is finished. By S8, the weak NOx and the strong NOx adsorbed on the catalyst are reduced.
このようにECU35は、触媒に吸着されているNOxの吸着量を算出する算出部して機能する。さらにECU35は、吸着量と触媒温度とを用いて、触媒温度が所定の温度以下のときにNO2として吸着された吸着量である弱NOxの量を推定する推定部としても機能する。前述のように吸着時の触媒温度に応じて吸着するNOxの吸着力が異なり、弱い吸着力のNO2は低温から脱離し、触媒がNOxを保持できないという点に着目している。そして触媒温度に応じて吸着状態として、強NOxと弱NOxの吸着量を推定し、積算弱NOxの量を基に還元剤を添加するタイミングを制御している。
In this way, the ECU 35 functions as a calculation unit that calculates the adsorption amount of NOx adsorbed on the catalyst. Further, the ECU 35 functions as an estimation unit that estimates the amount of weak NOx that is the amount of adsorption adsorbed as NO 2 when the catalyst temperature is equal to or lower than a predetermined temperature, using the adsorption amount and the catalyst temperature. As described above, attention is paid to the fact that the adsorption force of NOx adsorbed differs depending on the catalyst temperature during adsorption, and NO 2 having a weak adsorption force is desorbed from a low temperature and the catalyst cannot hold NOx. Then, the adsorption amount of strong NOx and weak NOx is estimated as the adsorption state according to the catalyst temperature, and the timing of adding the reducing agent is controlled based on the amount of integrated weak NOx.
以上説明したように本実施形態のECU35は、還元剤添加制御装置として機能し、吸着量と触媒温度とを用いて弱NOxの量を推定する。触媒に吸着されているNOxには、NO2とNO3が存在する。NO2の吸着力はNO3の吸着力に比べて弱いことは先述したとおりであり、吸着時の触媒温度が低いほど、NO3の状態で吸着されにくくなり、強吸着量に対する弱NOxの量の割合が高くなる。このような吸着力が弱い弱NOxの量が、所定の閾値に達したことを条件として、還元剤を添加するように制御される。したがって弱NOxの量に着目して還元剤の添加タイミングが制御されるので、弱NOxが脱離する前に還元剤を添加して弱NOxを触媒にて還元することができる。したがって弱NOxが脱離することを抑制することができる。
As described above, the ECU 35 of the present embodiment functions as a reducing agent addition control device, and estimates the amount of weak NOx using the adsorption amount and the catalyst temperature. NO 2 and NO 3 are present in NOx adsorbed on the catalyst. As described above, the adsorption power of NO 2 is weaker than the adsorption power of NO 3. As the catalyst temperature at the time of adsorption is lower, the adsorption is more difficult in the state of NO 3 , and the amount of weak NOx with respect to the strong adsorption amount The ratio of becomes higher. Control is performed so that the reducing agent is added on the condition that the amount of such weak NOx having a weak adsorption force reaches a predetermined threshold value. Therefore, since the addition timing of the reducing agent is controlled by paying attention to the amount of weak NOx, the reducing agent can be added and weak NOx can be reduced by the catalyst before the weak NOx is desorbed. Therefore, it is possible to suppress weak NOx from desorbing.
閾値は、好ましくは、弱NOxの脱離を抑えつつ、還元剤の添加量が少なくなるように設定される。還元剤の添加のインターバルが短いほど、弱NOxの脱離を抑制できるが、還元剤の消費が多くなるからである。したがって好ましくは目標とする浄化率を満たすように、閾値が設定される。
The threshold value is preferably set so that the amount of reducing agent added is reduced while suppressing the desorption of weak NOx. This is because, as the reducing agent addition interval is shorter, the desorption of weak NOx can be suppressed, but the consumption of the reducing agent increases. Therefore, the threshold value is preferably set so as to satisfy the target purification rate.
また本実施形態では、触媒へのNO2の瞬時吸着量を積算した値を弱NOxの量として推定しており、吸着時の触媒温度が高いほど、NOxの瞬時吸着量に対するNO2の瞬時吸着量の割合を小さく見積もってNO2の瞬時吸着量を推定する。ここで、触媒に吸着されるNOxの多くはNO2やNO3の状態で吸着されることは前述した通りであり、吸着時の触媒温度が低いほど、NO3の状態で吸着されにくくなり、強NOxに対する弱NOxの割合が高くなる。したがって、触媒へ流入するNOx量が同じで、かつ、そのNOxに含まれるNO2の割合が同じであっても、その時の触媒温度が低いほど弱NOxの割合が多くなる。この点を鑑みた本実施形態では、前述したようにNOx吸着時の触媒温度が高いほど、NOxの瞬時吸着量に対するNO2の瞬時吸着量の割合を小さく見積もるので、吸着時の触媒温度が高いほど弱NOxの量が少なく推定される。よって、吸着時の触媒温度をも考慮して弱NOxの量を推定するので、弱NOxの量を精度良く推定できる。
In this embodiment, the value obtained by integrating the instantaneous adsorption amount of NO 2 on the catalyst is estimated as the weak NOx amount. The higher the catalyst temperature during adsorption, the instantaneous adsorption of NO 2 with respect to the instantaneous adsorption amount of NOx. The instantaneous adsorption amount of NO 2 is estimated by estimating the amount ratio to be small. Here, the most of NOx adsorbed in the catalyst is adsorbed in the state of NO 2 and NO 3 are as described above, the lower the catalyst temperature at the time of adsorption, less likely to be adsorbed in the form of NO 3, The ratio of weak NOx to strong NOx increases. Therefore, even if the amount of NOx flowing into the catalyst is the same and the proportion of NO 2 contained in the NOx is the same, the proportion of weak NOx increases as the catalyst temperature at that time decreases. In the present embodiment taking this point into account, as the catalyst temperature at the time of NOx adsorbed is high as described above, since the estimated small percentage of the instantaneous amount of adsorption of NO 2 with respect to the instantaneous amount of adsorbed NOx, high catalyst temperature during adsorption It is estimated that the amount of weak NOx is small. Therefore, since the amount of weak NOx is estimated in consideration of the catalyst temperature during adsorption, the amount of weak NOx can be estimated with high accuracy.
さらに本実施形態では、触媒に吸着されているNOxのうち、温度上昇に伴いNO2からNO3に遷移した量をNO3遷移量であるシフト量とし、NO2の瞬時吸着量を積算した値からシフト量を減算した値を用いて弱NOxの量を推定する。ここで、触媒温度が所定温度(例えば100℃)以上であれば、弱NOxが強NOxに遷移する現象が生じる。この点を鑑みた本実施形態では、このように遷移したシフト量、つまり強NOx遷移量を考慮して、弱NOxの量を推定するので、弱NOxの量を精度良く推定できる。
Further, in the present embodiment, among NOx adsorbed on the catalyst, the amount of transition from NO 2 to NO 3 as the temperature rises is taken as the shift amount that is the NO 3 transition amount, and the value obtained by integrating the instantaneous adsorption amount of NO 2 The amount of weak NOx is estimated using the value obtained by subtracting the shift amount from. Here, if the catalyst temperature is equal to or higher than a predetermined temperature (for example, 100 ° C.), a phenomenon in which weak NOx transitions to strong NOx occurs. In this embodiment in view of this point, the amount of weak NOx is estimated in consideration of the shift amount thus shifted, that is, the amount of strong NOx transition, so that the amount of weak NOx can be accurately estimated.
また本実施形態では、還元剤が触媒によって還元効果を発揮する温度を改質可能温度とし、推定された弱NOxの量が閾値に達し、かつ触媒温度が改質可能温度以上であることを条件として、還元剤を添加するように制御する。触媒温度が改質可能温度未満であると、還元剤を添加しても還元されず添加剤が無駄になってしまう。そこで改質可能温度以上のときに還元剤を添加することによって、確実に吸着しているNOxを還元することができる。
Further, in the present embodiment, the temperature at which the reducing agent exhibits the reduction effect by the catalyst is defined as the reformable temperature, the estimated amount of weak NOx reaches the threshold value, and the catalyst temperature is equal to or higher than the reformable temperature. As described above, control is performed so that a reducing agent is added. When the catalyst temperature is lower than the reformable temperature, the additive is wasted without being reduced even if the reducing agent is added. Therefore, the adsorbed NOx can be reliably reduced by adding a reducing agent when the temperature is higher than the reformable temperature.
さらに本実施形態では、還元剤添加装置14は、改質前の改質前添加剤を添加する噴射弁33と、噴射弁33から添加された改質前添加剤を改質して還元剤を生成する改質触媒32と、を含む。改質前添加剤は、エンジン11に用いられる燃料である。これによってエンジン11に用いられる燃料と、改質前添加剤とを共用することができる。したがって別に添加剤を用意するよりも構成を簡略化することができる。
Furthermore, in this embodiment, the reducing agent addition device 14 modifies the pre-reforming additive added from the injection valve 33 and the injection valve 33 that adds the pre-reforming additive before reforming, and reduces the reducing agent. And a reforming catalyst 32 to be generated. The pre-reform additive is a fuel used for the engine 11. As a result, the fuel used for the engine 11 and the additive before reforming can be shared. Therefore, the configuration can be simplified as compared with the case of separately preparing an additive.
(第2実施形態)
次に、本開示の第2実施形態に関して、図7を用いて説明する。本実施形態では、還元剤添加装置14の供給通路312の構成が異なる。供給通路312は、図7に示すように、排気通路15の分岐部41から分岐し、分岐部41の下流側に位置する排気通路15の合流部42で合流する通路である。したがって供給通路312には、排気通路15を流れる排気の一部が流入する。 (Second Embodiment)
Next, a second embodiment of the present disclosure will be described with reference to FIG. In the present embodiment, the configuration of thesupply passage 312 of the reducing agent addition device 14 is different. As shown in FIG. 7, the supply passage 312 is a passage that branches off from the branch portion 41 of the exhaust passage 15 and joins at the joining portion 42 of the exhaust passage 15 that is located downstream of the branch portion 41. Accordingly, a part of the exhaust gas flowing through the exhaust passage 15 flows into the supply passage 312.
次に、本開示の第2実施形態に関して、図7を用いて説明する。本実施形態では、還元剤添加装置14の供給通路312の構成が異なる。供給通路312は、図7に示すように、排気通路15の分岐部41から分岐し、分岐部41の下流側に位置する排気通路15の合流部42で合流する通路である。したがって供給通路312には、排気通路15を流れる排気の一部が流入する。 (Second Embodiment)
Next, a second embodiment of the present disclosure will be described with reference to FIG. In the present embodiment, the configuration of the
改質触媒32の上流側であって、供給通路312には、調整弁34が設けられている。調整弁34は、供給通路312を通過する排気の流量を調整する。調整弁34、たとえば片持ちドアおよびバタフライドアによって構成され、ドアが角変位することによって供給通路312を開閉する。また調整弁34は、改質触媒32の下流側に設けてもよい。
An adjustment valve 34 is provided in the supply passage 312 on the upstream side of the reforming catalyst 32. The adjustment valve 34 adjusts the flow rate of the exhaust gas that passes through the supply passage 312. The regulating valve 34 is constituted by, for example, a cantilever door and a butterfly door, and the supply passage 312 is opened and closed when the door is angularly displaced. The adjustment valve 34 may be provided on the downstream side of the reforming catalyst 32.
このように供給通路312は、排気が通過するので、排気の熱によって改質触媒32を加熱することができる。したがって改質触媒32の温度の上昇に排気を用いることができる。
Thus, since the exhaust gas passes through the supply passage 312, the reforming catalyst 32 can be heated by the heat of the exhaust gas. Therefore, exhaust gas can be used to increase the temperature of the reforming catalyst 32.
(その他の実施形態)
以上、本開示の好ましい実施形態について説明したが、本開示は前述した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。 (Other embodiments)
The preferred embodiments of the present disclosure have been described above. However, the present disclosure is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present disclosure.
以上、本開示の好ましい実施形態について説明したが、本開示は前述した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。 (Other embodiments)
The preferred embodiments of the present disclosure have been described above. However, the present disclosure is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present disclosure.
前述の実施形態の構造は、あくまで例示であって、本開示の範囲はこれらの記載の範囲に限定されるものではない。本開示の範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものである。
The structure of the above-described embodiment is merely an example, and the scope of the present disclosure is not limited to the scope of these descriptions. The scope of the present disclosure is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.
前述の第1実施形態では、還元剤添加装置14から添加される添加剤は、燃料であるが燃料に限るものではなく、還元剤のための専用の添加剤であってもよい。
In the first embodiment described above, the additive added from the reducing agent addition device 14 is fuel, but is not limited to fuel, and may be a dedicated additive for the reducing agent.
前述の第1実施形態では、圧縮自着火式のディーゼルエンジンに還元剤添加装置14を適用させており、燃焼用の燃料として用いる軽油を還元剤として用いている。これに対し、点火着火式のガソリンエンジンに還元剤添加装置14を適用させて、燃焼用の燃料として用いるガソリンを還元剤として用いてもよい。
In the first embodiment described above, the reducing agent addition device 14 is applied to a compression self-ignition diesel engine, and light oil used as a fuel for combustion is used as the reducing agent. On the other hand, gasoline used as a fuel for combustion may be used as a reducing agent by applying the reducing agent addition device 14 to an ignition ignition type gasoline engine.
また前述の第1実施形態では、還元剤添加装置14として、改質触媒32を含んでいるが、このような構成に限るものではない。たとえばポスト噴射によって、排気通路15に燃料を供給して、燃料を排気の熱によって改質してもよい。
In the above-described first embodiment, the reducing agent adding device 14 includes the reforming catalyst 32, but is not limited to such a configuration. For example, fuel may be supplied to the exhaust passage 15 by post injection, and the fuel may be reformed by the heat of the exhaust.
また前述の第1実施形態では、内燃機関のNOx排出量は、エンジン11の運転状態に応じて推定しているが、このような推定方法に限るものではない。たとえば触媒の上流にNOxセンサを搭載し、NOx排出量を直接検出してもよい。
In the first embodiment described above, the NOx emission amount of the internal combustion engine is estimated according to the operating state of the engine 11, but is not limited to such an estimation method. For example, a NOx sensor may be mounted upstream of the catalyst and the NOx emission amount may be directly detected.
また前述の第1実施形態では、まず弱NOxおよび強NOxを含んで吸着されている吸着量を推定しているが、このような構成に限るものではない。NOxの吸着量を用いずに、マップなどから触媒温度を用いて弱NOxの量を推定してもよい。
In the first embodiment described above, the amount of adsorption that includes weak NOx and strong NOx is first estimated, but the present invention is not limited to such a configuration. The amount of weak NOx may be estimated using the catalyst temperature from a map or the like without using the NOx adsorption amount.
前述の第1実施形態は、ECU35によって還元剤添加制御装置を実現しているが、このような構成に限るものではない。還元剤添加制御装置としてのECU35が提供する手段および/または機能は、実体的な記憶媒体に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、制御装置がハードウェアである回路によって提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路によって提供することができる。また、ECU35に替えてマイクロコンピュータがオゾン供給制御装置を提供してもよいし、マイクロコンピュータが有するプロセッサが還元剤添加制御装置を提供してもよい。
In the first embodiment described above, the reducing agent addition control device is realized by the ECU 35, but is not limited to such a configuration. The means and / or function provided by the ECU 35 as the reducing agent addition control device is provided by software recorded in a substantial storage medium and a computer that executes the software, software only, hardware only, or a combination thereof. Can do. For example, if the controller is provided by a circuit that is hardware, it can be provided by a digital circuit including a number of logic circuits, or an analog circuit. Moreover, it replaces with ECU35 and a microcomputer may provide an ozone supply control apparatus, and the processor which a microcomputer has may provide a reducing agent addition control apparatus.
前述の第1実施形態では、車載の内燃機関から排出される排気を浄化する構成であったが、車載の内燃機関に限らず、船舶、鉄道車両、および航空機等に搭載された内燃機関または外燃機関の排気を浄化する排気浄化システムにも適用可能である。さらに、発電用に設置された内燃機関および外燃機関の排気を浄化する排気浄化システムにも適用可能である。
In the first embodiment described above, the exhaust gas discharged from the in-vehicle internal combustion engine is purified. However, the exhaust gas is not limited to the in-vehicle internal combustion engine, and may be an internal combustion engine mounted on a ship, a railway vehicle, an aircraft, or the like. The present invention can also be applied to an exhaust purification system that purifies the exhaust of a fuel engine. Furthermore, the present invention is also applicable to an exhaust purification system that purifies exhaust from internal combustion engines and external combustion engines installed for power generation.
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
Claims (5)
- 内燃機関(11)の排気中のNOxを吸着して還元する触媒(13)が配置されている排気通路(15)のうち、前記触媒の上流側へ還元剤を添加する還元剤添加装置(14)の作動を制御する還元剤添加制御装置(35)であって、
前記触媒に吸着されているNOxの吸着量を算出する算出部(S1)と、
前記触媒の温度である触媒温度を取得する取得部(S2)と、
前記算出部によって算出された前記吸着量のうち、前記取得部によって取得された前記触媒温度に応じて吸着力の弱い弱NOxの量を推定する推定部(S3)と、
前記還元剤の前記排気通路への添加量を制御する制御部(S8)と、を含み、
前記制御部は、前記推定部によって推定された前記弱NOxの量が所定の閾値に達したことを条件として、前記還元剤を添加するように制御する還元剤添加制御装置。 Of the exhaust passage (15) in which the catalyst (13) for adsorbing and reducing NOx in the exhaust gas of the internal combustion engine (11) is arranged, a reducing agent addition device (14) for adding a reducing agent to the upstream side of the catalyst. ) Of the reducing agent addition control device (35) for controlling the operation of
A calculation unit (S1) for calculating an adsorption amount of NOx adsorbed on the catalyst;
An acquisition unit (S2) for acquiring a catalyst temperature which is the temperature of the catalyst;
An estimation unit (S3) that estimates the amount of weak NOx having a weak adsorption force according to the catalyst temperature acquired by the acquisition unit among the adsorption amounts calculated by the calculation unit;
A control unit (S8) for controlling the amount of the reducing agent added to the exhaust passage,
The said control part is a reducing agent addition control apparatus which controls to add the said reducing agent on condition that the quantity of the said weak NOx estimated by the said estimation part has reached the predetermined threshold value. - 前記推定部は、前記触媒へのNO2の瞬時吸着量を積算した値を前記弱NOxの量として推定しており、吸着時の前記触媒温度が高いほど、NOxの瞬時吸着量に対するNO2の瞬時吸着量の割合を小さく見積もってNO2の瞬時吸着量を推定する請求項1に記載の還元剤添加制御装置。 The estimation unit estimates a value obtained by integrating the instantaneous NO 2 adsorption amount to the catalyst as the weak NOx amount, and the higher the catalyst temperature at the time of adsorption, the higher the NO 2 instantaneous adsorption amount of NO 2 . The reducing agent addition control apparatus according to claim 1, wherein the instantaneous adsorption amount of NO 2 is estimated by estimating a ratio of the instantaneous adsorption amount to be small.
- 前記触媒に吸着されているNOxのうち、温度上昇に伴いNO2からNO3に遷移した量をNO3遷移量とし、
前記推定部は、NO2の瞬時吸着量を積算した値から前記NO3遷移量を減算した値を用いて前記弱NOxの量を推定する請求項1または2に記載の還元剤添加制御装置。 Of the NOx adsorbed on the catalyst, the amount of transition from NO 2 to NO 3 as the temperature rises is the NO 3 transition amount,
The estimating unit, the reducing agent addition control device according to claim 1 or 2 to estimate the amount of the weak NOx by using a value obtained by subtracting the NO 3 transition amount from the value obtained by integrating the instantaneous amount of adsorbed NO 2. - 前記還元剤が前記触媒によって還元効果を発揮する温度を改質可能温度とし、
前記制御部は、前記推定部によって推定された前記弱NOxの量が前記閾値に達し、かつ前記触媒温度が前記改質可能温度以上であることを条件として、前記還元剤を添加するように制御する請求項1~3のいずれか1つに記載の還元剤添加制御装置。 The temperature at which the reducing agent exhibits a reducing effect by the catalyst is defined as a reformable temperature,
The control unit controls to add the reducing agent on the condition that the amount of the weak NOx estimated by the estimation unit reaches the threshold and the catalyst temperature is equal to or higher than the reformable temperature. The reducing agent addition control device according to any one of claims 1 to 3. - 前記還元剤添加装置は、
前記内燃機関に用いられる燃料を改質前の改質前添加剤として添加する添加部(33)と、
前記添加部から添加された前記改質前添加剤を改質して前記還元剤を生成する改質触媒(32)と、を含み、
前記制御部は、前記改質前添加剤の添加量を制御する請求項1~4のいずれか1つに記載の還元剤添加制御装置。
The reducing agent adding device is:
An addition section (33) for adding the fuel used in the internal combustion engine as a pre-reforming additive before reforming;
A reforming catalyst (32) for reforming the pre-reforming additive added from the addition unit to produce the reducing agent,
The reducing agent addition control device according to any one of claims 1 to 4, wherein the control unit controls an addition amount of the pre-modification additive.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-111204 | 2016-06-02 | ||
JP2016111204A JP6551312B2 (en) | 2016-06-02 | 2016-06-02 | Reductant addition control device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017208744A1 true WO2017208744A1 (en) | 2017-12-07 |
Family
ID=60479287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/017506 WO2017208744A1 (en) | 2016-06-02 | 2017-05-09 | Apparatus for reducing-agent addition control |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6551312B2 (en) |
WO (1) | WO2017208744A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005030380A (en) * | 2003-06-17 | 2005-02-03 | Toyota Motor Corp | Exhaust emission control device and exhaust emission control method of internal combustion engine |
WO2007029339A1 (en) * | 2005-09-05 | 2007-03-15 | Hitachi, Ltd. | Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification |
JP2015108353A (en) * | 2013-12-05 | 2015-06-11 | 株式会社デンソー | Reducer adding device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5843699B2 (en) * | 2012-05-31 | 2016-01-13 | 本田技研工業株式会社 | Exhaust gas purification system for internal combustion engine |
JP2014214689A (en) * | 2013-04-26 | 2014-11-17 | 株式会社日本自動車部品総合研究所 | Exhaust purification device of internal combustion engine |
-
2016
- 2016-06-02 JP JP2016111204A patent/JP6551312B2/en not_active Expired - Fee Related
-
2017
- 2017-05-09 WO PCT/JP2017/017506 patent/WO2017208744A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005030380A (en) * | 2003-06-17 | 2005-02-03 | Toyota Motor Corp | Exhaust emission control device and exhaust emission control method of internal combustion engine |
WO2007029339A1 (en) * | 2005-09-05 | 2007-03-15 | Hitachi, Ltd. | Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification |
JP2015108353A (en) * | 2013-12-05 | 2015-06-11 | 株式会社デンソー | Reducer adding device |
Also Published As
Publication number | Publication date |
---|---|
JP6551312B2 (en) | 2019-07-31 |
JP2017218894A (en) | 2017-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7779680B2 (en) | Estimation of engine-out NOx for real time input to exhaust aftertreatment controller | |
US10378404B2 (en) | Methods and systems for an engine after-treatment system | |
US8096111B2 (en) | Reduction of NOx trap at engine shutoff | |
US10119446B2 (en) | Deterioration diagnosis apparatus for exhaust gas purification apparatus | |
CN110939501A (en) | Catalyst deterioration diagnosis system and catalyst deterioration diagnosis method | |
US20100287917A1 (en) | Exhaust purification device for internal combustion engine | |
JP2008240577A (en) | Deterioration diagnosis device and deterioration diagnosis method for oxidation catalyst | |
JP4792424B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2009257231A (en) | Exhaust emission control device for internal combustion engine | |
JP6268688B1 (en) | Engine exhaust purification control system | |
JP2009162163A (en) | Exhaust emission control device of internal combustion engine | |
JP2002188430A (en) | Exhaust gas purifying device of internal combustion engine | |
WO2017208744A1 (en) | Apparatus for reducing-agent addition control | |
JP5018687B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP5052208B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4893493B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP6268685B1 (en) | Engine exhaust purification control system | |
JP2008286001A (en) | Exhaust emission control device of internal combustion engine | |
JP6270253B1 (en) | Engine exhaust purification control system | |
JP6230011B1 (en) | Engine exhaust purification control system | |
Kim et al. | The emission development for lean NOx trap system to meet Tier2Bin5 | |
JP6369455B2 (en) | Ozone supply control device | |
JP2019127833A (en) | Ozone control device | |
JP5090187B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2002327618A (en) | Exhaust emission control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17806302 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17806302 Country of ref document: EP Kind code of ref document: A1 |