JP4345484B2 - Exhaust gas purification method and exhaust gas purification system - Google Patents

Exhaust gas purification method and exhaust gas purification system Download PDF

Info

Publication number
JP4345484B2
JP4345484B2 JP2004001326A JP2004001326A JP4345484B2 JP 4345484 B2 JP4345484 B2 JP 4345484B2 JP 2004001326 A JP2004001326 A JP 2004001326A JP 2004001326 A JP2004001326 A JP 2004001326A JP 4345484 B2 JP4345484 B2 JP 4345484B2
Authority
JP
Japan
Prior art keywords
nox
exhaust gas
deterioration
gas purification
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004001326A
Other languages
Japanese (ja)
Other versions
JP2005194927A (en
Inventor
我部  正志
大治 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2004001326A priority Critical patent/JP4345484B2/en
Publication of JP2005194927A publication Critical patent/JP2005194927A/en
Application granted granted Critical
Publication of JP4345484B2 publication Critical patent/JP4345484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、NOx吸蔵還元型触媒を備えて、エンジンの排気ガス中のNOxを浄化する排気ガス浄化システムにおいて、このNOx吸蔵還元型触媒の担持貴金属の劣化の進捗状況を判断でき、この担持貴金属の劣化の進捗状況に対応させてリーン制御時間の最適化を図ることができる排気ガス浄化方法及び排気ガス浄化システムに関する。   The present invention provides a NOx occlusion reduction type catalyst, and in an exhaust gas purification system for purifying NOx in engine exhaust gas, it is possible to determine the progress of deterioration of the noble metal supported on this NOx occlusion reduction type catalyst. The present invention relates to an exhaust gas purification method and an exhaust gas purification system that can optimize the lean control time in accordance with the progress of deterioration of the exhaust gas.

自動車の内燃機関や据置式の内燃機関等の排気ガスから、PM(パテイキュレート・マター:粒子状物質)やNOx(窒素酸化物)を除去して排気ガスを浄化するための排気ガス浄化装置について種々の研究や提案がなされており、特に、自動車等の排気ガスを浄化するために、NOxに対してはNOx吸蔵還元型触媒や三元触媒等のNOx浄化触媒が使用されている。   Exhaust gas purifier for purifying exhaust gas by removing PM (particulate matter) and NOx (nitrogen oxide) from exhaust gas of automobile internal combustion engine and stationary internal combustion engine, etc. Various studies and proposals have been made, and in particular, NOx storage catalysts such as NOx storage reduction catalysts and three-way catalysts are used for NOx in order to purify exhaust gas from automobiles and the like.

このNOx吸蔵還元型触媒は、図5に示すような構造のモノリスハニカム30M等で形成されており、このモノリスハニカム30Mは、図6に示すように、コージィエライト若しくはステンレスで形成された構造材の担体31に、多数の多角形のセル30Sを形成して構成される。このセル30Sの壁面には図6及び図7に示すように、アルミナ(Al2 3 )やゼオライトで形成された触媒担持層となる多孔質の触媒コート層34が設けられ、この排気ガスと接触する表面積を稼いでいる触媒コート層34の表面に担持貴金属(触媒活性金属)32とNOx吸蔵材(NOx吸蔵物質:NOx吸蔵剤:NOx吸収剤)33を担持し、これらにより触媒機能を発生させている。 This NOx occlusion reduction type catalyst is formed by a monolith honeycomb 30M or the like having a structure as shown in FIG. 5, and this monolith honeycomb 30M is a structural material made of cordierite or stainless steel as shown in FIG. A plurality of polygonal cells 30S are formed on the carrier 31. As shown in FIGS. 6 and 7, a porous catalyst coat layer 34 serving as a catalyst support layer formed of alumina (Al 2 O 3 ) or zeolite is provided on the wall surface of the cell 30S. A supported noble metal (catalytically active metal) 32 and a NOx occlusion material (NOx occlusion material: NOx occlusion agent: NOx absorbent) 33 are carried on the surface of the catalyst coat layer 34 which has a surface area to be contacted, thereby generating a catalytic function. I am letting.

図8及び図9にNOx吸蔵還元型触媒の担持層表面の触媒物質32,33の配置とNOx吸蔵還元メカニズムを示す。このNOx吸蔵還元型触媒は、触媒コート層34に、酸化機能を持つ白金(Pt)等の担持貴金属32とNOx吸蔵機能を持つカリウム(K)、ナトリウム(Na)、リチウム(Li)、セシウム(Cs)等のアルカリ金属、バリウム(Ba)、カルシウム(Ca)等のアルカリ土類金属、ランタン(La)、イットリウム(Y)等の希土類等の中から幾つかから形成されるNOx吸蔵材33が担持され、排気ガス中の酸素濃度によってNOx吸蔵とNOx放出・浄化の二つの機能を持っている。   8 and 9 show the arrangement of the catalyst substances 32 and 33 on the surface of the support layer of the NOx occlusion reduction catalyst and the NOx occlusion reduction mechanism. This NOx occlusion reduction type catalyst has a catalyst coat layer 34 with a supported noble metal 32 such as platinum (Pt) having an oxidation function and potassium (K), sodium (Na), lithium (Li), cesium (NOx occlusion function). NOx occlusion material 33 formed from some of alkali metals such as Cs), alkaline earth metals such as barium (Ba) and calcium (Ca), and rare earths such as lanthanum (La) and yttrium (Y). It is supported and has two functions, NOx occlusion and NOx release / purification, depending on the oxygen concentration in the exhaust gas.

そして、図8に示すように、通常のディーゼルエンジン、希薄燃焼ガソリンエンジン等の排気ガス中に酸素(O2 )が含まれる排気ガスの空燃比がリーン空燃比状態の場合には、排気ガス中に含まれる酸素によって、エンジンから排出される一酸化窒素(NO)を担持貴金属32の酸化触媒機能によって二酸化窒素(NO2 )に酸化する。そして、その二酸化窒素をNOx吸蔵機能を持つバリウム等のNOx吸蔵材33に硝酸塩のかたちで吸蔵し、NOxを浄化する。 As shown in FIG. 8, when the air-fuel ratio of the exhaust gas containing oxygen (O 2 ) in the exhaust gas of a normal diesel engine, lean-burn gasoline engine or the like is a lean air-fuel ratio state, Oxygen contained in the gas causes nitrogen monoxide (NO) discharged from the engine to be oxidized into nitrogen dioxide (NO 2 ) by the oxidation catalyst function of the supported noble metal 32. Then, the nitrogen dioxide is occluded in the form of nitrate in the NOx occlusion material 33 such as barium having NOx occlusion function to purify NOx.

しかし、このままであるとNOx吸蔵機能を持つNOx吸蔵材33は、全て硝酸塩に変化してNOx吸蔵機能を失ってしまう。そこで、エンジンの運転条件を変えたり、排気通路中に燃料噴射をしたりして、排気ガス中に酸素が存在しないで、一酸化炭素(CO)濃度が高く、排気温度も高い排気ガス、即ち、過濃燃焼排気ガスを作り出し触媒に送る。   However, in this state, the NOx occlusion material 33 having the NOx occlusion function is all changed to nitrate and loses the NOx occlusion function. Therefore, by changing the operating conditions of the engine or injecting fuel into the exhaust passage, there is no oxygen in the exhaust gas, the exhaust gas having a high carbon monoxide (CO) concentration and a high exhaust temperature, that is, , Create rich combustion exhaust gas and send it to the catalyst.

そして、図9に示すように、排気ガス中に酸素が無く、一酸化炭素濃度が高く、排気ガス温度が上昇したリッチ空燃比状態にすると、NOxを吸蔵した硝酸塩は二酸化窒素を放出し元のバリウム等に戻る。この放出された二酸化窒素を、排気ガス中に酸素が存在しないので、担持貴金属32の酸化機能により、排気ガス中の一酸化炭素,炭化水素(HC),水素(H2 )を還元剤として、水(H2 O),二酸化炭素(CO2 ),窒素(N2 )に還元し浄化する。 Then, as shown in FIG. 9, when the exhaust gas has no oxygen, the carbon monoxide concentration is high, and the exhaust gas temperature is raised to a rich air-fuel ratio state, the nitrate that occludes NOx releases nitrogen dioxide and releases the original nitrogen dioxide. Return to barium etc. Since the released nitrogen dioxide has no oxygen in the exhaust gas, carbon monoxide, hydrocarbons (HC), hydrogen (H 2 ) in the exhaust gas are used as a reducing agent by the oxidation function of the supported noble metal 32. Reduce to water (H 2 O), carbon dioxide (CO 2 ), nitrogen (N 2 ) and purify.

しかし、このNOx吸蔵還元型触媒には、NOx吸蔵材に関する硫黄被毒や劣化の問題や担持貴金属に関する劣化の問題がある。   However, this NOx occlusion reduction type catalyst has a problem of sulfur poisoning and deterioration relating to the NOx occlusion material and a problem of deterioration relating to the supported noble metal.

このNOx吸蔵材の硫黄被毒は、NOx吸蔵材がNOxよりも、燃料中の硫黄に起因する排気ガス中に含まれる二酸化硫黄(SO2 )を選択的に吸蔵するために生じ、この硫黄被毒に対しては、燃料中の硫黄量を低減する対策や、硫黄被毒によりNOx浄化に支障が生じるようになった時に、排気ガスを昇温すると共に無酸素状態にして、硫黄脱離(サルファパージ)してNOx吸蔵材のNOx吸蔵能力を回復する等の対策が取られている。 This sulfur poisoning of the NOx occlusion material occurs because the NOx occlusion material selectively occludes sulfur dioxide (SO 2 ) contained in the exhaust gas caused by sulfur in the fuel rather than NOx. For poison, measures to reduce the amount of sulfur in the fuel and when NOx purification is hindered by sulfur poisoning, the exhaust gas is heated and made oxygen-free and sulfur desorbed ( Measures are taken such as recovering the NOx storage capacity of the NOx storage material by sulfur purge).

また、NOx吸蔵剤の吸蔵能力の低下を推定するものの一つとして、NOx吸蔵還元型触媒の下流に酸素濃度センサを配設し、リッチ燃焼時における酸素濃度センサの出力値の大きさに基づいてNOx吸蔵能力を推定する推定手段を備えた内燃機関の排気浄化装置が提案されている(例えば、特許文献1参照。)。   Further, as one of the methods for estimating the decrease in the storage capacity of the NOx storage agent, an oxygen concentration sensor is disposed downstream of the NOx storage reduction catalyst, and based on the magnitude of the output value of the oxygen concentration sensor during rich combustion. An exhaust emission control device for an internal combustion engine having an estimation means for estimating NOx storage capacity has been proposed (see, for example, Patent Document 1).

また、硫黄被毒以外のNOx吸蔵材の劣化を判定するものとして、リフレッシュが可能なNOx吸蔵材の硫黄被毒以外の、NOx吸収剤に亀裂が生じる等の熱劣化によるリフレッシュが不可能なNOx吸蔵材自体の劣化を、硫黄脱離を実行した後のリーン制御運転における出口側NOx濃度が基準値より大きい場合にNOx吸収剤自身が劣化していると判定する排気ガス浄化用触媒の劣化判定装置が提案されている(例えば、特許文献2参照。)。   Further, as a means for determining the deterioration of NOx storage materials other than sulfur poisoning, NOx that cannot be refreshed due to thermal deterioration such as cracking in the NOx absorbent other than sulfur poisoning of NOx storage materials that can be refreshed. Deterioration determination of the exhaust gas purification catalyst for determining deterioration of the storage material itself when the NOx concentration on the outlet side in the lean control operation after performing sulfur desorption is larger than the reference value. An apparatus has been proposed (see, for example, Patent Document 2).

しかしながら、これらの装置では、NOx吸蔵還元型触媒の劣化の進捗状況を、NOx吸蔵量の変化により判定しているので、NOx吸蔵材の劣化を判定していることになり、担持貴金属の劣化に関しての判定は行われていないという問題がある。   However, in these apparatuses, since the progress of the deterioration of the NOx storage reduction catalyst is determined by the change in the NOx storage amount, the deterioration of the NOx storage material is determined. There is a problem that this determination is not made.

この担持貴金属の劣化は、担持貴金属がSOx被毒や熱劣化によるシンタリング(焼結)のために生じる。この担持貴金属の劣化が生じると担持貴金属の酸化還元機能が低下するため、NOx吸蔵還元型触媒のNOx吸蔵能力の再生や脱硫(サルファパージ)に際してのリッチ制御運転によって、NOx吸蔵材から二酸化窒素を放出する場合に、放出された二酸化窒素を十分に還元することができなくなり、NOxの触媒下流側への流出の原因となる。   The deterioration of the supported noble metal occurs because the supported noble metal is sintered (sintered) due to SOx poisoning or thermal deterioration. When the supported noble metal is deteriorated, the oxidation / reduction function of the supported noble metal is lowered. Therefore, nitrogen dioxide is removed from the NOx occlusion material by the rich control operation at the time of regeneration or desulfurization (sulfur purge) of the NOx occlusion reduction type catalyst. In the case of release, the released nitrogen dioxide cannot be sufficiently reduced, causing NOx to flow out downstream of the catalyst.

そして、この担持貴金属の劣化によってもNOxの浄化性能は低下するので、従来技術におけるNOx吸蔵材の劣化の判定だけでは、正確にNOx吸蔵還元型触媒としての劣化を判定することができず、触媒劣化に対して適切な対応ができないため、全体としてのNOx浄化性能が低下してしまうという問題がある。   Further, since the NOx purification performance also decreases due to the deterioration of the supported noble metal, the deterioration as the NOx occlusion reduction type catalyst cannot be accurately determined only by the determination of the deterioration of the NOx occlusion material in the prior art. There is a problem that the NOx purification performance as a whole deteriorates because it is impossible to appropriately deal with the deterioration.

一方、本発明者らは、実験などにより、この担持貴金属の劣化に関して次のような知見を得た。   On the other hand, the present inventors obtained the following knowledge regarding the deterioration of the supported noble metal through experiments and the like.

図4に模式的に示すように、NOx吸蔵還元型触媒においては、リーン制御運転からリッチ制御運転に切り替えた時に、排気ガスの空燃比状態がリッチ状態に切り替わったと同時に、下流側NOx濃度は急激に増加する。これは、リッチ条件下でNOx吸蔵材から放出されるNOxが担持貴金属によって還元され浄化されるが、放出されたNOxの一部がN2 に還元されずに触媒下流側に流出(NOxスリップ)するためである。 As schematically shown in FIG. 4, in the NOx occlusion reduction type catalyst, when the lean control operation is switched to the rich control operation, the exhaust gas air-fuel ratio is switched to the rich state, and at the same time, the downstream NOx concentration rapidly increases. To increase. This is because NOx released from the NOx occlusion material under a rich condition is reduced and purified by the supported noble metal, but a part of the released NOx is not reduced to N 2 but flows out downstream of the catalyst (NOx slip). It is to do.

そして、この触媒下流に流出するNOx量は、担持貴金属の劣化による還元能力の低下によって増加するため、このリッチ制御運転時の所定の時間tm におけるNOx濃度を測定することにより、担持貴金属の劣化状態を判定できることになる。しかし、この触媒下流に流出するNOx量は、単に担持貴金属の劣化だけに依存せず、排気ガス中の酸素濃度、触媒温度、前回(前サイクル)のリーン制御時間によっても影響を受ける。
特開2000−34946号公報 特開2000−230417号公報 (第3頁、第8頁)
Since the amount of NOx flowing out downstream of the catalyst increases due to a reduction in reduction ability due to deterioration of the supported noble metal, the deterioration state of the supported noble metal is measured by measuring the NOx concentration at a predetermined time tm during the rich control operation. Can be determined. However, the amount of NOx flowing downstream of the catalyst does not depend solely on the deterioration of the supported noble metal, but is also affected by the oxygen concentration in the exhaust gas, the catalyst temperature, and the previous (previous cycle) lean control time.
JP 2000-34946 A JP 2000-230417 A (page 3, page 8)

本発明の目的は、上記の知見を得て、リーン制御運転からリッチ制御運転に切り替わった初期における最大NOxスリップ量をモニターすることにより、担持貴金属の劣化の進捗状況を判定し、この判定を基に、次回のリーン制御運転におけるリーン制御時間を担持貴金属の劣化の進捗状況に見合う時間とすることにより、担持貴金属の劣化によるNOx浄化率の低下を防ぐことができる排気ガス浄化方法及び排気ガス浄化システムを提供することにある。   The object of the present invention is to determine the progress of deterioration of the supported noble metal by monitoring the maximum NOx slip amount at the initial stage when the lean control operation is switched to the rich control operation, based on the above knowledge. In addition, by setting the lean control time in the next lean control operation to a time commensurate with the progress of the deterioration of the supported noble metal, the exhaust gas purification method and the exhaust gas purification that can prevent the NOx purification rate from being lowered due to the deterioration of the supported noble metal To provide a system.

より詳細には、本発明は、NOx吸蔵還元型触媒において、NOxを吸蔵するためのNOx吸蔵材と、NOx吸蔵材から放出されるNOxを還元浄化するための担持貴金属とが、異なる劣化を起こすことに鑑み、NOx吸蔵材の硫黄被毒劣化や熱劣化や経時変化等ではなく、担持貴金属の劣化具合を判定することにより、例えNOx吸蔵材が劣化していなくても、担持貴金属の劣化に応じて、NOxを吸蔵する時間であるリーン制御時間を補正して、リーン制御時間内に吸蔵するNOx吸蔵量、即ち、リッチ状態におけるNOx放出量を担持貴金属の還元能力に合わせることにより、触媒下流側へのNOxの放出を防止することができる排気ガス浄化方法及び排気ガス浄化システムを提供することにある。   More specifically, according to the present invention, in the NOx storage reduction catalyst, the NOx storage material for storing NOx and the supported noble metal for reducing and purifying NOx released from the NOx storage material cause different deterioration. In view of this, it is possible to determine the deterioration of the supported noble metal even if the NOx storage material is not deteriorated by determining the deterioration degree of the supported noble metal, not the sulfur poisoning deterioration, thermal deterioration, change with time, etc. Accordingly, the lean control time, which is the time for storing NOx, is corrected, and the NOx occlusion amount stored within the lean control time, that is, the NOx release amount in the rich state is adjusted to the reducing ability of the supported noble metal, so that It is an object of the present invention to provide an exhaust gas purification method and an exhaust gas purification system that can prevent the release of NOx to the side.

上記の目的を達成するための排気ガス浄化方法は、エンジンの排気ガス中のNOxを浄化する排気ガス浄化システムであって、流入する排気ガスの空燃比状態が、リーン状態の場合にNOxを吸蔵し、リッチ状態の場合にNOxを放出及び還元するNOx吸蔵還元型触媒を備えると共に、該NOx吸蔵還元型触媒の下流側NOx濃度を検出するNOx濃度検出手段を備え、リーン制御運転とリッチ制御運転を繰り返す排気ガス浄化システムにおいて、前記リッチ制御運転時における、前記NOx濃度検出手段により検出されるNOx濃度により定められる値と、直前のリーン制御時間により定められるNOx放出許容値との比較により、前記NOx吸蔵還元型触媒の担持貴金属の劣化の進捗状況を判定することを特徴とする方法である。 An exhaust gas purification method for achieving the above object is an exhaust gas purification system that purifies NOx in engine exhaust gas, and stores NOx when the air-fuel ratio of the inflowing exhaust gas is lean. And a NOx occlusion reduction type catalyst that releases and reduces NOx in a rich state, and further includes NOx concentration detection means that detects the NOx concentration downstream of the NOx occlusion reduction type catalyst, and performs lean control operation and rich control operation. In the exhaust gas purification system that repeats the above, by comparing the value determined by the NOx concentration detected by the NOx concentration detecting means during the rich control operation with the NOx release allowable value determined by the immediately preceding lean control time , This is a method characterized in that the progress of deterioration of the noble metal supported on the NOx storage reduction catalyst is determined.

この排気ガス浄化方法によれば、測定NOx濃度等とNOx放出許容値との比較により担持貴金属が劣化しているか否かの判定を行えるだけでなく、測定NOx濃度等とNOx放出許容値との差により、NOx吸蔵還元型触媒の担持貴金属の劣化の進捗状況も精度よく判定することができる。また、下流側NOx濃度と上流側NOx濃度の差を使用した場合は、下流側NOx濃度を使用する場合よりも、精度が高くなる。   According to this exhaust gas purification method, it is possible not only to determine whether or not the supported noble metal has deteriorated by comparing the measured NOx concentration and the NOx release allowable value, but also the measured NOx concentration and the NOx release allowable value. Based on the difference, it is possible to accurately determine the progress of deterioration of the noble metal supported on the NOx storage reduction catalyst. Further, when the difference between the downstream NOx concentration and the upstream NOx concentration is used, the accuracy is higher than when the downstream NOx concentration is used.

また、上記の排気ガス浄化方法において、前記NOx濃度検出手段が前記NOx吸蔵還元型触媒の上流側NOx濃度を検出する手段を備え、下流側NOx濃度と上流側NOx濃度の差と、前記NOx放出許容値との比較により、前記担持貴金属の劣化の進捗状況を判定する。
そして、上記の排気ガス浄化方法において、前記NOx吸蔵還元型触媒の担持貴金属の劣化が大きい程、次回のリーン制御時間を短くすることにより、担持貴金属の還元能力に対応させたリーン制御運転時のNOx吸蔵量、即ち、リッチ制御運転時のNOx放出量にすることができるので、特にリッチ制御運転時のNOx浄化率の低下を防止できる。
Further, in the above exhaust gas purification method, the NOx concentration detection means includes means for detecting the upstream NOx concentration of the NOx storage reduction catalyst, and the difference between the downstream NOx concentration and the upstream NOx concentration, and the NOx release. The progress of deterioration of the supported noble metal is determined by comparison with an allowable value.
In the exhaust gas purification method described above, the greater the deterioration of the supported noble metal of the NOx occlusion reduction catalyst, the shorter the next lean control time, so that the lean control operation time corresponding to the reduction capability of the supported noble metal is reduced. Since the NOx occlusion amount, that is, the NOx release amount during the rich control operation can be set, it is possible to prevent the NOx purification rate from being lowered particularly during the rich control operation.

また、上記の排気ガス浄化方法において、前記NOx放出許容値を、少なくとも、リッチ制御運転時の前記NOx吸蔵還元型触媒の触媒温度、及び、リッチ制御運転時の前記NOx吸蔵還元型触媒の上流側酸素濃度により定めることにより、より精度よくNOx吸蔵還元型触媒の担持貴金属の劣化を判定することができる。なお、この触媒温度は、直接計測してもよいが、NOx吸蔵還元型触媒の上流側(入口側)排気ガス温度や上流側排気ガス温度と下流側(出口側)排気ガス温度から推定してもよい。 Further, Oite the exhaust gas purification method described above, the NOx emission tolerance, at least, of the NOx storage reduction catalyst during the rich control operation the catalyst temperature, and, of the NOx storage reduction catalyst during the rich control operation By determining the upstream oxygen concentration, it is possible to determine the deterioration of the noble metal supported on the NOx storage reduction catalyst with higher accuracy. The catalyst temperature may be measured directly, but is estimated from the upstream (inlet side) exhaust gas temperature, the upstream exhaust gas temperature and the downstream (outlet side) exhaust gas temperature of the NOx storage reduction catalyst. Also good.

そして、上記の排気ガス浄化方法において、前記NOx放出許容値を、前記直前のリーン制御時間が長い程大きく、前記触媒温度が高い程低く、前記上流側酸素濃度が高い程大きくなるように定めることにより、より精度よくNOx吸蔵還元型触媒の担持貴金属の劣化を判定することができる。   In the exhaust gas purification method, the allowable NOx release value is determined such that it increases as the preceding lean control time increases, decreases as the catalyst temperature increases, and increases as the upstream oxygen concentration increases. Thus, it is possible to determine the deterioration of the supported noble metal of the NOx storage reduction catalyst with higher accuracy.

そして、上記の目的を達成するための排気ガス浄化システムは、エンジンの排気ガス中のNOxを浄化する排気ガス浄化システムであって、流入する排気ガスの空燃比状態が、リーン状態の場合にNOxを吸蔵し、リッチ状態の場合にNOxを放出及び還元するNOx吸蔵還元型触媒を備えると共に、該NOx吸蔵還元型触媒の下流側NOx濃度を検出するNOx濃度検出手段と触媒劣化判定手段を有し、リーン制御運転とリッチ制御運転を繰り返す制御手段を備えた排気ガス浄化システムにおいて、前記触媒劣化判定手段が、リッチ制御運転時における、前記NOx濃度検出手段により検出されるNOx濃度により定められる値と、直前のリーン制御時間により定められるNOx放出許容値との比較により、前記NOx吸蔵還元型触媒の担持貴金属の劣化の進捗状況を判定するように構成される。この構成によれば、NOx吸蔵還元型触媒の担持貴金属の劣化を精度よく判定することができる。 An exhaust gas purification system for achieving the above object is an exhaust gas purification system that purifies NOx in the exhaust gas of the engine. When the air-fuel ratio of the inflowing exhaust gas is lean, the NOx A NOx storage reduction catalyst that stores NOx in a rich state and releases and reduces NOx, and has a NOx concentration detection means and a catalyst deterioration determination means for detecting the NOx concentration downstream of the NOx storage reduction catalyst. in the exhaust gas purification system provided with a control means to repeat the lean control operation and the rich control operation, the catalyst deterioration determining means, definitive during the rich control operation, the value determined by NOx concentration detected by the NOx concentration detecting means , by comparison with the NOx emission allowable value determined by the lean control time immediately before, of the NOx storage reduction catalyst responsible Configured to determine the progress of the precious metal of deterioration. According to this configuration, it is possible to accurately determine the deterioration of the noble metal supported on the NOx storage reduction catalyst.

また、上記の排気ガス浄化システムにおいて、前記NOx濃度検出手段が前記NOx吸蔵還元型触媒の上流側NOx濃度を検出する手段を備え、下流側NOx濃度と上流側NOx濃度の差と、前記NOx放出許容値との比較により、前記担持貴金属の劣化の進捗状況を判定するように構成する。
更に、排気ガス浄化システムにおいて、前記NOx吸蔵還元型触媒の担持貴金属の劣化が大きい程、次回のリーン制御時間を短くすることにより、NOx浄化率の低下を防止できる。
In the above exhaust gas purification system, the NOx concentration detecting means includes means for detecting the upstream NOx concentration of the NOx storage reduction catalyst, and the difference between the downstream NOx concentration and the upstream NOx concentration, and the NOx release. The progress of deterioration of the supported noble metal is determined by comparison with an allowable value.
Further, in the exhaust gas purification system, a decrease in the NOx purification rate can be prevented by shortening the next lean control time as the deterioration of the noble metal supported on the NOx storage reduction catalyst increases.

本発明の排気ガス浄化方法及び排気ガス浄化システムによれば、NOx吸蔵還元型触媒の担持貴金属の劣化の進捗状況を精度よく判定することができ、更に、この担持貴金属の劣化の進捗状況に基づいて低下したNOx還元能力を考慮して、このNOx還元能力の低下に応じたNOx吸蔵量になるように次回のリーン制御時間を設定するので、次回のリッチ制御運転時におけるNOx放出量を劣化した担持貴金属のNOx還元能力に合わせることができ、NOx吸蔵還元型触媒の下流側へのNOx流出を防止できる。従って、NOx浄化率の低下を防ぐことができる。   According to the exhaust gas purification method and exhaust gas purification system of the present invention, it is possible to accurately determine the progress of deterioration of the supported noble metal of the NOx storage reduction catalyst, and based on the progress of deterioration of the supported noble metal. In consideration of the reduced NOx reduction capability, the next lean control time is set so that the NOx occlusion amount corresponds to the decrease in the NOx reduction capability, so that the NOx release amount during the next rich control operation is deteriorated. It is possible to match the NOx reduction ability of the supported noble metal, and to prevent NOx outflow to the downstream side of the NOx occlusion reduction type catalyst. Accordingly, it is possible to prevent a decrease in the NOx purification rate.

以下、本発明に係る実施の形態の排気ガス浄化方法及び排気ガス浄化システムについて図面を参照しながら説明する。なお、本発明は、担持貴金属の劣化を問題にしているため、以下の実施の形態では、NOx吸蔵材の劣化については説明から省略しているが、実際の排気ガス浄化方法及び排気ガス浄化システムでは、NOx吸蔵材の劣化の判定や劣化対策が併用される。   Hereinafter, an exhaust gas purification method and an exhaust gas purification system according to embodiments of the present invention will be described with reference to the drawings. Since the present invention has a problem of deterioration of the supported noble metal, in the following embodiments, the deterioration of the NOx storage material is omitted from the description, but the actual exhaust gas purification method and exhaust gas purification system are omitted. Then, determination of deterioration of NOx occlusion material and measures against deterioration are used in combination.

図1に、本発明の実施の形態の排気ガス浄化システム1の構成を示す。この排気ガス浄化システム1は、NOx吸蔵還元型触媒10を備えて構成され、このNOx吸蔵還元型触媒10の上流側即ち入口側には、上流側(入口側)酸素濃度センサ11、上流側(入口側)NOx濃度センサ12、上流側(入口側)排気ガス温度センサ13が設けられ、下流側即ち出口側には、上流側(出口側)排気ガス温度センサ14、上流側(出口側)NOx濃度センサ15が設けられる。そして、このエンジン(内燃機関)Eは、コモンレール電子制御噴射装置付きエンジンで構成される。   FIG. 1 shows a configuration of an exhaust gas purification system 1 according to an embodiment of the present invention. The exhaust gas purification system 1 includes a NOx occlusion reduction type catalyst 10. An upstream side (inlet side) oxygen concentration sensor 11, an upstream side ( An inlet side) NOx concentration sensor 12 and an upstream side (inlet side) exhaust gas temperature sensor 13 are provided, and an upstream side (outlet side) exhaust gas temperature sensor 14 and an upstream side (outlet side) NOx are provided on the downstream side, that is, the outlet side. A density sensor 15 is provided. And this engine (internal combustion engine) E is comprised with an engine with a common rail electronically controlled injection apparatus.

そして、NOx吸蔵還元型触媒10は、図4〜図7に示すようなモノリス触媒30Mで形成され、アルミナ(Al2 3 )等の多孔質の触媒コート層34に、NOxに対して酸化機能を持つ白金(Pt)等の担持貴金属(触媒金属)32と、ナトリウム(Na),カリウム(K),セシウム(Cs)等のアルカリ金属、カルシウム(Ca),バリウム(Ba)等のアルカリ土類金属、イットリウム(Y),ランタン(La)等の希土類等の中の一つ又は幾つかの組合せからなるNOx吸蔵機能を持つNOx吸蔵材33が担持させて構成される。 The NOx occlusion reduction type catalyst 10 is formed of a monolithic catalyst 30M as shown in FIGS. 4 to 7, and has an oxidation function with respect to NOx on a porous catalyst coat layer 34 such as alumina (Al 2 O 3 ). Supported noble metal (catalyst metal) 32 such as platinum (Pt), and alkali metals such as sodium (Na), potassium (K) and cesium (Cs), and alkaline earths such as calcium (Ca) and barium (Ba) A NOx occlusion material 33 having a NOx occlusion function made of one or some combination of metals, rare earths such as yttrium (Y) and lanthanum (La) is supported.

このNOx吸蔵還元型触媒10では、ディーゼルエンジンや希薄燃焼ガソリンエンジン等の通常の運転状態のように、排気ガス中の酸素濃度が高い排気ガス条件(リーン空燃比状態)のリーン制御運転では、図8に示すように、排出される一酸化窒素(NO)が触媒金属の酸化機能により、排気ガス中に含まれる酸素(O2 )で酸化されて二酸化窒素(NO2 )となり、このNO2 は、NOx吸蔵材33で塩化物のかたちで吸蔵されるので、排気ガスは浄化される。 In the NOx occlusion reduction type catalyst 10, in the lean control operation under the exhaust gas condition (lean air-fuel ratio state) in which the oxygen concentration in the exhaust gas is high, as in the normal operation state of a diesel engine, the lean combustion gasoline engine, etc., as shown in 8, by oxidation function of nitrogen monoxide (NO) is a catalyst metal to be discharged, the oxygen (O 2) in the oxidized nitrogen dioxide (NO 2) becomes contained in the exhaust gas, the NO 2 is Since the NOx occlusion material 33 is occluded in the form of chloride, the exhaust gas is purified.

しかし、このNOxの吸蔵が継続すると、バリウム等のNOx吸蔵材33は、硝酸塩に変化し、次第に飽和してNO2 を吸蔵する機能を失ってしまう。そのため、排気ガスの空燃比がリーン状態の時に吸蔵したNOxを、NOx吸蔵能力が飽和に達する前に、放出させる必要があり、エンジンの運転条件を変えて過濃燃焼を行うリッチ制御運転を実施して、低酸素濃度、高一酸化炭素濃度で排気温度の高い排気ガス(リッチスパイクガス)を発生させてNOx吸蔵還元型触媒10に供給する。 However, if this NOx occlusion continues, the NOx occlusion material 33 such as barium changes to nitrate, gradually saturates and loses the function to occlude NO 2 . Therefore, it is necessary to release the NOx stored when the air-fuel ratio of the exhaust gas is in the lean state before the NOx storage capacity reaches saturation. Then, an exhaust gas (rich spike gas) having a low oxygen concentration and a high carbon monoxide concentration and a high exhaust temperature is generated and supplied to the NOx storage reduction catalyst 10.

この排気ガスのリッチ空燃比状態では、図9に示すように、NO2 を吸蔵し硝酸塩に変化したNOx吸蔵材33は、吸蔵していたNO2 を放出し、元のバリウム等に戻る。この放出されたNO2 は、排気ガス中にO2 が存在しないので、排気ガス中の一酸化炭素(CO),炭化水素(HC),水素(H2 )を還元剤として担持貴金属32上で還元され、窒素(N2 )及び水(H2 O),二酸化炭素(CO2 )に変換され浄化される。 In this exhaust gas rich air-fuel ratio state, as shown in FIG. 9, the NOx occlusion material 33 that has occluded NO 2 and changed to nitrate releases the occluded NO 2 and returns to the original barium or the like. Since this released NO 2 does not contain O 2 in the exhaust gas, carbon monoxide (CO), hydrocarbon (HC), hydrogen (H 2 ) in the exhaust gas is used as a reducing agent on the supported noble metal 32. It is reduced, converted into nitrogen (N 2 ), water (H 2 O), carbon dioxide (CO 2 ) and purified.

また、センサ11,12,13,14,15の出力値は、エンジンEの運転の全般的な制御を行うと共にNOx吸蔵還元型触媒10のNOx浄化能力の回復を図る再生制御、脱硫(サルファパージ)制御等を行う制御装置(ECU:エンジンコントロールユニット)50に入力され、この制御装置50から出力される制御信号により、エンジンEの燃料噴射用のコモンレール電子制御燃料噴射装置や絞り弁やEGR弁等が制御される。   Further, the output values of the sensors 11, 12, 13, 14, and 15 are used to perform general control of the operation of the engine E, and at the same time, regeneration control and desulfurization (sulfur purge) to recover the NOx purification ability of the NOx storage reduction catalyst 10. ) A control device (ECU: engine control unit) 50 that performs control and the like, and a control signal output from the control device 50 causes a common rail electronic control fuel injection device, a throttle valve, and an EGR valve for fuel injection of the engine E Etc. are controlled.

そして、排気ガス浄化システム1の制御装置が、エンジンEの制御装置50に組み込まれ、エンジンEの運転制御と共に、排気ガス浄化システム1の制御を行う。この排気ガス浄化システム1の制御装置は、図2に示すような、排気ガス成分検出手段C10、NOx吸蔵還元型触媒の制御手段C20等を有する排気ガス浄化システムの制御手段C1を備えて構成される。   A control device of the exhaust gas purification system 1 is incorporated in the control device 50 of the engine E, and controls the exhaust gas purification system 1 together with the operation control of the engine E. The control device of the exhaust gas purification system 1 includes an exhaust gas purification system control means C1 having an exhaust gas component detection means C10, a NOx storage reduction catalyst control means C20, and the like as shown in FIG. The

この排気ガス成分検出手段C10は、排気ガス中の酸素濃度(又は空気過剰率λ)検出手段やNOx濃度を検出するNOx濃度検出手段を含んだ手段であり、上流側酸素濃度センサ11、上流側NOx濃度センサ12、下流側NOx濃度センサ15等により構成される。   The exhaust gas component detection means C10 is a means including oxygen concentration (or excess air ratio λ) detection means in the exhaust gas and NOx concentration detection means for detecting the NOx concentration. The upstream oxygen concentration sensor 11 and the upstream side The NOx concentration sensor 12, the downstream NOx concentration sensor 15 and the like are configured.

NOx吸蔵還元型触媒の制御手段C20は、NOx吸蔵還元型触媒10の再生や脱硫等の制御を行う手段であり、再生開始判断手段C21、再生制御手段C22、脱硫開始判断手段C23、脱硫制御手段C24、脱硫終了判断手段C25等を有して構成されるが、本発明では、更に、担持貴金属劣化判定手段C26、リーン制御時間設定手段C27を備えて構成される。   The NOx occlusion reduction type catalyst control means C20 is a means for controlling regeneration, desulfurization, etc. of the NOx occlusion reduction type catalyst 10, and a regeneration start judgment means C21, a regeneration control means C22, a desulfurization start judgment means C23, a desulfurization control means. C24, desulfurization completion determination means C25, and the like are provided, but the present invention further includes supported noble metal deterioration determination means C26 and lean control time setting means C27.

このNOx吸蔵還元型触媒10の制御手段C20では、再生開始判断手段C21により、排気ガス成分検出手段C10で検出したNOx濃度からNOx浄化率を算出し、このNOx浄化率が所定の判定値より低くなった場合にNOx吸蔵還元型触媒10の再生を開始すると判断する。そして、再生開始と判断された場合には、再生制御手段C22により、エンジンEの燃料噴射制御におけるポスト噴射やEGR制御や吸気絞り制御等により、排気ガスの状態を所定のリッチ空燃比状態及び所定の温度範囲(触媒にもよるが、概ね200℃〜600℃)にして、NOx浄化能力即ちNOx吸蔵能力を回復するためのリッチ制御運転をNOx触媒の再生を所定の時間又はNOx触媒が回復したと判断されるまで行う。   In the control means C20 of the NOx occlusion reduction type catalyst 10, the regeneration start judging means C21 calculates the NOx purification rate from the NOx concentration detected by the exhaust gas component detecting means C10, and this NOx purification rate is lower than a predetermined judgment value. In this case, it is determined that regeneration of the NOx storage reduction catalyst 10 is started. When it is determined that the regeneration is started, the regeneration control means C22 changes the exhaust gas state to a predetermined rich air-fuel ratio state and a predetermined state by post injection, EGR control, intake throttle control, etc. in the fuel injection control of the engine E. In the temperature range (approximately 200 ° C. to 600 ° C. depending on the catalyst), and the rich control operation for recovering the NOx purification capacity, that is, the NOx storage capacity, is restored for a predetermined time or the NOx catalyst is recovered. Until it is judged.

また、脱硫開始判断手段C23、脱硫制御手段C24、脱硫終了判断手段C25により脱硫を行う。この脱硫は、脱硫開始判断手段C23により、燃料消費量と燃料中に含まれる硫黄量(市場実勢値サルファ濃度等)を基にエンジン排出硫黄量を算出し、これを積算した積算硫黄吸着量と、脱硫開始判定用の判定値を比較して、積算硫黄吸着量が脱硫開始判定用の判定値を超えた場合に、脱硫開始であると判断する。   Further, desulfurization is performed by the desulfurization start determination means C23, the desulfurization control means C24, and the desulfurization end determination means C25. In this desulfurization, the desulfurization start determining means C23 calculates the engine exhaust sulfur amount based on the fuel consumption amount and the sulfur amount contained in the fuel (market actual value sulfur concentration, etc.), and integrated sulfur adsorption amount The desulfurization start determination value is compared, and when the integrated sulfur adsorption amount exceeds the desulfurization start determination value, it is determined that desulfurization is started.

そして、脱硫開始であると判断された場合には、脱硫制御手段C24により、リッチ制御運転を行う。この脱硫におけるリッチ制御運転は、エンジンの燃料噴射でパイロット噴射やポスト噴射を含む多段噴射を行ったり、EGR制御や吸気制御をして、上流側温度センサ13や下流側温度センサ14で検出した温度等をモニターしながら、多段噴射の燃料量を調整し、NOx吸蔵還元型触媒10に流入する排気ガスの温度が脱硫可能な温度(約600℃〜650℃)以上になるようにフィードバック制御をおこなう。この排気昇温により、NOx吸蔵還元型触媒10の温度上昇を図る。なお、多段噴射で排気通路に供給された排気ガス中のHC(炭化水素)等が触媒の酸化作用により燃焼するので、この酸化活性反応熱により更に触媒の昇温が促進される。   When it is determined that the desulfurization is started, the rich control operation is performed by the desulfurization control means C24. The rich control operation in this desulfurization is the temperature detected by the upstream temperature sensor 13 or the downstream temperature sensor 14 by performing multi-stage injection including pilot injection or post injection by engine fuel injection, EGR control or intake air control. The amount of fuel in multi-stage injection is adjusted while monitoring the above, and feedback control is performed so that the temperature of the exhaust gas flowing into the NOx occlusion reduction type catalyst 10 is equal to or higher than the desulfurization temperature (about 600 ° C. to 650 ° C.). . With this exhaust gas temperature increase, the temperature of the NOx storage reduction catalyst 10 is increased. Note that HC (hydrocarbon) or the like in the exhaust gas supplied to the exhaust passage by multi-stage injection burns due to the oxidizing action of the catalyst, so that the temperature of the catalyst is further promoted by this oxidation reaction reaction heat.

また、上流側酸素濃度センサ11で検出した酸素濃度Coup (又は空気過剰率λ)をモニターして、リッチ空燃比、好ましくはストイキ空燃比(理論空燃比)となるような所定の酸素濃度(又は空気過剰率)になるように、多段噴射制御、EGR制御、吸気制御等をフィードバック制御する。これにより、低酸素、高温状態で、効率よく硫黄の脱離を行う。   Further, the oxygen concentration Coup (or excess air ratio λ) detected by the upstream oxygen concentration sensor 11 is monitored, and a predetermined oxygen concentration (or a stoichiometric air-fuel ratio (stoichiometric air-fuel ratio)), or a predetermined oxygen concentration (or stoichiometric air-fuel ratio) is obtained. Multi-stage injection control, EGR control, intake air control, etc. are feedback-controlled so that the excess air ratio is obtained. Thus, sulfur is efficiently desorbed in a low oxygen and high temperature state.

そして、脱硫終了判断手段C25により、この脱硫用のリッチ制御運転における脱硫量を算出し、これを積算した積算脱硫量が積算硫黄吸着量を越えた場合に、脱硫が終了したとして脱硫制御を終了する。   Then, the desulfurization end judging means C25 calculates the desulfurization amount in the rich control operation for desulfurization, and when the integrated desulfurization amount obtained by integrating the desulfurization exceeds the integrated sulfur adsorption amount, the desulfurization control is ended as desulfurization is completed. To do.

そして、本発明においては、以下に述べるように、担持貴金属劣化判定手段C26により、NOx吸蔵材の硫黄被毒劣化や熱劣化や経時変化等ではなく、担持貴金属の劣化具合を判定し、更に、リーン制御時間設定手段C27により、担持貴金属の劣化に応じて、NOxを吸蔵する時間であるリーン制御時間を補正して、リッチ制御運転におけるNOx放出量を担持貴金属の還元能力に合わせる。   In the present invention, as described below, the supported noble metal deterioration determining means C26 determines the deterioration degree of the supported noble metal, not the sulfur poisoning deterioration, thermal deterioration, change with time, etc. of the NOx storage material, The lean control time setting means C27 corrects the lean control time, which is the time for storing NOx, in accordance with the deterioration of the supported noble metal, and matches the NOx release amount in the rich control operation with the reducing ability of the supported noble metal.

これらの排気ガス浄化システム1において、本発明に係わる排気ガス浄化方法は、図3に例示するようなリーン制御時間設定用フローを有して行われる。この図3のリーン制御時間設定用フローは、担持貴金属劣化判定手段C26により担持貴金属の劣化具合即ち劣化の進捗状況を判定し、リーン制御時間設定手段C27により次回のリーン制御運転のリーン制御時間tleanを設定するためのフローである。   In these exhaust gas purification systems 1, the exhaust gas purification method according to the present invention is performed with a lean control time setting flow as illustrated in FIG. 3. In the flow for setting the lean control time in FIG. 3, the degree of deterioration of the supported noble metal, that is, the progress of deterioration is determined by the supported noble metal deterioration determining means C26, and the lean control time tlean of the next lean control operation is determined by the lean control time setting means C27. It is a flow for setting.

この制御フローは、通常のリーン状態の運転を行うリーン制御フロー、NOx吸蔵能力の再生を行う再生制御フロー、NOx吸蔵還元型触媒10の脱硫を行う脱硫制御フロー等と共に、排気ガス浄化システム1全体の制御フローから繰り返し呼ばれて、担持貴金属の劣化の進捗状況を判定してリーン制御時間tleanを設定する。その結果、次回のリーン制御運転で、この設定されたリーン制御時間tleanの間、NOx吸蔵材でNOxを吸蔵して排気ガスを浄化することになる。   The control flow includes a lean control flow for performing an operation in a normal lean state, a regeneration control flow for regenerating the NOx storage capacity, a desulfurization control flow for desulfurizing the NOx storage reduction catalyst 10, and the entire exhaust gas purification system 1. The lean control time tlean is set by judging the progress of deterioration of the supported noble metal. As a result, in the next lean control operation, during the set lean control time tlean, NOx is occluded by the NOx occlusion material and the exhaust gas is purified.

この図3の制御フローがスタートすると、ステップS11で、前回のリーン制御時間tleanを入力し、次のステップS12で、再生制御運転や脱硫運転等のリッチ制御運転における酸素濃度、NOx濃度、触媒温度の計測及び算出を行う。   When the control flow of FIG. 3 starts, the previous lean control time tlean is input in step S11, and in the next step S12, the oxygen concentration, NOx concentration, and catalyst temperature in the rich control operation such as the regeneration control operation and the desulfurization operation. Measure and calculate.

この計測及び算出では、上流側排気ガス温度センサ13で計測した上流側排気ガス温度Tgup と下流側排気ガス温度センサ14 で計測した上流側排気ガス温度Tgdown とから触媒温度Tc を算出し、上流側酸素濃度センサ11で上流側酸素濃度Coup を、上流側NOx濃度センサ12で上流側NOx濃度Cnup を、下流側NOx濃度センサ15で下流側NOx濃度Cndown をそれぞれ測定する。更に、この下流側NOx濃度Cndown から上流側NOx濃度Cnup を引き算してNOx濃度差Cn を算出し、その最大値である最大NOx濃度差Cnmaxを求める。   In this measurement and calculation, the catalyst temperature Tc is calculated from the upstream exhaust gas temperature Tgup measured by the upstream exhaust gas temperature sensor 13 and the upstream exhaust gas temperature Tgdown measured by the downstream exhaust gas temperature sensor 14. The upstream oxygen concentration Coup is measured by the oxygen concentration sensor 11, the upstream NOx concentration Cnup is measured by the upstream NOx concentration sensor 12, and the downstream NOx concentration Cndown is measured by the downstream NOx concentration sensor 15. Further, the NOx concentration difference Cn is calculated by subtracting the upstream NOx concentration Cnup from the downstream NOx concentration Cndown, and the maximum NOx concentration difference Cnmax, which is the maximum value, is obtained.

なお、この最大NOx濃度差Cnmaxは、リッチ制御運転開始後の所定の時間tm の間に発生するので、この所定の時間tm の間だけ、計測及び算出を行っても演算量を減少したり、制御を単純化してもよい。また、触媒温度Tc は計測可能であれば直接触媒温度を測定してもよく、多少精度は落ちるが上流側排気ガス温度Tgup だけで推定してもよい。   The maximum NOx concentration difference Cnmax occurs during a predetermined time tm after the start of the rich control operation. Therefore, even if measurement and calculation are performed only during the predetermined time tm, the amount of calculation is reduced. Control may be simplified. Further, if the catalyst temperature Tc can be measured, the catalyst temperature may be directly measured, or may be estimated only by the upstream side exhaust gas temperature Tgup although the accuracy is somewhat lowered.

このNOx濃度差Cn (=Cndown −Cnup ) はリッチ制御によって放出されたNOxが担持貴金属で還元されずに、どれだけ放出されたかを示す指標であり、大きい程還元量は小さくなり、小さくなる程還元量は大きくなる。従って、その最大NOx濃度差Cnmaxは、NOx吸蔵還元型触媒10で還元されずに放出されたNOx量が最大の時の放出量を示す。   This NOx concentration difference Cn (= Cndown−Cnup) is an index indicating how much NOx released by the rich control is not reduced by the supported noble metal but is released, and the larger the reduction amount, the smaller the reduction amount. The amount of reduction increases. Therefore, the maximum NOx concentration difference Cnmax indicates the amount of release when the amount of NOx released without being reduced by the NOx storage reduction catalyst 10 is maximum.

つまり、図4に示すように、リーン制御運転からリッチ制御運転に切り替えた時の所定の時間tm 内の最大NOx濃度差Cnmaxにより、NOx吸蔵材から放出され、かつ、担持貴金属で還元されなかったNOx量を推定できる。そして、この流出NOx量の最大値に関係する最大NOx濃度差Cnmaxにより、担持貴金属の劣化状態を判定する。   That is, as shown in FIG. 4, due to the maximum NOx concentration difference Cnmax within a predetermined time tm when the lean control operation is switched to the rich control operation, it is released from the NOx occlusion material and is not reduced by the supported noble metal. The amount of NOx can be estimated. Then, the deterioration state of the supported noble metal is determined based on the maximum NOx concentration difference Cnmax related to the maximum value of the outflow NOx amount.

また、多少精度は落ちるが、リッチ制御運転時の上流側NOx濃度Cnup はリッチ制御運転の条件から推定できるので、推定して求めた上流側NOx濃度Cnup'を測定値の代りに用いてもよい。更には、精度は落ちるが、リッチ制御運転時の条件を考慮して、下記のNOx放出許容値Cnpを算出するとして、この最大NOx濃度差Cnmaxの代りに、下流側NOx濃度Cndown を用いることもできる。この場合には、上流側NOx濃度センサ12の測定値を使用しないので、この劣化判定においては上流側NOx濃度センサ12が不要となり、また、制御も単純化される。   Although the accuracy is somewhat reduced, the upstream NOx concentration Cnup during the rich control operation can be estimated from the conditions of the rich control operation. Therefore, the estimated upstream NOx concentration Cnup ′ may be used instead of the measured value. . Further, although the accuracy is lowered, the downstream NOx concentration Cndown may be used instead of the maximum NOx concentration difference Cnmax when the following NOx release allowable value Cnp is calculated in consideration of the conditions during the rich control operation. it can. In this case, since the measured value of the upstream NOx concentration sensor 12 is not used, the upstream NOx concentration sensor 12 is not necessary in this deterioration determination, and the control is simplified.

そして、ステップS13において、前回のリーン制御時間tleanと触媒温度Tc と上流側酸素濃度Coup とから、事前実験により設定され予め入力されたマップデータCnmapに基づいて、NOx放出許容値Cnpを算出する。これにより、最大NOx濃度差Cnmaxに影響を及ぼす排気ガス中の前回のリーン制御時間tlean、触媒温度Tc 、酸素濃度Coup を考慮に入れることができる。   In step S13, the NOx release allowable value Cnp is calculated from the previous lean control time tlean, the catalyst temperature Tc, and the upstream oxygen concentration Coup based on the map data Cnmap set in advance and input in advance. As a result, the previous lean control time tlean, catalyst temperature Tc, and oxygen concentration Coup in the exhaust gas that affect the maximum NOx concentration difference Cnmax can be taken into consideration.

次に、ステップS14で、担持貴金属の劣化のチェックを行う。この担持貴金属の劣化のチェックは、測定値から算出された最大NOx濃度差Cnmaxが、NOx放出許容値Cnp以下の時(YES)は、担持貴金属の劣化が進んでいないと判定し、次回のリーン制御時間tleanを前回のリーン制御時間tleanとしたままリターンする。   Next, in step S14, the supported noble metal is checked for deterioration. This check of deterioration of the supported noble metal is performed when the maximum NOx concentration difference Cnmax calculated from the measured value is equal to or less than the NOx release allowable value Cnp (YES), and it is determined that the deterioration of the supported noble metal has not progressed. The process returns with the control time tlean set to the last lean control time tlean.

また、最大NOx濃度差CnmaxがNOx放出許容値Cnpより大きい時(NO)には劣化が進んでいると判定し、ステップS15の触媒の劣化の表示で、触媒が劣化していることを表示し、ステップS16,S17で次回のリーン制御時間tleanを変更して設定し直す。   When the maximum NOx concentration difference Cnmax is larger than the NOx release allowable value Cnp (NO), it is determined that the deterioration is progressing, and the display of the catalyst deterioration in step S15 indicates that the catalyst is deteriorated. In steps S16 and S17, the next lean control time tlean is changed and set again.

この次回のリーン制御時間tleanの設定は、ステップS16で最大NOx濃度差CnmaxからNOx放出許容値Cnpを引き算して算出したNOx濃度の偏差ΔCn により劣化の進捗状況(劣化の度合い)を推定する。そして、この担持貴金属の劣化の進捗状況の指標となるNOx濃度の偏差ΔCn を基に、ステップS17で、予め入力した補正係数RのマップデータRmap に基づいて補正係数Rを算出し、この補正係数Rを基準のリーン制御時間tlean0 に乗じて、次回のリーン制御時間tleanを設定し、その後リターンする。   The next lean control time tlean is set by estimating the progress of deterioration (degree of deterioration) from the NOx concentration deviation ΔCn calculated by subtracting the NOx release allowable value Cnp from the maximum NOx concentration difference Cnmax in step S16. Based on the NOx concentration deviation ΔCn, which is an indicator of the progress of the deterioration of the supported noble metal, a correction coefficient R is calculated in step S17 based on the map data Rmap of the correction coefficient R inputted in advance. Multiply the reference lean control time tlean0 by R to set the next lean control time tlean, and then return.

上記のリーン制御時間設定用の制御フローによれば、担持貴金属の劣化の進捗状況を、実際に計測したNOx濃度Cnup ,Cndown と予め入力したマップデータCnmapとから推定し、担持貴金属の劣化の度合いΔCn に応じて、予め入力したマップデータRmap を基に、次回のリーン制御時間tleanを設定することができる。   According to the control flow for setting the lean control time, the progress of deterioration of the supported noble metal is estimated from the actually measured NOx concentrations Cnup and Cndown and the map data Cnmap inputted in advance, and the degree of deterioration of the supported noble metal. The next lean control time tlean can be set based on the map data Rmap input in advance according to ΔCn.

なお、このリーン制御時間設定用の制御フローは、再生制御フローや脱硫制御フローにおけるリッチ制御運転と並行して実施されるのが好ましいが、再生制御フローや脱硫制御フローの直後に、即ち、リーン制御運転の前若しくは開始直後に実施してもよい。但し、この場合は、図3のステップS12におけるリッチ制御運転における計測値をこれらのリッチ制御フローの中で行って記憶しておき、このリーン制御時間設定用の制御フローの実行時に、ステップS12で読み出すように構成する。   The control flow for setting the lean control time is preferably performed in parallel with the rich control operation in the regeneration control flow or the desulfurization control flow, but immediately after the regeneration control flow or the desulfurization control flow, that is, the lean control flow. You may implement before a control driving | operation or immediately after a start. However, in this case, the measurement value in the rich control operation in step S12 of FIG. 3 is performed and stored in these rich control flows, and when the control flow for setting the lean control time is executed, in step S12 Configure to read.

上記の構成の排気ガス浄化方法及び排気ガス浄化システム1によれば、NOx吸蔵材の硫黄被毒劣化や熱劣化や経時変化等ではなく、担持貴金属の劣化の進捗状況を判定することができる。   According to the exhaust gas purification method and the exhaust gas purification system 1 having the above-described configuration, it is possible to determine the progress of the deterioration of the supported noble metal, not the sulfur poisoning deterioration, heat deterioration, change with time, etc. of the NOx storage material.

そして、例えNOx吸蔵材が劣化していなくても、担持貴金属の劣化に応じて、NOxを吸蔵する時間であるリーン制御時間を補正して、リッチ状態におけるNOx放出量を劣化した担持貴金属の還元能力に合わせることができるので、NOx吸蔵還元型触媒の下流側(出口側)へのNOxの流出を減少することができる。   And even if the NOx occlusion material has not deteriorated, the lean control time, which is the time to occlude NOx, is corrected according to the deterioration of the supported noble metal, and the reduced amount of NOx released in the rich state is reduced. Since the capacity can be matched, the outflow of NOx to the downstream side (outlet side) of the NOx storage reduction catalyst can be reduced.

なお、上記の構成では、NOx吸蔵還元型触媒10単独の排気ガス浄化システム1として説明したが、NOx吸蔵還元型触媒とディーゼルエンジンの粒子状物質(PM)を捕集するDPFとを組み合わせた排気ガス浄化システムであっても、また、NOx吸蔵還元型触媒と三元触媒等を組み合わせた排気ガス浄化システムであっても、本発明は適用可能である。要するに、NOx吸蔵還元型触媒を備えた排気ガス浄化システムであれば、本発明を適用できる。   In the above configuration, the exhaust gas purification system 1 using only the NOx storage reduction catalyst 10 has been described. However, the exhaust gas is a combination of a NOx storage reduction catalyst and a DPF that collects particulate matter (PM) of a diesel engine. The present invention can be applied to both a gas purification system and an exhaust gas purification system that combines a NOx storage reduction catalyst and a three-way catalyst. In short, the present invention can be applied to any exhaust gas purification system including a NOx storage reduction catalyst.

本発明に係る実施の形態の排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust gas purification system of embodiment which concerns on this invention. 本発明に係る実施の形態の排気ガス浄化システムの制御手段の構成を示す図である。It is a figure which shows the structure of the control means of the exhaust gas purification system of embodiment which concerns on this invention. 本発明に係る実施の形態のリーン制御時間設定用の制御フローを例示する図である。It is a figure which illustrates the control flow for the lean control time setting of embodiment which concerns on this invention. リッチ制御時のNOx濃度及び空気過剰率の時系列を示す図である。It is a figure which shows the time series of the NOx density | concentration at the time of rich control, and an air excess rate. モノリスハニカムを示す図である。It is a figure which shows a monolith honeycomb. モノリスハニカムの部分拡大図である。It is the elements on larger scale of a monolith honeycomb. モノリスハニカムのセルの壁の部分の拡大図である。It is an enlarged view of the cell wall part of a monolith honeycomb. NOx吸蔵還元型触媒の構成とリーン制御の時の状態の浄化のメカニズムを模式的に示す図である。It is a figure which shows typically the structure of a NOx occlusion reduction type | mold catalyst, and the purification mechanism of the state at the time of lean control. NOx吸蔵還元型触媒の構成とリッチ制御の時の状態の浄化のメカニズムを模式的に示す図である。It is a figure which shows typically the structure of a NOx storage-reduction type | mold catalyst, and the purification mechanism of the state at the time of rich control.

符号の説明Explanation of symbols

E エンジン
1 排気ガス浄化システム
10 NOx吸蔵還元型触媒
11 上流側酸素濃度センサ
12 上流側NOx濃度センサ
13 上流側排気ガス温度センサ
14 下流側NOx濃度センサ
15 下流側排気ガス温度センサ
50 制御装置(ECU)
E engine 1 exhaust gas purification system 10 NOx occlusion reduction type catalyst 11 upstream oxygen concentration sensor 12 upstream NOx concentration sensor 13 upstream exhaust gas temperature sensor 14 downstream NOx concentration sensor 15 downstream exhaust gas temperature sensor 50 control unit (ECU) )

Claims (8)

エンジンの排気ガス中のNOxを浄化する排気ガス浄化システムであって、流入する排気ガスの空燃比状態が、リーン状態の場合にNOxを吸蔵し、リッチ状態の場合にNOxを放出及び還元するNOx吸蔵還元型触媒を備えると共に、該NOx吸蔵還元型触媒の下流側NOx濃度を検出するNOx濃度検出手段を備え、リーン制御運転とリッチ制御運転を繰り返す排気ガス浄化システムにおいて、
前記リッチ制御運転時における、前記NOx濃度検出手段により検出されるNOx濃度により定められる値と、直前のリーン制御時間により定められるNOx放出許容値との比較により、前記NOx吸蔵還元型触媒の担持貴金属の劣化の進捗状況を判定することを特徴とする排気ガス浄化方法。
An exhaust gas purification system for purifying NOx in engine exhaust gas, wherein NOx is stored when the air-fuel ratio of the inflowing exhaust gas is lean, and NOx is released and reduced when the air-fuel ratio is rich. In an exhaust gas purification system that includes a NOx storage reduction catalyst and NOx concentration detection means that detects a NOx concentration downstream of the NOx storage reduction catalyst and repeats lean control operation and rich control operation,
In the rich control operation, the noble metal supported by the NOx occlusion reduction catalyst is determined by comparing the value determined by the NOx concentration detected by the NOx concentration detecting means with the NOx release allowable value determined by the immediately preceding lean control time. The exhaust gas purification method characterized by determining the progress of deterioration of the exhaust gas.
前記NOx濃度検出手段が前記NOx吸蔵還元型触媒の上流側NOx濃度を検出する手段を備え、下流側NOx濃度と上流側NOx濃度の差と、前記NOx放出許容値との比較により、前記担持貴金属の劣化の進捗状況を判定することを特徴とする請求項1記載の排気ガス浄化方法。 The NOx concentration detection means includes means for detecting the upstream NOx concentration of the NOx storage reduction catalyst, and the supported noble metal is determined by comparing the difference between the downstream NOx concentration and the upstream NOx concentration and the allowable NOx release value. The exhaust gas purification method according to claim 1 , wherein the progress of deterioration is determined . 前記NOx吸蔵還元型触媒の担持貴金属の劣化が大きい程、次回のリーン制御時間を短くすることを特徴とする請求項1又は2記載の排気ガス浄化方法。 The exhaust gas purification method according to claim 1 or 2 , wherein the next lean control time is shortened as the deterioration of the noble metal supported on the NOx storage reduction catalyst increases . 前記NOx放出許容値を、少なくとも、リッチ制御運転時の前記NOx吸蔵還元型触媒の触媒温度、及び、リッチ制御運転時の前記NOx吸蔵還元型触媒の上流側酸素濃度により定めることを特徴とする請求項1、2又は3記載の排気ガス浄化方法。 The NOx emission tolerance, at least, the catalyst temperature of the NOx storage reduction catalyst during the rich control operation, and, claims, characterized in that determined by the upstream oxygen concentration of the NOx occlusion reduction type catalyst in the rich control operation Item 4. The exhaust gas purification method according to Item 1, 2 or 3 . 前記NOx放出許容値を、前記直前のリーン制御時間が長い程大きく、前記触媒温度が高い程低く、前記上流側酸素濃度が高い程大きくなるように定めることを特徴とする請求項4記載の排気ガス浄化方法。5. The exhaust gas according to claim 4, wherein the NOx release allowable value is determined so as to increase as the immediately preceding lean control time increases, to decrease as the catalyst temperature increases, and to increase as the upstream oxygen concentration increases. Gas purification method. エンジンの排気ガス中のNOxを浄化する排気ガス浄化システムであって、流入する排気ガスの空燃比状態が、リーン状態の場合にNOxを吸蔵し、リッチ状態の場合にNOxを放出及び還元するNOx吸蔵還元型触媒を備えると共に、該NOx吸蔵還元型触媒の下流側NOx濃度を検出するNOx濃度検出手段と触媒劣化判定手段を有し、リーン制御運転とリッチ制御運転を繰り返す制御手段を備えた排気ガス浄化システムにおいて、
前記触媒劣化判定手段が、リッチ制御運転時における、前記NOx濃度検出手段により検出されるNOx濃度により定められる値と、直前のリーン制御時間により定められるNOx放出許容値との比較により、前記NOx吸蔵還元型触媒の担持貴金属の劣化の進捗状況を判定することを特徴とする排気ガス浄化システム。
An exhaust gas purification system for purifying NOx in engine exhaust gas, wherein NOx is stored when the air-fuel ratio of the inflowing exhaust gas is lean, and NOx is released and reduced when the air-fuel ratio is rich. Exhaust gas provided with an NOx storage reduction catalyst, a NOx concentration detection means for detecting the NOx concentration downstream of the NOx storage reduction catalyst, and a catalyst deterioration determination means, and a control means for repeating a lean control operation and a rich control operation In the gas purification system,
The catalyst deterioration determining means, definitive during the rich control operation, the value determined by NOx concentration detected by the NOx concentration detecting means, by comparing the NOx emission allowable value determined by the lean control time immediately before the NOx occlusion An exhaust gas purification system for determining a progress of deterioration of a noble metal supported on a reduction catalyst.
前記NOx濃度検出手段が前記NOx吸蔵還元型触媒の上流側NOx濃度を検出する手段を備え、下流側NOx濃度と上流側NOx濃度の差と、前記NOx放出許容値との比較により、前記担持貴金属の劣化の進捗状況を判定することを特徴とする請求項6記載の排気ガス浄化システム。 The NOx concentration detection means includes means for detecting the upstream NOx concentration of the NOx storage reduction catalyst, and the supported noble metal is determined by comparing the difference between the downstream NOx concentration and the upstream NOx concentration and the allowable NOx release value. The exhaust gas purification system according to claim 6 , wherein the progress of deterioration of the exhaust gas is determined . 前記NOx吸蔵還元型触媒の担持貴金属の劣化が大きい程、次回のリーン制御時間を短くすることを特徴とする請求項6又は7記載の排気ガス浄化システム。The exhaust gas purification system according to claim 6 or 7, wherein the next lean control time is shortened as the deterioration of the supported noble metal of the NOx storage reduction catalyst increases.
JP2004001326A 2004-01-06 2004-01-06 Exhaust gas purification method and exhaust gas purification system Expired - Fee Related JP4345484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004001326A JP4345484B2 (en) 2004-01-06 2004-01-06 Exhaust gas purification method and exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004001326A JP4345484B2 (en) 2004-01-06 2004-01-06 Exhaust gas purification method and exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2005194927A JP2005194927A (en) 2005-07-21
JP4345484B2 true JP4345484B2 (en) 2009-10-14

Family

ID=34816873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004001326A Expired - Fee Related JP4345484B2 (en) 2004-01-06 2004-01-06 Exhaust gas purification method and exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP4345484B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7748501B2 (en) 2002-01-16 2010-07-06 Otis Elevator Company Elevator system design including a belt assembly with a vibration and noise reducing groove configuration

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585971B2 (en) * 2006-01-13 2010-11-24 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
JP5062415B2 (en) * 2007-12-07 2012-10-31 三菱自動車工業株式会社 Exhaust gas detection system for exhaust purification means
JP5106294B2 (en) * 2008-07-29 2012-12-26 本田技研工業株式会社 Deterioration judgment device for exhaust gas purification device
JP4870179B2 (en) 2009-02-06 2012-02-08 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP5640521B2 (en) * 2010-07-26 2014-12-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5811572B2 (en) * 2011-04-11 2015-11-11 マツダ株式会社 Catalyst purification performance evaluation method, evaluation device, engine exhaust gas purification device, engine exhaust gas purification catalyst purification performance evaluation method
JP5761127B2 (en) * 2012-06-06 2015-08-12 トヨタ自動車株式会社 Catalyst deterioration diagnosis device
JP6107586B2 (en) 2013-10-02 2017-04-05 トヨタ自動車株式会社 Control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7748501B2 (en) 2002-01-16 2010-07-06 Otis Elevator Company Elevator system design including a belt assembly with a vibration and noise reducing groove configuration

Also Published As

Publication number Publication date
JP2005194927A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
JP4415648B2 (en) Sulfur purge control method and exhaust gas purification system
JP3852461B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4304539B2 (en) NOx purification system control method and NOx purification system
JP4417878B2 (en) Exhaust gas purification method and exhaust gas purification system
US7111451B2 (en) NOx adsorber diagnostics and automotive exhaust control system utilizing the same
JP4349119B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4175427B1 (en) NOx purification system control method and NOx purification system
JP3901194B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4304428B2 (en) Exhaust gas purification system for internal combustion engine
JP4650109B2 (en) Exhaust gas purification method and exhaust gas purification system
JP5217102B2 (en) NOx purification system control method and NOx purification system
JP5035263B2 (en) Exhaust gas purification device for internal combustion engine
JP5476677B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2001355485A (en) Exhaust emission control device having nitrogen oxides storage and reduction type catalyst
US8336293B2 (en) Exhaust gas purification system of an internal combustion engine
JP4345484B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4968775B2 (en) Exhaust purification device and exhaust purification method for internal combustion engine
JP2020106002A (en) Diagnostic device and exhaust emission control device for internal combustion engine
JP3552603B2 (en) Exhaust gas purification device for internal combustion engine
JP4075641B2 (en) Exhaust gas purification system for internal combustion engine
US11193408B2 (en) Reactivation control apparatus and method
JP4442373B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2005248892A (en) Exhaust emission control method and exhaust emission control system
JP2006002641A (en) Exhaust gas purification method and exhaust gas purification system
JP2005248891A (en) Exhaust cleaning method and exhaust cleaning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees