JP6230011B1 - Engine exhaust purification control system - Google Patents
Engine exhaust purification control system Download PDFInfo
- Publication number
- JP6230011B1 JP6230011B1 JP2016205449A JP2016205449A JP6230011B1 JP 6230011 B1 JP6230011 B1 JP 6230011B1 JP 2016205449 A JP2016205449 A JP 2016205449A JP 2016205449 A JP2016205449 A JP 2016205449A JP 6230011 B1 JP6230011 B1 JP 6230011B1
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- control
- amount
- exhaust gas
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
【課題】 SCR触媒へのNH3の供給量を削減補正する際において、当該削減量を好適に設定することによって、効率的なNOXの浄化を実現できるエンジンの排気浄化制御装置を提供すること。【解決手段】NH3供給量制御部が、NOX触媒に流入する排気ガスの空燃比がリッチな状態であって当該NOX触媒が吸蔵していたNOXがN2に還元されている際には、NH3供給部によるSCR触媒へのNH3の供給量を削減補正する。NH3供給量制御部によるNH3の供給量の削減量は、DeSOX制御時においてDeNOX制御時よりも少量であるように設定されている。【選択図】 図7PROBLEM TO BE SOLVED: To provide an engine exhaust purification control device capable of realizing efficient NOx purification by suitably setting the reduction amount when correcting the reduction amount of NH3 supplied to an SCR catalyst. When an NH3 supply amount control unit is in a state where the air-fuel ratio of exhaust gas flowing into the NOX catalyst is rich and NOX stored in the NOX catalyst is reduced to N2, NH3 supply is performed. The amount of NH3 supplied to the SCR catalyst by the unit is reduced and corrected. The reduction amount of the NH3 supply amount by the NH3 supply amount control unit is set to be smaller in the DeSOX control than in the DeNOX control. [Selection] Figure 7
Description
本発明は、エンジンの排気浄化制御装置に係り、特に、排気ガス中のNOX を浄化するNOx 触媒を排気通路上に備えるエンジンの排気浄化制御装置に関する。 The present invention relates to an exhaust gas purification controller of the engine, in particular, it relates to an exhaust gas purification control apparatus for an engine provided with the NO x catalyst for purifying NO X in the exhaust gas on the exhaust path.
従来から、特許文献1に示すように、エンジンの排気通路上に設けられ、NH3 との反応によって排気ガス中のNOX を浄化するSCR触媒と、排気ガスの空燃比が理論空燃比よりも大きいリーンな状態(λ>1)において排気ガス中のNOX を吸蔵し、この吸蔵したNOx を、排気ガスの空燃比が理論空燃比近傍である状態(λ≒1)あるいは理論空燃比よりも小さいリッチな状態(λ<1)において還元する、NOX 吸蔵還元型のNOX 触媒と、を備えたエンジンの排気浄化装置が知られている。このエンジンの排気浄化装置においては、エンジンが高回転数且つ高負荷域である場合、すなわちSCR触媒の温度が高くなるエンジンの運転領域である場合においては、SCR触媒によるNOX の浄化が行われ、それ以外の場合には、NOX 触媒によるNOX の浄化が行われている。
Conventionally, as shown in
また、特許文献2に示すように、尿素をSCR触媒に噴射する尿素噴射弁を備える代わりに、NOX 触媒におけるNOX 還元制御において発生したNH3 をSCR触媒に吸着させることでSCR触媒によるNOX の浄化を行うものが知られている。すなわち、NOX 還元制御でNH3 が発生することが知られている。また、特許文献3に示すように、NOX 触媒の温度を検出することによって、当該NOX 触媒においてNOX がNH3 に変換される変換率を算出できることが知られている。さらに、NOX 還元制御におけるNH3 の発生量がNOX 触媒温度によって変化することが知られている。詳細には、NOX 触媒の温度が高いほど、NH3 の発生率が高くなることが開示されている。
Further, as shown in Patent Document 2, instead of providing a urea injection valve for injecting urea onto the SCR catalyst, NO 3 generated by the SCR catalyst is adsorbed on the SCR catalyst by adsorbing NH 3 generated in NO x reduction control in the NO x catalyst. Those that purify X are known. That is, it is known that NH 3 is generated by NO x reduction control. Further, as shown in
前記した特許文献1のように、尿素噴射弁によりSCR触媒にNH3 を供給する一方で、NOX 触媒におけるNOX 還元制御を行うと、NOX 還元制御において発生したNH3 により、SCRへのNH3 供給が過剰になる恐れがある。その結果、SCR触媒の吸着能力を超える量のNH3 がSCR触媒に供給されて、SCR触媒下流の排気通路にアンモニアが放出されてしまう恐れがある。
As described in
そこで、NOX 触媒還元制御時に発生するNH3 を考慮し、SCR触媒への過剰なアンモニア供給を抑制して、SCR触媒下流の排気通路にアンモニアが放出されてしまうことを抑制することが考えられる。 Therefore, in consideration of NH 3 generated at the time of NO x catalyst reduction control, it is conceivable that excessive ammonia supply to the SCR catalyst is suppressed to prevent ammonia from being released into the exhaust passage downstream of the SCR catalyst. .
ところが、NOX 還元制御時に発生するNH3 量はNOX 触媒の温度によって変化するため、これを加味しなければ、SCR触媒下流の排気通路へのアンモニア放出を十分に抑制できない。あるいは、SCR触媒へのアンモニア供給抑制が過剰になり、SCRで吸着されたNH3 が不足して、SCRでのNOX 浄化性能が低下する恐れがある。 However, since the amount of NH 3 generated during NO x reduction control varies depending on the temperature of the NO x catalyst, ammonia release to the exhaust passage downstream of the SCR catalyst cannot be sufficiently suppressed unless this is taken into account. Alternatively, the suppression of ammonia supply to the SCR catalyst becomes excessive, the NH 3 adsorbed by the SCR is insufficient, and the NO x purification performance in the SCR may be reduced.
前記特許文献3には、NOX 触媒の温度が高いほど、NH3 の発生率が高くなることが記載されている。この特許文献3では、NOX 触媒温度が高いほど、NH3 が発生する反応がしやすくなることを加味していると考えられる。
しかしながら、本件発明者の知見によれば、DeSOX 制御時においてもNH3 が発生し、DeSOX 制御時とDeNOX 制御時とでNH3 発生量が変化する。前記特許文献3では、この現象(傾向)が加味されていないため、NOX 触媒還元制御時に発生するNH3 を正確に把握できていない。
However, according to the knowledge of the present inventors, NH 3 is generated even at the time of Deso X control, NH 3 generation amount varies between Deso X control when the DeNO X control time. In
本発明は、以上のような状況に鑑みてなされたものであり、NOX 触媒還元制御時に発生するNH3 を正確に把握して、SCR触媒への過剰なアンモニア供給の抑制を適切に実行できるようにすることによって、SCR触媒下流の排気通路へのアンモニア放出を抑制するとともに効率的なNOX の浄化を実現できるエンジンの排気浄化制御装置を提供することを目的とする。 The present invention has been made in view of the above situation, and it is possible to accurately grasp NH 3 generated during NO x catalyst reduction control and appropriately execute suppression of excessive ammonia supply to the SCR catalyst. By doing so, an object of the present invention is to provide an engine exhaust purification control apparatus that can suppress the release of ammonia into the exhaust passage downstream of the SCR catalyst and realize efficient NO x purification.
本発明は、エンジンの排気通路に設けられ、流入する排気ガスの空燃比が理論空燃比よりもリーンな状態である時には当該排気ガス中のNOX を吸蔵すると共に、流入する排気ガスの空燃比が理論空燃比よりもリッチな状態である時には吸蔵していたNOX をN2 に還元するNOX 触媒と、前記NOX 触媒におけるNOX の吸蔵量が所定の閾値以上であって当該NOX 触媒に吸蔵されたNOX を還元して浄化するDeNOX 制御が必要であるとき、または、前記NOX 触媒におけるS被毒量が所定の閾値以上であって当該NOX 触媒に吸着された硫黄を脱離するDeSOX 制御が必要であるとき、前記NOX 触媒に流入する排気ガスの空燃比がリッチな状態となるように、前記エンジンにおける燃料噴射弁を制御して、前記DeNOX 制御または前記DeSOX 制御を実施するNOX 触媒再生部と、前記NOX 触媒の下流の排気通路に設けられ、NH3 との反応によって当該NOX を浄化するSCR触媒と、前記SCR触媒にNH3 ないしNH3 原料を供給してNH3 を吸着させるNH3 供給部と、前記NH3 供給部による前記SCR触媒へのNH3 ないしNH3 原料の供給量を制御するNH3 供給量制御部と、を備え、前記NH3 供給量制御部は、前記NOX 触媒再生部によるNOX 触媒再生を実行した場合には、前記NH3 供給部による前記SCR触媒へのNH3 ないしNH3 原料の供給量を削減補正するようになっており、前記NH3 供給量制御部による前記NH3 ないしNH3 原料の供給量の削減量は、前記DeSOX 制御が実施される場合の方が、前記DeNOX 制御が実施される場合よりも、少量であるように設定されていることを特徴とするエンジンの排気浄化制御装置である。 The present invention is provided in an exhaust passage of an engine, and when the air-fuel ratio of the inflowing exhaust gas is leaner than the stoichiometric air-fuel ratio, the present invention stores NO x in the exhaust gas and the air-fuel ratio of the inflowing exhaust gas the NO X but the NO X catalyst for reducing NO X that has been occluded in the N 2 when a richer state than the theoretical air-fuel ratio, occlusion amount of the NO X in the NO X catalyst is equal to or greater than the predetermined threshold value sulfur when it is necessary DeNO X control to purify by reducing NO X occluded in the catalyst, or, the S poisoning amount in the NO X catalyst is adsorbed on a by the NO X catalyst greater than a predetermined threshold value When the DeSO X control for desorbing is required, the fuel injection valve in the engine is controlled so that the air-fuel ratio of the exhaust gas flowing into the NO X catalyst becomes rich, and the DeNO X control or D and NO X catalyst regeneration unit to implement the ESO X control, the provided downstream of the exhaust passage of the NO X catalyst, and the SCR catalyst to purify the NO X by reaction with NH 3, to no NH 3 in the SCR catalyst NH with 3 and NH 3 supply unit raw material supplies adsorbing NH 3, and a NH 3 supply amount control section for controlling the supply amount of the NH 3 feed to NH 3 not to the SCR catalyst by the NH 3 supply unit The NH 3 supply amount control unit reduces the supply amount of NH 3 or NH 3 raw material to the SCR catalyst by the NH 3 supply unit when the NO X catalyst regeneration by the NO X catalyst regeneration unit is executed. It adapted to correct, reduce the amount of the NH 3 to the NH 3 not by the supply amount control section NH 3 raw material feed rate, who when the Deso X control is implemented, the DeNO X control is performed Small amount than if It is an exhaust gas purification control apparatus for an engine according to claim which are set there as.
本発明によれば、NH3 供給量制御部によるNH3 ないしNH3 原料の供給量の削減量が、DeSOX 制御時においてDeNOX 制御時よりも少量であるように設定されていることにより、DeSOX 制御時においても、NOX 触媒でのNH3 の発生量を考慮した効率的なNOX の浄化を実現できる。 According to the present invention, by reducing the amount of NH 3 to NH 3 raw material supply amount of the NH 3 supply amount control unit is set to be a small amount than when DeNO X control during Deso X control, Even during DeSO X control, efficient NO X purification can be realized in consideration of the amount of NH 3 generated in the NO X catalyst.
前記NOX 触媒の温度を検出ないし推定するNOX 触媒温度把握部を更に備え、前記NH3 供給量制御部による前記NH3 ないしNH3 原料の供給量の削減量は、前記DeNOX 制御が実施される場合において、前記NOX 触媒温度把握部によって検出ないし推定される前記NOX 触媒の温度が高温である程、少量であるように設定されていることが好ましい。 The NO X catalyst further comprising a NO X catalyst temperature ascertaining unit that detects or estimates the temperature of the reduction amount of the NH 3 to the NH 3 not by the supply amount control section NH 3 raw material feed rate, the DeNO X control is performed In such a case, it is preferable that the NO x catalyst temperature detected by the NO x catalyst temperature grasping unit is set to be smaller as the temperature of the NO x catalyst is higher.
同様に、前記NOX 触媒の温度を検出ないし推定するNOX 触媒温度把握部を更に備え、前記NH3 供給量制御部による前記NH3 ないしNH3 原料の供給量の削減量は、前記DeSOX 制御が実施される場合において、前記NOX 触媒温度把握部によって検出ないし推定される前記NOX 触媒の温度が高温である程、少量であるように設定されていることが好ましい。 Similarly, the NO X catalyst further comprising a NO X catalyst temperature ascertaining unit that detects or estimates the temperature of the reduction amount of the NH 3 to NH 3 raw material supply amount of the NH 3 supply amount control section, said Deso X In the case where the control is performed, it is preferable that the temperature is set to be smaller as the temperature of the NO x catalyst detected or estimated by the NO x catalyst temperature grasping unit is higher.
本件発明者の知見によれば、NOX 触媒の温度が高温である程、NOX 触媒においてNH3 を消費する反応(段落0057参照)の方に反応促進効果が大きく現れ、結果的にNOX 触媒におけるNH3 発生量が減少する。前記の好適な態様例は、この現象を反映させたものである。 According to the findings of the present inventors, NO enough temperature X catalyst is high, NO reaction promoting effect toward the X catalyst in consume NH 3 reaction (see paragraph 0057) appears large, resulting in NO X The amount of NH 3 generated in the catalyst is reduced. The above-described preferred embodiment reflects this phenomenon.
通常は、DeSOX が必要になったとき、前記NOX 触媒再生部の作動の前に、前記NOX 触媒が600℃以上に昇温される。 Normally, when DeSO x is required, the temperature of the NO x catalyst is raised to 600 ° C. or higher before the operation of the NO x catalyst regeneration unit.
また、通常は、DeSOX が必要になったとき、前記NOX 触媒再生部は、間欠的なリーン運転を実施する。すなわち、DeSOX 制御が実施される間において、前記NOX 触媒再生部は、間欠的に、前記NOX 触媒に流入する排気ガスの空燃比がリーンな状態となるように、前記エンジンにおける燃料噴射弁を制御するようになっている。 In general, when DeSO X is required, the NO X catalyst regeneration unit performs intermittent lean operation. That is, during the execution of DeSO X control, the NO X catalyst regeneration unit intermittently performs fuel injection in the engine so that the air-fuel ratio of the exhaust gas flowing into the NO X catalyst becomes lean. The valve is controlled.
また、前記NH3 供給量制御部による前記NH3 ないしNH3 原料の供給量の削減量は、前記DeSOX 制御が実施される場合において、前記NOX 触媒におけるNOX の吸蔵量に基づいて修正されることが好ましい。 Further, reduction of the NH 3 to the NH 3 not by the supply amount control section NH 3 raw material supply amount, when the Deso X control is performed, corrected on the basis of the storage amount of the NO X in the NO X catalyst It is preferred that
この場合、NOX 触媒45の吸蔵NOX の脱離の影響を、より正確に反映させることができる。 In this case, it is possible to more accurately reflect the effect of desorption of the stored NO x of the NO x catalyst 45.
また、前記NH3 供給量制御部による前記NH3 ないしNH3 原料の供給量の削減量は、前記DeSOX 制御が実施される場合において、前記NOX 触媒におけるS被毒量に基づいて修正されることが好ましい。 Further, the reduction amount of the supply amount of the NH 3 or NH 3 raw material by the NH 3 supply amount control unit is corrected based on the S poisoning amount in the NO X catalyst when the DeSO X control is performed. It is preferable.
S被毒しているNOX 触媒45は、その分だけ、NOX の吸蔵量が少なくなっている。この影響を、より正確に反映させることができる。 NO X catalyst 45 S are poisoned, by that amount, storage amount of the NO X is low. This effect can be reflected more accurately.
また、前記排気ガスの流量を検出ないし推定する排気ガス流量把握部と、前記SCR触媒の温度を検出ないし推定するSCR触媒温度把握部と、を更に備え、前記排気ガス流量把握部によって検出ないし推定される前記排気ガスの流量が所定の閾値未満であって、且つ、前記SCR触媒温度把握部によって検出ないし推定される前記SCR触媒の温度が所定の閾値未満である時には、前記NOX 触媒のみによってNOX の浄化が実施され、前記排気ガス流量把握部によって検出ないし推定される前記排気ガスの流量が所定の閾値未満であって、且つ、前記SCR触媒温度把握部によって検出ないし推定される前記SCR触媒の温度が所定の閾値以上である時には、前記SCR触媒のみによってNOX の浄化が実施され、前記排気ガス流量把握部によって検出ないし推定される前記排気ガスの流量が所定の閾値以上である時には、前記NOX 触媒によるNOX の浄化と前記SCR触媒によるNOX の浄化とが併用されることが好ましい。
この場合、排気ガスの流量に応じて、且つ、SCR触媒の温度に応じて、効率的なNOX の浄化を実現できる。
The exhaust gas flow rate grasping unit for detecting or estimating the flow rate of the exhaust gas and the SCR catalyst temperature grasping unit for detecting or estimating the temperature of the SCR catalyst are further provided, and detected or estimated by the exhaust gas flow rate grasping unit. When the flow rate of the exhaust gas is less than a predetermined threshold and the temperature of the SCR catalyst detected or estimated by the SCR catalyst temperature grasping unit is less than a predetermined threshold, only by the NO x catalyst The SCR is purified by NO x, the flow rate of the exhaust gas detected or estimated by the exhaust gas flow rate grasping unit is less than a predetermined threshold, and detected or estimated by the SCR catalyst temperature grasping unit. when the temperature of the catalyst is above a predetermined threshold value, the purification of the NO X only by the SCR catalyst is performed, the exhaust gas flow rate grasping portion Therefore, when the flow rate of the exhaust gas detected or estimated is above a predetermined threshold value, the NO X catalyst according to the purification of the NO X the SCR catalyst preferably is a purification of the NO X in combination by.
In this case, efficient NO x purification can be realized according to the flow rate of the exhaust gas and according to the temperature of the SCR catalyst.
また、この場合において、前記NOX 触媒のみによってNOX の浄化が実施される際、前記NH3 供給量制御部は、前記NH3 供給部による前記SCR触媒へのNH3 ないしNH3 原料の供給量を制限するようになっており、前記SCR触媒のみによってNOX の浄化が実施される際、前記NOX 触媒再生部の作動が制限されるようになっていることが好ましい。 Further, in this case, when the NO x purification is performed only by the NO x catalyst, the NH 3 supply amount control unit supplies the NH 3 or NH 3 raw material to the SCR catalyst by the NH 3 supply unit. adapted to limit the amount, the time of purification of the NO X is performed only by the SCR catalyst, it is preferable that operation of the NO X catalyst regeneration unit is adapted to be limited.
本発明によれば、NH3 供給量制御部によるNH3 ないしNH3 原料の供給量の削減量が、DeSOX 制御時においてDeNOX 制御時よりも少量であるように設定されていることにより、DeSOX 制御時においても、NOX 触媒でのNH3 の発生量を考慮した効率的なNOX の浄化を実現できる。 According to the present invention, by reducing the amount of NH 3 to NH 3 raw material supply amount of the NH 3 supply amount control unit is set to be a small amount than when DeNO X control during Deso X control, Even during DeSO X control, efficient NO X purification can be realized in consideration of the amount of NH 3 generated in the NO X catalyst.
以下、添付図面を参照して、本発明の一実施形態によるエンジンの排気浄化制御装置について説明する。 An engine exhaust purification control apparatus according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
<システム構成>
最初に、図1を参照して、本発明の一実施形態によるエンジンの排気浄化制御装置が適用されたエンジンシステムについて説明する。図1は、本発明の一実施形態によるエンジンの排気浄化制御装置が適用されたエンジンシステムの概略構成図である。
<System configuration>
First, an engine system to which an engine exhaust gas purification control apparatus according to an embodiment of the present invention is applied will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of an engine system to which an engine exhaust gas purification control apparatus according to an embodiment of the present invention is applied.
図1に示すように、エンジンシステム200は、主に、ディーゼルエンジンとしてのエンジンEと、エンジンEに吸気を供給する吸気系INと、エンジンEに燃料を供給するための燃料供給系FSと、エンジンEの排気ガスを排出する排気系EXと、エンジンシステム200に関する各種の状態を検出するセンサ100〜119と、エンジンシステム200の制御を行うPCM(Power-train Control Module)60と、SCR触媒47に関する制御を行うDCU(Dosing Control Unit)70と、を有する。
As shown in FIG. 1, the
まず、吸気系INは、吸気が通過する吸気通路1を有しており、この吸気通路1上には、上流側から順に、外部から導入された空気を浄化するエアクリーナ3と、通過する吸気を圧縮して吸気圧を上昇させる、ターボ過給機5のコンプレッサと、外気や冷却水により吸気を冷却するインタークーラ8と、通過する吸気流量を調整する吸気シャッター弁7(スロットルバルブに相当する)と、エンジンEに供給する吸気を一時的に蓄えるサージタンク12と、が設けられている。
First, the intake system IN has an
エアクリーナ3の直下流側の吸気通路1上には、吸入空気量を検出するエアフローセンサ101及び吸気温度を検出する温度センサ102が設けられ、ターボ過給機5には、吸気の圧力を検出する圧力センサ103が設けられ、インタークーラ8の直下流側の吸気通路1上には、吸気温度を検出する温度センサ106が設けられ、吸気シャッター弁7には、当該吸気シャッター弁7の開度を検出するポジションセンサ105が設けられ、サージタンク12には、吸気マニホールドにおける吸気の圧力を検出する圧力センサ108が設けられている。これらのセンサ101〜108は、それぞれ、検出したパラメータに対応する検出信号S101〜S108をPCM60に出力するようになっている。
An
次に、エンジンEは、吸気通路1(詳しくは吸気マニホールド)から供給された吸気を燃焼室17内に導入する吸気バルブ15と、燃焼室17に向けて燃料を噴射する燃料噴射弁20と、通電により発熱する発熱部を燃焼室17内に備えたグロープラグ21と、燃焼室17内での混合気の燃焼により往復運動するピストン23と、ピストン23の往復運動により回転されるクランクシャフト25と、燃焼室17内での混合気の燃焼により発生した排気ガスを排気通路41へ排出する排気バルブ27と、を有する。また、エンジンEには、クランクシャフト25における上死点などを基準とした回転角としてのクランク角を検出するクランク角センサ100が設けられている。クランク角センサ100は、検出したクランク角に対応する検出信号S100をPCM60に出力し、PCM60は、この検出信号S100に基づきエンジン回転数を取得するようになっている。
Next, the engine E includes an
燃料供給系FSは、燃料を貯蔵する燃料タンク30と、燃料タンク30から燃料噴射弁20に燃料を供給するための燃料供給通路38と、を有する。燃料供給通路38には、上流側から順に、低圧燃料ポンプ31と、高圧燃料ポンプ33と、コモンレール35と、が設けられている。
The fuel supply system FS includes a
次に、排気系EXは、排気ガスが通過する排気通路41を有しており、この排気通路41上に、当該排気ガスによって回転され当該回転によって前記したようにコンプレッサを駆動するターボ過給機5のタービンが設けられている。更に、このタービンの下流側の排気通路41上に、上流側から順に、排気ガス中のNOX (RawNOX )を浄化するNOX 触媒45と、排気ガス中の粒子状物質(PM:Particulate Matter)を捕集するディーゼルパティキュレートフィルタ(DPF:Diesel particulate filter)46と、DPF46の下流側の排気通路41中に尿素(典型的には尿素水)を噴射する尿素インジェクタ51と、が設けられている。
Next, the exhaust system EX has an
NOX 触媒45は、流入する排気ガスの空燃比が理論空燃比よりもリーンな状態(λ>1)において排気ガス中のNOX を吸蔵する傾向を有しており、流入する排気ガスの空燃比が理論空燃比近傍である状態(λ≒1)あるいは理論空燃比よりもリッチな状態(λ<1)において吸蔵していたNOX をN2 に還元する傾向を有しており、NOX 吸蔵還元型触媒(NSC:NOx Storage Catalyst)と呼ばれるものである。NOX 触媒45は、吸蔵していたNOX を還元する際に、NH3 (アンモニア)を発生して放出するようになっている。具体的には、NOX 還元時に、NOX 触媒45が吸蔵していたNOX 中の「N」と、NOX 触媒45に還元剤として供給された未燃燃料などの「HC」中の「H」あるいは筒内燃焼により生じる「H2O」中の「H」と、が結合することで、NH3 (アンモニア)が生成されるようになっている。反応の詳細については、後に段落0142にて詳述する。
The NO x
なお、詳細は後述するが、NOX 触媒45は、NOX 触媒45に吸蔵されたNOX 量(以下、NOX 吸蔵量という。)が所定の閾値以上になったとき、NOX 触媒45に流入する排気ガスの空燃比がリッチな状態となるように、エンジンEにおける燃料噴射弁20を制御することにより、吸蔵されたNOxを還元して浄化される(NOX 触媒再生部)。本実施形態では、後述するPCM60が、当該NOX 触媒再生部を兼ねている(NOX 触媒再生部の機能をも有している)。
Although the details will be described later, NO X
NOX 触媒45におけるNOX の吸蔵量については、エンジンEの運転状態や排気ガスの流量や排気ガスの温度などに基づいて、排気ガス中のNOX 量を推定し、このNOX 量を積算していくことで推定する。あるいは、NOX 吸蔵量検出センサ45nによって、直接検出しても良い。
Regarding the NO X storage amount in the NO X
また、本実施形態のNOX 触媒45は、NSCとしての機能だけでなく、排出ガス中の酸素を用いて炭化水素(HC)や一酸化炭素(CO)などを酸化して水と二酸化炭素に変化させるディーゼル酸化触媒(DOC:Diesel Oxidation Catalyst)45a(酸化触媒)としての機能をも有している。
In addition, the NO x
より具体的には、本実施形態のNOX 触媒45は、ディーゼル酸化触媒45aの触媒材層の表面をNSCの触媒材によってコーティングすることで作られている。これにより、NOX 触媒45は、ディーゼル酸化触媒45aと複合された複合触媒を形成している。すなわち、NOX 触媒45は、ディーゼル酸化触媒45aと組み合わせて配置(構成)されている。これにより、ディーゼル酸化触媒45aにおいて酸化反応により反応熱が生じて温度上昇する場合、当該反応熱はNOX 触媒45に伝達されて、NOX 触媒45の温度上昇が生じるようになっている。
More specifically, the NO x
本実施形態では、NOX 触媒45の直上流側に温度センサ112を設けている。この温度センサ112によって検出された温度に基づいてNOX 触媒温度を推定する。このNOX 触媒温度の把握に対して、例えば、NOX 触媒45とDPF46との間に設けられた温度センサ113によって検出してもよい。また、NOX 触媒45に、当該NOX 触媒45の温度を検出するNOX 触媒温度検出センサ45tを設けて検出してもよい。
In the present embodiment, the
また、本実施形態では、エンジンの運転状態、具体的にはエンジン回転数とエンジン負荷とからNOX 触媒45に流入する排気ガスの流量を推定するが、NOX 触媒45に流入する排気ガスの流量を検出する排気ガス流量検出センサ45fを設けてもよい。 In this embodiment, the flow rate of the exhaust gas flowing into the NO x catalyst 45 is estimated from the operating state of the engine, specifically the engine speed and the engine load, but the exhaust gas flowing into the NO x catalyst 45 is estimated. An exhaust gas flow rate detection sensor 45f for detecting the flow rate may be provided.
そして、尿素インジェクタ51の更に下流側に、NOX 触媒45において生成されたNH3 (アンモニア)を排気ガス中のNOX と反応(還元)させて当該NOX を浄化するSCR(Selective Catalytic Reduction)触媒47が配置されている。SCR触媒47は、また、尿素インジェクタ51から噴射された尿素を加水分解してNH3 (アンモニア)を生成し(CO(NH2)2+H2O→CO2+2NH3)、このNH3 を排気ガス中のNOX と反応(還元)させて当該NOX を浄化する機能をも有している。尿素インジェクタ51は、DCU70から供給される制御信号S51によって、排気通路41中に尿素を噴射するよう制御されるようになっている。
Then, further downstream of the
より具体的には、SCR触媒47は、NOX 触媒45におけるNOX の浄化(還元)により生成されたNH3 (アンモニア)、及び/または、尿素インジェクタ51から噴射された尿素から生成されるNH3 、を自身に吸着して、当該吸着したNH3 を排気ガス中のNOX と反応させてNOX を浄化(還元)するようになっている。
More specifically, the
例えば、SCR触媒47は、NH3 (アンモニア)によってNOX を還元する機能を有する触媒金属を、NH3 をトラップする機能を有するゼオライトに担持させて触媒成分とし、当該触媒成分をハニカム担体のセル壁に担持させることで作られ得る。NOX 還元用の触媒金属としては、Fe、Ti、Ce、Wなどが用いられ得る。
For example, in the
その他、SCR触媒47の更に下流側に、SCR触媒47から放出されたNH3 (アンモニア)を酸化させて浄化するスリップ触媒48が設けられている。また、SCR触媒47には、当該SCR触媒の温度を検出するSCR触媒温度検出センサ47tが設けられている。SCR触媒温度検出センサ47tは、SCR触媒47の温度を直接的に検出するセンサであるが、これに代えて、SCR触媒47の温度に関連する間接的なパラメータを測定して、当該パラメータからSCR触媒47の温度を推定する手段が設けられてもよい。例えば、SCR触媒47の直上流側に設けられた温度センサ117によって検出された温度に基づいて推定されてもよい。
In addition, a
本実施形態では、尿素インジェクタ51が、SCR触媒47にNH3 原料である尿素を供給してNH3 を吸着させるNH3 供給部となっている。図1に示すように、尿素インジェクタ51は、尿素供給経路53に接続され、尿素供給経路53は、尿素送出ポンプ54を介して尿素タンク55に接続されている。
In this embodiment, the
尿素供給経路53は、尿素(尿素水)を送出できる配管により形成されている。尿素供給経路53上には、尿素が通過した場合の圧力の変化を測定する尿素供給経路圧力センサ56が配置されている。尿素供給経路53上には、尿素が尿素供給経路53上で凍結することを防止するための尿素経路ヒータ57が配置されている。尿素送出ポンプ54は、DCU70からの制御指令を受けて、尿素を尿素タンク55から尿素インジェクタ51に向けて送出するようになっている。
The
本実施形態では、DCU70が、尿素インジェクタ51(NH3 供給部)によるSCR触媒47への尿素(NH3 原料)の供給量を制御するNH3 供給量制御部となっている。
In the present embodiment, the
DCU70は、SCR触媒47によるNOX 浄化性能の確保と、SCR触媒47からのNH3 (アンモニア)の放出(スリップ)の抑制と、を両立する観点から、SCR触媒47に適量のNH3 が吸着されるように、尿素インジェクタ51から噴射される尿素の量を制御する。
The
その他、DCU70は、尿素供給経路圧力センサ56と、尿素レベルセンサ58と、尿素温度センサ59とに、電気的に接続されている。尿素供給経路圧力センサ56と、尿素レベルセンサ58と、尿素温度センサ59とは、それぞれ、検出したパラメータに対応する検出信号S52〜S54をDCU70に出力する。また、DCU70は、尿素経路ヒータ57と、尿素送出ポンプ54と、尿素タンクヒータ61とに、電気的に接続されている。尿素経路ヒータ57、尿素送出ポンプ54、尿素タンクヒータ61の作動状態は、それぞれ、DCU70から供給される制御信号S55〜S57によって制御することができる。
In addition, the
DCU70は、CPU、当該CPU上で解釈実行される各種のプログラム(OSなどの基本制御プログラムや、OS上で起動され特定機能を実現するアプリケーションプログラムを含む)、及び、プログラムや各種のデータを記憶するためのROMやRAMの如き内部メモリ、を備えるコンピュータにより構成される。DCU70は、PCM60と双方向に通信可能に接続されており、PCM60の制御指令を受けて制御される。例えば、DCU70が取得している各種情報をPCM60に供給する制御信号を、例えば制御信号S58として示す。
The
また、図1に示すように、ターボ過給機5のタービンの上流側の排気通路41上に、排気ガスの圧力を検出する圧力センサ109、及び、排気ガスの温度を検出する温度センサ110が設けられていてもよい。また、ターボ過給機5のタービンの直下流側の排気通路41上に、酸素濃度を検出するO2センサ111が設けられていてもよい。
Further, as shown in FIG. 1, a
更に、排気系EXには、NOX 触媒45の直上流側の排気ガスの温度を検出する温度センサ112と、NOX 触媒45とDPF46との間の排気ガスの温度を検出する温度センサ113と、DPF46の直上流側と直下流側との排気ガスの圧力差を検出する差圧センサ114と、DPF46の直下流側の排気ガスの温度を検出する温度センサ115と、DPF46の直下流側の排気ガス中のNOX の濃度を検出するNOX センサ116と、SCR触媒47の直上流側の排気ガスの温度を検出する温度センサ117と、SCR触媒47の直下流側の排気ガス中のNOX の濃度を検出するNOX センサ118と、スリップ触媒48の直上流側の排気ガス中のPMを検出するPMセンサ119と、が設けられている。これらのセンサ109〜119は、それぞれ、検出したパラメータに対応する検出信号S109〜S119をPCM60に出力するようになっている。
Furthermore, the exhaust system EX, a
更に、本実施形態では、ターボ過給機5は、排気エネルギーが低い低回転域から高回転域まで全域で効率よく高過給を得られる2段過給システムとして構成されている。即ち、ターボ過給機5は、高回転域において多量の空気を過給するための大型ターボチャージャー5aと、低い排気エネルギーでも効率よく過給を行える小型ターボチャージャー5bと、小型ターボチャージャー5bのコンプレッサへの吸気の流れを制御するコンプレッサバイパスバルブ5cと、小型ターボチャージャー5bのタービンへの排気の流れを制御するレギュレートバルブ5dと、大型ターボチャージャー5aのタービンへの排気の流れを制御するウェイストゲートバルブ5eと、を備えており、エンジンEの運転状態(エンジン回転数及び負荷)に応じて各バルブを駆動することにより、大型ターボチャージャー5aと小型ターボチャージャー5bによる過給を切り替えるようになっている。
Further, in the present embodiment, the
また、本実施形態によるエンジンシステム200は、EGR装置43を更に有する。このEGR装置43は、ターボ過給機5のタービンの上流側の排気通路41とターボ過給機5のコンプレッサの下流側(詳しくはインタークーラ8の下流側)の吸気通路1とを接続するEGR通路43aと、EGR通路43aを通過する排気ガスを冷却するEGRクーラ43bと、EGR通路43aを通過させる排気ガスの流量を調整する第1EGRバルブ43cと、EGRクーラ43bをバイパスさせて排気ガスを流すためのEGRクーラバイパス通路43dと、EGRクーラバイパス通路43dを通過させる排気ガスの流量を調整する第2EGRバルブ43eと、を有する。
The
<PCMの電気的構成と機能>
次に、図2を参照して、本実施形態によるエンジンの排気浄化制御装置の電気的構成について説明する。図2は、本実施形態によるエンジンの排気浄化制御装置の電気的構成を示すブロック図である。
<Electric configuration and functions of PCM>
Next, the electrical configuration of the engine exhaust gas purification control apparatus according to the present embodiment will be described with reference to FIG. FIG. 2 is a block diagram showing an electrical configuration of the engine exhaust gas purification control apparatus according to the present embodiment.
本実施形態によるPCM60は、前述した各種センサ100〜119の検出信号S100〜S119に加えて、アクセルペダルの開度(アクセル開度)を検出するアクセル開度センサ150や車速を検出する車速センサ151が出力した検出信号S150、S151に基づいて、燃料噴射弁20に対する制御を行うべく、制御信号S20を出力し、また、吸気シャッター弁7に対する制御を行うべく、制御信号S7を出力するようになっている。
In addition to the detection signals S100 to S119 of the
また、PCM60は、DCU70と双方向に通信を行い、例えば所望量の尿素を尿素インジェクタ51から供給するような制御をDCU70に実施させる制御信号S8を出力するようになっている。
The
特に、本実施形態のPCM60は、NOX 触媒45におけるNOX の吸蔵量が所定の閾値以上になったとき、NOX 触媒45に流入する排気ガスの空燃比がリッチな状態となるように、エンジンEにおける燃料噴射弁20を制御するようになっている(NOX 触媒再生部として機能するようになっている)。より具体的には、本実施形態のPCM60は、排気ガスの空燃比を目標空燃比(具体的には理論空燃比近傍あるいは理論空燃比よりも小さい所定の空燃比)に設定するべく、燃料噴射弁20から「ポスト噴射」を実施させるようになっている。これにより、NOX 触媒45に吸蔵されていたNOX を還元させることができる(NOX 還元制御)。
In particular, PCM60 of this embodiment, when the storage amount of the NO X in the NO X
すなわち、本実施形態のPCM60は、運転者のアクセル操作に応じてエンジントルクを出力させるべく気筒内に燃料を噴射するメイン噴射に加えて(基本的には当該メイン噴射においては排気ガスの空燃比がリーンになるように燃料噴射量等が設定される)、このメイン噴射の後に、エンジントルクの出力に寄与しないタイミング(具体的には膨張行程)で、ポスト噴射を行って、排気ガスの空燃比が理論空燃比近傍である状態(λ≒1)あるいは理論空燃比よりも小さいリッチな状態(λ<1)にして、NOX 触媒45に吸蔵されたNOX を還元させることができるようになっている。(NOX 触媒45に吸蔵されていたNOX を還元させるための制御は、従来から「DeNOX 制御」と呼ばれている。)
In other words, the
なお、PCM60は、CPU、当該CPU上で解釈実行される各種のプログラム(OSなどの基本制御プログラムや、OS上で起動され特定機能を実現するアプリケーションプログラムを含む)、及び、プログラムや各種のデータを記憶するためのROMやRAMの如き内部メモリ、を備えるコンピュータにより構成され得る。
The
<燃料噴射制御>
次に、本実施形態による燃料噴射制御フローについて説明する。燃料噴射制御フローは、車両のイグニッションがオンにされてPCM60に電源が投入された場合に開始され、所定の周期で繰り返し実行される。
<Fuel injection control>
Next, the fuel injection control flow according to this embodiment will be described. The fuel injection control flow is started when the vehicle ignition is turned on and the
まず、PCM60は、車両の運転状態を取得する。具体的には、PCM60は、少なくとも、アクセル開度センサ150が検出したアクセル開度、車速センサ151が検出した車速、クランク角センサ100が検出したクランク角、及び、車両の変速機に現在設定されているギヤ段、を取得する。
First, the
次いで、PCM60は、取得された車両の運転状態に基づいて、目標加速度を設定する。具体的には、PCM60は、種々の車速及び種々のギヤ段について規定された加速度特性マップ(予め作成されてメモリなどに記憶されている)の中から、現在の車速及びギヤ段に対応する加速度特性マップを選択し、当該加速度特性マップを参照して現在のアクセル開度に対応する目標加速度を決定する。
Next, the
次いで、PCM60は、前記目標加速度を実現するためのエンジンEの目標トルクを決定する。この場合、PCM60は、現在の車速、ギヤ段、路面勾配、路面μなどに基づいて、エンジンEが出力可能なトルクの範囲内で、目標トルクを決定する。
Next, the
次いで、PCM60は、前記目標トルクをエンジンEから出力させるべく、当該目標トルク及び現在のエンジン回転数に基づいて、燃料噴射弁20から噴射させるべき燃料噴射量を算出する。この燃料噴射量は、メイン噴射において適用する燃料噴射量(メイン噴射量)である。
Next, in order to output the target torque from the engine E, the
一方、目標加速度を設定する工程から燃料噴射量を算出する工程までのフローと並行して、PCM60は、エンジンEの運転状態に応じた燃料の噴射パターンを設定する。具体的には、PCM60は、DeNOX 制御を行う場合のポスト噴射を行う燃料噴射パターンを設定する。
On the other hand, in parallel with the flow from the step of setting the target acceleration to the step of calculating the fuel injection amount, the
この場合、PCM60は、ポスト噴射において適用する燃料噴射量(ポスト噴射量)や、ポスト噴射を行うタイミング(ポスト噴射タイミングなど)を決定する。詳細については、次の<DeNOX 制御>の項において説明する。
In this case, the
PCM60は、算出されたメイン噴射量、及び、設定された燃料噴射パターンに基づいて(ポスト噴射を行う場合にはポスト噴射量やポスト噴射タイミングも含む)、燃料噴射弁20を制御する。すなわち、PCM60は、所望の燃料噴射パターンにおいて所望の量の燃料が噴射されるように燃料噴射弁20を制御する。
The
<DeNOX 制御>
本実施形態のPCM60は、NOX 触媒45のNOX 吸蔵量が所定量以上である場合、典型的にはNOX 吸蔵量が限界付近にある場合に、NOX 触媒45に吸蔵されたNOX をほぼ0にまで低下させるべく、排気ガスの空燃比を理論空燃比近傍あるいは理論空燃比以下の目標空燃比に継続的に設定するように燃料噴射弁20からポスト噴射させるDeNOX 制御(以下では適宜「アクティブDeNOX 制御」と呼ぶ。)を実行するようになっている。こうすることで、NOX 触媒45に多量に吸蔵されていたNOX を強制的に還元して、NOX 触媒45のNOX 浄化性能を確実に確保するようになっている。
<DeNO X control>
PCM60 of this embodiment, NO if the NO X storage amount of X
また、本実施形態のPCM60は、NOX 触媒45のNOX 吸蔵量が所定量未満であっても、車両の加速時に排気ガスの空燃比がリッチ側に変化するときに、NOX 触媒45に吸蔵されたNOX を還元させるべく、排気ガスの空燃比を目標空燃比に一時的に設定するように燃料噴射弁20からポスト噴射させるDeNOX 制御(以下では適宜「パッシブDeNOX 制御」と呼ぶ。)を実行するようになっている。このパッシブDeNOX 制御は、加速時のようにメイン噴射量が増加して排気ガスの空燃比が低下するような状況に乗じて、空燃比を理論空燃比近傍あるいは理論空燃比以下の目標空燃比に設定するようにポスト噴射を行うので、排気ガスの空燃比が低下しない状況(つまり非加速時)においてDeNOX 制御を行う場合よりも、空燃比を目標空燃比に設定するためのポスト噴射量が少なくなる。また、パッシブDeNOX 制御は、車両の加速に乗じて行われるので、比較的高頻度で行われることが期待される。
Further, PCM60 of this embodiment, also the NO X storage amount of the NO X catalyst 45 is less than the predetermined amount, when the air-fuel ratio of the exhaust gas during acceleration of the vehicle changes to the rich side, the NO X
本実施形態では、このようなパッシブDeNOX 制御を適用することで、DeNOX による燃費悪化などを抑制しつつ、DeNOX を高頻度で行うことができるようになっている。パッシブDeNOX 制御は比較的短い期間しか行われないが、高頻度で行われるので、NOX 触媒45のNOX 吸蔵量を効率的に低下させることができる。その結果、NOX 触媒45のNOX 吸蔵量が所定量以上になりにくくなるので、パッシブDeNOX 制御よりも多量のポスト噴射量を要するアクティブDeNOX 制御の実行頻度を低下させることができ、DeNOX による燃費悪化を効果的に改善することが可能となる。 In this embodiment, by applying such a passive DeNO X control, while suppressing the fuel consumption deterioration due DeNO X, and is capable of performing DeNO X frequently. Although passive DeNO X control is not performed only a relatively short period of time, since performed frequently, it is possible to reduce the the NO X storage amount of the NO X catalyst 45 efficiently. As a result, the NO x storage amount of the NO x catalyst 45 is less likely to exceed a predetermined amount, so that the frequency of execution of the active DeNO x control that requires a larger amount of post-injection than the passive DeNO x control can be reduced. It becomes possible to effectively improve fuel consumption deterioration due to X.
更に、本実施形態のPCM60は、前記のアクティブDeNOX 制御を実行する場合、ポスト噴射させた燃料をエンジンEの筒内において燃焼させることで、排気ガスの空燃比を目標空燃比に設定するようにしている。この場合、PCM60は、ポスト噴射された燃料が筒内において燃焼されるタイミングにおいてポスト噴射を行う。具体的には、PCM60は、エンジンEの膨張行程前半における所定のタイミングを、アクティブDeNOX 制御でのポスト噴射タイミングとして設定する。噴射のタイミングは、例えば、ATDC45°CAである。このようなポスト噴射タイミングをアクティブDeNOX 制御において適用することで、ポスト噴射された燃料がそのまま未燃燃料(つまりHC)として排出されることや、ポスト噴射された燃料によるオイル希釈が、抑制されるようになっている。
Further, when executing the active DeNO x control, the
他方で、本実施形態のPCM60は、前記のパッシブDeNOX 制御を実行する場合、ポスト噴射させた燃料をエンジンEの筒内において燃焼させずに未燃燃料として排気通路41に排出させることで、排気ガスの空燃比を目標空燃比に設定するようにしている。この場合、PCM60は、ポスト噴射された燃料が筒内において燃焼されずに未燃燃料として排気通路41に排出されるタイミングにおいてポスト噴射を行う。具体的には、PCM60は、エンジンEの膨張行程後半における所定のタイミングを、パッシブDeNOX 制御でのポスト噴射タイミングとして設定する。噴射のタイミングは、例えば、ATDC110°CAである。原則、このパッシブDeNOX 制御でのポスト噴射タイミングは、前記したアクティブDeNOX 制御でのポスト噴射タイミングよりも遅角側に設定される。このようなポスト噴射タイミングをパッシブDeNOX 制御において適用することで、ポスト噴射された燃料が筒内において燃焼してスモーク(煤)が発生することが抑制されるようになっている。
On the other hand, when executing the passive DeNO x control, the
<パッシブDeNOX 制御及びアクティブDeNOX 制御を実行する運転領域>
ここで、図3を参照して、本実施形態においてパッシブDeNOX 制御及びアクティブDeNOX 制御のそれぞれを実行するエンジンEの運転領域について説明する。図3は、横軸にエンジン回転数を示し、縦軸にエンジン負荷を示している。また、図3において、曲線L1は、エンジンEの最大トルク線を示している。
<Operating region in which passive DeNO X control and active DeNO X control are executed>
Referring now to FIG. 3, a description is given of the operational range of the engine E to perform each of the passive DeNO X control and active DeNO X control in the present embodiment. FIG. 3 shows the engine speed on the horizontal axis and the engine load on the vertical axis. In FIG. 3, a curve L1 indicates the maximum torque line of the engine E.
図3に示すように、本実施形態のPCM60は、エンジン負荷が第1所定負荷Lo1以上で第2所定負荷Lo2(>第1所定負荷Lo1)未満である中負荷域にあり、且つ、エンジン回転数が第1所定回転数N1以上で第2所定回転数N2(>第1所定回転数N1)未満である中回転域にある場合に、つまりエンジン負荷及びエンジン回転数が符号R12に示す運転領域(以下では「アクティブDeNOX 実行領域R12」と呼ぶ。)に含まれる場合に、アクティブDeNOX 制御を実行する。このようなアクティブDeNOX 実行領域R12を採用する理由は以下の通りである。
As shown in FIG. 3, the
前述したように、アクティブDeNOX 制御を実行する場合、ポスト噴射された燃料がそのまま排出されることによるHCの発生やポスト噴射された燃料によるオイル希釈などを抑制する観点から、ポスト噴射された燃料が筒内において燃焼されるタイミングにおいてポスト噴射を行う。本実施形態では、ポスト噴射された燃料を燃焼させたときに、スモークの発生を抑制すると共に、HCの発生(つまり不完全燃焼による未燃燃料の排出)を抑制している。具体的には、ポスト噴射された燃料が燃焼するまでの時間をできるだけかせぐようにし、つまり空気と燃料が適切に混合された状態で着火が生じるようにして、スモーク及びHCの発生を抑制している。このため、アクティブDeNOX 制御時には、適量のEGRガスを導入することで、ポスト噴射された燃料の着火を効果的に遅延させるようにしている。 As described above, when the active DeNO x control is performed, the post-injected fuel is used from the viewpoint of suppressing the generation of HC due to the post-injected fuel being discharged as it is or the oil dilution by the post-injected fuel. Post-injection is performed at the timing when is burned in the cylinder. In this embodiment, when the post-injected fuel is burned, the generation of smoke is suppressed and the generation of HC (that is, the discharge of unburned fuel due to incomplete combustion) is suppressed. Specifically, the generation of smoke and HC is suppressed by maximizing the time until the post-injected fuel burns as much as possible, that is, ignition occurs in a state where air and fuel are properly mixed. Yes. Therefore, when the active DeNO X control, by introducing a suitable amount of EGR gas, so that delays the ignition of fuel post-injection effectively.
アクティブDeNOX 制御時にHCの発生を抑制する理由は、前記のようにEGRガスを導入する場合に、HCもEGRガスとして吸気系INに還流されて、このHCがバインダとなって煤と結合してガスの通路が閉塞してしまうことを防止するためである。加えて、NOX 触媒45の温度が低く、HCの浄化性能(NOX 触媒45中のDOC45aによるHCの浄化性能)が確保されないような領域においてアクティブDeNOX 制御を実行したときに、HCが浄化されずに排出されてしまうことを防止するためである。(アクティブDeNOX 実行領域R12には、そのようなHCの浄化性能が確保されないようなNOX 触媒45の温度が比較的低い領域も含まれ得る。)
The reason for suppressing the generation of HC during active DeNO x control is that when EGR gas is introduced as described above, HC is also recirculated to the intake system IN as EGR gas, and this HC serves as a binder and is combined with soot. This is to prevent the gas passage from being blocked. In addition, when the temperature of the NO x catalyst 45 is low and HC purification performance (HC purification performance by the
また、アクティブDeNOX 制御時にスモークの発生を抑制する理由は、スモークに対応するPMはDPF46に捕集されるが、このDPF46に捕集されたPMを燃焼除去するためのDPF再生(DeNOX 制御と同様にポスト噴射させる制御)が高頻度で行われて、燃費などが悪化してしまうことを抑制するためである。
The reason for suppressing the generation of smoke during active DeNO x control is that PM corresponding to the smoke is collected in the
ところで、エンジン負荷が高くなると、目標空燃比を実現するためにエンジンEに導入する空気を絞ることで、ポスト噴射された燃料を適切に燃焼させるのに必要な酸素が足りなくなってスモークやHCが発生しやすくなる傾向が生じる。特に、エンジン負荷が高くなると、筒内温度が高くなり、ポスト噴射された燃料が着火するまでの時間を適切に確保することができず、つまり空気と燃料が適切に混合されていない状態で燃焼が生じ、スモークやHCが発生してしまう場合がある。他方で、エンジン負荷がかなり低い領域では、NOX 触媒45の温度が低く、NOX 触媒45のNOX 還元機能が十分に発揮されなくなる。加えて、この領域では、ポスト噴射された燃料が適切に燃焼しなくなる、つまり失火が発生してしまう。 By the way, when the engine load increases, the air introduced into the engine E in order to achieve the target air-fuel ratio is reduced, so that there is not enough oxygen necessary to properly burn the post-injected fuel, so that smoke and HC It tends to occur easily. In particular, when the engine load increases, the in-cylinder temperature increases, and the time until the post-injected fuel is ignited cannot be ensured properly, that is, combustion occurs in a state where air and fuel are not properly mixed. May occur, and smoke and HC may be generated. On the other hand, the engine load is quite low area, low temperature of the NO X catalyst 45 is, NO X reduction capacity of the NO X catalyst 45 is not sufficiently exhibited. In addition, in this region, the post-injected fuel does not burn properly, that is, misfire occurs.
なお、以上ではエンジン負荷に関する現象を述べたが、エンジン回転数についても同様の現象が生じる。 In addition, although the phenomenon regarding an engine load was described above, the same phenomenon arises also about an engine speed.
以上のことから、本実施形態では、中負荷域且つ中回転域に対応するエンジンEの運転領域を、アクティブDeNOX 制御を実行するアクティブDeNOX 実行領域R12として採用している。換言すると、本実施形態では、アクティブDeNOX 実行領域R12でのみ、アクティブDeNOX 制御を実行することとし、アクティブDeNOX 実行領域R12以外の運転領域では、アクティブDeNOX 制御の実行を禁止している。このようにアクティブDeNOX 制御の実行を禁止することとしたエンジンEの運転領域では、特にアクティブDeNOX 実行領域R12よりも高負荷側又は高回転側の領域では(符号R13を付した領域)では、SCR触媒47のNOX 浄化性能が十分に確保されているので、SCR触媒47がNOX を浄化することとなり、DeNOX 制御を実行しなくても車両からのNOX の排出を防止することができる。
From the above, in this embodiment, the operation region of the engine E corresponding to the medium load region and the medium rotation region is employed as the active DeNO X execution region R12 for executing the active DeNO X control. In other words, in this embodiment, only the active DeNO X execution region R12, and executes the active DeNO X control, in the operating region other than the active DeNO X execution region R12, prohibits the execution of the active DeNO X Control . In the operating area of it and the engine E to prohibit the execution of the active DeNO X control in this manner, particularly in active DeNO X running region the high load side or region of high rotation side than R12 in (region denoted by reference numeral R13) since NO X purification performance of the
また、本実施形態では、SCR触媒47でNOX を浄化させる領域R13よりも更に高負荷側の領域(符号R11を付した領域であり、以下では「パッシブDeNOX 実行領域R11」と呼ぶ。)では、排気ガス量が大きくなり、SCR触媒47でNOX を浄化しきれなくなるので、パッシブDeNOX 制御を実行するようになっている。このパッシブDeNOX 制御では、前記したように、ポスト噴射された燃料が筒内において燃焼されずに未燃燃料として排気通路41に排出されるタイミングにおいてポスト噴射を行う。パッシブDeNOX 実行領域R11では、NOX 触媒45の温度が十分に高く、HCの浄化性能(NOX 触媒45中のDOC45aによるHCの浄化性能)が確保されているので、このように排出された未燃燃料をNOX 触媒45で適切に浄化することができる。
Further, in this embodiment, the high load side region further than the region R13 to purify NO X in the SCR catalyst 47 (a region indicated by symbol R11, is hereinafter referred to as "passive DeNO X execution region R11".) Then, since the exhaust gas amount becomes large and the
なお、パッシブDeNOX 制御において、アクティブDeNOX 制御のようにポスト噴射された燃料を筒内において燃焼させると、スモークが発生してしまう。その理由は、エンジン負荷が高い時にアクティブDeNOX 制御の実行を禁止することとした理由と同様である。 Incidentally, in a passive DeNO X control, when burning fuel that is post-injection as active DeNO X control within the cylinder, the smoke is generated. The reason is the same as the reason why the execution of the active DeNO x control is prohibited when the engine load is high.
ここで、図3中の矢印A11に示すようにエンジンの運転状態が変化したときのアクティブDeNOX 制御の具体例について説明する。まず、エンジンの運転状態がアクティブDeNOX 実行領域R12に入ると(符号A12参照)、PCM60は、アクティブDeNOX 制御を実行する。そして、エンジンの運転状態がアクティブDeNOX 実行領域R12を外れると(符号A13参照)、PCM60は、アクティブDeNOX 制御を一旦中止する。このときには、SCR触媒47がNOX を浄化することとなる。そして、エンジンの運転状態がアクティブDeNOX 実行領域R12に再度入ると(符号A14参照)、PCM60は、アクティブDeNOX 制御を再開する。こうすることで、NOX 触媒45に吸蔵されたNOX がほぼ0に低下するまで、アクティブDeNOX 制御を終了させないようにする。
Here, a specific example of active DeNO x control when the operating state of the engine changes as indicated by an arrow A11 in FIG. 3 will be described. First, when the operating state of the engine enters the active DeNO x execution region R12 (see symbol A12), the
<各触媒の浄化性能と温度範囲との関係>
図4に示すように、基本的には、NOX 触媒45は、比較的低温域(符号R24により示す領域)においてNOX 浄化性能を発揮し、SCR触媒47は、比較的高温域、具体的にはNOX 触媒45のNOX 浄化性能が発揮される温度域よりも高い温度域(符号R25により示す領域)においてNOX 浄化性能を発揮する。本実施形態では、SCR触媒47により所定値以上のNOX 浄化率が得られる温度範囲の下側の境界値付近の温度を、判定温度(以下では「SCR判定温度」と呼ぶ。)として用いる。
<Relationship between purification performance and temperature range of each catalyst>
As shown in FIG. 4, basically, the NO x
<ポスト噴射量>
次に、本実施形態においてDeNOX 制御時に適用するポスト噴射量(以下では「DeNOX 用ポスト噴射量」と呼ぶ。)の算出フローについて説明する。DeNOX 用ポスト噴射量算出フローは、PCM60によって所定の周期で繰り返し実行され、前述の燃料噴射制御フローと並行して実行される。すなわち、燃料噴射制御が行われている最中に、DeNOX 用ポスト噴射量が随時算出される。
<Post injection amount>
Next, a calculation flow of a post injection amount (hereinafter referred to as “DeNO X post injection amount”) applied during DeNO X control in the present embodiment will be described. The DeNO x post-injection amount calculation flow is repeatedly executed by the
まず、PCM60は、エンジンEの運転状態を取得する。具体的には、PCM60は、少なくとも、エアフローセンサ101によって検出された吸入空気量(新気量)、O2センサ111によって検出された排気ガスの酸素濃度、及び、前述の燃料噴射制御フローにおいて算出されたメイン噴射量、を取得する。また、PCM60は、所定のモデルなどにより求められた、EGR装置43によって吸気系INに還流される排気ガス量(EGRガス量)も取得する。加えて、SCR触媒47に吸着されたNH3 (アンモニア)の量であるNH3 吸着量を取得する。NH3 吸着量は、尿素噴射弁から噴射された尿素噴射量と、DeNOX 制御時に発生するNH3 発生量と、エンジンの運転状態とNOX 触媒の浄化効率とに基づいて推定したSCR触媒に供給されるNOX 量の推定値と、に基づいて逐次推定したNH3 推定値を用いる。しかしながら、別の方法、例えば、SCR触媒47にNH3 吸着量検出センサ47nを設けてNH3 吸着量を取得してもよい。
First, the
次いで、PCM60は、推定したSCR触媒47のNH3 吸着量に基づいて、NOX 触媒45に吸蔵されたNOX を還元するために適用する目標空燃比を設定する。具体的には、PCM60は、アクティブDeNOX 制御を実行する場合に適用する目標空燃比と、パッシブDeNOX 制御を実行する場合に適用する目標空燃比と、のそれぞれを、SCR触媒47のNH3 吸着量に基づいて設定する。この目標空燃比の設定方法については、図5を参照して後述する。
Next, the
次いで、PCM60は、設定した目標空燃比を実現するのに必要なポスト噴射量(DeNOX 用ポスト噴射量)を算出する。つまり、PCM60は、排気ガスの空燃比を目標空燃比にするためにメイン噴射量に加えてどれだけのポスト噴射量を適用すればよいかを決定する。この場合、PCM60は、設定したアクティブDeNOX 制御を行う場合の目標空燃比を実現するためのポスト噴射量と、設定したパッシブDeNOX 制御を行う場合の目標空燃比を実現するためのポスト噴射量と、をそれぞれ算出する。
Next, the
<目標空燃比の設定>
図5は、本実施形態による目標空燃比の設定方法についての説明図である。図5は、横軸にSCR触媒47のNH3 吸着量を示し、縦軸に目標空燃比を示している。
<Target air / fuel ratio setting>
FIG. 5 is an explanatory diagram of a target air-fuel ratio setting method according to this embodiment. FIG. 5 shows the NH 3 adsorption amount of the
図5において、「λ1」は理論空燃比を示し、この理論空燃比λ1よりもリッチ側の空燃比の領域R21は、NOX 触媒45に吸蔵されていたNOX を還元可能な空燃比の範囲を示し、理論空燃比λ1よりもリーン側の空燃比の領域R22は、NOX 触媒45に吸蔵されていたNOX を還元不可能な空燃比の範囲を示している。また、限度空燃比λ2よりもリッチ側の空燃比の領域R23では、未燃燃料がEGR装置43に供給されてしまうことによるEGR装置43の信頼性の低下の問題が生じる。
In FIG. 5, “λ1” indicates the stoichiometric air-fuel ratio, and the air-fuel ratio region R21 on the richer side than the stoichiometric air-fuel ratio λ1 is an air-fuel ratio range in which the NO x stored in the NO x
グラフG11は、パッシブDeNOX 制御を実行する場合にSCR触媒47のNH3 吸着量に応じて設定すべき目標空燃比を示しており、グラフG12は、アクティブDeNOX 制御を実行する場合にSCR触媒47のNH3 吸着量に応じて設定すべき目標空燃比を示している。
Graph G11 shows the target air-fuel ratio that should be set according to the NH 3 adsorption amount of the
目標空燃比を領域R21内においてリッチ側に設定すると、NOX 触媒45に供給されるHC、H2Oの量、すなわち「H」成分の総量が増大され、NOX 触媒45からのNH3 の発生量が増大する。
When the target air-fuel ratio is set to the rich side in the region R21, the amount of HC and H 2 O supplied to the NO x
グラフG11、G12において、SCR触媒47のNH3 吸着量が比較的少ない場合には、目標空燃比は、排気ガス中の「H」成分の総量が増大され且つNOX 触媒45からのNH3 発生量が増大するように、限度空燃比λ2近傍の値に設定されている。
In the graphs G11 and G12, when the NH 3 adsorption amount of the
これに対し、グラフG11、G12において、SCR触媒47のNH3 吸着量が比較的多い場合には、目標空燃比は、SCR触媒47のNH3 吸着量に応じて、比較的理論空燃比に近い値に設定されている。これにより、DeNOX 制御によりNOX 触媒45から発生されたNH3 がSCR触媒47で吸着しきれずに放出されてしまうことを抑制することができる。
On the other hand, in the graphs G11 and G12, when the NH 3 adsorption amount of the
<アクティブDeNOX 制御実行フラグ設定の具体例>
次に、アクティブDeNOX 制御実行フラグ設定の具体例について説明する。アクティブDeNOX 制御実行フラグ設定フローは、PCM60によって所定の周期で繰り返し実行されると共に、前述の燃料噴射制御フローなどと並行して実行される。
<Specific example of active DeNO X control execution flag setting>
Next, a specific example of setting the active DeNO x control execution flag will be described. The active DeNO x control execution flag setting flow is repeatedly executed by the
最初に、PCM60は、車両における各種情報を取得する。具体的には、PCM60は、少なくとも、NOX 触媒45の温度と、SCR触媒47温度と、NOX 触媒45のNOX 吸蔵量と、を取得する。この場合、NOX 触媒の温度は、NOX 触媒45の直上流側に設けられた温度センサ112によって検出された温度に基づいて推定される。SCR触媒47の温度は、SCR触媒47の直上流側に設けられた温度センサ117によって検出された温度に基づいて推定される。また、NOX 吸蔵量は、エンジンEの運転状態や排気ガスの流量や排気ガスの温度などに基づいて、排気ガス中のNOX 量を推定し、このNOX 量を積算していくことで推定される。
First, the
次いで、PCM60は、取得されたSCR温度がSCR判定温度(例えば300℃)未満であるか否かを判定し、当該判定の結果がNOであれば、排気ガス流量が所定値未満であるか否かを判定する。
Next, the
SCR温度がSCR判定温度未満であるか、SCR温度がSCR判定温度以上であって排気ガス流量が所定値以上である場合、エンジンEの始動後に所定時間が経過しているか否かを判定する。この判定の結果がYESである場合、PCM60は、アクティブDeNOX 制御の実行を許可すべく、アクティブDeNOX 制御実行フラグを「1」に設定する。また、エンジンEの始動後に所定時間が経過していない場合には、NOX 吸蔵量が第1閾値(例えば4g)以上であるか否かを判定し、第1閾値以上であれば、PCM60は、アクティブDeNOX 制御の実行を許可すべく、アクティブDeNOX 制御実行フラグを「1」に設定する。そして、処理は終了する。 When the SCR temperature is lower than the SCR determination temperature, or when the SCR temperature is equal to or higher than the SCR determination temperature and the exhaust gas flow rate is equal to or higher than a predetermined value, it is determined whether or not a predetermined time has elapsed after the engine E is started. If this determination is YES, PCM60, in order to allow execution of the active DeNO X control, to set the active DeNO X control execution flag to "1". Further, when the predetermined time has not elapsed after the engine E is started, it is determined whether or not the NO x storage amount is equal to or greater than a first threshold (for example, 4 g). , in order to allow execution of the active DeNO X control, to set the active DeNO X control execution flag to "1". Then, the process ends.
SCR温度がSCR判定温度以上であって排気ガス流量が所定値未満である場合(この場合は、SCR触媒47のみによってDeNOX 制御が行われる)、及び、SCR温度がSCR判定温度未満であるがエンジンEの始動後に所定時間が経過していなくてNOX 吸蔵量が第1閾値未満である場合(この場合は、NOX 触媒45のDeNOX が未だ不要であると判断できる)、PCM60は、アクティブDeNOX 制御の実行を禁止すべく、アクティブDeNOX 制御実行フラグを「0」に設定する。そして、処理は終了する。 When the SCR temperature is equal to or higher than the SCR determination temperature and the exhaust gas flow rate is lower than the predetermined value (in this case, DeNO X control is performed only by the SCR catalyst 47), and the SCR temperature is lower than the SCR determination temperature. when the NO X storage amount if no predetermined time elapses after the start of the engine E is less than the first threshold value (in this case, it can be determined that DeNO X of the NO X catalyst 45 is still needed), is PCM60, in order to prohibit the execution of the active DeNO X control, to set the active DeNO X control execution flag to "0". Then, the process ends.
<パッシブDeNOX 制御実行フラグ設定の具体例>
次に、パッシブDeNOX 制御実行フラグ設定の具体例について説明する。パッシブDeNOX 制御実行フラグ設定フローも、PCM60によって所定の周期で繰り返し実行されると共に、前述の燃料噴射制御フローやアクティブDeNOX 制御実行フラグ設定フローなどと並行して実行される。
<Specific example of passive DeNO x control execution flag setting>
Next, a specific example of setting the passive DeNO x control execution flag will be described. The passive DeNO X control execution flag setting flow is also repeatedly executed by the
最初に、PCM60は、車両における各種情報を取得する。具体的には、PCM60は、少なくとも、NOX 触媒45の温度と、SCR触媒47の温度と、前述の燃料噴射制御フローで決定された目標トルクと、前述のDeNOX 用ポスト噴射量算出フローで算出されたDeNOX 用ポスト噴射量(具体的にはパッシブDeNOX 制御時に適用するものとして算出されたDeNOX 用ポスト噴射量)と、NOX 触媒45のNOX 吸蔵量と、を取得する。NOX 触媒45の温度、SCR触媒47の温度及びNOX 吸蔵量の求め方は、アクティブDeNOX 制御について前述した通りである。
First, the
次いで、PCM60は、取得されたSCR温度がSCR判定温度(例えば300℃)未満であるか否かを判定し、当該判定の結果がNOであれば、排気ガス流量が所定値未満であるか否かを判定する。
Next, the
SCR温度がSCR判定温度未満であるか、SCR温度がSCR判定温度以上であって排気ガス流量が所定値以上である場合、NOX 吸蔵量が第2閾値(例えば2g)以上であるか否かを判定し、第2閾値(例えばg)以上であれば、PCM60は、アクティブDeNOX 制御の実行を許可すべく、アクティブDeNOX 制御実行フラグを「1」に設定する。そして、処理は終了する。 If the SCR temperature is lower than the SCR determination temperature, or if the SCR temperature is equal to or higher than the SCR determination temperature and the exhaust gas flow rate is equal to or higher than a predetermined value, whether or not the NO x storage amount is equal to or higher than a second threshold (for example, 2 g) determine, if the second threshold value (e.g., g) or more, PCM60, in order to allow execution of the active DeNO X control, to set the active DeNO X control execution flag to "1". Then, the process ends.
SCR温度がSCR判定温度以上であって排気ガス流量が所定値未満である場合(この場合は、SCR触媒47のみによってDeNOX 制御が行われる)、及び、SCR温度がSCR判定温度未満であってNOX 吸蔵量が第2閾値未満である場合(この場合は、NOX 触媒45のDeNOX が未だ不要であると判断できる)、PCM60は、アクティブDeNOX 制御の実行を禁止すべく、アクティブDeNOX 制御実行フラグを「0」に設定する。そして、処理は終了する。 When the SCR temperature is equal to or higher than the SCR determination temperature and the exhaust gas flow rate is lower than the predetermined value (in this case, DeNO X control is performed only by the SCR catalyst 47), and the SCR temperature is lower than the SCR determination temperature. when the NO X storage amount is smaller than the second threshold value (in this case, DeNO X of the NO X catalyst 45 can be determined to be still required), PCM60, in order to prohibit the execution of the active DeNO X control, active DeNO Set the X control execution flag to “0”. Then, the process ends.
<本実施形態によるアクティブDeNOX 制御>
次に、図6(a)を参照して、前記したように設定されたアクティブDeNOX 制御実行フラグに基づき実行される、本実施形態によるアクティブDeNOX 制御について説明する。図6(a)は、本実施形態によるアクティブDeNOX 制御を示すフローチャート(アクティブDeNOX 制御フロー)である。このアクティブDeNOX 制御フローは、PCM60によって所定の周期で繰り返し実行されると共に、前述の燃料噴射制御フローや前述のアクティブDeNOX 制御実行フラグ設定フローなどと並行して実行される。
<Active DeNO x control according to this embodiment>
Next, with reference to FIG. 6 (a), based on the active DeNO X control execution flag is set as described above is executed, it will be described active DeNO X control according to the present embodiment. FIG. 6A is a flowchart (active DeNO X control flow) showing active DeNO X control according to the present embodiment. The active DeNO X control flow is repeatedly executed by the
まず、ステップS401で、PCM60は、車両における各種情報を取得する。具体的には、PCM60は、少なくとも、エンジン負荷と、エンジン回転数と、NOX 触媒45の温度と、前述のDeNOX 用ポスト噴射量算出フローで算出されたDeNOX 用ポスト噴射量(具体的にはアクティブDeNOX 制御時に適用するものとして算出されたDeNOX 用ポスト噴射量)と、アクティブDeNOX 制御実行フラグ設定フローで設定されたアクティブDeNOX 制御実行フラグの値と、を取得する。
First, in step S401, the
次いで、ステップS402で、PCM60は、ステップS401で取得されたアクティブDeNOX 制御実行フラグが「1」であるか否かを判定する。つまり、PCM60は、アクティブDeNOX 制御を実行すべき状況であるか否かを判定する。この判定の結果、アクティブDeNOX 制御実行フラグが「1」である場合(ステップS402:Yes)、処理はステップS403に進む。これに対して、アクティブDeNOX 制御実行フラグが「0」である場合(ステップS402:No)、図6(b)へ進む。
Next, in step S402, the
ステップS403では、PCM60は、エンジンの運転状態(エンジン負荷及びエンジン回転数)がアクティブDeNOX 実行領域R12(図3参照)に含まれているか否かを判定する。ステップS403の判定の結果、エンジンの運転状態がアクティブDeNOX 実行領域R12に含まれている場合(ステップS403:Yes)、処理はステップS405に進む。これに対して、エンジンの運転状態がアクティブDeNOX 実行領域R12に含まれていない場合(ステップS403:No)、処理はステップS404に進む。
In step S403, the
次いで、ステップS405では、PCM60は、アクティブDeNOX 制御において適用するポスト噴射タイミング(ポスト噴射時期)を設定する。
Next, in step S405, the
本実施形態では、アクティブDeNOX 制御を実行する場合、ポスト噴射させた燃料を筒内において燃焼させることで、排気ガスの空燃比を目標空燃比に設定するようにする。そのようにポスト噴射させた燃料を筒内で燃焼させるためには、膨張行程における比較的進角側のタイミングでポスト噴射を行えばよい。しかしながら、ポスト噴射タイミングを進角させ過ぎると、空気と燃料が適切に混合されていない状態で着火が生じて、スモークが発生してしまう。したがって、本実施形態では、ポスト噴射タイミングを適度に進角側に設定し、具体的には膨張行程前半における適当なタイミングをアクティブDeNOX 制御におけるポスト噴射タイミングとして採用し、また、アクティブDeNOX 制御時に適量のEGRガスを導入することで、ポスト噴射された燃料の着火を遅延させてスモークなどの発生を抑制している。 In the present embodiment, when executing the active DeNO X control, by burning the fuel that is post-injected in the cylinder, so as to set the air-fuel ratio of the exhaust gas to a target air-fuel ratio. In order to burn the post-injected fuel in the cylinder, the post-injection may be performed at a relatively advanced timing in the expansion stroke. However, if the post injection timing is advanced too much, ignition occurs in a state where air and fuel are not properly mixed, and smoke is generated. Thus, in this embodiment, to set the post-injection timing appropriately advance side, specifically adopted appropriate timing in the expansion stroke early as post-injection timing in the active DeNO X control, also active DeNO X Control By introducing an appropriate amount of EGR gas from time to time, the ignition of post-injected fuel is delayed to suppress the occurrence of smoke and the like.
再び、図6(a)に戻って説明する。ステップS404では、PCM60は、アクティブDeNOX 制御を実行せずに、つまり排気ガスの空燃比を目標空燃比に設定するためのポスト噴射を含む燃料噴射制御を行わずに、当該ポスト噴射を含まない通常の燃料噴射制御を行う(ステップS404)。基本的には、PCM60は、目標トルクに応じた燃料噴射量をメイン噴射させる制御のみを行う。実際には、PCM60は、このステップS404の処理を、前述の燃料噴射制御フローにおいて実行する。そして、処理はステップS403に戻って、前記したステップS403の判定を再度行う。つまり、PCM60は、アクティブDeNOX 制御実行フラグが「1」である場合、エンジンの運転状態がアクティブDeNOX 実行領域R12に含まれていない間は、通常の燃料噴射制御を行うようにし、エンジンの運転状態がアクティブDeNOX 実行領域R12に含まれるようになると、通常の燃料噴射制御からアクティブDeNOX 制御における燃料噴射制御に切り替えるようにする。例えば、PCM60は、アクティブDeNOX 制御における燃料噴射制御中にエンジンの運転状態がアクティブDeNOX 実行領域R12から外れると、当該燃料噴射制御を中断して通常の燃料噴射制御を行い、この後に、エンジンの運転状態がアクティブDeNOX 実行領域R12に入ると、アクティブDeNOX 制御における燃料噴射制御を再開する。
Again, referring back to FIG. In step S404, the
次いで、ステップS406では、PCM60は、ステップS401で取得されたDeNOX 用ポスト噴射量が所定のポスト噴射量判定値未満であるか否かを判定する。 Then, in step S406, PCM60 may, DeNO X for the post-injection amount obtained in step S401, it is determined whether it is less than a predetermined post injection amount determination value.
ステップS406の判定の結果、DeNOX 用ポスト噴射量がポスト噴射量判定値未満である場合(ステップS406:Yes)、処理はステップS407に進む。ステップS407では、PCM60は、ステップS401で取得されたDeNOX 用ポスト噴射量をポスト噴射するように燃料噴射弁20を制御する。実際には、PCM60は、このステップS407の処理を、前述の燃料噴射制御フローにおいて実行する。そして、処理はステップS410に進む。
It determined in step S406, if the post injection amount for DeNO X is less than the post-injection amount determination value (step S406: Yes), the process proceeds to step S407. In step S407, PCM60 may the DeNO X for the post-injection amount obtained in step S401 and controls the
他方で、DeNOX 用ポスト噴射量がポスト噴射量判定値以上である場合(ステップS406:No)、処理はステップS408に進む。ステップS408では、PCM60は、ポスト噴射量判定値を超えないポスト噴射量(具体的にはポスト噴射量判定値そのものをDeNOX 用ポスト噴射量として適用する)によって排気ガスの空燃比を目標空燃比に設定すべく、エンジンEに導入される空気の酸素濃度を低下させる制御を行う。この場合、PCM60は、吸気シャッター弁7を閉弁方向に駆動する制御(図6にはこれを記載)、EGRガス量を増加させる制御、及び、ターボ過給機5による過給圧を低下させる制御、のうちの少なくともいずれかを実行して、エンジンEに導入される空気の酸素濃度を低下させる、つまり充填量を低下させる。例えば、PCM60は、ポスト噴射量判定値を適用したDeNOX 用ポスト噴射量によって排気ガスの空燃比を目標空燃比にするのに必要な過給圧を求め、この過給圧を実現するように、実際の過給圧(圧力センサ108によって検出された圧力)とEGRガス量に基づき、吸気シャッター弁7を閉側の所望の開度に制御する。そして、処理はステップS409に進む。
On the other hand, if the post injection amount for DeNO X is the post injection amount determination value or more (step S406: No), the process proceeds to step S408. In step S408, the
なお、吸気シャッター弁7は、通常のエンジンEの運転状態においては全開に設定される。他方で、DeNOX 時、DPF再生時及びアイドル運転時などにおいては、基本的には、吸気シャッター弁7は予め定められたベース開度に設定される。また、EGRガスを導入しない運転状態においては、吸気シャッター弁7は過給圧に基づきフィードバック制御される。
Note that the
ステップS409では、PCM60は、ポスト噴射量判定値をDeNOX 用ポスト噴射量に適用して、つまりDeNOX 用ポスト噴射量をポスト噴射量判定値に設定して、このDeNOX 用ポスト噴射量をポスト噴射するように燃料噴射弁20を制御する。実際には、PCM60は、このステップS409の処理を、前述の燃料噴射制御フローにおいて実行する。そして、処理はステップS410に進む。
In step S409, the
アクティブDeNOX 制御を行う際にも、NOX 触媒45は、上述したように、吸蔵したNOX を還元する際にNH3 を発生し、発生したNH3 を放出する。
Also when performing active DeNO x control, the NO x
ステップS410では、PCM60は、NOX 触媒45のNOX 吸蔵量がほぼ0になったか否かを判定する。NOX 触媒45のNOX 吸蔵量がほぼ0になった場合(ステップS410:Yes)、処理は終了する。この場合、PCM60は、アクティブDeNOX 制御を終了する。
In step S410, the
これに対して、NOX 触媒45のNOX 吸蔵量がほぼ0になっていない場合(ステップS410:No)、処理はステップS403に戻る。この場合には、PCM60は、アクティブDeNOX 制御を継続する。つまり、PCM60は、NOX 触媒45のNOX 吸蔵量がほぼ0になるまで、アクティブDeNOX 制御を継続する。特に、PCM60は、アクティブDeNOX 制御中にアクティブDeNOX 制御の実行条件(具体的にはステップS403の条件)が成立しなくなり、アクティブDeNOX 制御を中止したとしても、その後にアクティブDeNOX 制御の実行条件が成立したときにアクティブDeNOX 制御を速やかに再開して、NOX 触媒45のNOX 吸蔵量がほぼ0になるようにする。
On the other hand, when the NO X storage amount of the NO X catalyst 45 is not substantially zero (step S410: No), the process returns to step S403. In this case, PCM60 continues active DeNO X control. That is, the
<本実施形態によるパッシブDeNOX 制御>
次に、図6(b)を参照して、前記したように設定されたパッシブDeNOX 制御実行フラグに基づき実行される、本実施形態によるパッシブDeNOX 制御について説明する。図6(b)は、本実施形態によるパッシブDeNOX 制御を示すフローチャート(パッシブDeNOX 制御フロー)である。このパッシブDeNOX 制御フローは、PCM60によって所定の周期で繰り返し実行されると共に、前述の燃料噴射制御フローや前述のパッシブDeNOX 制御実行フラグ設定フローと並行して実行される。
<Passive DeNO X control according to the present embodiment>
Next, with reference to FIG. 6 (b), based on the set passive DeNO X control execution flag as described above is executed, it will be described passive DeNO X control according to the present embodiment. FIG. 6B is a flowchart (passive DeNO X control flow) showing the passive DeNO X control according to the present embodiment. This passive DeNO X control flow is repeatedly executed by the
まず、ステップS501で、PCM60は、車両における各種情報を取得する。具体的には、PCM60は、少なくとも、前述のDeNOX 用ポスト噴射量算出フローで算出されたDeNOX 用ポスト噴射量(具体的にはパッシブDeNOX 制御時に適用するものとして算出されたDeNOX 用ポスト噴射量)と、前述のパッシブDeNOX 制御実行フラグ設定フローで設定されたパッシブDeNOX 制御実行フラグの値と、を取得する。
First, in step S501, the
次いで、ステップS502で、PCM60は、ステップS501で取得されたパッシブDeNOX 制御実行フラグが「1」であるか否かを判定する。つまり、PCM60は、パッシブDeNOX 制御を実行すべき状況であるか否かを判定する。この判定の結果、パッシブDeNOX 制御実行フラグが「1」である場合(ステップS502:Yes)、処理はステップS503に進む。これに対して、パッシブDeNOX 制御実行フラグが「0」である場合(ステップS502:No)、パッシブDeNOX 制御を実行せずに、処理は終了する。
Next, in step S502, the
ステップS503では、PCM60は、ステップS501で取得されたDeNOX 用ポスト噴射量をポスト噴射するように燃料噴射弁20を制御する。つまり、パッシブDeNOX 制御を実行する。実際には、PCM60は、このステップS503の処理を、前述の燃料噴射制御フローにおいて実行する。そして、処理はステップS504に進む。
In step S503, the
パッシブDeNOX 制御を行う際、NOX 触媒45は、前述したように、吸蔵したNOX を還元する際にNH3 を発生し、発生したNH3 を放出する。
When performing passive DeNO X control, NO X
ステップS504では、PCM60は、パッシブDeNOX 制御実行フラグが「0」になったか否かを判定する。その結果、パッシブDeNOX 制御実行フラグが「0」になった場合(ステップS504:Yes)、処理は終了する。この場合、PCM60は、パッシブDeNOX 制御を終了する。これに対して、パッシブDeNOX 制御実行フラグが「0」になっていない場合(ステップS504:No)、即ちパッシブDeNOX 制御実行フラグが「1」に維持されている場合、処理はステップS503に戻る。この場合には、PCM60は、パッシブDeNOX 制御を継続する。つまり、PCM60は、パッシブDeNOX 制御実行フラグが「1」から「0」に切り替わるまで、パッシブDeNOX 制御を継続する。
In step S504, the
<尿素インジェクタの噴射制御>
次に、本実施形態による尿素インジェクタ51の噴射制御について説明する。当該噴射制御は、SCR触媒47によるNOX 浄化(還元)が行われる際に、実施される。
<Urea injector injection control>
Next, the injection control of the
具体的には、本実施形態によるエンジンシステム200は、(1)排気ガス流量検出センサ45fによって検出される排気ガスの流量が所定の閾値未満であって、且つ、SCR触媒温度検出センサ47tによって検出されるSCR触媒47の温度が所定の閾値(例えば300℃)以上である時、SCR触媒47のみによってNOX の浄化が実施されるようになっており、(2)排気ガス流量検出センサ45fによって検出される排気ガスの流量が所定の閾値以上である時には、NOX 触媒45によるNOX の浄化と当該SCR触媒47によるNOX の浄化とが併用されるようになっている。
Specifically, in the
SCR触媒47のみによってNOX の浄化が実施される場合には、例えば、当該時点のSCR触媒47のNH3 吸着量と、目標のNH3 吸着量とを比較して、両者の差分に応じて、尿素インジェクタ51の噴射制御が実施される。
When NO x purification is performed only by the
NOX 触媒45によるNOX の浄化とSCR触媒47によるNOX の浄化とが併用される場合には、図7に示すフローに基づいて、NOX 触媒45からSCR触媒47へのNH3 供給量が推定され、その結果に基づいて尿素インジェクタ51からの尿素の供給量が削減補正される。すなわち、後に詳述される図8乃至図12に示す特性を反映させて、NOX 触媒45の温度、排気ガスの流量、排気ガスの空燃比(例えばA/F)、NOX 触媒の熱劣化度合い、等を入力値として、NOX 触媒45からSCR触媒47へのNH3 供給量、ひいては、好適な尿素の供給量の削減量が算出される。
In the case where the purification of the NO X by the NO X purification and
ここで、図7に示すように、DCU70は、NOX 触媒に吸蔵されていたNOX の浄化プロセスに対応する削減量を決定する第1削減量決定部71と、RawNOX の浄化プロセスに対応する削減量を決定する第2削減量決定部72と、を有していることが好ましい。この場合、NOX 触媒45に吸蔵されていたNOX の浄化プロセスに対応する削減量と、RawNOX の浄化プロセスに対応する削減量と、を互いに独立に考慮することができる。
Here, as shown in FIG. 7,
本実施形態のDCU70は、第1削減量決定部71が決定した削減量と第2削減量決定部72が決定した削減量との和に基づいて、SCR触媒47への尿素の供給量を削減補正するようになっている。
The
例えば、SCR触媒とNOX 触媒とを併用している場合には、NOX 触媒のDeNOX 制御と合わせて、逐次、尿素噴射弁の噴射量が補正される。NOX 浄化に対し、NOX 触媒のみを使用している場合は、SCR触媒でのNOX 浄化領域になり尿素噴射が開始されるときに、尿素噴射弁の噴射量が補正される。例えば、DeNOX 制御によるNH3 導入により、SCRでの目標NH3 吸着量以上のNH3 が吸着されている場合は、目標NH3 以下となるまで、尿素噴射を制限するよう補正する。また、目標NH3 吸着量未満である場合にも、DeNOX 制御により導入されたNH3 分を減量補正した尿素噴射量となるよう補正される。 For example, in the case where a combination of the SCR catalyst and the NO X catalyst, combined with DeNO X control of the NO X catalyst, sequentially, the injection amount of urea injection valve is corrected. NO X purifying hand, when using the NO X catalyst only, when the urea injection becomes the NO X purification area in the SCR catalyst is started, the injection amount of urea injection valve is corrected. For example, the NH 3 introduced by DeNO X control, if the target adsorbed NH 3 amount or more of NH 3 in the SCR is adsorbed, until the target NH 3 below, corrected to limit the urea injection. In addition, even when the adsorption amount is less than the target NH 3 adsorption amount, the urea injection amount is corrected so as to reduce the NH 3 amount introduced by the DeNO X control.
<(1)NOX 触媒の温度を考慮した制御>
さて、本実施形態のDCU70は、NOX 触媒45に流入する排気ガスの空燃比がリッチな状態であって当該NOX 触媒45が吸蔵していたNOX がN2 に還元されている際に、尿素インジェクタ51によるSCR触媒47への尿素の供給量を削減補正するようになっている。具体的には、DCU70による尿素の供給量の削減量は、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度が高温である程、少量であるように設定されている。
<(1) control in consideration of the temperature of the NO X catalyst>
Now,
また、本実施形態においては、DCU70による尿素の供給量の削減量は、排気ガス流量検出センサ45fによって検出される排気ガスの流量が大きい程、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度の変化に対して、より変化が小さいように設定されている。
In this embodiment, the amount of urea supplied by the
また、本実施形態においては、DCU70は、NOX 触媒45に吸蔵されていたNOX の浄化プロセスに対応する削減量を決定する第1削減量決定部71と、RawNOX の浄化プロセスに対応する削減量を決定する第2削減量決定部72と、を有している。
In the present embodiment,
そして、第1削減量決定部71による尿素の供給量の削減量は、第2削減量決定部72による尿素の供給量の削減量よりも、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度の変化に対してより大きく変化するように設定されている。
The reduction of the supply amount of urea according to the first reduction
また、第1削減量決定部71による尿素の供給量の削減量及び第2削減量決定部72による尿素の供給量の削減量は、いずれも、排気ガス流量検出センサ45fによって検出される排気ガスの流量が大きい程、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度の変化に対して、より変化が小さいように設定されている。
Both the reduction amount of the urea supply amount by the first reduction
また、第1削減量決定部71による尿素の供給量の削減量は、第2削減量決定部72による尿素の供給量の削減量よりも、排気ガス流量検出センサ45fによって検出される排気ガスの流量の変化に対してより大きく変化するように設定されている。本実施形態では、第2削減量決定部72による尿素の供給量の削減量は、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度の変化に関わらず、略一定に設定されている。
In addition, the reduction amount of the urea supply amount by the first reduction
そして、DCU70は、第1削減量決定部71による尿素の供給量の削減量と第2削減量決定部72による尿素の供給量の削減量との和に基づいて、SCR触媒47への尿素の供給量を削減補正するようになっている。
Then, based on the sum of the reduction amount of the urea supply amount by the first reduction
以上のようなDCU70による尿素の供給量の削減量の決定の仕方は、図8(a)及び図8(b)に示す実験データに基づいている。
The manner of determining the reduction amount of the urea supply amount by the
図8(a)は、λ=0.94の場合において、NOX 触媒45に吸蔵されていたNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータであり、NOX 触媒45の温度が高い程、NH3 発生量が減少する傾向が認められる。この原因について、本件発明者は、NOX 触媒45においては、NH3 が発生する反応(例えば、BaNO3+CO+H2→NH3 ,NO+CO+H2→NH3 )(概念的な式)とNH3 を消費する反応(BaNO3+NH3→N2 ,NO+NH3→N2)(概念的な式)との両方が生じているものの、NOX 触媒45の温度が高い場合には前者の反応が後者の反応よりも増えるからである、と考えている。
8 (a) is, in the case of lambda = 0.94, is the amount of data of NH 3 (ammonia) that occurs in the purification process of the NO X that was stored in the NO X
また、排気ガスの流量が20g/sから50g/sに増大するにつれて、NOX 触媒45の温度上昇によるNH3 発生量減少の程度が緩和される(傾きが小さくなる)傾向が認められる。 Further, as the flow rate of the exhaust gas increases from 20 g / s to 50 g / s, there is a tendency that the degree of decrease in the amount of NH 3 generated due to the temperature increase of the NO x catalyst 45 is alleviated (the inclination becomes smaller).
第1削減量決定部71には、図8(a)のような特性を反映させ、(空燃比と)NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度と排気ガス流量検出センサ45fによって検出される排気ガスの流量とを入力値とし、尿素の供給量の削減量を出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0134乃至0137に記載した内容に合致するものである。
The first reduction
図8(b)は、λ=0.94の場合において、エンジンから排出されるRawNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータであり、NOX 触媒45の温度が高くても、NH3 発生量は、僅かにしか減少していない(グラフから視認することは難しい)。この原因について、本件発明者は、RawNOX は排気ガスとして流れているものであるため、NOX 触媒45に吸蔵されていたNOX (NH3 を発生する反応が生じた直後に、NH3 を消費する反応も生じ得る)とは異なり、NOX 触媒45の温度が高くても、NH3 を消費する反応を生じにくいからである、と考えている。
FIG. 8B shows data on the amount of NH 3 (ammonia) generated in the purification process of RawNO x discharged from the engine when λ = 0.94, and the temperature of the NO x catalyst 45 is high. However, the amount of NH 3 generated has decreased only slightly (it is difficult to see from the graph). This causes, the inventors have, for RawNO X are those flows as an exhaust gas, immediately after the reaction to generate NO X (NH 3 that was stored has occurred in the NO X
また、排気ガスの流量が20g/sから50g/sに増大しても、NH3 発生量はほとんど変化していない(グラフから視認することは難しい)。 Further, even when the flow rate of the exhaust gas is increased from 20 g / s to 50 g / s, the NH 3 generation amount hardly changes (it is difficult to visually recognize from the graph).
第2削減量決定部72には、図8(b)のような特性を反映させ、(空燃比と)NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度と排気ガス流量検出センサ45fによって検出される排気ガスの流量とを入力値としながらも、尿素の供給量の削減量を略一定の出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0134乃至0137に記載した内容に合致するものである。
The second reduction
<(2)排気ガス流量を主に考慮した制御>
本実施形態のDCU70は、前記した<(1)NOX 触媒の温度を考慮した制御>に対して代替的に、排気ガス流量を主に考慮して尿素インジェクタ51によるSCR触媒47への尿素の供給量を削減補正できるようになっている。具体的には、DCU70による尿素の供給量の削減量は、排気ガス流量検出センサ45fによって検出される排気ガスの流量が大きい程、多量であるように設定されている。
<(2) Control mainly considering exhaust gas flow rate>
In this embodiment DCU70 was the <(1) NO control in consideration of the temperature of the X catalyst> Alternatively respect, of urea to the
更に、排気ガス流量検出センサ45fによって検出される排気ガスの流量が所定の第1閾値(例えば25g/s)以上の範囲では、当該第1閾値未満の範囲と比較して、DCU70による尿素の供給量の削減量は、排気ガス流量検出センサ45fによって検出される排気ガスの流量の変化に対して、より変化が小さいように設定されている。
Further, in the range where the exhaust gas flow rate detected by the exhaust gas flow rate detection sensor 45f is equal to or higher than a predetermined first threshold value (for example, 25 g / s), the urea supply by the
また、本実施形態のDCU70は、前述のように、NOX 触媒45に吸蔵されていたNOX の浄化プロセスに対応する削減量を決定する第1削減量決定部71と、RawNOX の浄化プロセスに対応する削減量を決定する第2削減量決定部72と、を有している。
Further, as described above, the
そして、排気ガス流量検出センサ45fによって検出される排気ガスの流量が所定の第2閾値(例えば25g/s)未満の範囲で、第2削減量決定部72による尿素の供給量の削減量は、第1削減量決定部71による尿素の供給量の削減量よりも、排気ガス流量検出センサ45fによって検出される排気ガスの流量の変化に対して、より変化が大きいように設定されている。
Then, in the range where the exhaust gas flow rate detected by the exhaust gas flow rate detection sensor 45f is less than a predetermined second threshold (for example, 25 g / s), the reduction amount of the urea supply amount by the second reduction
逆に、排気ガス流量検出センサ45fによって検出される排気ガスの流量が前記第2閾値以上の範囲では、第2削減量決定部72による尿素の供給量の削減量は、第1削減量決定部71による尿素の供給量の削減量よりも、排気ガス流量検出センサ45fによって検出される排気ガスの流量の変化に対して、より変化が小さいように設定されている。
On the contrary, when the exhaust gas flow rate detected by the exhaust gas flow rate detection sensor 45f is in the range of the second threshold value or more, the reduction amount of the urea supply amount by the second reduction
本実施形態では、排気ガス流量検出センサ45fによって検出される排気ガスの流量が前記第2閾値以上の範囲では、第2削減量決定部72による尿素の供給量の削減量は、排気ガス流量検出センサ45fによって検出される排気ガスの流量の変化に関わらず、略一定に設定されている。
In the present embodiment, when the exhaust gas flow rate detected by the exhaust gas flow rate detection sensor 45f is in the range of the second threshold value or more, the reduction amount of the urea supply amount by the second reduction
また、本実施形態では、排気ガス流量検出センサ45fによって検出される排気ガスの流量が前記第2閾値未満の範囲で、第2削減量決定部72による尿素の供給量の削減量は、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度が高温である程、排気ガス流量検出部45fによって検出される排気ガスの流量の変化に対して、より変化が大きいように設定されている。
In the present embodiment, the reduction amount of the urea supply amount by the second reduction
そして、DCU70は、第1削減量決定部71による尿素の供給量の削減量と第2削減量決定部72による尿素の供給量の削減量との和に基づいて、SCR触媒47への尿素の供給量を削減補正するようになっている。
Then, based on the sum of the reduction amount of the urea supply amount by the first reduction
以上のようなDCU70による尿素の供給量の削減量の決定の仕方は、図9(a)及び図9(b)に示す実験データに基づいている。
The manner of determining the reduction amount of the urea supply amount by the
図9(a)は、λ=0.96であってNOX 触媒45の温度が300〜350℃である場合の、排気ガス流量に対する、NOX 触媒45に吸蔵されていたNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータであり、排気ガスの流量が多い程、NH3 発生量が増大する傾向が認められる。この原因について、本件発明者は、排気ガスの流量が多い場合、還元剤として作用する成分(「HC」中の「H」や「H2O」中の「H」)の供給量が多くなるためである、と考えている。
FIG. 9A shows the purification process of NO x stored in the NO x
また、NOX 触媒45の温度が高い程、NH3 発生量が減少する傾向が認められる。この原因について、本件発明者は、<(1)NOX 触媒の温度を考慮した制御>で述べた通り、NOX 触媒45においては、NH3 が発生する反応(BaNO3+CO+H2→NH3 ,NO+CO+H2→NH3 )とNH3 を消費する反応(BaNO3+NH3→N2,NO+NH3→N2)との両方が生じているものの、NOX 触媒45の温度が高い場合には前者の反応が後者の反応よりも増えるからである、と考えている。
Further, it is recognized that the higher the temperature of the NO x catalyst 45, the more the NH 3 generation amount decreases. This causes, the inventors have, as described in <(1) NO X control in consideration of the temperature of the catalyst> In the NO X
また、排気ガスの流量が25g/sから50g/sに増大するにつれて、排気ガスの流量の増大によるNH3 発生量増大の程度が緩和される(傾きが小さくなる)傾向が認められる。特に、排気ガスの流量が所定の第1閾値(例えば25g/s)以上の範囲では、当該第1閾値未満の範囲と比較して、排気ガスの流量の増大に対して、NH3 発生量の増大の程度が小さい。この原因について、本件発明者は、排気ガスの流量が第1閾値以上であると排気ガスの拡散がNH3 発生反応を抑制する方向に影響するためである、と考えている。 Further, as the exhaust gas flow rate increases from 25 g / s to 50 g / s, a tendency is observed that the degree of increase in the amount of NH 3 generated due to the increase in the exhaust gas flow rate is relaxed (the inclination becomes smaller). In particular, in the range where the flow rate of the exhaust gas is equal to or higher than a predetermined first threshold value (for example, 25 g / s), the NH 3 generation amount is increased with respect to the increase in the flow rate of the exhaust gas as compared with the range less than the first threshold value. The degree of increase is small. This causes, present inventors believe that the flow rate of the exhaust gas is smaller than the first threshold value diffusion of the exhaust gas in order to influence the direction of suppressing the NH 3 generating reaction, and.
第1削減量決定部71には、図9(a)のような特性を反映させ、(空燃比と)NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度と排気ガス流量検出センサ45fによって検出される排気ガスの流量とを入力値とし、尿素の供給量の削減量を出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0148乃至0154に記載した内容に合致するものである。
The first reduction
図9(b)は、λ=0.96であってNOX 触媒45の温度が300〜350℃である場合の、排気ガス流量に対する、エンジンから排出されるRawNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータである。排気ガスの流量が所定の第2閾値(例えば25g/s)未満の範囲では、排気ガスの流量変化に対するRawNOX の浄化プロセスでのNH3 発生量の変化は、排気ガスの流量変化に対する吸蔵NOX の浄化プロセスでのNH3 発生量の変化(図9(a)参照)より、程度が大きいことが認められる。更に、当該範囲においては、NOX 触媒45の温度が高温である程、排気ガスの流量変化に対するRawNOX の浄化プロセスでのNH3 発生量の変化の勾配が大きいことが認められる。 FIG. 9B shows the NH generated in the purification process of RawNO x exhausted from the engine with respect to the exhaust gas flow rate when λ = 0.96 and the temperature of the NO x catalyst 45 is 300 to 350 ° C. 3 Data on the amount of (ammonia). In the range where the exhaust gas flow rate is less than a predetermined second threshold (for example, 25 g / s), the change in the amount of NH 3 generated in the RawNO x purification process relative to the exhaust gas flow rate change is the storage NO with respect to the exhaust gas flow rate change. It is recognized that the degree is larger than the change in the amount of NH 3 generated in the purification process of X (see FIG. 9A). Further, in this range, it is recognized that the higher the temperature of the NO x catalyst 45, the larger the gradient of the change in the NH 3 generation amount in the raw NO x purification process with respect to the change in the exhaust gas flow rate.
逆に、排気ガスの流量が前記第2閾値以上の範囲では、排気ガスの流量変化に対するRawNOX の浄化プロセスでのNH3 発生量の変化は、排気ガスの流量変化に対する吸蔵NOX の浄化プロセスでのNH3 発生量の変化(図9(a)参照)より程度が小さく、略一定であることが認められる。 Conversely, in the range the flow rate of the exhaust gas is more than the second threshold, NH 3 generated amount of change in purification process RawNO X to the flow rate change of the exhaust gas purifying process of absorbing NO X to the flow rate change in the exhaust gas It can be seen that the degree is smaller and substantially constant than the change in the amount of NH 3 generated in (see FIG. 9A).
第2削減量決定部72には、図9(b)のような特性を反映させ、(空燃比と)NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度と排気ガス流量検出センサ45fによって検出される排気ガスの流量とを入力値とし、尿素の供給量の削減量を出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0148乃至0154に記載した内容に合致するものである。
The second reduction
<(3)還元剤の量を考慮した制御>
本実施形態のPCU60は、前記した<(1)NOX 触媒の温度を考慮した制御>または<(2)排気ガス流量を主に考慮した制御>に加えて(組み合わせて)、あるいは当該制御のいずれかに対して代替的に、還元剤(HC、CO)の量を考慮して尿素インジェクタ51によるSCR触媒47への尿素の供給量を削減補正できるようになっている。具体的には、還元剤の量はPCM60によって設定される目標空燃比によって把握される。DCU70による尿素の供給量の削減量は、PCU60によって設定される目標空燃比が小さい程、還元剤の量が多いと判断して、多量であるように設定されている。(本実施形態では、PCU60が、還元剤量把握部として機能するようになっている。)
<(3) Control in consideration of amount of reducing agent>
PCU60 of this embodiment, and the <(1) NO controlled considering the temperature of the X catalyst> or (in combination) in addition to <(2) The exhaust gas flow mainly considering control>, or of the control Alternatively, the amount of urea supplied to the
また、本実施形態のPCU60は、前述のように、NOX 触媒45に吸蔵されていたNOX の浄化プロセスに対応する削減量を決定する第1削減量決定部71と、RawNOX の浄化プロセスに対応する削減量を決定する第2削減量決定部72と、を有している。
In addition, as described above, the
そして、第1削減量決定部71による尿素の供給量の削減量は、第2削減量決定部72による尿素の供給量の削減量よりも、PCU60(還元剤量把握部)によって推定される還元剤の量の変化に対して、より変化が大きいように設定されている。
The reduction amount of the urea supply amount by the first reduction
また、第1削減量決定部71による尿素の供給量の削減量は、排気ガス流量検出センサ45fによって検出される排気ガスの流量が多い程、多量であるように設定されている。
The reduction amount of the urea supply amount by the first reduction
また、推定される還元剤の量が所定の閾値(例えば空燃比0.97に対応する閾値)以上の範囲では、当該閾値未満の範囲と比較して、第2削減量決定部による尿素の供給量の削減量は、推定される還元剤の量の変化に対して、より変化が小さいように設定されている。 Further, in the range where the estimated amount of reducing agent is equal to or larger than a predetermined threshold (for example, a threshold corresponding to an air-fuel ratio of 0.97), the supply of urea by the second reduction amount determination unit is compared with a range less than the threshold. The amount of reduction is set such that the change is smaller than the estimated change in the amount of reducing agent.
本実施形態では、推定される還元剤の量が所定の閾値(例えば空燃比0.97に対応する閾値)以上の範囲では、第2削減量決定部72による尿素の供給量の削減量は、PCU60(還元剤量把握部)によって推定される還元剤の量の変化に関わらず、略一定に設定されている。
In the present embodiment, in the range where the estimated amount of reducing agent is equal to or greater than a predetermined threshold (for example, a threshold corresponding to an air-fuel ratio of 0.97), the reduction amount of the urea supply amount by the second reduction
また、本実施形態では、第1削減量決定部71による尿素の供給量の削減量は、PCU60(還元剤量把握部)によって推定される還元剤の量の変化に対して、略一定の勾配で変化するように設定されている。
In the present embodiment, the reduction amount of the urea supply amount by the first reduction
また、本実施形態では、第2削減量決定部72による尿素の供給量の削減量は、前記閾値未満の範囲において、前記閾値以上の範囲と比較して、排気ガス流量検出センサ45fによって検出される排気ガスの流量の変化に対して、より変化が大きいように設定されている。
Further, in the present embodiment, the reduction amount of the urea supply amount by the second reduction
そして、PCU60は、第1削減量決定部71による尿素の供給量の削減量と第2削減量決定部72による尿素の供給量の削減量との和に基づいて、SCR触媒47への尿素の供給量を削減補正するようになっている。
Then, the
以上のようなDCU70による尿素の供給量の削減量の決定の仕方は、図10(a)及び図10(b)に示す実験データに基づいている。
The manner of determining the reduction amount of the urea supply amount by the
図10(a)は、NOX 触媒45の温度が250℃であって排気ガス流量が30g/s〜50g/sである場合の、目標空燃比に対する、NOX 触媒45に吸蔵されていたNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータであり、目標空燃比が対応する還元剤の量に略比例して(目標空燃比の減少に略比例して)、NH3 発生量が増大する傾向が認められる。また、排気ガスの流量が多い程、NH3 発生量が増大する傾向が認められる。(後者の原因については、<(2)排気ガス流量を主に考慮した制御>で説明した通りである。)
FIG. 10A shows the NO x stored in the NO x
第1削減量決定部71には、図10(a)のような特性を反映させ、(NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度と)目標空燃比と排気ガス流量検出センサ45fによって検出される排気ガスの流量とを入力値とし、尿素の供給量の削減量を出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0166乃至0172に記載した内容に合致するものである。
The first reduction
図10(b)は、NOX 触媒45の温度が250℃であって排気ガス流量が30g/s〜50g/sである場合の、目標空燃比に対する、エンジンから排出されるRawNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータである。還元剤の量の変化(目標空燃比の変化)に対するRawNOX の浄化プロセスでのNH3 発生量の変化は、還元剤の量の変化に対する吸蔵NOX の浄化プロセスでのNH3 発生量の変化(図10(a)参照)より、程度が小さいことが認められる。 FIG. 10B shows the purification process of RawNO x exhausted from the engine with respect to the target air-fuel ratio when the temperature of the NO x catalyst 45 is 250 ° C. and the exhaust gas flow rate is 30 g / s to 50 g / s. is the amount of data of the NH 3 generated (ammonia) in. NH 3 generation amount of change in purification process RawNO X to changes in the amount of the reducing agent (change of the target air-fuel ratio), the change in NH 3 emission under purification process occluded NO X with respect to the change in the amount of the reducing agent (See FIG. 10 (a)), it is recognized that the degree is small.
また、推定される還元剤の量が所定の閾値(例えば空燃比0.97に対応する閾値)以上の範囲では、当該閾値未満の範囲と比較して、NH3 発生量は、推定される還元剤の量の変化に対して、より変化が小さく、略一定であることが認められる。 Further, in the range where the estimated amount of the reducing agent is equal to or greater than a predetermined threshold (for example, the threshold corresponding to the air-fuel ratio 0.97), the NH 3 generation amount is reduced as compared with the range less than the threshold. It is recognized that the change is smaller and substantially constant with respect to the change in the amount of the agent.
また、推定される還元剤の量が前記閾値未満の範囲においては、前記閾値以上の範囲と比較して、NH3 発生量は、排気ガス流量検出センサ45fによって検出される排気ガスの流量の変化に対して、より変化が大きいことが認められる。 Further, in the range where the estimated amount of the reducing agent is less than the threshold value, the NH 3 generation amount is a change in the flow rate of the exhaust gas detected by the exhaust gas flow rate detection sensor 45f as compared with the range above the threshold value. It can be seen that the change is larger.
第2削減量決定部72には、図10(b)のような特性を反映させ、(NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度と)目標空燃比と排気ガス流量検出センサ45fによって検出される排気ガスの流量とを入力値とし、尿素の供給量の削減量を出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0166乃至0172に記載した内容に合致するものである。
The second reduction
<(4)NOX 触媒の熱劣化を考慮した制御>
本実施形態のDCU70は、前記した<(1)NOX 触媒の温度を考慮した制御>、<(2)排気ガス流量を主に考慮した制御>または<(3)還元剤の量を考慮した制御>のいずれかに加えて(組み合わせて)、あるいは当該制御群のいずれかに対して代替的に、あるいは<(1)NOX 触媒の温度を考慮した制御>または<(2)排気ガス流量を主に考慮した制御>と<(3)還元剤の量を考慮した制御>とを組み合わせた制御に更に加えて(組み合わせて)、NOX 触媒45の熱劣化を考慮して尿素インジェクタ51によるSCR触媒47への尿素の供給量を削減補正できるようになっている。具体的には、DCU70による尿素の供給量の削減量は、PCU60によって推定されるNOX 触媒45の熱劣化の程度が大きい程、多量であるように設定されている。(本実施形態では、PCU60が、NOX 触媒熱劣化把握部として機能するようになっている。)
<(4) control in consideration of the thermal deterioration of the NO X catalyst>
DCU70 of this embodiment, the above-mentioned <(1) control in consideration of the temperature of the NO X catalyst>, considering the amount of <(2) primary consideration was controlled exhaust gas flow rate> or <(3) a reducing agent in addition to any of the control> (combined), or alternatively, or <(1) control considering temperature of the NO X catalyst> or <(2) exhaust gas flow rate for any of the control group the addition to the primary consideration was controlled> and <(3) control a combination of the control> considering the amount of the reducing agent (in combination), by
NOX 触媒45の熱劣化の程度は、例えば、車両における各種情報の一つである走行距離に基づいて推定され得る。この場合、当該走行距離の情報、及び/または、その関数として導出され得る熱劣化の程度情報(例えばランク付けされた情報等)が、PCU60の内部メモリに記憶され得る。
The degree of thermal deterioration of the NO x catalyst 45 can be estimated based on, for example, a travel distance that is one of various types of information in the vehicle. In this case, information on the travel distance and / or information on the degree of thermal degradation that can be derived as a function thereof (for example, ranked information) can be stored in the internal memory of the
あるいは、NOX 触媒45の熱劣化の程度は、NOX 触媒45の製造後の経過時間に基づいて推定されてもよい。例えば、NOX 触媒45の製造時点に関する情報が、車両における各種情報の一つとしてPCM60またはDCU70の内部メモリに記憶されていて、PCM60またはDCU70が、適宜のタイミングで現在時点までの経過時間を算出することで、NOX 触媒45の熱劣化の程度情報を得てもよい。
Alternatively, the degree of thermal deterioration of the NO X catalyst 45 may be estimated based on the elapsed time after the production of the NO X catalyst 45. For example, information regarding the production time of the NO x catalyst 45 is stored in the internal memory of the
本実施形態のPCU60は、前述のように、NOX 触媒45に吸蔵されていたNOX の浄化プロセスに対応する削減量を決定する第1削減量決定部71と、RawNOX の浄化プロセスに対応する削減量を決定する第2削減量決定部72と、を有している。
As described above, the
そして、第1削減量決定部71による尿素の供給量の削減量は、第2削減量決定部72による尿素の供給量の削減量よりも、PCU60(NOX 触媒熱劣化把握部)によって推定されるNOX 触媒45の熱劣化の程度の変化に対して、より変化が大きいように設定されている。
Then, the reduction amount of the urea supply amount by the first reduction
更には、第2削減量決定部72による尿素の供給量の削減量は、PCU60(NOX 触媒熱劣化把握部)によって推定されるNOX 触媒45の熱劣化の程度の変化に関わらず、略一定に設定されている。
Further, the reduction amount of the urea supply amount by the second reduction
また、本実施形態では、第1削減量決定部71による尿素の供給量の削減量は、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度が高温である程、少量であるように設定されている。(第2削減量決定部72による尿素の供給量の削減量は、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度の変化に対しても、略一定の設定が維持されている。)
In the present embodiment, the amount of reduction in the urea supply amount by the first reduction
そして、DCU70は、第1削減量決定部71による尿素の供給量の削減量と第2削減量決定部72による尿素の供給量の削減量との和に基づいて、SCR触媒47への尿素の供給量を削減補正するようになっている。
Then, based on the sum of the reduction amount of the urea supply amount by the first reduction
以上のようなDCU70による尿素の供給量の削減量の決定の仕方は、図11(a)及び図11(b)に示す実験データに基づいている。
The manner of determining the reduction amount of the urea supply amount by the
図11(a)は、図8(a)に対応していて、λ=0.94であって排気ガスの流量が30g/sである場合において、NOX 触媒45に吸蔵されていたNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータであり、NOX 触媒45の温度が高い程、NH3 発生量が減少する傾向が認められ、また、NOX 触媒45の熱劣化の程度が高い程、NH3 発生量が増大する傾向が認められる。前者の原因については、<(1)NOX 触媒の温度を考慮した制御>で説明した通りである。後者の原因について、本件発明者は、NOX 触媒45の熱劣化の程度が大きいと、NOX 触媒45においてNH3 を消費する反応(段落0142参照)の方に反応抑制効果が大きく現れ、結果的にNOX 触媒におけるNH3 発生量が増大する、と考えている。
11 (a) is to refer to Figure 8 (a), λ = in 0.94 in a with when the flow rate of the exhaust gas is 30 g / s, NO X that was stored in the NO X
第1削減量決定部71には、図11(a)のような特性を反映させ、(空燃比と排気ガス流量検出センサ45fによって検出される排気ガスの流量と)NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度とNOX 触媒の熱劣化の程度情報とを入力値とし、尿素の供給量の削減量を出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0180乃至0187に記載した内容に合致するものである。
The first reduction
図11(b)は、図8(b)に対応していて、λ=0.94であって排気ガスの流量が30g/sである場合において、エンジンから排出されるRawNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータであり、NOX 触媒45の温度が高くても、NH3 発生量はほとんど変化していないし、NOX 触媒45の熱劣化の程度が高くても、NH3 発生量はほとんど変化していない。前者の原因については、<(1)NOX 触媒の温度を考慮した制御>で説明した通りである。後者の原因について、本件発明者は、NOX 触媒45においてRawNOX の浄化プロセスではNH3 を消費する反応が元々僅かしか生じておらず、その反応抑制効果が増大することの影響が顕在化しないためである、と考えている。
FIG. 11B corresponds to FIG. 8B, and in the purification process of RawNO x discharged from the engine when λ = 0.94 and the flow rate of the exhaust gas is 30 g / s. This is data on the amount of NH 3 (ammonia) generated. Even when the temperature of the NO x catalyst 45 is high, the amount of NH 3 generated is hardly changed, and even if the degree of thermal degradation of the NO x catalyst 45 is high, The amount of NH 3 generated has hardly changed. The cause of the former, are as described in <Control Considering temperature (1) NO X catalyst>. The cause of the latter, the present inventors have, NO X in the RawNO X purification process in the
第2削減量決定部72には、図11(b)のような特性を反映させ、(空燃比と排気ガス流量検出センサ45fによって検出される排気ガスの流量と)NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度とNOX 触媒の熱劣化の程度情報とを入力値としながらも、尿素の供給量の削減量を略一定の出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0180乃至0187に記載した内容に合致するものである。
The second reduction
<(5)NOX 触媒の吸蔵酸素量を更に考慮した制御>
ここで、図12に、本実施形態によるDeNOX 制御(20秒間実施:NOX 触媒45の温度220℃、排気ガス流量44g/s)のタイムチャートの一例を示す。上から、(a)排気ガスの空燃比(目標空燃比λ=0.96)、(b)排気ガスの温度、(c)排気ガス中のHCの量(g/s)、(d)排気ガス中のCOの量(g/s)、及び、(e)排気ガス中のNOX の量(g/s)、の各々について、NOX 触媒45(NSC)の上流側(前)と下流側(後)との測定値を示している。
<(5) NO X further consideration to control the oxygen storage amount of the catalyst>
Here, in FIG. 12, DeNO X control according to this embodiment (20 seconds Embodiment: Temperature 220 ° C. of the NO X catalyst 45, the exhaust gas flow rate 44 g / s) shows an example of a time chart. From above, (a) exhaust gas air-fuel ratio (target air-fuel ratio λ = 0.96), (b) exhaust gas temperature, (c) amount of HC in exhaust gas (g / s), (d) exhaust the amount of CO in the gas (g / s), and, (e) the amount of the NO X in the exhaust gas (g / s), respectively for the, NO X
図12のタイムチャートについて説明すれば、時刻T=1130でDeNOX 制御開始要求が出されると、λが徐々に目標とする0.98未満に向かって低下され始める。λを低下させることにより、NSC上流のHC、CO、NOX (RawHC、RawCO、RawNOX )が増加する。λが十分低下する(0.98未満)まではNSCでのNOX 還元反応が起きにくいため、RawNOX とNSCから離脱したNOX とが還元されにくく、NSC下流のNOX が増加する。 Referring to the time chart of FIG. 12, when a DeNO x control start request is issued at time T = 1130, λ starts to decrease gradually toward the target of less than 0.98. By lowering the lambda, NSC upstream of HC, CO, NO X (RawHC , RawCO, RawNO X) increases. λ until sufficiently reduced (less than 0.98) because hardly occurs NO X reduction reaction NSC, less likely to be reduced and the NO X that has left from RawNO X and NSC, NSC downstream of the NO X increases.
λが十分に低下する(T=1137)と、NOX が還元され易くなるため、NSC下流のNOX は低下し、最終的にほとんどのNOX が還元されるようになる(T=1142)。その後、DeNOX 制御終了要求が出される(T=1155)までの間、λが0.98未満に制御されて、NSCで吸蔵したNOX を離脱させるとともに還元して、吸蔵されたNOX を還元浄化するDeNOX 制御が継続される(RawNOX も浄化される)。 When λ is sufficiently lowered (T = 1137), NO x is easily reduced, so NO x downstream of NSC is lowered, and most of the NO x is finally reduced (T = 1142). . Thereafter, until the DeNO X control termination request is issued (T = 1155), λ is controlled to be less than 0.98, and NO X stored in NSC is released and reduced, and the stored NO X is reduced. DeNO x control for reduction and purification is continued (raw NO x is also purified).
一方で、前述したように、DeNOX 制御によりNH3 が発生する。(f)はNH3 発生量の推定値である。DeNOX 制御開始に伴いλが低下されると、RawHC、RawCOが増加する一方で、NSCに吸蔵されている酸素(吸蔵酸素)と、RawHC、RawCOと、が反応して、NH3 発生の要因となるNSC内のHC、COが酸化されて消失するため、NH3 は発生しない。このNOX 触媒45の吸蔵酸素は、NOX の還元反応によって発生するNH3 と反応することで消費されていき、やがてゼロとなる。 On the other hand, as described above, NH 3 is generated by DeNO x control. (F) is an estimated value of NH 3 generation amount. When λ decreases with the start of DeNO X control, RawHC and RawCO increase, while oxygen stored in NSC (stored oxygen) reacts with RawHC and RawCO to cause NH 3 generation. Since HC and CO in the NSC to be oxidized are lost due to oxidation, NH 3 is not generated. The stored oxygen of the NO x catalyst 45 is consumed by reacting with NH 3 generated by the reduction reaction of NO x and eventually becomes zero.
吸蔵酸素がゼロになると、NSC内でHC、COが存在するようになるため、NH3 が発生し始める。そこで、T=1140以前は、NH3 発生ゼロとし、T=1140以降で、後述する図12の制御ロジックでのNH3 量の推定を開始するようにしている。つまり、DeNOX 制御開始から、T=1140までの間、ディレーが設けられている。 When the stored oxygen becomes zero, HC and CO are present in the NSC, so NH 3 starts to be generated. Therefore, before T = 1140, NH 3 generation is zero, and after T = 1140, estimation of the NH 3 amount in the control logic of FIG. 12 described later is started. That is, a delay is provided from the start of DeNO X control to T = 1140.
このディレーにより、尿素インジェクタ51によるSCR触媒47への尿素の供給量を削減補正する制御は、DeNOX 制御が開始された後、所定時間はNOX 触媒45でのNH3 発生量がゼロであることが考慮される。
With this delay, the control for reducing and correcting the urea supply amount to the
ここで、本件発明者の知見によれば、排気ガスの流量が多い程、及び/または、空燃比がよりリッチである程、NOX 触媒45においてNH3 が発生する反応が促されるため、NOX 触媒45から解放された酸素がより短い時間で消費される。
Here, according to the knowledge of the present inventor, as the exhaust gas flow rate increases and / or the air-fuel ratio becomes richer, the reaction of generating NH 3 in the NO x
従って、前記ディレー時間は、排気ガス流量検出センサ45fによって検出される排気ガスの流量が多い程、及び/または、前記空燃比がよりリッチである程、短く設定されることが好ましい。 Therefore, the delay time is preferably set shorter as the flow rate of the exhaust gas detected by the exhaust gas flow rate detection sensor 45f is higher and / or as the air-fuel ratio is richer.
前記ではディレーで吸蔵酸素の影響を反映したが、別の方法として、NOX 触媒吸蔵酸素量把握部(例えばエアフロセンサや燃料噴射量等の情報からNSCに供給される酸素を推定し、この供給酸素に基づいて吸蔵酸素量を推定する一方で、HCとCOとの反応により消費された吸蔵酸素量を推定することで、現在の吸蔵酸素量を推定する)を設け、NOX 触媒吸蔵酸素量把握部によって検出ないし推定される吸蔵酸素量がゼロになるまでの間、NH3 発生量がゼロであると判断してもよい。 Although the in reflecting the influence of the stored oxygen in delay, as another method, NO X catalyst oxygen storage amount detector (e.g. estimates the oxygen supplied to the NSC from information such as the airflow sensor or the fuel injection quantity, the feed while estimating the stored oxygen amount based on the oxygen, by estimating the occluded amount of oxygen consumed by the reaction between HC and CO, to estimate the current stored oxygen amount) is provided, NO X catalyst oxygen storage amount Until the amount of stored oxygen detected or estimated by the grasping unit becomes zero, it may be determined that the amount of NH 3 generated is zero.
なお、以上の説明において、尿素の供給量の削減補正が開始されない状態というのは、基本的には尿素の供給量の削減量がゼロであることを意味するが、尿素の供給量の削減量が極めて僅かである場合をも含むものと理解されるべきである。 In the above description, the state in which the correction for reducing the urea supply amount is not started basically means that the reduction amount of the urea supply amount is zero, but the reduction amount of the urea supply amount. Should be understood to include the case where is very small.
更に広く当該制御態様を規定するならば、尿素の供給量の削減量が、NOX 触媒吸蔵酸素量把握部によって検出ないし推定される吸蔵酸素量が多い程、少量であるように設定される態様である、と表現することもできる。 If the control mode is defined more broadly, a mode in which the reduction amount of the urea supply amount is set to be smaller as the stored oxygen amount detected or estimated by the NO x catalyst stored oxygen amount grasping unit is larger. It can also be expressed as
<(6)DeSOX 制御時の尿素インジェクタの噴射制御>
以上に説明したDeNOX 制御時の尿素インジェクタ51の噴射制御は、DeSOX 制御時の尿素インジェクタ51の噴射制御にも応用できる。DeSOX 制御は、NOX 触媒45におけるS被毒量が所定の閾値以上になった時、例えば、NOX 触媒45のPM再生時や、当該車両の所定の走行距離到達時など、に実施される。
<(6) Urea injector injection control during DeSO X control>
Injection control DeNO X control when the
但し、DeNOX 制御時とは異なり、DeSOX 制御時には、NOX 触媒45がDeSOX 制御用の高温状態(600℃〜650℃)とされ、当該高温状態を維持するために間欠的なリーン運転が実施される(例えば、30secリッチ→30secリーン→30secリッチ→30secリーン→ ・・・)。
However, unlike the time of DeNO X control, at the time of Deso X control, NO X
従って、DeSOX 制御時の尿素インジェクタ51の噴射制御のために、DeNOX 制御時の尿素インジェクタ51の噴射制御の内容を修正することが必要である。
Thus, for injection control Deso X control when
具体的には、DeSOX 制御時には、NOX 触媒45が600℃〜650℃という高温状態とされることにより、吸蔵NOX が還元されないまま脱離する(NOX のままSCR触媒47へと供給されてしまう)という現象が生じる。また、DeSOX 制御時には、間欠的なリーン運転が実施されることにより、実質的な空燃比がリーン側にシフトする。これらの2つの現象は、いずれも、NOX 触媒45でのNH3 発生量を低減する方向に影響する。
Specifically, during DeSO X control, the NO X
従って、DeNOX 制御のために、例えば図8乃至図12に示す特性を反映させて、NOX 触媒45の温度、排気ガスの流量、排気ガスの空燃比、NOX 触媒の熱劣化度合い、等を入力値として、NOX 触媒45からSCR触媒47へのNH3 供給量、ひいては好適な尿素の供給量の削減量、が算出されるようになっている場合に、当該削減量の算出方法をDeSOX 制御にも適用するためには、当該削減量を低減する(より少量にする)修正が必要である(図7参照)。
Therefore, for DeNO x control, for example, the characteristics shown in FIGS. 8 to 12 are reflected, the temperature of the NO x catalyst 45, the flow rate of the exhaust gas, the air-fuel ratio of the exhaust gas, the degree of thermal deterioration of the NO x catalyst, etc. Is used as an input value, the NH 3 supply amount from the NO X
この修正に際しては、NOX 触媒45の吸蔵NOX の脱離の影響をより正確に反映するべく、NOX 触媒45のNOX の吸蔵量を加味することが好ましい。NOX 触媒45のNOX の吸蔵量が相対的に少なければ、NOX 触媒45での吸蔵NOX の脱離の影響も相対的に小さくなるからである。
In this modification, in order to more accurately reflect the elimination of the effects of occlusion NO X of the NO X catalyst 45, it is preferable to adding the storage amount of the NO X of the NO X catalyst 45. If storage amount of the NO X of the NO X catalyst 45 is relatively fewer, elimination of the effect of absorbing NO X in the NO X
更に、NOX 触媒45のNOX の吸蔵量を判断するにあたっては、NOX 触媒45のS被毒量を考慮することも有効であり得る。S被毒しているNOX 触媒45は、その分だけ、NOX の吸蔵量が少なくなっている筈だからである。NOX 触媒45のS被毒量は、予め実験で測定したエンジンの運転状態(エンジン負荷、エンジン回転)に応じたS発生マップに基づいて推定すればよい。 Furthermore, in determining the storage amount of the NO X of the NO X catalyst 45, it may also be useful to consider the S poisoning amount of the NO X catalyst 45. NO X catalyst 45 S are poisoned, correspondingly, is because should occlusion amount of the NO X is low. The S poisoning amount of the NO x catalyst 45 may be estimated based on an S generation map corresponding to the operating state of the engine (engine load, engine rotation) measured in advance through experiments.
20 燃料噴射弁
41 排気通路
45 NOX 触媒
45a 酸化触媒
45t NOX 触媒温度検出センサ
45f 排気ガス流量検出センサ
45n NOX 吸蔵量検出センサ
45o 酸素センサ(吸蔵酸素量検出センサ)
47 SCR触媒
47t SCR触媒温度検出センサ
47n NH3 吸着量検出センサ
51 尿素インジェクタ(NH3 供給手段)
53 尿素供給経路
54 尿素送出ポンプ
55 尿素タンク
60 PCM
70 DCU(NH3 供給量制御手段)
71 第1削減量決定部
72 第2削減量決定部
200 エンジンシステム
E エンジン
EX 排気系
FS 燃料供給系
IN 吸気系
λ1 理論空燃比
λ2 限度空燃比
20
47
53
70 DCU (NH 3 supply control means)
71 First reduction
Claims (9)
前記NOX 触媒におけるNOX の吸蔵量が所定の閾値以上であって当該NOX 触媒に吸蔵されたNOX を還元して浄化するDeNOX 制御が必要であるとき、または、前記NOX 触媒におけるS被毒量が所定の閾値以上であって当該NOX 触媒に吸着された硫黄を脱離するDeSOX 制御が必要であるとき、前記NOX 触媒に流入する排気ガスの空燃比がリッチな状態となるように、前記エンジンにおける燃料噴射弁を制御して、前記DeNOX 制御または前記DeSOX 制御を実施するNOX 触媒再生部と、
前記NOX 触媒の下流の排気通路に設けられ、NH3 との反応によって当該NOX を浄化するSCR触媒と、
前記SCR触媒にNH3 ないしNH3 原料を供給してNH3 を吸着させるNH3 供給部と、
前記NH3 供給部による前記SCR触媒へのNH3 ないしNH3 原料の供給量を制御するNH3 供給量制御部と、
を備え、
前記NH3 供給量制御部は、前記NOX 触媒再生部によるNOX 触媒再生を実行した場合には、前記NH3 供給部による前記SCR触媒へのNH3 ないしNH3 原料の供給量を削減補正するようになっており、
前記NH3 供給量制御部による前記NH3 ないしNH3 原料の供給量の削減量は、前記DeSOX 制御が実施される場合の方が、前記DeNOX 制御が実施される場合よりも、少量であるように設定されている
ことを特徴とするエンジンの排気浄化制御装置。 When the air-fuel ratio of the exhaust gas flowing into the engine is leaner than the stoichiometric air-fuel ratio, NO x in the exhaust gas is occluded and the air-fuel ratio of the inflowing exhaust gas is the stoichiometric air-fuel ratio. A NO x catalyst that reduces the stored NO x to N 2 when it is richer,
When storage amount of the NO X in the NO X catalyst is required DeNO X control to purify by reducing NO X occluded in the NO X catalyst is equal to or larger than a predetermined threshold value, or, in the NO X catalyst When the S poisoning amount is equal to or greater than a predetermined threshold value and DeSO X control for desorbing sulfur adsorbed on the NO X catalyst is necessary, the air-fuel ratio of the exhaust gas flowing into the NO X catalyst is rich A NO x catalyst regeneration unit for controlling the fuel injection valve in the engine to perform the DeNO x control or the DeSO x control,
An SCR catalyst provided in an exhaust passage downstream of the NO x catalyst and purifying the NO x by reaction with NH 3 ;
And NH 3 supply unit to adsorb the NH 3 and to no NH 3 in the SCR catalyst to supply NH 3 raw material,
An NH 3 supply amount control unit for controlling the supply amount of NH 3 or NH 3 raw material to the SCR catalyst by the NH 3 supply unit;
With
The NH 3 supply amount control unit corrects the supply amount of NH 3 or NH 3 material to the SCR catalyst by the NH 3 supply unit when the NO X catalyst regeneration by the NO X catalyst regeneration unit is executed. Is supposed to
Reduction of the NH 3 to the NH 3 not by the supply amount control section NH 3 raw material feed rate, who when the Deso X control is implemented, than when the DeNO X control is performed, a small amount An exhaust purification control device for an engine, characterized in that it is set to be.
前記NH3 供給量制御部による前記NH3 ないしNH3 原料の供給量の削減量は、前記DeNOX 制御が実施される場合において、前記NOX 触媒温度把握部によって検出ないし推定される前記NOX 触媒の温度が高温である程、少量であるように設定されている
ことを特徴とする請求項1に記載のエンジンの排気浄化制御装置。 Further comprising a NO X catalyst temperature ascertaining unit that detects or estimates the temperature of the NO X catalyst,
Reduction of the NH 3 to the NH 3 not by the supply amount control section NH 3 raw material supply amount, when the DeNO X control is performed, the NO X to be detected or estimated by said NO X catalyst temperature ascertaining unit 2. The engine exhaust gas purification control device according to claim 1, wherein the temperature of the catalyst is set to be smaller as the temperature is higher.
前記NH3 供給量制御部による前記NH3 ないしNH3 原料の供給量の削減量は、前記DeSOX 制御が実施される場合において、前記NOX 触媒温度把握部によって検出ないし推定される前記NOX 触媒の温度が高温である程、少量であるように設定されている
ことを特徴とする請求項1または2に記載のエンジンの排気浄化制御装置。 Further comprising a NO X catalyst temperature ascertaining unit that detects or estimates the temperature of the NO X catalyst,
Reduction of the NH 3 to the NH 3 not by the supply amount control section NH 3 raw material supply amount, when the Deso X control is performed, the NO X to be detected or estimated by said NO X catalyst temperature ascertaining unit The engine exhaust gas purification control apparatus according to claim 1 or 2, wherein the temperature of the catalyst is set to be smaller as the temperature is higher.
ことを特徴とする請求項1乃至3のいずれかに記載のエンジンの排気浄化制御装置。 4. The engine according to claim 1, wherein the temperature of the NO x catalyst is raised to 600 ° C. or more before the NO x catalyst regeneration unit operates to perform the DeSO x control. 5. Exhaust purification control device.
ことを特徴とする請求項1乃至4のいずれかに記載のエンジンの排気浄化制御装置。 While the DeSO X control is being performed, the NO X catalyst regeneration unit intermittently causes the fuel injection valve in the engine so that the air-fuel ratio of the exhaust gas flowing into the NO X catalyst becomes lean. The engine exhaust gas purification control apparatus according to any one of claims 1 to 4, wherein the engine exhaust gas purification control apparatus is controlled.
ことを特徴とする請求項1乃至5のいずれかに記載のエンジンの排気浄化制御装置。 Reduction of the NH 3 to the NH 3 not by the supply amount control section NH 3 raw material supply amount, when the Deso X control is performed, is modified based on the stored amount of the NO X in the NO X catalyst The engine exhaust gas purification control apparatus according to any one of claims 1 to 5.
ことを特徴とする請求項1乃至6のいずれかに記載のエンジンの排気浄化制御装置。 The amount of reduction of the supply amount of the NH 3 or NH 3 raw material by the NH 3 supply amount control unit is corrected based on the S poisoning amount in the NO X catalyst when the DeSO X control is performed. An exhaust purification control apparatus for an engine according to any one of claims 1 to 6.
前記SCR触媒の温度を検出ないし推定するSCR触媒温度把握部と、
を更に備え、
前記排気ガス流量把握部によって検出ないし推定される前記排気ガスの流量が所定の閾値未満であって、且つ、前記SCR触媒温度把握部によって検出ないし推定される前記SCR触媒の温度が所定の閾値未満である時には、前記NOX 触媒のみによってNOX の浄化が実施され、
前記排気ガス流量把握部によって検出ないし推定される前記排気ガスの流量が所定の閾値未満であって、且つ、前記SCR触媒温度把握部によって検出ないし推定される前記SCR触媒の温度が所定の閾値以上である時には、前記SCR触媒のみによってNOX の浄化が実施され、
前記排気ガス流量把握部によって検出ないし推定される前記排気ガスの流量が所定の閾値以上である時には、前記NOX 触媒によるNOX の浄化と前記SCR触媒によるNOX の浄化とが併用される
ことを特徴とする請求項1乃至5のいずれかに記載のエンジンの排気浄化制御装置。 An exhaust gas flow rate grasping unit for detecting or estimating the flow rate of the exhaust gas;
An SCR catalyst temperature grasping unit for detecting or estimating the temperature of the SCR catalyst;
Further comprising
The flow rate of the exhaust gas detected or estimated by the exhaust gas flow rate grasping unit is less than a predetermined threshold value, and the temperature of the SCR catalyst detected or estimated by the SCR catalyst temperature grasping unit is less than a predetermined threshold value. the case is, purification of the NO X catalyst only by NO X is performed,
The flow rate of the exhaust gas detected or estimated by the exhaust gas flow rate grasping unit is less than a predetermined threshold value, and the temperature of the SCR catalyst detected or estimated by the SCR catalyst temperature grasping unit is equal to or higher than a predetermined threshold value. When NO, NO x purification is performed only by the SCR catalyst,
Wherein when the flow rate of the exhaust gas detected or estimated by the exhaust gas flow rate grasping portion is above a predetermined threshold value, the purification and of the NO X by purification and the SCR catalyst of the NO X catalyst according to NO X are used in combination The engine exhaust gas purification control device according to any one of claims 1 to 5.
前記SCR触媒のみによってNOX の浄化が実施される際、前記NOX 触媒再生部の作動が制限されるようになっている
ことを特徴とする請求項6に記載のエンジンの排気浄化制御装置。 When purification of the NO X is performed only by the NO X catalyst, the NH 3 supply amount control section, to NH 3 not to the SCR catalyst by the NH 3 supply unit to limit the supply amount of the NH 3 feed And
Wherein when the purification of the NO X is performed only by the SCR catalyst, exhaust gas purification control device for an engine according to claim 6, characterized in that is adapted to the operation of the NO X catalyst regeneration unit is restricted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016205449A JP6230011B1 (en) | 2016-10-19 | 2016-10-19 | Engine exhaust purification control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016205449A JP6230011B1 (en) | 2016-10-19 | 2016-10-19 | Engine exhaust purification control system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6230011B1 true JP6230011B1 (en) | 2017-11-15 |
JP2018066325A JP2018066325A (en) | 2018-04-26 |
Family
ID=60321071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016205449A Expired - Fee Related JP6230011B1 (en) | 2016-10-19 | 2016-10-19 | Engine exhaust purification control system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6230011B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118122088A (en) * | 2024-05-06 | 2024-06-04 | 青海华鑫再生资源有限公司 | Zinc is smelted with even acid mist purifier who sprays |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02227117A (en) * | 1989-02-28 | 1990-09-10 | Mitsubishi Heavy Ind Ltd | Exhaust gas treating equipment |
JP2009185621A (en) * | 2008-02-04 | 2009-08-20 | Toyota Motor Corp | Exhaust emission control system for internal combustion engine |
JP2016094937A (en) * | 2014-10-28 | 2016-05-26 | ゼネラル・エレクトリック・カンパニイ | System and method for emissions control in gas turbine systems |
-
2016
- 2016-10-19 JP JP2016205449A patent/JP6230011B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02227117A (en) * | 1989-02-28 | 1990-09-10 | Mitsubishi Heavy Ind Ltd | Exhaust gas treating equipment |
JP2009185621A (en) * | 2008-02-04 | 2009-08-20 | Toyota Motor Corp | Exhaust emission control system for internal combustion engine |
JP2016094937A (en) * | 2014-10-28 | 2016-05-26 | ゼネラル・エレクトリック・カンパニイ | System and method for emissions control in gas turbine systems |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118122088A (en) * | 2024-05-06 | 2024-06-04 | 青海华鑫再生资源有限公司 | Zinc is smelted with even acid mist purifier who sprays |
Also Published As
Publication number | Publication date |
---|---|
JP2018066325A (en) | 2018-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10443525B2 (en) | Exhaust emission control system of engine | |
JP6268688B1 (en) | Engine exhaust purification control system | |
JP6230005B1 (en) | Engine exhaust purification system | |
JP6230006B1 (en) | Engine exhaust purification system | |
JP6230011B1 (en) | Engine exhaust purification control system | |
JP6270247B1 (en) | Engine exhaust purification system | |
JP6268685B1 (en) | Engine exhaust purification control system | |
JP6270253B1 (en) | Engine exhaust purification control system | |
JP6230008B1 (en) | Engine exhaust purification system | |
JP6268686B1 (en) | Engine exhaust purification control system | |
JP6268687B1 (en) | Engine exhaust purification control system | |
JP6230007B1 (en) | Engine exhaust purification system | |
JP6230009B1 (en) | Engine exhaust purification system | |
JP6270246B1 (en) | Engine exhaust purification system | |
JP6569873B2 (en) | Engine exhaust purification system | |
JP6270245B1 (en) | Engine exhaust purification system | |
US10329980B2 (en) | Exhaust emission control system of engine | |
JP6573130B2 (en) | Engine exhaust purification system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170925 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6230011 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171008 |
|
LAPS | Cancellation because of no payment of annual fees |