JP5640521B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5640521B2
JP5640521B2 JP2010167022A JP2010167022A JP5640521B2 JP 5640521 B2 JP5640521 B2 JP 5640521B2 JP 2010167022 A JP2010167022 A JP 2010167022A JP 2010167022 A JP2010167022 A JP 2010167022A JP 5640521 B2 JP5640521 B2 JP 5640521B2
Authority
JP
Japan
Prior art keywords
nox
catalyst
exhaust gas
purification catalyst
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010167022A
Other languages
Japanese (ja)
Other versions
JP2012026383A (en
Inventor
真由子 大崎
真由子 大崎
雄作 稲冨
雄作 稲冨
公靖 小野
公靖 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010167022A priority Critical patent/JP5640521B2/en
Publication of JP2012026383A publication Critical patent/JP2012026383A/en
Application granted granted Critical
Publication of JP5640521B2 publication Critical patent/JP5640521B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し、流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを還元浄化するNOx吸蔵還元型触媒を機関排気通路内に配置した内燃機関が知られている。このような内燃機関では、リーン空燃比の下で燃焼が行われているときに発生するNOxがNOx吸蔵還元型触媒に吸蔵される。一方で、NOx吸蔵還元型触媒のNOx吸蔵能力が飽和に近づくと排気ガスの空燃比が一時的にリッチにされ、それによってNOx吸蔵還元型触媒からNOxが放出されそして還元浄化される。   A NOx occlusion reduction type catalyst that stores NOx contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean and reduces and purifies the stored NOx when the air-fuel ratio of the inflowing exhaust gas becomes the stoichiometric air-fuel ratio or rich An internal combustion engine arranged in an engine exhaust passage is known. In such an internal combustion engine, NOx generated when combustion is performed under a lean air-fuel ratio is stored in the NOx storage reduction catalyst. On the other hand, when the NOx storage capacity of the NOx storage reduction catalyst approaches saturation, the air-fuel ratio of the exhaust gas is temporarily made rich, whereby NOx is released from the NOx storage reduction catalyst and reduced and purified.

ところで燃料及び潤滑油内には硫黄が含まれており、したがって排気ガス中にはSOxが含まれている。このSOxは、NOxとともにNOx吸蔵還元型触媒に吸蔵され、当該NOx吸蔵還元型触媒に含まれる炭酸バリウム(BaCO3)等のNOx保持物質と反応して硫酸塩(BaSO4)を形成する。このような硫酸塩は非常に安定であるため、排気ガスの空燃比を単にリッチにしただけでは分解されずにそのまま残ってしまう。このため、時間の経過とともにNOx吸蔵還元型触媒中に形成される硫酸塩が増大してNOx吸蔵還元型触媒が吸蔵しうるNOx量が減少し、ひいてはNOx吸蔵還元型触媒におけるNOx浄化性能の低下を引き起こしてしまう。 By the way, sulfur is contained in the fuel and the lubricating oil, and therefore SOx is contained in the exhaust gas. This SOx is stored in the NOx occlusion reduction type catalyst together with NOx, and reacts with a NOx holding substance such as barium carbonate (BaCO 3 ) contained in the NOx occlusion reduction type catalyst to form a sulfate (BaSO 4 ). Since such a sulfate is very stable, it is left as it is without being decomposed only by making the air-fuel ratio of the exhaust gas rich. For this reason, with the passage of time, the amount of sulfate formed in the NOx storage reduction catalyst increases, the amount of NOx that can be stored in the NOx storage reduction catalyst decreases, and consequently the NOx purification performance of the NOx storage reduction catalyst decreases. Will cause.

特許文献1では、排気ガスの空燃比がリーンであるときにNOxを吸収し、排気ガス中の酸素濃度を低下させると吸収したNOxを放出するNOx吸収剤(NOx吸蔵還元型触媒)を機関排気通路内に配置すると共に、排気ガスの空燃比がリーンであるときにSOxを吸収し、排気ガスの空燃比がリッチになると吸収したSOxを放出するSOx吸収剤をNOx吸収剤上流の機関排気通路内に配置し、SOx吸収剤とNOx吸収剤との間に位置する機関排気通路からNOx吸収剤をバイパスするバイパス通路を分岐すると共にバイパス通路の分岐部にNOx吸収剤又はバイパス通路のいずれか一方に排気ガスを流入させる切換弁を配置した内燃機関の排気浄化装置が記載されている。また、特許文献1では、NOx吸収剤からNOxを放出すべきときには排気ガスがNOx吸収剤に流入する位置に切換弁を保持すると共にSOx吸収剤に流入する排気ガス中の酸素濃度を低下させ、SOx吸収剤からSOxを放出すべきときには排気ガスがバイパス通路に流入する位置に切換弁を切換えると共にSOx吸収剤に流入する排気ガスの空燃比をリッチにすることで、SOx吸収剤からSOxを放出した際にSOx吸収剤から放出されたSOxがNOx吸収剤に吸収されるのを阻止することができると記載されている。   In Patent Document 1, NOx is absorbed when the air-fuel ratio of exhaust gas is lean, and NOx absorbent (NOx occlusion reduction type catalyst) that releases the absorbed NOx when the oxygen concentration in the exhaust gas is reduced is engine exhaust. An engine exhaust passage upstream of the NOx absorbent is disposed in the passage and absorbs SOx when the air-fuel ratio of the exhaust gas is lean and releases SOx absorbed when the air-fuel ratio of the exhaust gas becomes rich. The bypass passage for bypassing the NOx absorbent is branched from the engine exhaust passage located between the SOx absorbent and the NOx absorbent, and either the NOx absorbent or the bypass passage is provided at a branch portion of the bypass passage. Describes an exhaust gas purification apparatus for an internal combustion engine in which a switching valve for allowing exhaust gas to flow is arranged. Further, in Patent Document 1, when NOx should be released from the NOx absorbent, the switching valve is held at a position where the exhaust gas flows into the NOx absorbent, and the oxygen concentration in the exhaust gas flowing into the SOx absorbent is reduced, When SOx is to be released from the SOx absorbent, the switch valve is switched to a position where the exhaust gas flows into the bypass passage, and the air / fuel ratio of the exhaust gas flowing into the SOx absorbent is made rich to release SOx from the SOx absorbent. It is described that the SOx released from the SOx absorbent can be prevented from being absorbed by the NOx absorbent.

特許第2605580号公報Japanese Patent No. 2605580

内燃機関の排気浄化装置において一般的に用いられる排気浄化触媒、例えば、NOx浄化触媒では、触媒成分として含まれる貴金属等の触媒金属が酸素過剰のリーン雰囲気にさらされると、当該触媒金属の表面が酸素によって覆われ、すなわち、当該触媒金属の表面がいわゆる酸素被毒を受け、結果としてNOx浄化触媒のNOx浄化性能が低下してしまうという問題が生じる。このNOx浄化触媒が貴金属等の触媒成分とともにNOx保持物質を含むNOx吸蔵還元型触媒である場合には、先に記載したように、排気ガス中に含まれるSOxに起因する硫黄被毒が問題となる。しかしながら、NOx浄化触媒がこのようなNOx保持物質を含まず、単に触媒金属のみを触媒担体に担持してなる材料である場合には、先に記載した硫黄被毒の問題よりも、上記のような触媒金属の酸素被毒に起因するNOx浄化性能の低下のほうが大きな問題である。   In an exhaust purification catalyst generally used in an exhaust purification device of an internal combustion engine, for example, a NOx purification catalyst, when a catalytic metal such as a noble metal contained as a catalyst component is exposed to a lean atmosphere containing excess oxygen, the surface of the catalytic metal is There is a problem that the surface of the catalyst metal is covered with oxygen, that is, the surface of the catalyst metal is subjected to so-called oxygen poisoning, and as a result, the NOx purification performance of the NOx purification catalyst is deteriorated. When this NOx purification catalyst is a NOx occlusion reduction type catalyst containing a NOx retention material together with a catalyst component such as a noble metal, sulfur poisoning caused by SOx contained in the exhaust gas is a problem as described above. Become. However, when the NOx purification catalyst is a material that does not contain such a NOx holding substance and is simply formed by supporting only the catalyst metal on the catalyst carrier, the above-described problem of sulfur poisoning may be overcome. Decreasing NOx purification performance due to oxygen poisoning of a catalyst metal is a bigger problem.

また、NOx浄化触媒等において用いられる触媒金属は低温下でより酸化されやすく、それゆえ当該触媒金属は内燃機関の冷間始動時等の低温下でより酸素被毒を受けやすい。近年、自動車等の排気ガスに対する規制がますます厳しくなっており、したがって、内燃機関の冷間始動時等、触媒自体が十分に暖められていない状態における触媒金属の酸素被毒等に関する問題についても十分に対処する必要がある。   Further, the catalyst metal used in the NOx purification catalyst or the like is more easily oxidized at a low temperature, and therefore the catalyst metal is more susceptible to oxygen poisoning at a low temperature such as when the internal combustion engine is cold started. In recent years, regulations on exhaust gases from automobiles and the like have become stricter. Therefore, there are problems concerning oxygen poisoning of catalyst metals when the catalyst itself is not sufficiently warmed, such as during cold start of an internal combustion engine. It is necessary to deal with it sufficiently.

そこで、本発明は、新規な構成により、NOx浄化触媒の酸素被毒に起因するNOx浄化性能の低下を抑制することができる内燃機関の排気浄化装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide an exhaust purification device for an internal combustion engine that can suppress a decrease in NOx purification performance due to oxygen poisoning of the NOx purification catalyst with a novel configuration.

上記課題を解決する本発明は下記にある。
1)内燃機関の排気通路内に配置され、排気ガス中のNOxを少なくとも保持可能なNOx保持材と、
前記NOx保持材より下流側の前記排気通路内に配置され、排気ガス中のNOxを浄化可能な触媒金属を触媒担体に担持してなるNOx浄化触媒であって、前記触媒金属が卑金属であるNOx浄化触媒と、
前記NOx保持材と前記NOx浄化触媒との間に位置する前記排気通路の分岐部から分岐するとともに、前記NOx浄化触媒より下流側の前記排気通路の合流部において合流するバイパス通路と、
前記分岐部に設けられ、前記NOx浄化触媒又は前記バイパス通路のいずれか一方に排気ガスを流入させるための切換弁と
を備え、
前記NOx保持材が貴金属をさらに含むNOx吸蔵還元型触媒であり、該NOx吸蔵還元型触媒に流入する排気ガスの空燃比がリーンであるときには排気ガスが前記バイパス通路に流入する位置に前記切換弁を保持し、前記NOx吸蔵還元型触媒に流入する排気ガスの空燃比がリッチであり、前記NOx吸蔵還元型触媒からNOxが放出されるときに排気ガスが前記NOx浄化触媒に流入する位置に前記切換弁を切り換えるようにした、内燃機関の排気浄化装置。
2)内燃機関の排気通路内に配置され、排気ガス中のNOxを少なくとも保持可能なNOx保持材と、
前記NOx保持材より下流側の前記排気通路内に配置され、排気ガス中のNOxを浄化可能な触媒金属を触媒担体に担持してなるNOx浄化触媒であって、前記触媒金属が卑金属であるNOx浄化触媒と、
前記NOx保持材と前記NOx浄化触媒との間に位置する前記排気通路の分岐部から分岐するとともに、前記NOx浄化触媒より下流側の前記排気通路の合流部において合流するバイパス通路と、
前記分岐部に設けられ、前記NOx浄化触媒又は前記バイパス通路のいずれか一方に排気ガスを流入させるための切換弁と
を備え、
前記NOx保持材がNOx吸着材であり、該NOx吸着材の上流側又は前記合流部の下流側に配置され、貴金属を触媒担体に担持してなる触媒をさらに備え、前記NOx浄化触媒がその活性化温度に達していないときには排気ガスが前記バイパス通路に流入する位置に前記切換弁を保持し、排気ガスの温度が前記NOx吸着材からNOxが放出される温度に達した段階又は前記NOx吸着材の吸着NOx量が飽和に達した段階で排気ガスが前記NOx浄化触媒に流入する位置に前記切換弁を切り換えるようにした、内燃機関の排気浄化装置。
(3)前記卑金属がFe、Ni、Cu又はCoである、上記(1)又は(2)に記載の内燃機関の排気浄化装置。
The present invention for solving the above problems is as follows.
( 1) a NOx holding material that is disposed in the exhaust passage of the internal combustion engine and can hold at least NOx in the exhaust gas;
A NOx purification catalyst that is disposed in the exhaust passage downstream of the NOx holding material and supports a catalyst metal capable of purifying NOx in exhaust gas on a catalyst carrier, wherein the catalyst metal is a base metal. A purification catalyst;
A bypass passage branching from a branch portion of the exhaust passage located between the NOx holding material and the NOx purification catalyst, and joining at a joining portion of the exhaust passage downstream of the NOx purification catalyst;
A switching valve that is provided in the branch portion and allows exhaust gas to flow into either the NOx purification catalyst or the bypass passage;
With
When the NOx holding material is a NOx occlusion reduction type catalyst further containing a noble metal, and the air-fuel ratio of the exhaust gas flowing into the NOx occlusion reduction type catalyst is lean, the switching valve is located at a position where the exhaust gas flows into the bypass passage. And the exhaust gas flowing into the NOx occlusion reduction catalyst has a rich air-fuel ratio, and the exhaust gas flows into the NOx purification catalyst when NOx is released from the NOx occlusion reduction catalyst. and to switch the switching valve, the internal combustion engine exhaust gas purification apparatus.
( 2) a NOx holding material disposed in the exhaust passage of the internal combustion engine and capable of holding at least NOx in the exhaust gas;
A NOx purification catalyst that is disposed in the exhaust passage downstream of the NOx holding material and supports a catalyst metal capable of purifying NOx in exhaust gas on a catalyst carrier, wherein the catalyst metal is a base metal. A purification catalyst;
A bypass passage branching from a branch portion of the exhaust passage located between the NOx holding material and the NOx purification catalyst, and joining at a joining portion of the exhaust passage downstream of the NOx purification catalyst;
A switching valve that is provided in the branch portion and allows exhaust gas to flow into either the NOx purification catalyst or the bypass passage;
With
The NOx holding material is a NOx adsorbent, and further includes a catalyst that is arranged on the upstream side of the NOx adsorbent or on the downstream side of the merging portion and carries a noble metal on a catalyst carrier, and the NOx purification catalyst has its activity The switch valve is held at a position where the exhaust gas flows into the bypass passage when it has not reached the control temperature, and the temperature of the exhaust gas reaches a temperature at which NOx is released from the NOx adsorbent or the NOx adsorbent the amount of adsorbed NOx exhaust gas at the stage reached saturation was to switch the switching valve to a position that flows into the NOx purification catalyst, exhaust gas purification apparatus for an internal combustion engine.
(3) The exhaust gas purification apparatus for an internal combustion engine according to (1) or (2), wherein the base metal is Fe, Ni, Cu, or Co.

本発明の内燃機関の排気浄化装置によれば、例えば、NOx保持材としてNOx吸蔵還元型触媒を使用した場合には、排気ガスの空燃比がリーンであるときには、排気ガスがバイパス通路に流入する位置に切換弁を切り換えることで、NOx浄化触媒がこのような高濃度の酸素によって被毒されることを防ぐことができる。そして、排気ガスの空燃比がリッチであるときには、排気ガスがNOx浄化触媒に流入する位置に切換弁を切り換えることで、上流側のNOx吸蔵還元型触媒と下流側のNOx浄化触媒によってNOxが還元浄化される。このようにすることで、上流側のNOx吸蔵還元型触媒によって浄化しきれなかったNOxを下流側のNOx浄化触媒によって確実に還元浄化することができるので、従来の排気浄化装置に比べて高いNOx浄化率を達成することが可能である。また、本発明の内燃機関の排気浄化装置によれば、例えば、冷間始動時等、NOx浄化触媒の触媒金属が酸素被毒の影響を受けやすい低温時には、排気ガスがバイパス通路に流入する位置に切換弁を切り換えることで、NOx浄化触媒が排気ガス中の酸素によって被毒されることを防ぐことができる。そして、排気ガスの温度がNOx保持材からNOxが放出される温度に達した段階で切換弁をNOx浄化触媒側に切り換えることで、放出されたNOxをNOx浄化触媒によって還元浄化することが可能である。   According to the exhaust gas purification apparatus for an internal combustion engine of the present invention, for example, when a NOx occlusion reduction type catalyst is used as the NOx holding material, the exhaust gas flows into the bypass passage when the air-fuel ratio of the exhaust gas is lean. By switching the switching valve to the position, it is possible to prevent the NOx purification catalyst from being poisoned by such a high concentration of oxygen. When the air-fuel ratio of the exhaust gas is rich, the switching valve is switched to a position where the exhaust gas flows into the NOx purification catalyst, so that NOx is reduced by the upstream NOx storage reduction catalyst and the downstream NOx purification catalyst. Purified. In this way, NOx that could not be purified by the upstream NOx storage reduction catalyst can be reliably reduced and purified by the downstream NOx purification catalyst, so that the NOx is higher than that of the conventional exhaust purification device. It is possible to achieve a purification rate. Further, according to the exhaust gas purification apparatus for an internal combustion engine of the present invention, the position where the exhaust gas flows into the bypass passage when the catalyst metal of the NOx purification catalyst is easily affected by oxygen poisoning, for example, during cold start. By switching the switching valve, the NOx purification catalyst can be prevented from being poisoned by oxygen in the exhaust gas. Then, by switching the switching valve to the NOx purification catalyst side when the temperature of the exhaust gas reaches the temperature at which NOx is released from the NOx holding material, the released NOx can be reduced and purified by the NOx purification catalyst. is there.

本発明の排気浄化装置の第1の実施態様を模式的に示した図である。It is the figure which showed typically the 1st embodiment of the exhaust gas purification apparatus of this invention. 本発明の排気浄化装置の第1の実施態様における切換弁操作のフローチャートである。It is a flowchart of the switching valve operation in the 1st embodiment of the exhaust gas purification apparatus of this invention. 本発明の排気浄化装置の第2の実施態様を模式的に示した図である。It is the figure which showed typically the 2nd embodiment of the exhaust gas purification apparatus of this invention. 本発明の排気浄化装置の第2の実施態様における切換弁操作のフローチャートである。It is a flowchart of the switching valve operation in the 2nd embodiment of the exhaust gas purification apparatus of this invention.

本発明の内燃機関の排気浄化装置は、内燃機関の排気通路内に配置され、排気ガス中のNOxを少なくとも保持可能なNOx保持材と、前記NOx保持材より下流側の前記排気通路内に配置され、排気ガス中のNOxを浄化可能な触媒金属を触媒担体に担持してなるNOx浄化触媒と、前記NOx保持材と前記NOx浄化触媒との間に位置する前記排気通路の分岐部から分岐するとともに、前記NOx浄化触媒より下流側の前記排気通路の合流部において合流するバイパス通路と、前記分岐部に設けられ、前記NOx浄化触媒又は前記バイパス通路のいずれか一方に排気ガスを流入させるための切換弁とを備え、前記NOx保持材によってNOxを保持すべきときには排気ガスが前記バイパス通路に流入する位置に前記切換弁を保持し、前記NOx保持材からNOxが放出されるときに排気ガスが前記NOx浄化触媒に流入する位置に前記切換弁を切り換えるようにしたことを特徴としている。   The exhaust gas purification apparatus for an internal combustion engine according to the present invention is disposed in an exhaust passage of the internal combustion engine, and is disposed in the exhaust passage downstream of the NOx retaining material and the NOx retaining material capable of retaining at least NOx in the exhaust gas. Branched from a branch portion of the exhaust passage located between the NOx purifying catalyst and the NOx holding material and the NOx purifying catalyst, which are supported on a catalyst carrier and capable of purifying a catalytic metal capable of purifying NOx in the exhaust gas. And a bypass passage that joins at a joining portion of the exhaust passage downstream of the NOx purification catalyst, and a branch portion, for allowing exhaust gas to flow into either the NOx purification catalyst or the bypass passage. A switching valve, and when the NOx should be held by the NOx holding material, the switching valve is held at a position where exhaust gas flows into the bypass passage, Exhaust gas when the NOx from Ox holding member is released is characterized in that so as to switch the switching valve to a position that flows into the NOx purification catalyst.

本発明によれば、NOx保持材としは、排気ガス中に含まれるNOxを少なくとも保持可能なものであればよく、特に限定されないが、例えば、排気ガスの空燃比がリーンのときにはNOxを吸蔵し、排気ガスの空燃比がリッチになると吸蔵したNOxを放出して還元浄化するNOx吸蔵還元型触媒や、低温域でNOxを吸着し、吸着したNOxを高温域で放出するNOx吸着材等の材料を使用することができる。   According to the present invention, the NOx holding material is not particularly limited as long as it can hold at least NOx contained in the exhaust gas. For example, when the air-fuel ratio of the exhaust gas is lean, it stores NOx. , Materials such as NOx occlusion reduction catalyst that releases and reduces the stored NOx when the air-fuel ratio of the exhaust gas becomes rich, and NOx adsorbent that adsorbs NOx in the low temperature range and releases the adsorbed NOx in the high temperature range Can be used.

なお、本発明において用いられる「NOx保持材」という用語は、NOxをそのままの形態で保持することができるか又は別の形態、例えば、硝酸塩等の形態で保持することができる任意の材料を包含するものである。また、本発明において「保持」とは、「吸着」、「吸収」及び「吸蔵」を包含するものである。   The term “NOx holding material” used in the present invention includes any material that can hold NOx as it is or in another form, such as nitrate. To do. In the present invention, “holding” includes “adsorption”, “absorption”, and “occlusion”.

本発明によれば、NOx浄化触媒としては、排気ガス中のNOxを浄化可能な触媒金属を触媒担体に担持してなる任意の材料を使用することができる。このような材料としては、排気ガス中のNOxを還元浄化できるものであればよく、特に限定されないが、例えば、ロジウム(Rh)等の貴金属やFe、Ni、Cu及びCo等の卑金属を触媒金属として使用し、当該触媒金属をNOx浄化触媒の触媒担体として一般に用いられる任意の金属酸化物に担持してなる材料を使用することができる。   According to the present invention, as the NOx purification catalyst, any material obtained by supporting a catalyst metal capable of purifying NOx in exhaust gas on a catalyst carrier can be used. Such a material is not particularly limited as long as it can reduce and purify NOx in the exhaust gas. For example, a noble metal such as rhodium (Rh) or a base metal such as Fe, Ni, Cu and Co is used as a catalyst metal. And a material obtained by supporting the catalyst metal on an arbitrary metal oxide generally used as a catalyst carrier of a NOx purification catalyst can be used.

Fe、Ni、Cu及びCo等の卑金属は、リーン雰囲気や理論空燃比(ストイキ)近傍の雰囲気下ではRh等の貴金属に比べて還元能力が低く、それゆえ排気ガスの空燃比がリーン又はストイキであると排気ガス中に含まれるNOxを十分に還元浄化することができない。したがって、本発明の排気浄化装置におけるNOx浄化触媒の触媒金属としてこれらの卑金属を使用する場合には、排気ガスの空燃比を各触媒金属に応じたリッチ雰囲気に制御することが好ましい。このようなリッチ雰囲気の制御は、排気ガス中のNOxを還元浄化するタイミングにおいてのみ行えばよく、必ずしも常時リッチ雰囲気に制御する必要はない。このような制御は、例えば、内燃機関本体の燃焼室内に燃料を噴射することによって行ってもよいし、あるいはNOx保持材又はNOx浄化触媒の上流側排気通路内に還元剤供給弁を取り付け、当該還元剤供給弁から還元剤、好ましくは炭化水素又は燃料からなる還元剤を供給することによって行ってもよい。   Base metals such as Fe, Ni, Cu and Co have lower reducing ability than lean metals such as Rh in a lean atmosphere or an atmosphere near the stoichiometric air-fuel ratio (stoichiometric), and therefore the air-fuel ratio of the exhaust gas is lean or stoichiometric. If so, NOx contained in the exhaust gas cannot be sufficiently reduced and purified. Therefore, when these base metals are used as the catalyst metal of the NOx purification catalyst in the exhaust purification apparatus of the present invention, it is preferable to control the air-fuel ratio of the exhaust gas to a rich atmosphere corresponding to each catalyst metal. Such rich atmosphere control may be performed only at the timing of reducing and purifying NOx in the exhaust gas, and it is not always necessary to control the rich atmosphere. Such control may be performed, for example, by injecting fuel into the combustion chamber of the internal combustion engine body, or by attaching a reducing agent supply valve in the upstream exhaust passage of the NOx holding material or the NOx purification catalyst, and You may carry out by supplying the reducing agent which consists of a reducing agent, Preferably hydrocarbon or a fuel from a reducing agent supply valve.

以下、図面を参照して、本発明の内燃機関の排気浄化装置の好ましい実施態様についてより詳しく説明するが、これらの説明は、本発明の好ましい実施態様の単なる例示を意図するものであって、本発明をこれらの特定の実施態様に限定することを意図するものではない。   Hereinafter, with reference to the drawings, preferred embodiments of the exhaust gas purification apparatus for an internal combustion engine of the present invention will be described in more detail. However, these descriptions are only intended to illustrate preferred embodiments of the present invention, and It is not intended that the invention be limited to these specific embodiments.

図1は、本発明の排気浄化装置の第1の実施態様を模式的に示した図である。   FIG. 1 is a diagram schematically showing a first embodiment of the exhaust emission control device of the present invention.

図1を参照すると、内燃機関10の排気側は、排気管11を介してNOx保持材12を内蔵したケーシング13に連結され、当該ケーシング13の出口部は排気管14を介してNOx浄化触媒15を内蔵したケーシング16に連結されている。また、ケーシング16の上流側の分岐部からはバイパス通路17が分岐され、当該バイパス通路17はケーシング16の出口部に接続された排気管18に接続されている。なお、上記分岐部には切換弁19が設けられており、この切換弁19は、電子制御ユニット(ECU)30によって排気ガスの全量をNOx浄化触媒15側へ流入させるバイパス閉位置と排気ガスの全量をバイパス通路17に流入させるバイパス開位置とのいずれか一方の位置に切り換え可能となっている。なお、本発明の第1の実施態様においては、切換弁19は、常時はバイパス開位置に保持されている。また、排気管11内には排気ガス中に例えば炭化水素からなる還元剤を供給するための還元剤供給弁20が取り付けられている。そして、排気管14及び18にはそれぞれケーシング13及び16から流出する排気ガスの温度を検出するための温度センサ21及び22が取り付けられ、これらの排気ガスの温度はそれぞれNOx保持材12及びNOx浄化触媒15の温度を検出するためのものである。さらに、排気管14には必要に応じて空燃比センサ23が取り付けられる。   Referring to FIG. 1, the exhaust side of the internal combustion engine 10 is connected to a casing 13 containing a NOx holding material 12 via an exhaust pipe 11, and an outlet portion of the casing 13 is connected to a NOx purification catalyst 15 via an exhaust pipe 14. Is connected to a casing 16 containing the. A bypass passage 17 is branched from a branch portion on the upstream side of the casing 16, and the bypass passage 17 is connected to an exhaust pipe 18 connected to an outlet portion of the casing 16. Note that a switching valve 19 is provided at the branch portion, and the switching valve 19 is provided with a bypass closed position in which the entire amount of exhaust gas flows into the NOx purification catalyst 15 side by an electronic control unit (ECU) 30 and exhaust gas. The position can be switched to one of the bypass open position where the entire amount flows into the bypass passage 17. In the first embodiment of the present invention, the switching valve 19 is always held in the bypass open position. Further, a reducing agent supply valve 20 for supplying a reducing agent made of, for example, hydrocarbons into the exhaust gas is attached in the exhaust pipe 11. Temperature sensors 21 and 22 for detecting the temperature of the exhaust gas flowing out from the casings 13 and 16 are attached to the exhaust pipes 14 and 18, respectively. The temperatures of these exhaust gases are the NOx holding material 12 and the NOx purification respectively. This is for detecting the temperature of the catalyst 15. Further, an air-fuel ratio sensor 23 is attached to the exhaust pipe 14 as necessary.

本発明の第1の実施態様によれば、本発明の排気浄化装置は、好ましくはディーゼルエンジンや希薄燃焼エンジン等、酸素過剰のリーン混合気を燃焼させる内燃機関において使用される。この場合、NOx保持材12としては、排気ガスの空燃比がリーンのときにはNOxを吸蔵し、排気ガスの空燃比がリッチになると吸蔵したNOxを放出して還元浄化する、いわゆるNOx吸蔵還元型触媒(以下、「NSR触媒」と称する)を使用することが好ましい。   According to the first embodiment of the present invention, the exhaust emission control device of the present invention is preferably used in an internal combustion engine that burns an oxygen-rich lean gas mixture, such as a diesel engine or a lean combustion engine. In this case, the NOx holding material 12 is a so-called NOx storage-reduction catalyst that stores NOx when the air-fuel ratio of the exhaust gas is lean and releases the stored NOx to reduce and purify when the air-fuel ratio of the exhaust gas becomes rich. (Hereinafter referred to as “NSR catalyst”) is preferably used.

上記のNSR触媒12としては、例えば、アルミナ(Al23)等の多孔質担体に白金(Pt)等の貴金属と、アルカリ金属、アルカリ土類金属又は希土類元素等の元素を含む化合物、例えば、これらの元素の炭酸塩、硝酸塩、酸化物とを担持したものを使用することができる。 Examples of the NSR catalyst 12 include a compound containing a noble metal such as platinum (Pt) and an element such as an alkali metal, an alkaline earth metal, or a rare earth element on a porous carrier such as alumina (Al 2 O 3 ), for example. In addition, those carrying carbonates, nitrates, and oxides of these elements can be used.

ディーゼルエンジンや希薄燃焼エンジン等の内燃機関では、酸素過剰のリーン混合気を燃焼させるため、当然ながらNOx浄化触媒15に流入する排気ガスの空燃比も酸素過剰のリーン空燃比となる。このため、内燃機関の排気通路内に配置されるNOx浄化触媒15は、このような酸素濃度の高い排気ガスにさらされて酸素被毒を受け、当該NOx浄化触媒15のNOx浄化性能が低下してしまう。   In an internal combustion engine such as a diesel engine or a lean combustion engine, an oxygen-excess lean air-fuel mixture is combusted, so that the air-fuel ratio of the exhaust gas flowing into the NOx purification catalyst 15 naturally also becomes an oxygen-excess lean air-fuel ratio. For this reason, the NOx purification catalyst 15 disposed in the exhaust passage of the internal combustion engine is exposed to such exhaust gas having a high oxygen concentration and is subjected to oxygen poisoning, and the NOx purification performance of the NOx purification catalyst 15 is reduced. End up.

本発明の第1の実施態様によれば、酸素濃度が高いリーン雰囲気下では、排気ガスがバイパス通路17に流入する位置に切換弁19を切り換えることで、上記のようなNOx浄化触媒15の酸素被毒を防ぐことが可能である。   According to the first embodiment of the present invention, in a lean atmosphere with a high oxygen concentration, the switching valve 19 is switched to a position where the exhaust gas flows into the bypass passage 17, whereby the oxygen of the NOx purification catalyst 15 as described above. It is possible to prevent poisoning.

図2は、本発明の排気浄化装置の第1の実施態様における切換弁操作のフローチャートである。なお、この切換弁操作は、電子制御ユニット(ECU)30によって予め定められた設定時間毎の割り込みによって実行されるルーチンとして行われる。また、本実施態様では、切換弁19の操作をNSR触媒12のNOx吸蔵量に適合させる手法として、例えば、予めECU30に内燃機関10の運転状態に応じて当該内燃機関10から単位時間当たり排出されるNOx量NOXAをマップの形で記憶し、このマップを利用してNSR触媒12に吸蔵されるNOx量ΣNOXの算出を行う方法が採用される。   FIG. 2 is a flowchart of the switching valve operation in the first embodiment of the exhaust gas purification apparatus of the present invention. This switching valve operation is performed as a routine that is executed by interruption every predetermined time set in advance by the electronic control unit (ECU) 30. Further, in the present embodiment, as a method of adapting the operation of the switching valve 19 to the NOx occlusion amount of the NSR catalyst 12, for example, the ECU 30 is previously discharged from the internal combustion engine 10 per unit time according to the operating state of the internal combustion engine 10. A method of storing the NOx amount NOXA to be stored in the form of a map and calculating the NOx amount ΣNOX stored in the NSR catalyst 12 using this map is employed.

図2を参照すると、まず初めにステップ100では、上記のマップから単位時間当たり排出されるNOx量NOXAが算出される。次いでステップ101においてNOXAがNSR触媒12に吸蔵されているNOx量ΣNOXに加算される。次いでステップ102において吸蔵NOx量ΣNOXが許容量MAXを超えたか否かが判定され、ΣNOX>MAXとなったときにはステップ103に進む。一方、吸蔵NOx量ΣNOXが許容量MAX以下の場合には、リッチ処理(すなわちNOx放出処理)は行わずにルーチンを終了する。   Referring to FIG. 2, first, at step 100, the NOx amount NOXA discharged per unit time is calculated from the above map. Next, at step 101, NOXA is added to the NOx amount ΣNOX stored in the NSR catalyst 12. Next, at step 102, it is determined whether or not the occluded NOx amount ΣNOX exceeds the allowable amount MAX. When ΣNOX> MAX, the routine proceeds to step 103. On the other hand, when the occluded NOx amount ΣNOX is less than or equal to the allowable amount MAX, the routine is terminated without performing the rich process (that is, the NOx release process).

ステップ103ではリッチ処理の準備のため、切換弁19をバイパス閉位置に切り換えるバイパス閉位置切換制御が行われる。次いでステップ104においてNSR触媒12に流入する排気ガスの空燃比を一時的にリーンからリッチにしてNOxを放出させるリッチ処理を行う。なお、このようなリッチ処理は、図1に示すように、NSR触媒12の上流側排気管11内に取り付けられた還元剤供給弁20から還元剤又は燃料を供給することによって行ってもよいし、あるいは内燃機関本体の燃焼室内に燃料を噴射することによって行ってもよい。次に、ステップ105において切換弁19をバイパス開位置に切り換えるバイパス開位置切換制御が行われ、最後にステップ106において吸蔵NOx量ΣNOXが0にクリアされてルーチンを終了する。   In step 103, bypass closed position switching control for switching the switching valve 19 to the bypass closed position is performed to prepare for rich processing. Next, at step 104, a rich process is performed in which the air-fuel ratio of the exhaust gas flowing into the NSR catalyst 12 is temporarily made rich from lean to release NOx. Such rich processing may be performed by supplying a reducing agent or fuel from a reducing agent supply valve 20 attached in the upstream side exhaust pipe 11 of the NSR catalyst 12, as shown in FIG. Alternatively, it may be performed by injecting fuel into the combustion chamber of the internal combustion engine body. Next, in step 105, bypass opening position switching control for switching the switching valve 19 to the bypass opening position is performed. Finally, in step 106, the stored NOx amount ΣNOX is cleared to 0 and the routine is ended.

上記のとおり、本発明の第1の実施態様によれば、排気ガス中の酸素濃度が高いとき、特に排気ガスの空燃比がリーンであるときには、排気ガスがバイパス通路17に流入する位置に切換弁19を切り換えることで、NOx浄化触媒15がこのような高濃度の酸素によって被毒されることを確実に防ぐことができる。そして、排気ガス中の酸素濃度が低いとき、特に排気ガスの空燃比がリッチであるときには、排気ガスがNOx浄化触媒15に流入する位置に切換弁19を切り換えることで、上流側のNSR触媒12から放出されたNOxが当該NSR触媒12とその下流側のNOx浄化触媒15の2つの触媒によって還元浄化される。このようにすることで、上流側のNSR触媒12によって浄化しきれなかったNOxを下流側のNOx浄化触媒15によって確実に還元浄化することができるので、従来の内燃機関の排気浄化装置に比べて高いNOx浄化率を達成することが可能である。   As described above, according to the first embodiment of the present invention, when the oxygen concentration in the exhaust gas is high, particularly when the air-fuel ratio of the exhaust gas is lean, switching to a position where the exhaust gas flows into the bypass passage 17 is performed. By switching the valve 19, it is possible to reliably prevent the NOx purification catalyst 15 from being poisoned by such a high concentration of oxygen. When the oxygen concentration in the exhaust gas is low, especially when the air-fuel ratio of the exhaust gas is rich, the upstream side NSR catalyst 12 is switched by switching the switching valve 19 to a position where the exhaust gas flows into the NOx purification catalyst 15. NOx released from the catalyst is reduced and purified by the two catalysts of the NSR catalyst 12 and the downstream NOx purification catalyst 15. In this way, NOx that could not be completely purified by the upstream NSR catalyst 12 can be reliably reduced and purified by the downstream NOx purification catalyst 15, so that it can be compared with a conventional exhaust purification device for an internal combustion engine. A high NOx purification rate can be achieved.

次に、図3を参照して、本発明の排気浄化装置の第2の実施態様について具体的に説明する。図3は、本発明の排気浄化装置の第2の実施態様を模式的に示した図である。   Next, the second embodiment of the exhaust emission control device of the present invention will be specifically described with reference to FIG. FIG. 3 is a diagram schematically showing a second embodiment of the exhaust emission control device of the present invention.

本発明の第2の実施態様は、NOx保持材12の上流側排気通路11内にPt等の貴金属を触媒担体に担持してなるいわゆる三元触媒24を配置したこと以外は、図1に示される本発明の第1の実施態様とほぼ同様の構成を有する。なお、この三元触媒24は、例えば、バイパス通路17と排気管18の合流部より下流側の排気管18内に配置してもよい。しかしながら、冷間始動時等の低温下においてもより早く三元触媒24をその活性化温度に到達させるためには、図3に示すとおり、当該三元触媒24は、内燃機関10の排気側により近いNOx保持材12の上流側排気通路11内に配置することが好ましい。また、本実施態様では、還元剤供給弁20を第1の実施態様のようにNOx保持材12の上流側排気管11内に取り付けるのではなく、NOx浄化触媒15の上流側排気管14内に取り付けている。しかしながら、この還元剤供給弁20は、例えば、NOx浄化触媒15が理論空燃比(ストイキ)近傍で排気ガス中のNOxを還元浄化することができる材料の場合には必ずしも必要ではなく、NOx浄化触媒15として使用される材料に応じて適宜設ければよい。   The second embodiment of the present invention is shown in FIG. 1 except that a so-called three-way catalyst 24 formed by supporting a noble metal such as Pt on a catalyst carrier is disposed in the upstream exhaust passage 11 of the NOx holding material 12. The configuration is almost the same as that of the first embodiment of the present invention. Note that the three-way catalyst 24 may be disposed in the exhaust pipe 18 on the downstream side of the joining portion of the bypass passage 17 and the exhaust pipe 18, for example. However, in order to allow the three-way catalyst 24 to reach its activation temperature more quickly even at a low temperature such as during cold start, the three-way catalyst 24 is disposed on the exhaust side of the internal combustion engine 10 as shown in FIG. It is preferable to arrange in the upstream exhaust passage 11 of the near NOx holding material 12. In the present embodiment, the reducing agent supply valve 20 is not installed in the upstream exhaust pipe 11 of the NOx holding material 12 as in the first embodiment, but in the upstream exhaust pipe 14 of the NOx purification catalyst 15. It is attached. However, the reducing agent supply valve 20 is not necessarily required when the NOx purification catalyst 15 is a material that can reduce and purify NOx in the exhaust gas near the stoichiometric air-fuel ratio (stoichiometric), for example. What is necessary is just to provide suitably according to the material used as 15.

本発明の第2の実施態様によれば、本発明の排気浄化装置は、主として理論空燃比(ストイキ)近傍で制御されるガソリンエンジンにおいて適用することができる。この場合、NOx保持材12としては、低温域でNOxを吸着し、吸着したNOxを高温域で放出するNOx吸着材を使用することが好ましい。   According to the second embodiment of the present invention, the exhaust emission control device of the present invention can be applied to a gasoline engine controlled mainly near the stoichiometric air-fuel ratio (stoichiometric). In this case, as the NOx holding material 12, it is preferable to use a NOx adsorbent that adsorbs NOx in a low temperature region and releases the adsorbed NOx in a high temperature region.

上記のNOx吸着材12としては、低温域でNOxを吸着し、吸着したNOxを高温域で放出することができる材料であればよく、特に限定されないが、例えば、ジルコニア(ZrO2)等の金属酸化物やゼオライト等、あるいはそれらに貴金属等を担持した材料を使用することができる。このような材料としては、例えば、Ag/ZSM−5やAg/Al23などが挙げられる。 The NOx adsorbent 12 is not particularly limited as long as it is a material that can adsorb NOx in a low temperature region and release the adsorbed NOx in a high temperature region. For example, a metal such as zirconia (ZrO 2 ) Oxides, zeolites, etc., or materials carrying noble metals or the like can be used. Examples of such a material include Ag / ZSM-5 and Ag / Al 2 O 3 .

一般に、排気浄化触媒がその性能を十分に発揮するためには、排気浄化触媒を所定の活性化温度まで昇温する必要がある。しかしながら、内燃機関の冷間始動時等にあっては、排気浄化触媒の温度が低く、それゆえ内燃機関本体から排出される排気ガス中の有害成分を十分に浄化することができない。一方で、排気浄化触媒において用いられる触媒金属はこのような低温下でより酸化されやすいため、排気ガス中に含まれる有害成分の中でも特にNOxに対する還元能力が低いという問題がある。   In general, in order for the exhaust purification catalyst to fully exhibit its performance, it is necessary to raise the temperature of the exhaust purification catalyst to a predetermined activation temperature. However, when the internal combustion engine is cold started, the temperature of the exhaust purification catalyst is low, and therefore, harmful components in the exhaust gas discharged from the internal combustion engine main body cannot be sufficiently purified. On the other hand, since the catalytic metal used in the exhaust purification catalyst is more easily oxidized at such a low temperature, there is a problem that the reducing ability for NOx is particularly low among harmful components contained in the exhaust gas.

本発明の第2の実施態様によれば、通常運転時には主として排気通路の上流側に配置される三元触媒24によって排気ガス中の未燃HC(炭化水素)及びCOを酸化し、同時にNOxを還元浄化する。一方で、内燃機関の冷間始動時等の低温下においては、排気ガスがバイパス通路17に流入する位置に切換弁19を切り換えることで、NOx浄化触媒15が排気ガス中の酸素によって被毒されることを防ぐことができる。この場合、排気ガス中のNOxは排気通路内の上流側に配置されたNOx吸着材12によって吸着される。そして、排気ガスの温度がNOx吸着材12からNOxが放出される温度に達した段階で切換弁19を排気ガスがNOx浄化触媒15側に流入する位置に切り換えることで、放出されたNOxをNOx浄化触媒15によって還元浄化することが可能である。   According to the second embodiment of the present invention, during normal operation, unburned HC (hydrocarbon) and CO in the exhaust gas are oxidized by the three-way catalyst 24 disposed mainly upstream of the exhaust passage, and NOx is simultaneously reduced. Reduce and purify. On the other hand, at a low temperature such as when the internal combustion engine is cold started, the NOx purification catalyst 15 is poisoned by oxygen in the exhaust gas by switching the switching valve 19 to a position where the exhaust gas flows into the bypass passage 17. Can be prevented. In this case, NOx in the exhaust gas is adsorbed by the NOx adsorbent 12 disposed on the upstream side in the exhaust passage. Then, when the temperature of the exhaust gas reaches the temperature at which NOx is released from the NOx adsorbent 12, the switching valve 19 is switched to a position where the exhaust gas flows into the NOx purification catalyst 15 side, so that the released NOx is reduced to NOx. Reduction purification by the purification catalyst 15 is possible.

図4は、本発明の排気浄化装置の第2の実施態様における切換弁操作のフローチャートである。なお、この切換弁操作は、電子制御ユニット(ECU)30によって予め定められた設定時間毎の割り込みによって実行されるルーチンとして行われる。また、本実施態様では、第1の実施態様の場合と同様に、予めECU30に内燃機関10の運転状態に応じて当該内燃機関10から単位時間当たり排出されるNOx量NOXAをマップの形で記憶し、このマップを利用してNOx吸着材12に吸着されるNOx量ΣNOXの算出を行うものとする。なお、図4では、NOx浄化触媒15としてFe等の卑金属を触媒担体に担持してなる材料を使用した場合について具体的に説明する。これらの卑金属は、先に述べたとおり、排気ガスの空燃比がリーン又はストイキであると排気ガス中に含まれるNOxを十分に還元浄化することができない。したがって、図4のフローチャートによって示されるルーチンでは、NOx浄化触媒15によって排気ガス中のNOxを還元浄化する場合には、当該NOx浄化触媒15の上流側排気管14内に取り付けられた還元剤供給弁20から還元剤として燃料が供給される。   FIG. 4 is a flowchart of the switching valve operation in the second embodiment of the exhaust emission control device of the present invention. This switching valve operation is performed as a routine that is executed by interruption every predetermined time set in advance by the electronic control unit (ECU) 30. Further, in this embodiment, as in the first embodiment, the NOx amount NOXA discharged from the internal combustion engine 10 per unit time according to the operating state of the internal combustion engine 10 is previously stored in the ECU 30 in the form of a map. Then, the NOx amount ΣNOX adsorbed on the NOx adsorbent 12 is calculated using this map. In FIG. 4, the case where a material in which a base metal such as Fe is supported on a catalyst carrier is used as the NOx purification catalyst 15 will be specifically described. As described above, these base metals cannot sufficiently reduce and purify NOx contained in the exhaust gas if the air-fuel ratio of the exhaust gas is lean or stoichiometric. Therefore, in the routine shown in the flowchart of FIG. 4, when NOx in the exhaust gas is reduced and purified by the NOx purification catalyst 15, the reducing agent supply valve attached in the upstream side exhaust pipe 14 of the NOx purification catalyst 15. Fuel is supplied from 20 as a reducing agent.

図4を参照すると、まず初めにステップ200では、温度センサ21によって検出されるNOx吸着材12の床温度TがNOx放出温度T0に達しているか否かが判定され、T≧T0の場合はステップ204に進む。ステップ204では、切換弁19をバイパス閉位置に切り換えるバイパス閉位置切換制御が行われる。次いでステップ205において還元剤供給弁20から燃料が供給され、NOx浄化触媒15に流入する排気ガスの空燃比をリッチにする(リッチ処理)。次いでNOx吸着材12から放出されたNOxをNOx浄化触媒15によって還元浄化してルーチンを終了する。 Referring to FIG. 4, first, at step 200, it is determined whether or not the bed temperature T of the NOx adsorbent 12 detected by the temperature sensor 21 has reached the NOx release temperature T 0 , and if T ≧ T 0 . Goes to step 204. In step 204, bypass closed position switching control for switching the switching valve 19 to the bypass closed position is performed. Next, at step 205, fuel is supplied from the reducing agent supply valve 20, and the air-fuel ratio of the exhaust gas flowing into the NOx purification catalyst 15 is made rich (rich process). Next, the NOx released from the NOx adsorbent 12 is reduced and purified by the NOx purification catalyst 15, and the routine ends.

一方、先のステップ200においてNOx吸着材12の床温度TがT<T0の場合には、ステップ201に進む。ステップ201では、先に説明した第1の実施態様の場合と同様にして、ECU30に記憶されているマップから単位時間当たり排出されるNOx量NOXAが算出され、次いでステップ202においてNOXAがNOx吸着材12に吸着されているNOx量ΣNOXに加算される。次いでステップ203において吸着NOx量ΣNOXが許容量MAXを超えたか否かが判定される。そして吸着NOx量ΣNOXがΣNOX>MAXである場合にはステップ204に進み、先と同様にしてステップ204及び205において排気ガス中のNOxをNOx浄化触媒15によって還元浄化してルーチンを終了する。一方、吸着NOx量ΣNOXが許容量MAX以下の場合には、リッチ処理は行わずにルーチンを終了する。 On the other hand, if the bed temperature T of the NOx adsorbent 12 is T <T 0 in the previous step 200, the process proceeds to step 201. In step 201, the NOx amount NOXA discharged per unit time is calculated from the map stored in the ECU 30 in the same manner as in the first embodiment described above. Next, in step 202, NOXA is converted into NOx adsorbent. 12 is added to the amount of NOx ΣNOX adsorbed by 12. Next, at step 203, it is determined whether or not the adsorbed NOx amount ΣNOX exceeds the allowable amount MAX. When the adsorbed NOx amount ΣNOX is ΣNOX> MAX, the routine proceeds to step 204, where NOx in the exhaust gas is reduced and purified by the NOx purification catalyst 15 in steps 204 and 205 in the same manner as before, and the routine is ended. On the other hand, when the adsorption NOx amount ΣNOX is equal to or less than the allowable amount MAX, the routine is terminated without performing the rich process.

上記のとおり、本発明の第2の実施態様によれば、内燃機関の冷間始動時等、NOx浄化触媒15がその活性化温度に達していない低温下においては、排気ガス中のNOxがNOx吸着材12によって保持されるため、NOxが大気中に排出されるのを防ぐことができる。また、排気ガス中のNOxがNOx吸着材12によって保持されている間、切換弁19はバイパス開位置に保持され、NOx浄化触媒15が排気ガス中に含まれる酸素によって酸素被毒を受けるのを防ぐことができる。一方で、時間の経過とともにNOx浄化触媒15が暖められてNOx浄化触媒15の活性が発現した後、排気ガスの温度がNOx吸着材12からNOxが放出される温度に達した段階又はNOx吸着材12の吸着NOx量が飽和に達した段階で、排気ガスがNOx浄化触媒15側に流入する位置に切換弁19が切り換えられる。そして、NOx吸着材12から放出されたNOx又は吸着量が飽和に達したためにNOx吸着材12に吸着されずそのまますり抜けてしまったNOxをNOx浄化触媒15によって還元浄化することが可能である。   As described above, according to the second embodiment of the present invention, the NOx in the exhaust gas is reduced to NOx under a low temperature at which the NOx purification catalyst 15 has not reached its activation temperature, such as during a cold start of the internal combustion engine. Since it is held by the adsorbent 12, NOx can be prevented from being discharged into the atmosphere. Further, while the NOx in the exhaust gas is held by the NOx adsorbent 12, the switching valve 19 is held in the bypass open position so that the NOx purification catalyst 15 is not poisoned by oxygen contained in the exhaust gas. Can be prevented. On the other hand, after the NOx purification catalyst 15 is warmed over time and the activity of the NOx purification catalyst 15 is expressed, the temperature of the exhaust gas reaches the temperature at which NOx is released from the NOx adsorbent 12 or the NOx adsorbent. When the amount of adsorbed NOx 12 reaches saturation, the switching valve 19 is switched to a position where the exhaust gas flows into the NOx purification catalyst 15 side. Then, NOx released from the NOx adsorbent 12 or NOx that has not been adsorbed by the NOx adsorbent 12 because the amount of adsorption has reached saturation can be reduced and purified by the NOx purification catalyst 15.

本発明の第2の実施態様によれば、通常運転時には、一般的に上流側の三元触媒24と下流側のNOx浄化触媒15によって排気ガス中の有害成分、特にはNOxが還元浄化され、冷間始動時等の低温下では、切換弁19をバイパス開位置に保持することでNOx浄化触媒15が排気ガス中に含まれる酸素によって酸素被毒を受けるのを防ぎかつNOx吸着材12によって大気中へのNOxの放出が抑制される。したがって、本発明の第2の実施態様によれば、従来の内燃機関の排気浄化装置に比べて高いNOx浄化率を達成することが可能である。   According to the second embodiment of the present invention, during normal operation, harmful components in exhaust gas, particularly NOx, are generally reduced and purified by the upstream three-way catalyst 24 and the downstream NOx purification catalyst 15; Under a low temperature such as during cold start, the NOx purification catalyst 15 is prevented from being poisoned by oxygen contained in the exhaust gas by holding the switching valve 19 in the bypass open position, and the NOx adsorbent 12 is used for the atmosphere. Release of NOx into the inside is suppressed. Therefore, according to the second embodiment of the present invention, it is possible to achieve a higher NOx purification rate than the conventional exhaust purification device of an internal combustion engine.

本明細書では、本発明の排気浄化装置を主として理論空燃比近傍で制御されるガソリンエンジンにおいて適用した場合の実施態様(本発明の第2の実施態様)として、NOx吸着材12の上流側に三元触媒24を配置し、NOx浄化触媒15としてFe等の卑金属を触媒担体に担持してなる材料を使用した構成について詳しく説明した。しかしながら、このような構成以外にも、本発明の第2の実施態様として、例えば、以下の構成を適用することができる。   In the present specification, as an embodiment (second embodiment of the present invention) when the exhaust gas purification apparatus of the present invention is applied to a gasoline engine controlled mainly near the stoichiometric air-fuel ratio, the upstream side of the NOx adsorbent 12 is provided. The configuration using the three-way catalyst 24 and using a material in which a base metal such as Fe is supported on the catalyst carrier as the NOx purification catalyst 15 has been described in detail. However, in addition to such a configuration, for example, the following configuration can be applied as the second embodiment of the present invention.

具体的には、本発明の第2の実施態様の変形態様として、例えば、NOx吸着材12の上流側に三元触媒ではなく、低温域でHCを吸着し、吸着したHCを高温域で放出するHC吸着材、及び/又は低温域でCOを吸着し、吸着したCOを高温域で放出するCO吸着材等を配置してもよい。このようなHC吸着材やCO吸着材としては、当業者に公知の任意の材料を使用することができ、例えば、ZSM−5等のゼオライトや、当該ゼオライトにCu等の金属を担持してなる材料を使用することができる。なお、この場合には、NOx浄化触媒15としては三元触媒を使用することが好ましい。   Specifically, as a modification of the second embodiment of the present invention, for example, HC is adsorbed in the low temperature region instead of the three-way catalyst on the upstream side of the NOx adsorbent 12, and the adsorbed HC is released in the high temperature region. An HC adsorbent that performs adsorption and / or a CO adsorbent that adsorbs CO in a low temperature region and releases the adsorbed CO in a high temperature region may be disposed. As such HC adsorbent and CO adsorbent, any material known to those skilled in the art can be used. For example, zeolite such as ZSM-5 or a metal such as Cu is supported on the zeolite. Material can be used. In this case, it is preferable to use a three-way catalyst as the NOx purification catalyst 15.

三元触媒では主としてPt等の貴金属が触媒金属として使用される。しかしながら、このPtについても、酸素濃度が高い雰囲気下では、Fe等の卑金属の場合と同様に酸素被毒を受け、その触媒活性が低下する。したがって、上記の変形態様によれば、内燃機関の冷間始動時等、NOx浄化触媒15として使用される三元触媒がその活性化温度に達していない低温下においては、切換弁19をバイパス開位置に保持して、NOx浄化触媒15としての三元触媒が排気ガス中に含まれる酸素によって酸素被毒を受けることを確実に防ぐことができる。なお、この場合には、排気ガス中の未燃HC、CO及びNOxは排気通路の上流側に配置されるHC吸着材、CO吸着材及びNO吸着材によって吸着されるため、これらの有害成分が大気中に排出されることもない。一方で、時間の経過とともにNOx浄化触媒15が暖められてその触媒活性が発現した後、排気ガスの温度が上記の各吸着材からHC、CO及びNOxのいずれかの成分が放出される温度に達した段階又は各吸着材の吸着量が飽和に達した段階で、排気ガスがNOx浄化触媒15側に流入する位置に切換弁19が切り換えられる。そして、これらの成分をNOx浄化触媒15、すなわち三元触媒によって浄化することが可能である。   In the three-way catalyst, a noble metal such as Pt is mainly used as a catalyst metal. However, even in the case of this Pt, under an atmosphere having a high oxygen concentration, oxygen poisoning is caused in the same manner as in the case of a base metal such as Fe, and the catalytic activity is reduced. Therefore, according to the above modification, the switching valve 19 is bypass-opened at a low temperature when the three-way catalyst used as the NOx purification catalyst 15 has not reached its activation temperature, such as when the internal combustion engine is cold started. The three-way catalyst as the NOx purification catalyst 15 can be reliably prevented from being subjected to oxygen poisoning by oxygen contained in the exhaust gas. In this case, unburned HC, CO, and NOx in the exhaust gas are adsorbed by the HC adsorbent, the CO adsorbent, and the NO adsorbent disposed upstream of the exhaust passage. It is not discharged into the atmosphere. On the other hand, after the NOx purification catalyst 15 is warmed over time and its catalytic activity is exhibited, the temperature of the exhaust gas is set to a temperature at which any of the HC, CO, and NOx components is released from each of the adsorbents. The switching valve 19 is switched to a position where the exhaust gas flows into the NOx purification catalyst 15 side at the stage when it reaches or when the adsorption amount of each adsorbent reaches saturation. These components can be purified by the NOx purification catalyst 15, that is, a three-way catalyst.

以下に、NOx浄化触媒の触媒金属としてFe等の卑金属を使用した場合について、当該NOx浄化触媒の酸素被毒に関する影響を調べた結果を示す。具体的には、NOx浄化触媒として、Feをアルミナ(Al23)担体に担持してなるFe/Al23を従来公知の方法により調製し、このFe/Al23触媒を空気中500℃で2時間にわたり酸化処理することで模擬的に酸素による被毒処理を施した。一方で、従来公知の方法により調製したFe/Al23触媒を水素含有雰囲気中500℃で1時間にわたり還元処理し、これらの2つの触媒のNO浄化性能を評価した。 The results of examining the influence of the NOx purification catalyst on oxygen poisoning in the case where a base metal such as Fe is used as the catalyst metal of the NOx purification catalyst are shown below. Specifically, Fe / Al 2 O 3 prepared by supporting Fe on an alumina (Al 2 O 3 ) support as a NOx purification catalyst was prepared by a conventionally known method, and this Fe / Al 2 O 3 catalyst was used as air. A poisoning treatment with oxygen was performed in a simulated manner by oxidizing at 500 ° C. for 2 hours. On the other hand, the Fe / Al 2 O 3 catalyst prepared by a conventionally known method was reduced at 500 ° C. for 1 hour in a hydrogen-containing atmosphere, and the NO purification performance of these two catalysts was evaluated.

まず、上記の各NOx浄化触媒を石英ガラス管にセットし、次いで、評価用モデルガス(NO:1000ppm、CO:1000ppm、N2バランス)を触媒床に流しながら、当該触媒床の温度を室温から500℃まで昇温し、この温度でのNO浄化率を測定した。その結果を下表1に示す。 First, each NOx purification catalyst is set in a quartz glass tube, and then the temperature of the catalyst bed is changed from room temperature while flowing an evaluation model gas (NO: 1000 ppm, CO: 1000 ppm, N 2 balance) to the catalyst bed. The temperature was raised to 500 ° C., and the NO purification rate at this temperature was measured. The results are shown in Table 1 below.

Figure 0005640521
Figure 0005640521

表1に示す結果から、酸化処理を施されたFe/Al23触媒、すなわち、酸素被毒を受けたFe/Al23触媒は、このような酸素被毒を受けていないFe/Al23触媒に比べてNOxの還元能力が極めて低いことがわかる。先に説明した本発明の第1及び第2の実施態様によれば、希薄燃焼エンジンやストイキで制御される通常のガソリンエンジンにおいても、排気ガスの雰囲気や温度に応じて切換弁を適切に操作することで、上記のような触媒金属の酸素被毒によるNOx浄化性能の低下を確実に抑制することが可能である。 From the results shown in Table 1, the Fe / Al 2 O 3 catalyst subjected to oxidation treatment, that is, the Fe / Al 2 O 3 catalyst subjected to oxygen poisoning, is Fe / Al 2 O 3 catalyst not subjected to such oxygen poisoning. It can be seen that the reduction ability of NOx is extremely low compared to the Al 2 O 3 catalyst. According to the first and second embodiments of the present invention described above, even in a lean combustion engine or a normal gasoline engine controlled by stoichiometry, the switching valve is appropriately operated according to the atmosphere and temperature of the exhaust gas. By doing so, it is possible to reliably suppress a decrease in NOx purification performance due to oxygen poisoning of the catalyst metal as described above.

10 内燃機関
11、14、18 排気管
12 NOx保持材
13、16 ケーシング
15 NOx浄化触媒
17 バイパス通路
19 切換弁
20 還元剤供給弁
21、22 温度センサ
23 空燃比センサ
30 電子制御ユニット
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 11, 14, 18 Exhaust pipe 12 NOx holding material 13, 16 Casing 15 NOx purification catalyst 17 Bypass passage 19 Switching valve 20 Reducing agent supply valve 21, 22 Temperature sensor 23 Air-fuel ratio sensor 30 Electronic control unit

Claims (3)

内燃機関の排気通路内に配置され、排気ガス中のNOxを少なくとも保持可能なNOx保持材と、
前記NOx保持材より下流側の前記排気通路内に配置され、排気ガス中のNOxを浄化可能な触媒金属を触媒担体に担持してなるNOx浄化触媒であって、前記触媒金属が卑金属であるNOx浄化触媒と、
前記NOx保持材と前記NOx浄化触媒との間に位置する前記排気通路の分岐部から分岐するとともに、前記NOx浄化触媒より下流側の前記排気通路の合流部において合流するバイパス通路と、
前記分岐部に設けられ、前記NOx浄化触媒又は前記バイパス通路のいずれか一方に排気ガスを流入させるための切換弁と
を備え、
前記NOx保持材が貴金属をさらに含むNOx吸蔵還元型触媒であり、該NOx吸蔵還元型触媒に流入する排気ガスの空燃比がリーンであるときには排気ガスが前記バイパス通路に流入する位置に前記切換弁を保持し、前記NOx吸蔵還元型触媒に流入する排気ガスの空燃比がリッチであり、前記NOx吸蔵還元型触媒からNOxが放出されるときに排気ガスが前記NOx浄化触媒に流入する位置に前記切換弁を切り換えるようにした、内燃機関の排気浄化装置。
A NOx holding material that is disposed in the exhaust passage of the internal combustion engine and can hold at least NOx in the exhaust gas;
A NOx purification catalyst that is disposed in the exhaust passage downstream of the NOx holding material and supports a catalyst metal capable of purifying NOx in exhaust gas on a catalyst carrier, wherein the catalyst metal is a base metal. A purification catalyst;
A bypass passage branching from a branch portion of the exhaust passage located between the NOx holding material and the NOx purification catalyst, and joining at a joining portion of the exhaust passage downstream of the NOx purification catalyst;
A switching valve that is provided in the branch portion and allows exhaust gas to flow into either the NOx purification catalyst or the bypass passage;
With
When the NOx holding material is a NOx occlusion reduction type catalyst further containing a noble metal, and the air-fuel ratio of the exhaust gas flowing into the NOx occlusion reduction type catalyst is lean, the switching valve is located at a position where the exhaust gas flows into the bypass passage. And the exhaust gas flowing into the NOx occlusion reduction catalyst has a rich air-fuel ratio, and the exhaust gas flows into the NOx purification catalyst when NOx is released from the NOx occlusion reduction catalyst. and to switch the switching valve, the internal combustion engine exhaust gas purification apparatus.
内燃機関の排気通路内に配置され、排気ガス中のNOxを少なくとも保持可能なNOx保持材と、
前記NOx保持材より下流側の前記排気通路内に配置され、排気ガス中のNOxを浄化可能な触媒金属を触媒担体に担持してなるNOx浄化触媒であって、前記触媒金属が卑金属であるNOx浄化触媒と、
前記NOx保持材と前記NOx浄化触媒との間に位置する前記排気通路の分岐部から分岐するとともに、前記NOx浄化触媒より下流側の前記排気通路の合流部において合流するバイパス通路と、
前記分岐部に設けられ、前記NOx浄化触媒又は前記バイパス通路のいずれか一方に排気ガスを流入させるための切換弁と
を備え、
前記NOx保持材がNOx吸着材であり、該NOx吸着材の上流側又は前記合流部の下流側に配置され、貴金属を触媒担体に担持してなる触媒をさらに備え、前記NOx浄化触媒がその活性化温度に達していないときには排気ガスが前記バイパス通路に流入する位置に前記切換弁を保持し、排気ガスの温度が前記NOx吸着材からNOxが放出される温度に達した段階又は前記NOx吸着材の吸着NOx量が飽和に達した段階で排気ガスが前記NOx浄化触媒に流入する位置に前記切換弁を切り換えるようにした、内燃機関の排気浄化装置。
A NOx holding material that is disposed in the exhaust passage of the internal combustion engine and can hold at least NOx in the exhaust gas;
A NOx purification catalyst that is disposed in the exhaust passage downstream of the NOx holding material and supports a catalyst metal capable of purifying NOx in exhaust gas on a catalyst carrier, wherein the catalyst metal is a base metal. A purification catalyst;
A bypass passage branching from a branch portion of the exhaust passage located between the NOx holding material and the NOx purification catalyst, and joining at a joining portion of the exhaust passage downstream of the NOx purification catalyst;
A switching valve that is provided in the branch portion and allows exhaust gas to flow into either the NOx purification catalyst or the bypass passage;
With
The NOx holding material is a NOx adsorbent, and further includes a catalyst that is arranged on the upstream side of the NOx adsorbent or on the downstream side of the merging portion and carries a noble metal on a catalyst carrier, and the NOx purification catalyst has its activity The switch valve is held at a position where the exhaust gas flows into the bypass passage when it has not reached the control temperature, and the temperature of the exhaust gas reaches a temperature at which NOx is released from the NOx adsorbent or the NOx adsorbent the amount of adsorbed NOx exhaust gas at the stage reached saturation was to switch the switching valve to a position that flows into the NOx purification catalyst, exhaust gas purification apparatus for an internal combustion engine.
前記卑金属がFe、Ni、Cu又はCoである、請求項1又は2に記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to claim 1 or 2, wherein the base metal is Fe, Ni, Cu, or Co.
JP2010167022A 2010-07-26 2010-07-26 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5640521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010167022A JP5640521B2 (en) 2010-07-26 2010-07-26 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010167022A JP5640521B2 (en) 2010-07-26 2010-07-26 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012026383A JP2012026383A (en) 2012-02-09
JP5640521B2 true JP5640521B2 (en) 2014-12-17

Family

ID=45779595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010167022A Expired - Fee Related JP5640521B2 (en) 2010-07-26 2010-07-26 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5640521B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5653894B2 (en) * 2011-12-09 2015-01-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP6008445B2 (en) * 2012-08-07 2016-10-19 株式会社キンセイ産業 Livestock dung incineration equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4345484B2 (en) * 2004-01-06 2009-10-14 いすゞ自動車株式会社 Exhaust gas purification method and exhaust gas purification system
JP5023573B2 (en) * 2006-06-22 2012-09-12 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5092511B2 (en) * 2007-04-11 2012-12-05 いすゞ自動車株式会社 NOx purification system and control method of NOx purification system

Also Published As

Publication number Publication date
JP2012026383A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
US6758036B1 (en) Method for sulfur protection of NOx adsorber
US6391822B1 (en) Dual NOx adsorber catalyst system
JP3981915B2 (en) Exhaust gas purification system
US20100050604A1 (en) SCR-LNT CATALYST COMBINATION FOR IMPROVED NOx CONTROL OF LEAN GASOLINE AND DIESEL ENGINES
US20090188240A1 (en) Apparatus for purification of exhaust gas and method for purification of exhaust gas using the same
US20010035006A1 (en) Sulfur trap in NOx adsorber systems for enhanced sulfur resistance
MX2013003568A (en) Lean nox trap type exhaust gas purification catalyst and exhaust gas purification system.
JP4168781B2 (en) NOx catalyst regeneration method for NOx purification system and NOx purification system
JP4715744B2 (en) Exhaust gas purification device for internal combustion engine
JP2855986B2 (en) Exhaust gas purification device
JP5640521B2 (en) Exhaust gas purification device for internal combustion engine
JP2008296090A (en) Exhaust cleaning catalyst, exhaust cleaning system, and exhaust cleaning method
JP2007218177A (en) Exhaust emission control system
US20120042636A1 (en) Exhaust purification system of internal combustion engine
JP2009167844A (en) Exhaust emission control catalyst device
JP4341196B2 (en) Exhaust gas purification device for internal combustion engine
JP5094199B2 (en) Exhaust gas purification device
JP4507018B2 (en) Exhaust gas purification device for internal combustion engine
JP4371241B2 (en) Exhaust gas purification system
JP2004092584A (en) Exhaust emission control device for internal combustion engine
JP4371242B2 (en) Exhaust gas purification system
JP3736373B2 (en) Engine exhaust purification system
EP2918804B1 (en) Exhaust gas purification system and exhaust gas purification method
JP5476771B2 (en) Exhaust gas purification system and control method of exhaust gas purification system
JP3846541B2 (en) NOx adsorbent regeneration device and regeneration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R151 Written notification of patent or utility model registration

Ref document number: 5640521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees