JP3885814B2 - Method for raising temperature of exhaust gas purification device and exhaust gas purification system - Google Patents

Method for raising temperature of exhaust gas purification device and exhaust gas purification system Download PDF

Info

Publication number
JP3885814B2
JP3885814B2 JP2005023615A JP2005023615A JP3885814B2 JP 3885814 B2 JP3885814 B2 JP 3885814B2 JP 2005023615 A JP2005023615 A JP 2005023615A JP 2005023615 A JP2005023615 A JP 2005023615A JP 3885814 B2 JP3885814 B2 JP 3885814B2
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
catalyst
nox
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005023615A
Other languages
Japanese (ja)
Other versions
JP2006207549A (en
Inventor
修 坂本
和生 大角
洋祐 田中
潤一 大沼
和広 榎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2005023615A priority Critical patent/JP3885814B2/en
Priority to PCT/JP2006/300166 priority patent/WO2006080187A1/en
Priority to EP06711515.4A priority patent/EP1857647A4/en
Priority to US11/883,443 priority patent/US7735313B2/en
Publication of JP2006207549A publication Critical patent/JP2006207549A/en
Application granted granted Critical
Publication of JP3885814B2 publication Critical patent/JP3885814B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関の排気ガス中の窒素酸化物(以下、NOx)を浄化するNOx浄化触媒やパティキュレート・マター(粒子状物質:以下、PM)を浄化するディーゼルパティキュレートフィルタ(以下、DPF)を備えた排気ガス浄化装置の昇温方法及び排気ガス浄化システムに関する。   The present invention relates to a NOx purification catalyst for purifying nitrogen oxide (hereinafter referred to as NOx) in exhaust gas of an internal combustion engine and a diesel particulate filter (hereinafter referred to as DPF) for purifying particulate matter (hereinafter referred to as PM). ) And an exhaust gas purification system.

ディーゼルエンジン及びリーンバーンガソリンエンジン等の内燃機関に使用される排気ガス浄化装置に関して、種々の研究及び開発が進められており、排気ガス中のNOxを浄化するために、NOx吸蔵還元型触媒やNOx直接還元型触媒等のNOx浄化触媒が提案され、PMを浄化するために、DPFが提案されている。   Various studies and developments have been made on exhaust gas purification devices used in internal combustion engines such as diesel engines and lean burn gasoline engines. In order to purify NOx in exhaust gas, NOx occlusion reduction type catalysts and NOx NOx purification catalysts such as direct reduction catalysts have been proposed, and DPFs have been proposed to purify PM.

このNOx吸蔵還元型触媒は、基本的に、酸化アルミニウム(アルミナ)等の触媒担体上に、酸化・還元反応を促進する白金(Pt)やパラジウム(Pd)等の貴金属類と、バリウム(Ba)等のアルカリ土類金属やカリウム(K)等のアルカリ金属等で形成されるNOxを吸蔵・放出する機能を有するNOx吸蔵材(NOx吸蔵物質)を担持した触媒である。   This NOx occlusion reduction type catalyst basically has a noble metal such as platinum (Pt) or palladium (Pd) that promotes oxidation / reduction reaction on a catalyst carrier such as aluminum oxide (alumina), and barium (Ba). And a NOx occlusion material (NOx occlusion material) having a function of occluding and releasing NOx formed from alkaline earth metals such as potassium and alkali metals such as potassium (K).

このNOx吸蔵還元型触媒は、流入する排気ガスの空燃比が雰囲気中に酸素(O2 )が存在するリーン(酸素過多)状態の場合には、排気ガス中の一酸化窒素(NO)を貴金属類の触媒作用により酸化して二酸化窒素(NO2 )とし、このNO2 がNOx吸蔵材に硝酸塩(Ba2 NO4 等)として蓄積される。 When the air-fuel ratio of the inflowing exhaust gas is in a lean (excessive oxygen) state where oxygen (O 2 ) is present in the atmosphere, this NOx occlusion reduction type catalyst converts nitrogen monoxide (NO) in the exhaust gas to a noble metal. It is oxidized by the catalytic action of nitrogen to form nitrogen dioxide (NO 2 ), and this NO 2 is accumulated in the NOx storage material as nitrate (Ba 2 NO 4 etc.).

また、流入する排気ガスの空燃比が理論空燃比や雰囲気中に酸素が存在しなくなるリッチ(低酸素濃度)状態になると、Ba等のNOx吸蔵材は一酸化炭素(CO)と結合し、硝酸塩からNO2 が分解放出され、この放出されたNO2 は貴金属類の三元機能により排気ガス中に含まれている未燃炭化水素(HC)や一酸化炭素(CO)等で還元され窒素(N2 )となり、排気ガス中の諸成分は、二酸化炭素(CO2 ),水(H2 O),N2 等の無害な物質として大気中に放出される。 Further, when the air-fuel ratio of the inflowing exhaust gas becomes a stoichiometric air-fuel ratio or a rich (low oxygen concentration) state in which oxygen does not exist in the atmosphere, the NOx storage material such as Ba is combined with carbon monoxide (CO), and nitrate NO 2 is decomposed and released from this, and the released NO 2 is reduced by unburned hydrocarbons (HC), carbon monoxide (CO), etc. contained in the exhaust gas by the ternary function of precious metals, and nitrogen ( N 2 ), and various components in the exhaust gas are released into the atmosphere as harmless substances such as carbon dioxide (CO 2 ), water (H 2 O), and N 2 .

そのため、NOx吸蔵還元型触媒を備えた排気ガス浄化システムでは、NOx吸蔵能力が飽和に近くなると、排気ガスの空燃比をリッチ状態にして流入する排気ガスの酸素濃度を低下させるNOx吸蔵能力回復用のリッチ制御を行うことにより、吸収したNOxを放出させて、この放出されたNOxを貴金属触媒により還元させるNOx触媒再生操作を行っている。   Therefore, in an exhaust gas purification system equipped with a NOx occlusion reduction type catalyst, when the NOx occlusion capacity is close to saturation, the NOx occlusion capacity is recovered by reducing the oxygen concentration of the inflowing exhaust gas by making the air-fuel ratio of the exhaust gas rich. By performing the rich control, the NOx absorbed is released, and the NOx catalyst regeneration operation is performed in which the released NOx is reduced by the noble metal catalyst.

また、NOx直接還元型触媒(DCR)は、NOxを直接還元する触媒であり、例えば、β型ゼオライト等の触媒担体上にロジウム(Rh)やパラジウム(Pd)等の触媒成分である金属を担持させたものである。また、これらの金属の酸化作用を軽減し、NOx還元能力の保持に寄与するセリウム(Ce)を配合したり、下層に三元触媒を設けて酸化還元反応、特にリッチ状態におけるNOxの還元反応を促進したり、鉄(Fe)を担体に加えてNOx浄化率を向上させたりしている。   Further, the NOx direct reduction catalyst (DCR) is a catalyst that directly reduces NOx. For example, a catalyst component such as rhodium (Rh) or palladium (Pd) is supported on a catalyst carrier such as β-type zeolite. It has been made. In addition, cerium (Ce) that contributes to maintaining the NOx reduction ability is reduced by reducing the oxidation action of these metals, or a three-way catalyst is provided in the lower layer to reduce the oxidation reaction, particularly in the rich state of NOx. It is promoted or iron (Fe) is added to the carrier to improve the NOx purification rate.

このNOx直接還元型触媒は、リーン状態ではNOxをN2 に直接還元するが、この還元の際に触媒の活性物質である金属にO2 が吸着して還元性能が低下するため、NOx直接還元型触媒を備えた排気ガス浄化システムでは、NOx還元能力が飽和に近くなると、排気ガスの空燃比をリッチ状態にして流入する排気ガスの酸素濃度を低下させるNOx浄化能力回復用のリッチ制御を行うことにより、触媒の活性物質から吸着したO2 を放出させて、活性物資を再生するNOx触媒再生操作を行っている。 This NOx direct reduction type catalyst directly reduces NOx to N 2 in the lean state, but O 2 is adsorbed on the metal which is an active substance of the catalyst during this reduction, and the reduction performance is reduced. In an exhaust gas purification system equipped with a type catalyst, when the NOx reduction capacity approaches saturation, rich control is performed to restore the NOx purification capacity to reduce the oxygen concentration of the inflowing exhaust gas by making the air-fuel ratio of the exhaust gas rich. Thus, the NOx catalyst regeneration operation is performed in which O 2 adsorbed from the active material of the catalyst is released to regenerate the active material.

DPFは、例えば、多孔質のセラミックのハニカムのチャンネルの入口と出口を交互に目封じしたモノリスハニカム型ウォールスルータイプのフィルタ等で形成され、排気ガス中のPMを捕集する。そして、低い排気ガスの温度でも捕集したPMを燃焼除去できるように、酸化触媒をDPFの上流側に設けたり、DPFに酸化触媒やPM酸化触媒を担持させたりした連続再生型DPFを用いる場合が多い。   The DPF is formed of, for example, a monolith honeycomb wall-through type filter in which the inlets and outlets of the porous ceramic honeycomb channels are alternately sealed, and collects PM in the exhaust gas. When using a continuously regenerating DPF in which an oxidation catalyst is provided on the upstream side of the DPF or an oxidation catalyst or a PM oxidation catalyst is supported on the DPF so that the collected PM can be burned and removed even at a low exhaust gas temperature. There are many.

この連続再生型DPFでは、排気ガスの温度が約350℃以上の時には、DPFに捕集されたPMは連続的に燃焼して浄化され、DPFは自己再生するが、排気ガスの温度が低い場合等では、PMを酸化除去できず、フィルタの目詰まりが進行する。   In this continuous regeneration type DPF, when the temperature of the exhaust gas is about 350 ° C. or higher, PM trapped in the DPF is continuously burned and purified, and the DPF self-regenerates, but the temperature of the exhaust gas is low In such a case, PM cannot be removed by oxidation, and clogging of the filter proceeds.

そのため、DPFを備えた排気ガス浄化システムでは、フィルタの目詰まりが進行して、排気圧力が大きくなると、排気ガスの温度の上昇やヒーター加熱等により、DPFの温度を上昇させて、捕集されているPMを強制的に燃焼除去させるDPF再生操作を行っている。   For this reason, in an exhaust gas purification system equipped with a DPF, when the clogging of the filter proceeds and the exhaust pressure increases, the temperature of the DPF is raised by the rise of the temperature of the exhaust gas or the heating of the heater, etc. DPF regeneration operation is performed to forcibly remove the PM that is burning.

そして、内燃機関の排気ガス処理では、それぞれの浄化の目的に従って、NOx浄化触媒単体、DPF単体、NOx浄化触媒とDPFの組合せの排気ガス浄化装置が用いられている。   In the exhaust gas treatment of an internal combustion engine, an exhaust gas purification device of a single NOx purification catalyst, a single DPF, or a combination of a NOx purification catalyst and a DPF is used according to the purpose of purification.

しかしながら、これらの排気ガス浄化装置では、NOxやPMの浄化において、排気ガスの温度が300℃以下になると、NOx浄化触媒や、連続再生型DPFの酸化触媒、PM酸化触媒等の触媒の活性が低下する。そのため、図6に示す、NOx吸蔵還元型触媒(No)とNOx直接還元型触媒(Nd)の浄化率と触媒温度との関係のように、触媒温度が低下すると、NOx浄化率が著しく低下する。また、PMの浄化に関しても同様な傾向がある。   However, in these exhaust gas purification devices, when NOx and PM are purified, when the temperature of the exhaust gas becomes 300 ° C. or lower, the activity of the catalyst such as the NOx purification catalyst, the oxidation catalyst of the continuous regeneration type DPF, and the PM oxidation catalyst is increased. descend. Therefore, as shown in FIG. 6, when the catalyst temperature decreases, as shown in the relationship between the NOx storage reduction catalyst (No) and the NOx direct reduction catalyst (Nd), and the catalyst temperature, the NOx purification rate decreases significantly. . There is a similar tendency with respect to PM purification.

そのため、アイドル運転や低負荷運転等の排気ガスの温度が低い場合に、NOxやPMの浄化率が著しく低下してしまうので、排気ガスの温度が300℃以下における排気ガス浄化装置の浄化性能の向上が大きな問題となっている。   Therefore, when the exhaust gas temperature is low, such as during idle operation or low load operation, the purification rate of NOx or PM is significantly reduced. Therefore, the purification performance of the exhaust gas purification device when the exhaust gas temperature is 300 ° C. or less is reduced. Improvement is a big problem.

一方、排気の空燃比がリーン状態の時に排気中の酸素を吸収し、排気の空燃比がリッチの時に吸収した酸素を放出する酸素貯蔵成分を担持させた内燃機関の排気浄化装置が提案されている(例えば、特許文献1参照。)。   On the other hand, there has been proposed an exhaust purification device for an internal combustion engine that carries an oxygen storage component that absorbs oxygen in the exhaust when the air-fuel ratio of the exhaust is lean and releases oxygen that is absorbed when the air-fuel ratio of the exhaust is rich. (For example, refer to Patent Document 1).

この酸素貯蔵成分はセリア−ジルコニア固溶体の形で担持されたセリウム(Ce)であり、リーン空燃比では酸化セリウムIV(CeO2 )を形成して酸素を貯蔵し、リッチ空燃比では、酸化セリウムIVは酸素を放出して酸化セリウムIII(Ce2 3 )となる。そして、この酸素貯蔵成分から放出されるO2 と排気中のHC,CO成分等の酸化の反応、例えば、2CeO2 +CO→Ce2 3 +CO2 ,2CeO2 +H2 →Ce2 3 +H2 Oによる発熱により,触媒成分温度が上昇し、これにより、触媒活性が向上し、NOx浄化率が向上するとされている。 This oxygen storage component is cerium (Ce) supported in the form of a ceria-zirconia solid solution. In the lean air-fuel ratio, cerium oxide IV (CeO 2 ) is formed to store oxygen, and in the rich air-fuel ratio, cerium oxide IV Releases oxygen to cerium oxide III (Ce 2 O 3 ). Then, O 2 released from the oxygen storage component and oxidation reaction of HC and CO components in the exhaust, for example, 2CeO 2 + CO → Ce 2 O 3 + CO 2 , 2CeO 2 + H 2 → Ce 2 O 3 + H 2 The catalyst component temperature rises due to the heat generated by O, thereby improving the catalyst activity and improving the NOx purification rate.

また、排気通路に設けられた触媒の過熱防止のために、排気通路にO2 ストレージ機能(酸素貯蔵能力)を有する触媒を配置した内燃機関も提案され(例えば、特許文献2参照。)、DPFにおいて、PMを酸化させ、PM酸化速度を向上させるために、少なくともセリウム(Ce)元素を含んでなる多孔質酸化物をフィルタ隔壁の排ガス浄化層に担持させたディーゼル排ガス浄化用フィルタ型触媒やセリウム(Ce)元素を含んだ活性酸素生成剤を備えた排気浄化装置も提案されている(例えば、特許文献3、4参照。)。 Also, an internal combustion engine in which a catalyst having an O 2 storage function (oxygen storage capacity) is arranged in the exhaust passage to prevent overheating of the catalyst provided in the exhaust passage is proposed (for example, see Patent Document 2). In order to oxidize PM and improve the PM oxidation rate, a filter catalyst for purifying diesel exhaust gas in which a porous oxide containing at least a cerium (Ce) element is supported on an exhaust gas purification layer of a filter partition wall or cerium An exhaust emission control device including an active oxygen generator containing (Ce) element has also been proposed (see, for example, Patent Documents 3 and 4).

本発明者らは、この排気ガスの空燃比状態がリッチ状態で酸素を放出し、リーン状態で酸素を吸蔵する酸素貯蔵物質が、酸素吸蔵時に自己発熱するという知見を得て、これを排気ガスの昇温に利用することを考えた。   The present inventors have obtained the knowledge that the oxygen storage material that releases oxygen when the air-fuel ratio of the exhaust gas is rich and stores oxygen in the lean state self-heats during oxygen storage, It was considered to be used for raising the temperature.

この酸素吸蔵物質が酸化セリウムIV(CeO2 )で形成されている場合には、リッチ状態では,CeO2 →(1/2)Ce2 3 +(1/4)O2 の反応で、Ceが3価の酸化セリウムIII(Ce2 3 )になり還元される。この反応は吸熱反応であり、ΔH=191kJ/molの熱が吸熱される。一方、リーン状態に切り替わると、(1/2)Ce2 3 +(1/4)O2 →CeO2 の反応で、Ceは4価の酸化セリウムIV(CeO2 )に戻り、酸化される。この反応は、発熱反応であり、ΔH=191kJ/molの熱が発生する。これらの反応は可逆的に起こる反応である。 When the oxygen storage material is formed of cerium oxide IV (CeO 2 ), in the rich state, CeO 2 → (1/2) Ce 2 O 3 + (1/4) O 2 reacts with Ce. Becomes trivalent cerium oxide III (Ce 2 O 3 ) and is reduced. This reaction is an endothermic reaction, and heat of ΔH = 191 kJ / mol is absorbed. On the other hand, when switching to the lean state, Ce returns to tetravalent cerium oxide IV (CeO 2 ) and is oxidized by the reaction of (1/2) Ce 2 O 3 + (1/4) O 2 → CeO 2. . This reaction is an exothermic reaction, and heat of ΔH = 191 kJ / mol is generated. These reactions are reversible reactions.

この反応に関するギブスの自由エネルギーΔrG°と平衡定数Kpを、図4、図5に示す。図4はΔrG°と温度の関係を示しており、大気条件下のものであるが、ΔrG°がマイナス(−)側になるほど反応が起こる確率が高くなり、プラス(+)側になるほど反応が起こらないか、逆反応となることを示している。また、図5は、Kpと温度の関係を示しており、Kpが大きくなるほど、酸化反応の速度が大きくなる。つまり、図4からも図5からも、低温の方が、酸化反応が起こりやすく、また、酸化反応も速いことが分かる。このように、触媒反応のために昇温が必要となる、排気ガス温度が低い場合に、酸化反応速度が速いので、排気ガス浄化装置の温度上昇に大きな効果を期待できる。   Gibbs free energy ΔrG ° and equilibrium constant Kp for this reaction are shown in FIGS. FIG. 4 shows the relationship between ΔrG ° and temperature, which is under atmospheric conditions, but the higher the ΔrG ° is on the minus (−) side, the higher the probability that the reaction will occur, and the more the reaction is on the plus (+) side. It does not happen or shows a reverse reaction. FIG. 5 shows the relationship between Kp and temperature. The larger the Kp, the higher the rate of the oxidation reaction. That is, both FIG. 4 and FIG. 5 show that the oxidation reaction occurs more easily and the oxidation reaction is faster at lower temperatures. In this way, when the exhaust gas temperature is low, which requires a temperature increase for the catalytic reaction, the oxidation reaction rate is fast, so that a great effect can be expected in increasing the temperature of the exhaust gas purification device.

そして、このリッチ状態では、酸素貯蔵物質で放出される酸素と還元剤の酸化反応(燃焼)により、吸熱される以上の熱を発生させて、この還元剤の酸化反応熱を利用することができ、また、リーン状態では酸素貯蔵物質が酸素を吸蔵する際の酸化反応の反応熱を利用することができる。   In this rich state, the oxidation reaction (combustion) of oxygen released from the oxygen storage material and the reducing agent generates more heat than is absorbed, and the oxidation reaction heat of the reducing agent can be utilized. In the lean state, the reaction heat of the oxidation reaction when the oxygen storage material occludes oxygen can be used.

特に、このリッチ状態からリーン状態に切り替わる際に起こる酸素貯蔵物質の自己発熱を積極的に利用することにより、排気ガス浄化装置の酸素貯蔵物質を担持した担持体の温度を上昇させて、この担持体を通過する排気ガスを昇温して、NOx浄化触媒やDPFの温度を上昇させることができるので、排気ガス浄化率を向上することができる。
特許第3370957号公報 特開2000−54887号公報 特開2003−190793号公報 特開2003−193822号公報
In particular, by actively utilizing the self-heating of the oxygen storage material that occurs when switching from the rich state to the lean state, the temperature of the carrier carrying the oxygen storage material of the exhaust gas purification device is raised, Since the temperature of the exhaust gas passing through the body can be raised to raise the temperature of the NOx purification catalyst and the DPF, the exhaust gas purification rate can be improved.
Japanese Patent No. 3370957 JP 2000-54887 A JP 2003-190793 A JP 2003-193822 A

本発明は、上記の知見を得て、上記の問題を解決するためになされたものであり、その目的は、NOx浄化触媒やDPFを備えた排気ガス浄化装置において、NOx触媒再生時やDPF再生時等以外で、酸素貯蔵物質の酸素吸蔵時における自己発熱作用を利用して、排気ガス浄化装置に流入する排気ガスの温度を昇温して、排気ガス低温時のNOxやPMの浄化率を向上することができる排気ガス浄化装置の昇温方法及び排気ガス浄化システムを提供することにある。   The present invention has been made in order to obtain the above knowledge and solve the above problems. The object of the present invention is to perform NOx catalyst regeneration and DPF regeneration in an exhaust gas purification apparatus equipped with a NOx purification catalyst and a DPF. At other times, the temperature of the exhaust gas flowing into the exhaust gas purification device is raised by utilizing the self-heating action during the oxygen storage of the oxygen storage material, and the purification rate of NOx and PM when the exhaust gas is low An object of the present invention is to provide an exhaust gas purification device temperature raising method and an exhaust gas purification system that can be improved.

上記の目的を達成するための排気ガス浄化装置の昇温方法は、上流側に、排気ガスの空燃比状態がリッチ状態で酸素を放出し、リーン状態で酸素を吸蔵すると共に自己発熱する酸素貯蔵物質を担持した担持体を備え、下流側にNOx浄化触媒、又は、連続再生型DPFの少なくとも一方を備えたディーゼルエンジンの排気ガス浄化装置の昇温方法であって、所定の温度を、排気ガス温度がこの所定の温度以下の場合には、下流側の前記NOx浄化触媒、又は、前記連続再生型DPFの触媒が活性化しないという温度に設定し、前記担持体に流入する排気ガスの空燃比状態を、前記排気ガス浄化装置の再生制御時以外で、排気ガスの温度が前記所定の温度以下の場合に、交互にリッチ状態とリーン状態を繰り返すように制御して、前記酸素貯蔵物質の自己発熱作用により下流側の前記NOx浄化触媒、又は、前記連続再生型DPFの触媒を活性化させることを特徴とする。 In order to achieve the above object, the method of raising the temperature of the exhaust gas purifying apparatus is the oxygen storage that releases oxygen when the air-fuel ratio of the exhaust gas is rich, stores oxygen in the lean state, and self-heats. A method for raising the temperature of an exhaust gas purification apparatus for a diesel engine comprising a carrier carrying a substance and having at least one of a NOx purification catalyst or a continuous regeneration type DPF on the downstream side, wherein a predetermined temperature is set to an exhaust gas When the temperature is equal to or lower than the predetermined temperature, the air-fuel ratio of the exhaust gas flowing into the carrier is set so that the downstream NOx purification catalyst or the catalyst of the continuous regeneration type DPF is not activated. state, except when regeneration control of the exhaust gas purifying apparatus, when the temperature of the exhaust gas is below the predetermined temperature, and controls to repeat the rich state and a lean state alternately, the oxygen storage The NOx purification catalyst on the downstream side by the self-heating effect of quality, or, and wherein the activating the catalyst of the continuous regeneration type DPF.

上記の排気ガス浄化装置の昇温方法において、前記酸素貯蔵物質としてセリウム元素を含む物質を使用することを特徴とする。   In the temperature raising method of the exhaust gas purifying apparatus, a substance containing a cerium element is used as the oxygen storage substance.

また、上記の排気ガス浄化装置の昇温方法において、前記リッチ状態の時間と前記リーン状態の時間の割合をリッチ状態:リーン状態=3:57〜3:3とすることを特徴とする。   Further, in the temperature raising method of the exhaust gas purifying apparatus, the ratio of the rich state time to the lean state time is set to rich state: lean state = 3: 57 to 3: 3.

そして、上記の目的を達成するための排気ガス浄化システムは、NOx浄化触媒、又は、連続再生型DPFの少なくとも一方を備えた排気ガス浄化装置を配置したディーゼルエンジンの排気ガス浄化システムにおいて、排気ガスの空燃比状態がリッチ状態で酸素を放出し、リーン状態で酸素を吸蔵すると共に自己発熱する酸素貯蔵物質を担持した担持体を上流側に備えると共に、所定の温度を、排気ガス温度がこの所定の温度以下の場合には、下流側の前記NOx浄化触媒、又は、前記連続再生型DPFの触媒が活性化しないという温度に設定し、前記担持体に流入する排気ガスの空燃比状態を、前記排気ガス浄化装置の再生制御時以外で、排気ガスの温度が所定の温度以下の場合に、交互にリッチ状態とリーン状態を繰り返すように制御して、前記酸素貯蔵物質の自己発熱作用により下流側の前記NOx浄化触媒、又は、前記連続再生型DPFの触媒を活性化させる排気ガス空燃比制御手段を備えて構成される。 An exhaust gas purification system for achieving the above object is an exhaust gas purification system for a diesel engine in which an exhaust gas purification device provided with at least one of a NOx purification catalyst or a continuous regeneration type DPF is disposed. air-fuel ratio state to release oxygen in a rich state, the carrier carrying the oxygen storage material to self-heating as well as storing oxygen in a lean state with provided on the upstream side, a predetermined temperature, the predetermined exhaust gas temperature is Is set to a temperature at which the downstream NOx purification catalyst or the catalyst of the continuous regeneration type DPF is not activated, and the air-fuel ratio state of the exhaust gas flowing into the carrier is except when regeneration control of the exhaust gas purifying apparatus, when the temperature of the exhaust gas is below a predetermined temperature, and controls to repeat the rich state and a lean state alternately The NOx purification catalyst on the downstream side by the self-heating effect of the oxygen storage material, or configured to include an exhaust gas air-fuel ratio control means for activating the catalyst of the continuous regeneration type DPF.

また、上記の排気ガス浄化装置において、前記酸素貯蔵物質としてセリウム元素を含む物質を使用するように構成される。   In the exhaust gas purifying apparatus described above, a substance containing a cerium element is used as the oxygen storage substance.

そして、上記の排気ガス浄化装置において、前記排気ガス空燃比制御手段が、前記リッチ状態の時間と前記リーン状態の時間の割合をリッチ状態:リーン状態=3:57〜3:3とするように構成される。   In the exhaust gas purifying apparatus, the exhaust gas air-fuel ratio control means sets the ratio of the rich state time and the lean state time to rich state: lean state = 3: 57 to 3: 3. Composed.

更に、前記担持体において、前記セリウム元素を含む物質の担持量を50g/L〜200g/Lとするように構成される。   Furthermore, in the said support body, it is comprised so that the load of the substance containing the said cerium element may be 50 g / L-200 g / L.

つまり、NOx浄化触媒やDPFを使用した排気ガス浄化装置においては、NOx触媒再生制御やDPF再生制御等の排気ガス浄化装置の再生制御で、排気ガスの空燃比状態を、リッチ状態にしたり、交互にリッチ状態とリーン状態を繰り返す制御を行うことがあるが、この排気ガス浄化装置の再生制御時以外の排気ガス温度が所定の温度より低い場合において、気筒(シリンダ)内燃料噴射におけるポスト噴射や、排気管内直接燃料噴射等により排気ガス中の酸素量を調整し、還元雰囲気のリッチ状態と酸化雰囲気のリーン状態を繰り返し切り替えることで、可逆的な酸素貯蔵物質の酸化反応を繰返し起こし、この酸化反応で発生する熱を利用して、酸素貯蔵物質の担持体の温度を上昇させる。そして、この担持体を通過し、その後、下流側のNOx浄化触媒やDPFに流入する排気ガスを昇温する。   That is, in an exhaust gas purification device using a NOx purification catalyst or DPF, the exhaust gas air-fuel ratio state is made rich or alternately by regeneration control of the exhaust gas purification device such as NOx catalyst regeneration control or DPF regeneration control. When the exhaust gas temperature other than during regeneration control of the exhaust gas purification device is lower than a predetermined temperature, the post-injection in the cylinder (cylinder) fuel injection may be performed. By adjusting the amount of oxygen in the exhaust gas by direct fuel injection in the exhaust pipe and repeatedly switching between the rich state of the reducing atmosphere and the lean state of the oxidizing atmosphere, a reversible oxidation reaction of the oxygen storage material occurs repeatedly. The heat of the reaction is used to raise the temperature of the oxygen storage material carrier. The temperature of the exhaust gas that passes through the carrier and then flows into the downstream NOx purification catalyst and DPF is raised.

なお、ここでいう排気ガスの空燃比状態とは、必ずしもシリンダ内における空燃比の状態を意味するものではなく、排気ガス浄化装置に流入する排気ガス中に供給した空気量と燃料量(気筒(シリンダ)内で燃焼した分も含めて)との比のことをいう。   Here, the air-fuel ratio state of the exhaust gas does not necessarily mean the state of the air-fuel ratio in the cylinder, but the amount of air and the amount of fuel (cylinder (cylinder) supplied to the exhaust gas flowing into the exhaust gas purification device) This is the ratio to the amount of combustion in the cylinder).

酸素吸蔵物質として酸化セリウムIV(CeO2 )を採用した場合は、リッチ状態(還元雰囲気)では、CeO2 →(1/2)Ce2 3 +(1/4)O2 の反応で、Ceは3価の酸化セリウムIII(Ce2 3 )になり還元される。この反応は吸熱反応であり、ΔH=191kJ/molの熱が吸熱される。一方、リーン状態(酸化雰囲気)に切り替わると、(1/2)Ce2 3 +(1/4)O2 →CeO2 の反応で、Ceは4価の酸化セリウムIV(CeO2 )に戻り、酸化される。この反応は、発熱反応であり、ΔH=191kJ/molの熱が発生する。これらの反応は可逆的に起こる反応である。 When cerium oxide IV (CeO 2 ) is employed as the oxygen storage material, in a rich state (reducing atmosphere), CeO 2 → (1/2) Ce 2 O 3 + (1/4) O 2 reacts with Ce. Becomes trivalent cerium oxide III (Ce 2 O 3 ) and is reduced. This reaction is an endothermic reaction, and heat of ΔH = 191 kJ / mol is absorbed. On the other hand, when switching to the lean state (oxidizing atmosphere), Ce returns to tetravalent cerium oxide IV (CeO 2 ) by the reaction of (1/2) Ce 2 O 3 + (1/4) O 2 → CeO 2. Is oxidized. This reaction is an exothermic reaction, and heat of ΔH = 191 kJ / mol is generated. These reactions are reversible reactions.

そして、リッチ状態では、酸素貯蔵物質で放出される酸素と還元剤の酸化反応(燃焼)により、吸熱される以上の熱を発生させると共にこの還元剤の酸化反応熱を利用する。この還元時の吸熱反応で放出される酸素(O)にはラジカル酸素も含まれるので、リッチ状態の排気ガス中のHC,CO,H2等の還元剤を非常に効率よく燃焼させることができる。そのため、酸素放出反応で生じる吸熱を相殺して昇温することができる。また、リーン状態では酸素貯蔵物質が酸素を吸蔵する際の酸化反応の反応熱を利用する。この場合は、自己発熱により昇温する。従って、全体として、発熱量が上回り、昇温することになる。   In the rich state, the oxidation reaction (combustion) between oxygen released from the oxygen storage material and the reducing agent generates more heat than is absorbed, and uses the oxidation reaction heat of the reducing agent. Since oxygen (O) released by the endothermic reaction during the reduction includes radical oxygen, reducing agents such as HC, CO, and H2 in the rich exhaust gas can be burned very efficiently. Therefore, it is possible to increase the temperature by offsetting the endotherm generated by the oxygen releasing reaction. In the lean state, the oxygen storage material uses the reaction heat of the oxidation reaction when storing oxygen. In this case, the temperature is raised by self-heating. Therefore, as a whole, the calorific value exceeds and the temperature rises.

このリッチ状態からリーン状態に切り替わる際に起こる発熱を積極的に利用することにより、NOx浄化触媒やDPFの上流側に配置した酸素貯蔵物質の担持体の温度を上昇させて、NOx浄化触媒やDPFに流入する排気ガス温度を上昇させて、排気ガス浄化率を向上することができる。   By actively using the heat generated when switching from the rich state to the lean state, the temperature of the NOx purifying catalyst or the carrier of oxygen storage material disposed upstream of the DPF is raised, and the NOx purifying catalyst or DPF The exhaust gas purification rate can be improved by raising the temperature of the exhaust gas flowing into the exhaust gas.

このリッチ状態からリーン状態に切り替わる際に起こる発熱反応は、ガソリンエンジンでは排気ガス中の酸素量が少ないので、緩やかに進行するが、リーンバーンガソリンエンジンやディーゼルエンジンでは、排気ガス中の酸素量が多いため急速に進行する。そのため、CeO2 等の酸素貯蔵物質の自己発熱により、触媒や担持体の表面温度を、例えば、60℃程度容易に上昇させることができる。 The exothermic reaction that occurs when switching from the rich state to the lean state progresses slowly because the amount of oxygen in the exhaust gas is small in a gasoline engine, but in lean burn gasoline engines and diesel engines, the amount of oxygen in the exhaust gas increases. It progresses rapidly because there are many. Therefore, the surface temperature of the catalyst and the support can be easily raised, for example, by about 60 ° C. by self-heating of the oxygen storage material such as CeO 2 .

この温度上昇を、排気ガスの温度が所定の温度より低い時、即ち、排気ガスの温度が低くNOx浄化触媒や連続再生型DPFの酸化触媒やPM酸化触媒等の触媒の温度が低く触媒の活性が低い時に行って、これらの触媒を活性化させ、NOx浄化率やPMの自己燃焼率を向上させる。そして、この所定の温度は、排気ガス温度がこの所定温度以下の場合には、これらの触媒が活性化しないという温度、即ち、昇温作用を必要とする温度(例えば、300℃)に設定される。   When the temperature of the exhaust gas is lower than the predetermined temperature, that is, when the temperature of the exhaust gas is low, the temperature of the catalyst such as the NOx purification catalyst, the oxidation catalyst of the continuous regeneration type DPF or the PM oxidation catalyst is low, and the activity of the catalyst When this is low, these catalysts are activated to improve the NOx purification rate and the PM self-combustion rate. The predetermined temperature is set to a temperature at which these catalysts are not activated when the exhaust gas temperature is equal to or lower than the predetermined temperature, that is, a temperature requiring a temperature raising action (for example, 300 ° C.). The

なお、排気ガスの温度センサにより、排気ガスの温度が所定の温度より低いか否かを判断してもよいが、触媒温度センサにより、触媒の温度が所定の温度より低いか否かで排気ガスの温度が所定の温度より低いか否かを判断してもよい。また、排気ガスの温度が所定の温度より低い場合は、アイドル運転や低負荷運転等であるので、エンジンの状態を示す指標、例えば、エンジン回転速度や負荷等から推定してもよい。なお、本発明では触媒の温度を上昇させて活性化することが目的であるので、触媒の温度が所定の温度(活性化温度)より低いか否かで判断するのが好ましいが、一般的には触媒温度の計測が難しいので、排気ガス温度等で代用している。   The exhaust gas temperature sensor may determine whether or not the exhaust gas temperature is lower than a predetermined temperature. However, the exhaust gas temperature may be determined based on whether or not the catalyst temperature is lower than the predetermined temperature. It may be determined whether the temperature is lower than a predetermined temperature. Further, when the temperature of the exhaust gas is lower than a predetermined temperature, it is an idle operation, a low load operation, or the like. In the present invention, since the purpose is to activate the catalyst by raising the temperature of the catalyst, it is preferable to judge whether or not the temperature of the catalyst is lower than a predetermined temperature (activation temperature). Since it is difficult to measure the catalyst temperature, the exhaust gas temperature is used instead.

また、NOx吸蔵触媒のNOx吸蔵能力回復用のNOx触媒再生操作や、NOx直接還元型触媒の活性物資を再生するNOx触媒再生操作や、DPFに捕集されたPMを強制的に燃焼除去させるDPF再生操作等の際にも、リッチ状態からリーン状態への切り替えを繰り返すことにより、リッチ状態からリーン状態に切り替わる際に起こる発熱反応を利用することができるので、排気ガスの温度を500℃以上の高温にすることにも大きく寄与できる。   In addition, a NOx catalyst regeneration operation for recovering the NOx storage capacity of the NOx storage catalyst, a NOx catalyst regeneration operation for regenerating the active material of the NOx direct reduction catalyst, or a DPF that forcibly burns and removes PM collected in the DPF. Even during the regeneration operation, by repeatedly switching from the rich state to the lean state, the exothermic reaction that occurs when switching from the rich state to the lean state can be used. It can also contribute greatly to high temperatures.

そして、酸素貯蔵物質としてセリウム元素を含む物質を使用すると、2Ce2 3 +O2 →4CeO2 の酸化反応によって発生する熱を利用できる。このセリウムは酸素貯蔵能が大きいので、大きな効果を奏することができる。 When a material containing cerium element is used as the oxygen storage material, the heat generated by the oxidation reaction of 2Ce 2 O 3 + O 2 → 4CeO 2 can be used. Since this cerium has a large oxygen storage capacity, it can produce a great effect.

このリッチ状態は、空気過剰率(λ)換算で1.1〜0.8、リーン状態は空気過剰率(λ)換算で1.8〜1.0とする。但し、リッチ状態の時間よりもリーン状態の時間を大きくする。また、更には、リッチ状態を空気過剰率(λ)換算で1.0〜0.8、リーン状態を空気過剰率(λ)換算で1.1〜1.0とすることが好ましい。但し、この場合でも、リッチ状態の時間よりもリーン状態の時間を大きくする。 The rich state is 1.1 to 0.8 in terms of excess air ratio (λ), and the lean state is 1.8 to 1.0 in terms of excess air ratio (λ). However, the lean state time is set longer than the rich state time . Furthermore, it is preferable that the rich state is 1.0 to 0.8 in terms of excess air ratio (λ), and the lean state is 1.1 to 1.0 in terms of excess air ratio (λ). However, even in this case, the lean state time is set longer than the rich state time .

リッチ状態(R):リーン状態(L)の比を変えると、発熱量が異なる。これは、HC等の還元剤の残量の影響もあるが、空気過剰率λの影響を受ける酸素貯蔵物質内の酸素量にも起因する。即ち、リッチ状態の時間が多くなると酸素貯蔵物質内のリッチ化が深くなり、放出される酸素量が多くなり、より強く酸化反応が起こるためである。   When the ratio of rich state (R): lean state (L) is changed, the amount of heat generation is different. This is also due to the amount of oxygen in the oxygen storage material affected by the excess air ratio λ, although there is an influence of the remaining amount of the reducing agent such as HC. That is, as the time of the rich state increases, the enrichment in the oxygen storage material becomes deeper, the amount of released oxygen increases, and the oxidation reaction occurs more strongly.

このリッチ状態(R)/リーン状態(L)の好ましい比としては、実験的に3:57〜3:3が得られているので、リッチ状態の時間とリーン状態の時間の割合をリッチ状態(R):リーン状態(L)=3:57〜3:3とする。これにより、リッチ状態にするための燃費や昇温の程度との関係等において、効率よく担持体の昇温を図ることができる。   As a preferable ratio of the rich state (R) / lean state (L), 3:57 to 3: 3 has been experimentally obtained. Therefore, the ratio between the rich state time and the lean state time is set to the rich state ( R): Lean state (L) = 3: 57 to 3: 3. Thereby, the temperature rise of the carrier can be efficiently achieved in relation to the fuel consumption for the rich state and the degree of the temperature rise.

更に、この酸素貯蔵物質を担持する担持体において、セリウム元素を含む物質の担持量を50g/L〜200g/Lとする。50g/Lより少なくなると発熱量が少なくなり効果が少なくなる。また、200g/Lを超えるとサチレートする。なお、この担持量は、セリウム元素を含む物質の担持量(質量)を担持体の外形全体の容積(L:リットル)で除したものである。   Furthermore, in the carrier that supports the oxygen storage material, the amount of the substance containing the cerium element is set to 50 g / L to 200 g / L. When the amount is less than 50 g / L, the heat generation amount is reduced and the effect is reduced. Moreover, when it exceeds 200 g / L, it will saturate. In addition, this carrying amount is obtained by dividing the carrying amount (mass) of the substance containing the cerium element by the volume (L: liter) of the entire outer shape of the carrying body.

そして、排気ガス浄化装置が、NOx浄化触媒、又は、DPFの少なくとも一方を備えていると、担持体の昇温に起因する排気ガスの昇温によって、特に、NOx触媒再生時やDPF再生時以外で排気温度が低い場合において、NOx浄化触媒の活性化によるNOx浄化率の向上や連続再生型DPFの酸化触媒やPM酸化触媒等の活性化によるPMの自己燃焼の活発化を図ることができる。   If the exhaust gas purification device includes at least one of a NOx purification catalyst and a DPF, the exhaust gas temperature rises due to the temperature rise of the carrier, particularly during NOx catalyst regeneration or DPF regeneration. When the exhaust temperature is low, it is possible to improve the NOx purification rate by activating the NOx purification catalyst and to activate the self-combustion of PM by activating the oxidation catalyst or the PM oxidation catalyst of the continuous regeneration type DPF.

本発明に係る排気ガス浄化装置の昇温方法及び排気ガス浄化システムによれば、排気ガス中のNOxの浄化のためのNOx浄化触媒やPMの浄化のためのDPFの少なくとも一方を備えた排気ガス浄化装置において、NOx触媒再生時やDPF再生時等以外において、排気ガスの空燃比状態をリーン状態とリッチ状態にすることを繰り返すことにより、即ち、リーン・リッチサイクルを繰り返すことにより、酸素貯蔵物質の酸素吸蔵時における自己発熱作用を利用して担持体を昇温できる。これにより、この担持体を通過する排気ガスを昇温できる。   According to the temperature raising method and the exhaust gas purification system of the exhaust gas purification apparatus according to the present invention, the exhaust gas provided with at least one of a NOx purification catalyst for purifying NOx in the exhaust gas and a DPF for purifying PM. In the purifying apparatus, the oxygen storage substance can be obtained by repeatedly changing the air-fuel ratio of the exhaust gas to the lean state and the rich state, that is, by repeating the lean / rich cycle, except during NOx catalyst regeneration, DPF regeneration, etc. The temperature of the carrier can be increased by utilizing the self-heating action during oxygen storage. Thereby, the temperature of the exhaust gas passing through the carrier can be increased.

そして、この排気ガスの昇温により、アイドル運転や低負荷運転等の排気温度が低い場合においても、排気ガスを昇温できるので、NOxやPMの浄化率を向上させることができ、しかも、NOx浄化触媒とDPFの両方を備えた場合においては、NOx還元とPM酸化の両方の反応を同時に向上させることができる。   The exhaust gas temperature can be raised even when the exhaust gas temperature is low, such as during idling or low-load operation, so that the NOx and PM purification rates can be improved. In the case where both the purification catalyst and the DPF are provided, both the NOx reduction and PM oxidation reactions can be improved simultaneously.

なお、この酸素貯蔵物質の担持体は、排気ガス浄化装置と別体で形成されているので、排気通路に追加して設けるだけで、既に設置されている排気ガス浄化装置の排気ガス低温時の浄化性能を向上できる。   Since the oxygen storage substance carrier is formed separately from the exhaust gas purification device, it is only necessary to add the oxygen storage material to the exhaust passage. Purification performance can be improved.

以下、本発明に係る実施の形態の排気ガス浄化装置の昇温及び排気ガス浄化システムについて、図面を参照しながら説明する。なお、ここでいう排気ガスの空燃比状態とは、必ずしも気筒(シリンダ)内における空燃比の状態を意味するものではなく、排気ガス浄化装置等に流入する排気ガス中に供給した空気量と燃料量(シリンダ内で燃焼した分も含めて)との比のことをいう。   Hereinafter, a temperature raising and exhaust gas purification system of an exhaust gas purification apparatus according to an embodiment of the present invention will be described with reference to the drawings. Note that the air-fuel ratio state of the exhaust gas here does not necessarily mean the state of the air-fuel ratio in the cylinder (cylinder), but the amount of air supplied to the exhaust gas flowing into the exhaust gas purification device and the fuel This is the ratio to the amount (including the amount burned in the cylinder).

図1に、本発明の第1の実施の形態の排気ガス浄化システム1の構成を示す。この排気ガス浄化システム1は、エンジン(内燃機関)2の排気通路3に排気ガス浄化装置10を配置して構成される。この排気ガス浄化装置10は、NOx浄化触媒、又は、DPF(ディーゼルパティキュレートフィルタ)の一方又は両方を備えて構成される。   FIG. 1 shows a configuration of an exhaust gas purification system 1 according to a first embodiment of the present invention. The exhaust gas purification system 1 is configured by disposing an exhaust gas purification device 10 in an exhaust passage 3 of an engine (internal combustion engine) 2. The exhaust gas purification device 10 includes one or both of a NOx purification catalyst and a DPF (diesel particulate filter).

NOx浄化触媒は、例えば、NOx吸蔵還元型触媒やNOx直接還元型触媒等で形成される。このNOx吸蔵還元型触媒は、モノリス触媒で形成され、酸化アルミニウム、酸化チタン等の担持体に触媒コート層を設け、この触媒コート層に、白金(Pt)パラジウム(Pd)等の触媒金属とバリウム(Ba)等のNOx吸蔵材(NOx吸蔵物質)を担持させて構成される。   The NOx purification catalyst is formed of, for example, a NOx occlusion reduction type catalyst or a NOx direct reduction type catalyst. This NOx occlusion reduction type catalyst is formed of a monolith catalyst, and a catalyst coat layer is provided on a carrier such as aluminum oxide or titanium oxide, and a catalyst metal such as platinum (Pt) palladium (Pd) and barium are provided on the catalyst coat layer. A NOx occlusion material (NOx occlusion material) such as (Ba) is supported.

このNOx吸蔵還元型触媒では、酸素濃度が高い排気ガスの状態(リーン空燃比状態)の時に、排気ガスG中のNOxをNOx吸蔵材が吸蔵することにより、排気ガスG中のNOxを浄化し、酸素濃度が低いかゼロの排気ガス状態の時に、吸蔵したNOxを放出すると共に放出されたNOxを触媒金属の触媒作用により還元することにより、浄化された排気ガスGcにして、大気中へのNOxの流出を防止する。   In this NOx occlusion reduction type catalyst, the NOx occlusion material occludes NOx in the exhaust gas G when the exhaust gas is in a high oxygen concentration state (lean air-fuel ratio state), thereby purifying the NOx in the exhaust gas G. In the exhaust gas state where the oxygen concentration is low or zero, the stored NOx is released and the released NOx is reduced by the catalytic action of the catalytic metal to obtain a purified exhaust gas Gc, which is released into the atmosphere. Prevent NOx outflow.

また、NOx直接還元型触媒(DCR)は、NOxを直接還元する触媒であり、例えば、β型ゼオライト等の触媒担体上にロジウム(Rh)やパラジウム(Pd)等の触媒成分である金属を担持させて形成する。更に、これらの金属の酸化作用を軽減し、NOx還元能力の保持に寄与するセリウム(Ce)を配合したり、酸化還元反応、特にリッチ状態におけるNOxの還元反応を促進するために下層に三元触媒を設けたり、NOx浄化率を向上させるために、鉄(Fe)を担体に加えたりする。   Further, the NOx direct reduction catalyst (DCR) is a catalyst that directly reduces NOx. For example, a catalyst component such as rhodium (Rh) or palladium (Pd) is supported on a catalyst carrier such as β-type zeolite. Let it form. Furthermore, in order to reduce the oxidation action of these metals and to add cerium (Ce) that contributes to maintaining the NOx reduction ability, or to promote the oxidation-reduction reaction, particularly the reduction reaction of NOx in a rich state, a ternary layer is provided. In order to provide a catalyst or to improve the NOx purification rate, iron (Fe) is added to the support.

このNOx直接還元型触媒は、リーン状態ではNOxをN2 に直接還元するが、この還元の際に触媒の活性物質である金属にO2 が吸着して還元性能が低下するため、NOx還元能力が飽和に近くなると、排気ガスGの空燃比をリッチ状態にして流入する排気ガスGの酸素濃度を低下させるNOx浄化能力回復用のリッチ制御を行って、触媒の活性物質から吸着したO2 を放出させる。これにより、活性物資を再生する。 This NOx direct reduction type catalyst directly reduces NOx to N 2 in a lean state, but O 2 is adsorbed on the metal that is the active substance of the catalyst during this reduction, and the reduction performance is reduced. Is close to saturation, the rich control is performed to restore the NOx purification ability to reduce the oxygen concentration of the exhaust gas G flowing in the rich state by making the air-fuel ratio of the exhaust gas G rich, and the O 2 adsorbed from the active substance of the catalyst is removed. Release. This regenerates the active material.

そして、連続再生型DPFの場合には、上流側の酸化触媒と下流側のDPFから構成されたり、触媒付きDPFで構成される。   In the case of a continuous regeneration type DPF, it is composed of an upstream oxidation catalyst and a downstream DPF, or a DPF with a catalyst.

この酸化触媒は、コージェライト、炭化ケイ素(SiC)、又はステンレス等の構造材で形成された、多数の多角形セルを有するモノリス触媒で形成される。このセルの内壁には表面積を稼いでいる触媒コート層があり、その大きい表面に、白金(Pt)やパラジウム(Pd)等の触媒金属を担持して構成される。この酸化触媒は、排気ガスG中のHC,CO等の還元剤を酸化して、この酸化反応によって発生する熱によって排気ガス温度を上昇させたり、あるいは、排気ガスG中のNOを酸化してNO2 を発生させて、このNO2 でDPFに捕集されたPMを酸化することを促進する。 The oxidation catalyst is formed of a monolith catalyst having a number of polygonal cells formed of a structural material such as cordierite, silicon carbide (SiC), or stainless steel. The inner wall of the cell has a catalyst coat layer having a large surface area, and a large surface is loaded with a catalyst metal such as platinum (Pt) or palladium (Pd). This oxidation catalyst oxidizes reducing agents such as HC and CO in the exhaust gas G and raises the exhaust gas temperature by heat generated by this oxidation reaction, or oxidizes NO in the exhaust gas G. NO 2 is generated, and the oxidation of PM trapped in the DPF with this NO 2 is promoted.

DPFは、多孔質のセラミックのハニカムのチャンネルの入口と出口を交互に目封じしたモノリスハニカム型ウォールスルータイプのフィルタ等で形成され、排気ガスG中のPMを捕集・除去する。このDPFはPMの燃焼除去を促進するために酸化触媒やPM酸化触媒を担持した触媒層を塗布する場合もある。   The DPF is formed of a monolith honeycomb type wall-through type filter or the like in which the inlet and outlet of a porous ceramic honeycomb channel are alternately sealed, and collects and removes PM in the exhaust gas G. This DPF may be coated with an oxidation catalyst or a catalyst layer carrying a PM oxidation catalyst in order to promote the combustion removal of PM.

そして、本発明においては、この排気ガス浄化装置10の上流側に、排気ガスGがリッチ状態の場合に酸素(O2 )を放出し、リーン状態の場合に酸素を吸蔵すると共に発熱する酸素貯蔵物質を担持した担持体(触媒コンバータ)20を備えて構成する。この酸素貯蔵物質としては、卑金属のセリウム(Ce)元素を含む物質がある。 In the present invention, oxygen (O 2 ) is released to the upstream side of the exhaust gas purifying device 10 when the exhaust gas G is rich, and oxygen is occluded and generates heat when the exhaust gas G is lean. A carrier (catalytic converter) 20 carrying a substance is provided. Examples of the oxygen storage material include a material containing a cerium (Ce) element as a base metal.

更に、図1に示すように、この担持体20の上流側の排気通路3に、炭化水素(HC)などの還元剤を供給するHC供給弁(燃料噴射用インジェクター)30を設ける。このHC供給弁30は、図示しない燃料タンクからエンジンの燃料である軽油等の炭化水素(HC)を排気通路3内に直接噴射して、排気ガスGの空燃比をリッチ状態やストイキ状態(理論空燃比状態)にするためのものである。なお、エンジン2のシリンダ内の燃料噴射においてポストインジェクション(後噴射)することにより、空燃比制御を行う場合には、このHC供給弁30を省略できる。   Further, as shown in FIG. 1, an HC supply valve (fuel injector) 30 for supplying a reducing agent such as hydrocarbon (HC) is provided in the exhaust passage 3 upstream of the carrier 20. The HC supply valve 30 directly injects hydrocarbons (HC) such as light oil as engine fuel from a fuel tank (not shown) into the exhaust passage 3 to adjust the air-fuel ratio of the exhaust gas G to a rich state or a stoichiometric state (theoretical). Air-fuel ratio state). Note that this HC supply valve 30 can be omitted when air-fuel ratio control is performed by post-injection (post-injection) in fuel injection in the cylinder of the engine 2.

そして、また、図1に示すように、この担持体20の上流側に、上流側排気温度センサ21、上流側NOx濃度センサ22、上流側λセンサ23、排気ガス浄化装置10の下流側に下流側排気温度センサ24、下流側NOx濃度センサ25、下流側O2 センサ26が設けられ、更に、排気ガス浄化装置10がDPFを備えている場合には、DPFの目詰まり状態を監視する差圧センサ27が設けられる。 As shown in FIG. 1, upstream of the carrier 20, the upstream side exhaust temperature sensor 21, the upstream side NOx concentration sensor 22, the upstream side λ sensor 23, and the downstream side of the exhaust gas purification device 10. When the exhaust gas temperature sensor 24, the downstream NOx concentration sensor 25, and the downstream O 2 sensor 26 are provided and the exhaust gas purification device 10 includes a DPF, the differential pressure for monitoring the clogged state of the DPF A sensor 27 is provided.

更に、図1に示すように、エンジン2の運転の全般的な制御を行うと共に、NOx浄化触媒のNOx浄化能力の回復制御やDPFの再生制御も行う制御装置(ECU:エンジンコントロールユニット)40が設けられる。この制御装置40に各センサ21〜27等からの検出値が入力され、この制御装置40からエンジン2のEGR弁や燃料噴射用のコモンレール電子制御燃料噴射装置の燃料噴射弁や吸気絞り弁(吸気スロットル弁)等を制御する信号が出力される。   Further, as shown in FIG. 1, a control device (ECU: engine control unit) 40 that performs overall control of the operation of the engine 2 and also performs recovery control of NOx purification capability of the NOx purification catalyst and regeneration control of the DPF. Provided. Detection values from the sensors 21 to 27 and the like are input to the control device 40. The fuel injection valve and the intake throttle valve (intake air valve) of the EGR valve of the engine 2 and the common rail electronic control fuel injection device for fuel injection are input from the control device 40. A signal for controlling a throttle valve is output.

この制御装置40が、エンジン2の運転制御と並行して、排気ガス浄化システム1の制御を行う。この制御装置40は、DPFに捕集されたPMを除去するPM再生制御やNOx浄化触媒のNOx吸蔵能力を回復するNOx再生制御やNOx浄化触媒の硫黄被毒を回復する脱硫制御等の排気ガス浄化システム1の各種の制御を行う。   The control device 40 controls the exhaust gas purification system 1 in parallel with the operation control of the engine 2. This control device 40 is an exhaust gas for PM regeneration control for removing PM trapped in the DPF, NOx regeneration control for recovering NOx storage ability of the NOx purification catalyst, and desulfurization control for recovering sulfur poisoning of the NOx purification catalyst. Various controls of the purification system 1 are performed.

このPM再生制御では、DPFのPMの蓄積量が増加して目詰まり状態が悪化した時に、EGR弁を制御してEGR量を増加させたり、吸気絞り弁を制御して新規の吸気量を減少させたりして、排気ガスGを昇温させたり、HC供給弁30による排気管内噴射、又は、シリンダ内噴射におけるポストインジェクション等により、排気ガスG中へ燃料を添加する。そして、この燃料を酸化触媒で酸化して、この酸化反応による熱を利用して排気ガスGの温度を昇温して、又、排気ガスG中のNOの酸化反応で生じるNO2 を利用して、DPFに捕集されたPMを酸化して除去する。 In this PM regeneration control, when the accumulated amount of PM in the DPF increases and the clogged state worsens, the EGR valve is controlled to increase the EGR amount, or the intake throttle valve is controlled to decrease the new intake amount. The fuel is added to the exhaust gas G by increasing the temperature of the exhaust gas G or by post-injection in the exhaust pipe by the HC supply valve 30 or in-cylinder injection. Then, the fuel is oxidized with an oxidation catalyst, the temperature of the exhaust gas G is raised using the heat of the oxidation reaction, and NO 2 generated by the oxidation reaction of NO in the exhaust gas G is used. Then, the PM collected in the DPF is oxidized and removed.

また、NOx浄化触媒のNOx再生制御では、NOx浄化触媒の上流側と下流側に配置したNOx濃度センサ22、25で検出したNOx濃度からNOx浄化率を算出し、このNOx浄化率が所定の判定値より低くなった場合にNOx触媒の再生を開始する。あるいは、エンジンの運転状態から単位時間当たりのNOxの排出量ΔNOxを算出し、これを累積計算したNOx累積値ΣNOxが所定の判定値Cnを超えた時に再生を開始する。   In addition, in the NOx regeneration control of the NOx purification catalyst, the NOx purification rate is calculated from the NOx concentration detected by the NOx concentration sensors 22 and 25 disposed on the upstream side and the downstream side of the NOx purification catalyst, and this NOx purification rate is a predetermined determination. When the value becomes lower than the value, regeneration of the NOx catalyst is started. Alternatively, the NOx emission amount ΔNOx per unit time is calculated from the operating state of the engine, and the regeneration is started when the NOx accumulated value ΣNOx obtained by accumulating the NOx exceeds a predetermined determination value Cn.

そして、排気ガスGの空燃比をストイキ空燃比(理論空燃比)又はリッチ状態に制御するが、この制御では、EGR弁を制御してEGR量を増加させたり、吸気絞り弁を制御して新規の吸気量を減少させたりして、排気ガスGを昇温させたり、HC供給弁30による排気管内噴射、又は、シリンダ内噴射におけるポストインジェクション等により、排気ガスG中へ燃料を添加して空燃比を低下させる。   Then, the air-fuel ratio of the exhaust gas G is controlled to a stoichiometric air-fuel ratio (theoretical air-fuel ratio) or a rich state. In this control, the EGR valve is controlled to increase the EGR amount, or the intake throttle valve is controlled to newly The amount of intake air is reduced, the temperature of the exhaust gas G is increased, the fuel is added to the exhaust gas G by post-injection in the exhaust pipe by the HC supply valve 30 or in the cylinder, and the like. Reduce the fuel ratio.

これらの制御により、排気ガスGの状態を所定の目標空燃比状態にすると共に、所定の温度範囲(触媒にもよるが、概ね200℃〜600℃)にして、NOx浄化能力を回復し、NOx触媒の再生を行う。   With these controls, the state of the exhaust gas G is set to a predetermined target air-fuel ratio state and is set to a predetermined temperature range (approximately 200 ° C. to 600 ° C. depending on the catalyst) to recover the NOx purification capacity, Regenerate the catalyst.

また、NOx浄化触媒の脱硫制御は、硫黄(サルファ)蓄積量を積算し、硫黄蓄積量が所定の判定値以上になると、NOx吸蔵能力が低下するまで硫黄が蓄積したとして、脱硫(サルファパージ)制御を開始する。この脱硫制御においては、硫酸塩は触媒により差があるが、概ね600℃〜700℃のリッチ条件にならないと分解放出しないため、エネルギーの効率的運用の面から、この脱硫制御に先立って、DPFのPM再生制御を行い、PM燃焼による排気ガスGの温度上昇と、NOx浄化触媒の昇温を行う。   In addition, the sulfur desulfurization control of the NOx purification catalyst is performed by accumulating the sulfur (sulfur) accumulation amount, and if the sulfur accumulation amount exceeds a predetermined determination value, it is assumed that sulfur has accumulated until the NOx occlusion capacity decreases, and desulfurization (sulfur purge). Start control. In this desulfurization control, although sulfates differ depending on the catalyst, they are not decomposed and released unless the rich conditions of about 600 ° C. to 700 ° C. are used. Therefore, from the viewpoint of efficient operation of energy, prior to this desulfurization control, DPF PM regeneration control is performed to raise the temperature of the exhaust gas G due to PM combustion and raise the temperature of the NOx purification catalyst.

そして、本発明においては、制御装置40は、上記のDPF再生制御、NOx触媒再生制御、脱硫制御等の排気ガス浄化装置10の再生制御時以外でも、排気ガスGの温度(排気温度)Tgが、各触媒がそれ以下の温度では活性化しないような温度である所定の温度(例えば、300℃)Tc以下の場合に、排気ガスGのリッチ状態(R)とリーン状態(L)を繰り返す昇温制御を行う昇温制御手段を有して構成される。   In the present invention, the control device 40 has a temperature (exhaust temperature) Tg of the exhaust gas G other than during the regeneration control of the exhaust gas purification device 10 such as the above DPF regeneration control, NOx catalyst regeneration control, desulfurization control and the like. When the catalyst is below a predetermined temperature (for example, 300 ° C.) Tc at which the catalyst is not activated at a temperature lower than that, the exhaust gas G is repeatedly increased between the rich state (R) and the lean state (L). A temperature increase control means for performing temperature control is provided.

この昇温制御により、担持体20において、排気ガスGがリッチ状態の時は、排気ガスG中の還元剤を酸素貯蔵物質が放出する酸素により酸化して、酸素貯蔵物質が酸素放出に際しての吸熱量を上回る酸化熱を発生して、酸素貯蔵物質を担持した担持体20の温度を上昇させる。また、排気ガスGがリ−ン状態の時は、排気ガスG中の酸素を酸素貯蔵物質が吸蔵する際に発生する熱により、酸素貯蔵物質を担持した担持体20の温度を上昇させる。   By this temperature increase control, when the exhaust gas G is rich in the carrier 20, the reducing agent in the exhaust gas G is oxidized by the oxygen released from the oxygen storage material, and the oxygen storage material absorbs the oxygen during the oxygen release. Oxidation heat exceeding the amount of heat is generated to raise the temperature of the carrier 20 carrying the oxygen storage material. When the exhaust gas G is in a lean state, the temperature of the carrier 20 carrying the oxygen storage material is raised by the heat generated when the oxygen storage material occludes oxygen in the exhaust gas G.

そして、この担持体20の温度上昇により、この担持体20を通過する排気ガスGを昇温させる。この昇温した排気ガスGが排気ガス浄化装置10に流入することにより、排気ガス浄化装置10内の各触媒を活性化温度以上に昇温して、この活性化により、排気ガス浄化装置10の再生制御時以外で排気ガスGの温度が低い場合において、PMの酸化除去及びNOxの浄化性能の向上を図る。   The exhaust gas G passing through the carrier 20 is heated by the temperature rise of the carrier 20. The heated exhaust gas G flows into the exhaust gas purification device 10 to raise the temperature of each catalyst in the exhaust gas purification device 10 to the activation temperature or higher. When the temperature of the exhaust gas G is low except at the time of regeneration control, PM oxidation removal and NOx purification performance are improved.

この排気ガスの昇温制御は、リッチ状態とリーン状態を繰り返すが、リッチ状態では、担持体20の入口側の空燃比を、空気過剰率換算でλR =1.1〜0.8のリッチ側にするために、排気管内噴射又はポストインジェクションにより、排気ガスG中に還元剤を供給してリッチな雰囲気を作る制御を所定の時間の間行う。   The exhaust gas temperature raising control repeats the rich state and the lean state. In the rich state, the air-fuel ratio on the inlet side of the carrier 20 is converted to the rich side where λR = 1.1 to 0.8 in terms of excess air ratio. In order to achieve this, control is performed for a predetermined time by supplying a reducing agent into the exhaust gas G to create a rich atmosphere by in-pipe injection or post-injection.

そして、このリッチ状態を所定の時間の間行った後、リーン状態とするが、このリーン状態では、排気管内噴射又はポストインジェクションを停止して、空気過剰率換算でλL =1.8〜1.0(但しλR <λL )のリーン側にする制御を行う。これらの制御を交互に繰り返して行う。なお、λR =1.0〜0.8とλL =1.8〜1.0(但しλR <λL )で効果が大きい。   Then, after the rich state is performed for a predetermined time, the lean state is set. In this lean state, the injection in the exhaust pipe or the post-injection is stopped, and λ L = 1.8 to 1. Control is performed so that the lean side is 0 (where λR <λL). These controls are repeated alternately. Note that the effect is large when λR = 1.0 to 0.8 and λL = 1.8 to 1.0 (where λR <λL).

この排気ガスGの空燃比制御は、担持体20の入口側の上流側空気過剰率センサ23の出力値が、それぞれの目標空気過剰率λR 、λL になるように、排気ガスG中へ供給する還元剤の量を調整制御することにより行う。なお、この入口側の空燃比に関しては、上流側空気過剰率センサ23の出力値の代わりに、吸入吸気量と負荷(燃料噴射量)から算出した空燃比を用いることもできる。   This air-fuel ratio control of the exhaust gas G is supplied into the exhaust gas G so that the output value of the upstream excess air ratio sensor 23 on the inlet side of the carrier 20 becomes the respective target excess air ratios λR and λL. This is done by adjusting and controlling the amount of the reducing agent. As for the air-fuel ratio on the inlet side, an air-fuel ratio calculated from the intake intake air amount and the load (fuel injection amount) can be used instead of the output value of the upstream excess air ratio sensor 23.

そして、この昇温制御において、リッチ空燃比にする制御とリーン空燃比にする制御の時間割合を、リッチ側制御(R):リーン側制御(L)=R:L=3:57〜3:3とする。なお、リッチ空燃比にする制御とリーン空燃比にする制御のサイクル1回当たりの時間は、例えば、リッチ側にする制御の時間は、3s〜5s程度であり、リーン側にする制御の時間は、1倍から20倍の3s〜60s程度である。このリッチ・リーンサイクルは触媒の昇温が必要とされる間行われる。   In this temperature increase control, the time ratio between the control to make the rich air-fuel ratio and the control to make the lean air-fuel ratio is set to rich side control (R): lean side control (L) = R: L = 3: 57-3: 3. Note that the time for one cycle of the control to make the rich air-fuel ratio and the control to make the lean air-fuel ratio is, for example, the time for the control to make the rich side is about 3 s to 5 s, and the time for the control to make the lean side is It is about 3 to 60 s, 1 to 20 times. This rich / lean cycle is performed while the temperature of the catalyst needs to be increased.

図2にこの昇温制御を含む排気ガス浄化システム1の制御フローの例を示す。この制御フローでは、ステップS11で、排気ガス浄化装置10の再生時期か否かを判定する。この再生時期には、DPFの再生時期、NOx浄化触媒の再生時期、硫黄被毒からの再生(脱硫)時期を含む。   FIG. 2 shows an example of a control flow of the exhaust gas purification system 1 including this temperature rise control. In this control flow, in step S11, it is determined whether or not it is the regeneration time of the exhaust gas purification device 10. This regeneration time includes the regeneration time of the DPF, the regeneration time of the NOx purification catalyst, and the regeneration (desulfurization) time from sulfur poisoning.

このスッテプS11の判定で再生時期であると判定された場合には、ステップS12に行き、それぞれの再生制御を行い、ステップS11に戻る。この再生時期の判定や再生制御については、従来技術を用いることができる。また、再生時期ではないと判定された場合には、そのままステップS13に行く。   If it is determined in step S11 that it is the reproduction time, the process goes to step S12 to perform the respective reproduction control, and the process returns to step S11. Conventional techniques can be used for the determination of the regeneration timing and the regeneration control. If it is determined that it is not the reproduction time, the process goes to step S13 as it is.

このステップS13では、排気温度(排気ガスの温度)Tgが所定の温度Tcよりも低いか否かを判定する。そして、高い場合には、ステップS14で通常のエンジンの運転を行う通常制御を所定の時間(再生時期の判断や排気温度のチェックを行うインターバルに関係する時間)の間行って、制御ステップS11に戻る。低い場合には、ステップS15に行き、所定のリッチ継続時間(例えば、3s〜5s)の間リッチ状態(R)とするリッチ制御と所定のリーン継続時間(例えば、3s〜60s)の間リーン状態とするリーン制御からなるリッチ・リーンサイクルを1乃至数サイクル分行う昇温制御を行い、ステップS11に戻る。   In step S13, it is determined whether or not the exhaust temperature (exhaust gas temperature) Tg is lower than a predetermined temperature Tc. If it is higher, normal control for normal engine operation is performed in step S14 for a predetermined time (time related to an interval for judging regeneration timing and checking exhaust temperature), and control step S11 is executed. Return. If it is low, the process goes to step S15, where the rich state is set to the rich state (R) for a predetermined rich duration (for example, 3s to 5s) and the lean state for a predetermined lean duration (for example, 3s to 60s). The temperature rise control is performed to perform one to several cycles of the rich / lean cycle including the lean control, and the process returns to step S11.

このステップS11〜ステップS15をエンジンの停止まで繰り返す。エンジンが停止されると、割り込みが生じて、ステップS16の制御終了操作を行って、制御を停止(ストップ)し、終了(エンド)する。   Steps S11 to S15 are repeated until the engine is stopped. When the engine is stopped, an interrupt is generated and the control end operation in step S16 is performed to stop (stop) and end (end) the control.

この制御フローにより、排気ガス浄化装置10の再生制御時以外でも、排気ガスGの温度Tgが、所定の温度Tc以下の場合に、排気ガスGのリッチ状態(R)とリーン状態(L)を繰り返す昇温制御を行うことができる。   With this control flow, when the temperature Tg of the exhaust gas G is equal to or lower than the predetermined temperature Tc, even when the exhaust gas purification device 10 is not under regeneration control, the rich state (R) and lean state (L) of the exhaust gas G are changed. Repeated temperature rise control can be performed.

上記の排気ガス浄化装置の昇温方法及び排気ガス浄化システム1によれば、排気ガス中のNOxの浄化のためのNOx浄化触媒やPMの浄化のためのDPFの少なくとも一方を備えた排気ガス浄化装置10において、NOx触媒再生時やDPF再生時等以外において、排気ガスGの空燃比状態をリーン状態とリッチ状態にすることを繰り返すことにより、即ち、リーン・リッチサイクルを繰り返すことにより、酸素貯蔵物質の酸素吸蔵時における自己発熱作用を利用して担持体20を昇温できる。これにより、この担持体20を通過する排気ガスを昇温できる。   According to the method for raising the temperature of the exhaust gas purification device and the exhaust gas purification system 1, exhaust gas purification provided with at least one of a NOx purification catalyst for purifying NOx in exhaust gas and a DPF for purifying PM. In the apparatus 10, oxygen storage is performed by repeatedly changing the air-fuel ratio state of the exhaust gas G to a lean state and a rich state, that is, by repeating a lean / rich cycle, other than during NOx catalyst regeneration, DPF regeneration, or the like. The temperature of the carrier 20 can be increased by utilizing the self-heating action during oxygen storage of the substance. Thereby, the temperature of the exhaust gas passing through the carrier 20 can be increased.

そして、この排気ガスの昇温により、アイドル運転や低負荷運転等の排気温度が低い場合においても、排気ガスを昇温できるので、NOxやPMの浄化率を向上させることができ、しかも、NOx浄化触媒とDPFの両方を備えた場合においては、NOx還元とPM酸化の両方の反応を同時に向上させることができる。   The exhaust gas temperature can be raised even when the exhaust gas temperature is low, such as during idling or low-load operation, so that the NOx and PM purification rates can be improved. In the case where both the purification catalyst and the DPF are provided, both the NOx reduction and PM oxidation reactions can be improved simultaneously.

なお、この酸素貯蔵物質の担持体20は、排気ガス浄化装置10と別体で形成されているので、排気通路3に追加して設けるだけで、既に設置されている排気ガス浄化装置10の排気ガス低温時の浄化性能を向上できる。   Since the oxygen storage substance carrier 20 is formed separately from the exhaust gas purification device 10, the oxygen storage material carrier 20 is simply provided in addition to the exhaust passage 3, so that the exhaust gas from the exhaust gas purification device 10 already installed is provided. The purification performance at low gas temperature can be improved.

また、担持体20を設けることにより、排気ガス浄化装置10におけるNOx吸蔵触媒のNOx吸蔵能力回復用のNOx触媒再生操作や、NOx直接還元型触媒の活性物資を再生するNOx触媒再生操作や、DPFに捕集されたPMを強制的に燃焼除去させるDPF再生操作等の際にも、リッチ状態からリーン状態への切り替えを繰り返すことにより、リッチ状態からリーン状態に切り替わる際に起こる発熱反応を利用することができるので、排気ガスの温度を500℃以上の高温にすることにも大きく寄与できる。   Also, by providing the carrier 20, the NOx catalyst regeneration operation for recovering the NOx storage capacity of the NOx storage catalyst in the exhaust gas purification device 10, the NOx catalyst regeneration operation for regenerating the active material of the NOx direct reduction catalyst, the DPF Even during a DPF regeneration operation that forcibly removes PM that has been trapped, the exothermic reaction that occurs when switching from the rich state to the lean state is repeated by repeatedly switching from the rich state to the lean state. Therefore, the exhaust gas temperature can greatly contribute to a high temperature of 500 ° C. or higher.

本発明の酸素貯蔵物質と排気ガスGのリッチ状態(R)とリーン状態(L)と切り替えの効果を確認するために、次のような実施例で実験を行った。   In order to confirm the effect of switching between the rich state (R) and the lean state (L) of the oxygen storage material and the exhaust gas G of the present invention, experiments were conducted in the following examples.

まず、実施例として、ディーゼルエンジン2の排気通路3において、本発明の担持体20をNOx浄化触媒を備えた排気ガス浄化装置10の上流側に配置した。この実施例に対して、リッチ状態(R)/リーン状態(L)の時間間隔を、R/L=3s/57s,3s/45s,3s/30sで繰り返し変化させたときの、NOx浄化触媒に流入する排気ガスの温度Tnを排気温度センサ28で計測すると共に、NOx浄化率を測定した。   First, as an example, in the exhaust passage 3 of the diesel engine 2, the carrier 20 of the present invention is disposed on the upstream side of the exhaust gas purification device 10 provided with a NOx purification catalyst. Compared to this embodiment, the NOx purification catalyst when the time interval of the rich state (R) / lean state (L) is repeatedly changed at R / L = 3 s / 57 s, 3 s / 45 s, 3 s / 30 s. The temperature Tn of the inflowing exhaust gas was measured by the exhaust temperature sensor 28, and the NOx purification rate was measured.

また、比較例1として、排気ガス浄化装置10のみの場合で、比較例2として、酸化触媒を排気ガス浄化装置10の上流側に配置した場合で、同様の実験と測定を行った。この結果を図3に示す。   Moreover, the same experiment and measurement were performed in the case of only the exhaust gas purification device 10 as the comparative example 1 and in the case where the oxidation catalyst was disposed on the upstream side of the exhaust gas purification device 10 as the comparative example 2. The result is shown in FIG.

図3によれば、比較例1に比べて比較例2は排気ガスの温度上昇とNOx浄化率の向上が見られ、酸化触媒も効果があることが分かるが、更に、実施例では、比較例2よりも大きな効果を奏することができることが分かる。   According to FIG. 3, it can be seen that in Comparative Example 2 an increase in the temperature of the exhaust gas and an improvement in the NOx purification rate are seen compared to Comparative Example 1, and that the oxidation catalyst is also effective. It can be seen that an effect larger than 2 can be achieved.

図3において、3/57〜3/30までを示したが、3/10,5/5,3/3の場合においても、3/30と同様の結果が得られた。通常の場合は3/30で十分であるが、急速に昇温させる必要がある場合や、極寒地では必要に応じて3/3の制御を用いると良い。   In FIG. 3, 3/57 to 3/30 are shown, but in the case of 3/10, 5/5, and 3/3, the same result as 3/30 was obtained. In the normal case, 3/30 is sufficient, but in the case where it is necessary to raise the temperature rapidly or in extremely cold regions, 3/3 control may be used as necessary.

本発明に係る実施の形態の排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust-gas purification system of embodiment which concerns on this invention. 本発明に係る排気ガス浄化システムの制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the exhaust-gas purification system which concerns on this invention. 実施例と比較例1、2のNOx浄化触媒入口温度とNOx浄化率の変化を示す図である。It is a figure which shows the change of the NOx purification catalyst inlet_port | entrance temperature and NOx purification rate of an Example and Comparative Examples 1 and 2. FIG. 酸化セリウムの酸素吸蔵反応に関するギブスの自由エネルギーΔrG°と温度の関係を示す図である。It is a figure which shows the relationship between Gibbs free energy (DELTA) rGdegree and temperature regarding the oxygen storage reaction of cerium oxide. 酸化セリウムの酸素吸蔵反応に関する平衡定数Kpと温度の関係を示す図である。It is a figure which shows the relationship between the equilibrium constant Kp regarding oxygen storage reaction of cerium oxide, and temperature. NOx吸蔵還元型触媒とNOx直接還元型触媒の浄化率と触媒温度との関係を示す図である。It is a figure which shows the relationship between the purification rate of NOx occlusion reduction type catalyst and NOx direct reduction type catalyst, and catalyst temperature.

符号の説明Explanation of symbols

1 排気ガス浄化システム
2 エンジン
3 排気通路
10 排気ガス浄化装置
20 担持体
30 HC供給弁
40 制御装置
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification system 2 Engine 3 Exhaust passage 10 Exhaust gas purification apparatus 20 Carrier 30 HC supply valve 40 Control apparatus

Claims (7)

上流側に、排気ガスの空燃比状態がリッチ状態で酸素を放出し、リーン状態で酸素を吸蔵すると共に自己発熱する酸素貯蔵物質を担持した担持体を備え、下流側にNOx浄化触媒、又は、連続再生型DPFの少なくとも一方を備えたディーゼルエンジンの排気ガス浄化装置の昇温方法であって、所定の温度を、排気ガス温度がこの所定の温度以下の場合には、下流側の前記NOx浄化触媒、又は、前記連続再生型DPFの触媒が活性化しないという温度に設定し、前記担持体に流入する排気ガスの空燃比状態を、前記排気ガス浄化装置の再生制御時以外で、排気ガスの温度が前記所定の温度以下の場合に、交互にリッチ状態とリーン状態を繰り返すように制御して、前記酸素貯蔵物質の自己発熱作用により下流側の前記NOx浄化触媒、又は、前記連続再生型DPFの触媒を活性化させることを特徴とする排気ガス浄化装置の昇温方法。 The upstream side is provided with a carrier that releases oxygen when the air-fuel ratio of the exhaust gas is rich and stores oxygen in a lean state and carries an oxygen storage material that self-heats, and a NOx purification catalyst on the downstream side, or A method for raising the temperature of an exhaust gas purification device for a diesel engine equipped with at least one of a continuous regeneration type DPF , wherein when the exhaust gas temperature is equal to or lower than the predetermined temperature, the downstream side NOx purification is performed. The temperature of the exhaust gas flowing into the carrier is set to a temperature at which the catalyst or the catalyst of the continuous regeneration type DPF is not activated, and the exhaust gas flow rate is set at a temperature other than during regeneration control of the exhaust gas purification device. If the temperature is below the predetermined temperature, alternately controlled to repeat the rich state and a lean state, the NOx purification catalyst on the downstream side by the self-heating effect of the oxygen storage material, or Heating exhaust gas purification method and wherein the activating the catalyst of the continuous regeneration type DPF. 前記酸素貯蔵物質としてセリウム元素を含む物質を使用することを特徴とする請求項1記載の排気ガス浄化装置の昇温方法。   The method for raising the temperature of an exhaust gas purification apparatus according to claim 1, wherein a substance containing cerium element is used as the oxygen storage substance. 前記リッチ状態の時間と前記リーン状態の時間の割合をリッチ状態:リーン状態=3:57〜3:3とすると共に、リッチ継続時間を3s〜5s、リーン継続時間を3s〜60sとし、しかも、リッチ状態の時間よりもリーン状態の時間を大きくすることを特徴とする請求項1又は2に記載の排気ガス浄化装置の昇温方法。 The ratio of the rich state time and the lean state time is rich state: lean state = 3: 57-3: 3 , the rich duration time is 3 s-5 s, the lean duration time is 3 s-60 s, and The method for raising a temperature of an exhaust gas purifying apparatus according to claim 1 or 2, wherein the time for the lean state is made longer than the time for the rich state . NOx浄化触媒、又は、連続再生型DPFの少なくとも一方を備えた排気ガス浄化装置を配置したディーゼルエンジンの排気ガス浄化システムにおいて、排気ガスの空燃比状態がリッチ状態で酸素を放出し、リーン状態で酸素を吸蔵すると共に自己発熱する酸素貯蔵物質を担持した担持体を上流側に備えると共に、所定の温度を、排気ガス温度がこの所定の温度以下の場合には、下流側の前記NOx浄化触媒、又は、前記連続再生型DPFの触媒が活性化しないという温度に設定し、前記担持体に流入する排気ガスの空燃比状態を、前記排気ガス浄化装置の再生制御時以外で、排気ガスの温度が所定の温度以下の場合に、交互にリッチ状態とリーン状態を繰り返すように制御して、前記酸素貯蔵物質の自己発熱作用により下流側の前記NOx浄化触媒、又は、前記連続再生型DPFの触媒を活性化させる排気ガス空燃比制御手段を備えたことを特徴とする排気ガス浄化システム。 In an exhaust gas purification system for a diesel engine provided with an exhaust gas purification device provided with at least one of a NOx purification catalyst or a continuous regeneration type DPF , oxygen is released when the air-fuel ratio of the exhaust gas is rich, and in a lean state The upstream side is provided with a carrier carrying an oxygen storage substance that occludes oxygen and self-heats, and when the exhaust gas temperature is equal to or lower than the predetermined temperature, the downstream side NOx purification catalyst, Alternatively, the temperature of the exhaust gas that is set to a temperature at which the catalyst of the continuous regeneration type DPF is not activated and the air-fuel ratio state of the exhaust gas flowing into the carrier is set to a temperature other than during regeneration control of the exhaust gas purification device. If more than a predetermined temperature, alternately controlled to repeat the rich state and a lean state, the NOx on the downstream side by the self-heating effect of the oxygen storage material Catalyst, or an exhaust gas purification system characterized by comprising an exhaust gas air-fuel ratio control means for activating the catalyst of the continuous regeneration type DPF. 前記酸素貯蔵物質としてセリウム元素を含む物質を使用することを特徴とする請求項4記載の排気ガス浄化システム。   The exhaust gas purification system according to claim 4, wherein a substance containing a cerium element is used as the oxygen storage substance. 前記排気ガス空燃比制御手段が、前記リッチ状態の時間と前記リーン状態の時間の割合をリッチ状態:リーン状態=3:57〜3:3とすると共に、リッチ継続時間を3s〜5s、リーン継続時間を3s〜60sとし、しかも、リッチ状態の時間よりもリーン状態の時間を大きくすることを特徴とする請求項4又は5に記載の排気ガス浄化システム。 The exhaust gas air-fuel ratio control means sets the ratio of the rich state time to the lean state time to rich state: lean state = 3: 57 to 3: 3, and the rich continuation time is 3 s to 5 s, the lean continuation. 6. The exhaust gas purification system according to claim 4 , wherein the time is set to 3 s to 60 s, and the lean state time is set longer than the rich state time . 前記担持体において、前記セリウム元素を含む物質の担持量を50g/L〜200g/Lとすることを特徴とする請求項4〜6のいずれか1項に記載の排気ガス浄化システム。   The exhaust gas purification system according to any one of claims 4 to 6, wherein a loading amount of the substance containing the cerium element in the carrier is 50 g / L to 200 g / L.
JP2005023615A 2005-01-31 2005-01-31 Method for raising temperature of exhaust gas purification device and exhaust gas purification system Expired - Fee Related JP3885814B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005023615A JP3885814B2 (en) 2005-01-31 2005-01-31 Method for raising temperature of exhaust gas purification device and exhaust gas purification system
PCT/JP2006/300166 WO2006080187A1 (en) 2005-01-31 2006-01-11 Method of raising temperature of exhaust-gas purifier and exhaust-gas purification system
EP06711515.4A EP1857647A4 (en) 2005-01-31 2006-01-11 Method of raising temperature of exhaust-gas purifier and exhaust-gas purification system
US11/883,443 US7735313B2 (en) 2005-01-31 2006-01-11 Method of raising temperature in exhaust-gas purifier and exhaust-gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023615A JP3885814B2 (en) 2005-01-31 2005-01-31 Method for raising temperature of exhaust gas purification device and exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2006207549A JP2006207549A (en) 2006-08-10
JP3885814B2 true JP3885814B2 (en) 2007-02-28

Family

ID=36964670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023615A Expired - Fee Related JP3885814B2 (en) 2005-01-31 2005-01-31 Method for raising temperature of exhaust gas purification device and exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP3885814B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4197029B2 (en) 2006-11-02 2008-12-17 いすゞ自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification system, and exhaust gas purification method
JP4930722B2 (en) * 2007-12-25 2012-05-16 トヨタ自動車株式会社 Control device for internal combustion engine
EP2335809A1 (en) * 2009-12-21 2011-06-22 Bernhard Kahlert Method for cleaning a diesel exhaust gas
US9062569B2 (en) * 2010-10-29 2015-06-23 General Electric Company Systems, methods, and apparatus for regenerating a catalytic material
JP5774300B2 (en) * 2010-12-15 2015-09-09 日野自動車株式会社 Exhaust purification equipment
JP6551426B2 (en) * 2017-01-13 2019-07-31 トヨタ自動車株式会社 Exhaust purification system for internal combustion engine

Also Published As

Publication number Publication date
JP2006207549A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP3885813B2 (en) Method for raising temperature of exhaust gas purification device and exhaust gas purification system
US7735313B2 (en) Method of raising temperature in exhaust-gas purifier and exhaust-gas purification system
JP4417878B2 (en) Exhaust gas purification method and exhaust gas purification system
EP2149684B1 (en) Method of controlling nox purification system and nox purification system
JP4270224B2 (en) Exhaust gas purification device for internal combustion engine
JP4263711B2 (en) Exhaust gas purification device for internal combustion engine
JP4972914B2 (en) Exhaust gas purification system regeneration control method and exhaust gas purification system
US7669410B2 (en) Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system
JP5266865B2 (en) Exhaust gas purification system and control method thereof
JP3901194B2 (en) Exhaust gas purification method and exhaust gas purification system
WO2003083272A1 (en) Exhaust gas decontamination system and method of controlling the same
JP2005155374A (en) Exhaust emission control method and exhaust emission control system
JP5476677B2 (en) Exhaust gas purification method and exhaust gas purification system
JP5217102B2 (en) NOx purification system control method and NOx purification system
JP3885814B2 (en) Method for raising temperature of exhaust gas purification device and exhaust gas purification system
JPH09137716A (en) Emission control device for internal combustion engine
JP4887888B2 (en) Exhaust gas purification device for internal combustion engine
KR101807053B1 (en) Apparatus of purifying exhaust gas and regeneration method thereof
JP4561467B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2002295298A (en) Exhaust emission control system and its recovery control method
JP2019132227A (en) Exhaust emission control device of engine
JP3876905B2 (en) Desulfurization control method for exhaust gas purification system and exhaust gas purification system
JP5332664B2 (en) Engine exhaust purification system
JPWO2007029339A1 (en) Exhaust gas purification device and exhaust gas purification method for internal combustion engine
JP2007009810A (en) METHOD FOR CONTROLLING SULFUR PURGE OF NOx ELIMINATION SYSTEM AND NOx ELIMINATION SYSTEM

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees