JP2008296090A - Exhaust cleaning catalyst, exhaust cleaning system, and exhaust cleaning method - Google Patents

Exhaust cleaning catalyst, exhaust cleaning system, and exhaust cleaning method Download PDF

Info

Publication number
JP2008296090A
JP2008296090A JP2007142251A JP2007142251A JP2008296090A JP 2008296090 A JP2008296090 A JP 2008296090A JP 2007142251 A JP2007142251 A JP 2007142251A JP 2007142251 A JP2007142251 A JP 2007142251A JP 2008296090 A JP2008296090 A JP 2008296090A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
catalyst layer
noble metal
gas purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007142251A
Other languages
Japanese (ja)
Inventor
Kazuo Osumi
和生 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2007142251A priority Critical patent/JP2008296090A/en
Publication of JP2008296090A publication Critical patent/JP2008296090A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust cleaning catalyst, an exhaust cleaning system, and an exhaust cleaning method having a high activity with respect to low temperature exhaust discharged from an internal combustion engine being started up or run at a low load capable of exhibiting excellent cleaning capacity even if carbon monoxide (CO) and hydrocarbon (HC) are present therein. <P>SOLUTION: The exhaust cleaning catalyst 1A to 1D is characterized by comprising a first catalyst layer 12 supporting a mixture of an oxide capable of adsorbing oxygen and an oxide semiconductor disposed on the upstream side of an exhaust flow path 2 and a second catalyst layer 13 supporting a noble metal catalyst or a mixture of a hydrocarbon (HC) adsorbent and a noble metal catalyst disposed on the downstream side of the exhaust flow path 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関等の排気ガスを浄化するために使用される、低温活性を有する排気ガス浄化触媒、排気ガス浄化システム及び排気ガス浄化方法に関する。   The present invention relates to an exhaust gas purification catalyst having low temperature activity, an exhaust gas purification system, and an exhaust gas purification method used for purifying exhaust gas of an internal combustion engine or the like.

ディーゼルエンジンやガソリンエンジン等の内燃機関等の排気ガスを浄化するための排気ガス浄化装置について種々の研究や提案がなされている。その中に、DPF(ディーゼルパティキュレートフィルタ)や、NOx(窒素酸化物)を浄化するNOx浄化触媒を配置した排気ガス浄化装置がある。このNOx浄化触媒としては、三元触媒、NOx吸蔵還元型触媒、尿素添加のSCR触媒(選択的接触触媒)、NOx直接還元型触媒などがある。   Various studies and proposals have been made on exhaust gas purifying devices for purifying exhaust gas from internal combustion engines such as diesel engines and gasoline engines. Among them, there is an exhaust gas purification device in which a DPF (diesel particulate filter) and a NOx purification catalyst for purifying NOx (nitrogen oxide) are arranged. Examples of the NOx purification catalyst include a three-way catalyst, a NOx occlusion reduction type catalyst, a urea-added SCR catalyst (selective contact catalyst), and a NOx direct reduction type catalyst.

そして、ディーゼルエンジンの排気ガス浄化装置では、これらのDPFやNOx浄化触媒の上流側に酸化触媒を配置し、排気ガスの温度が低い場合に、ポスト噴射や排気管噴射でHC等の還元剤を排気ガス中に供給して、この還元剤を酸化触媒で酸化することにより、酸化触媒及び酸化触媒の下流側の排気ガスを昇温して、この酸化触媒を活性温度以上にを保つと共に、下流側のDPFのPM燃焼を促進したり、下流側のNOx浄化触媒を活性温度以上に保つことが行われている。   In an exhaust gas purification device for a diesel engine, an oxidation catalyst is arranged upstream of these DPF and NOx purification catalysts, and when the temperature of the exhaust gas is low, a reducing agent such as HC is applied by post injection or exhaust pipe injection. By supplying the exhaust gas into the exhaust gas and oxidizing the reducing agent with the oxidation catalyst, the temperature of the oxidation catalyst and the exhaust gas on the downstream side of the oxidation catalyst is raised to keep the oxidation catalyst at the activation temperature or more and The PM combustion of the DPF on the side is promoted, and the downstream NOx purification catalyst is kept at the activation temperature or higher.

また、SCR触媒の上流側に酸化触媒を配置した排気ガス浄化装置では、この酸化触媒で、NO(一酸化窒素)からNO2 (二酸化窒素)への反応を促進して、SCR触媒上におけるNH3 (アンモニア)との反応を促進することも行われている。 In addition, in the exhaust gas purification apparatus in which an oxidation catalyst is arranged upstream of the SCR catalyst, this oxidation catalyst promotes the reaction from NO (nitrogen monoxide) to NO 2 (nitrogen dioxide), and the NH on the SCR catalyst is increased. 3 The reaction with (ammonia) is also promoted.

この酸化触媒は、排気ガスの昇温以外にもCO(一酸化炭素)、HC(炭化水素)、NOを酸化させる等の作用効果を発揮し、下流側のDPFのPM(粒子状物質)のNO2 による燃焼促進や、NOx浄化触媒の性能を確保するための役割も有している。 This oxidation catalyst exhibits effects such as oxidation of CO (carbon monoxide), HC (hydrocarbon) and NO in addition to the temperature rise of the exhaust gas, and the PM (particulate matter) of the downstream DPF. It also has a role for promoting combustion by NO 2 and ensuring the performance of the NOx purification catalyst.

この酸化触媒は、貴金属酸化物に貴金属を担持した触媒が主に用いられ、その用途ごとに適正な構成、成分及び担持量が選定されているが、これらの酸化触媒においては、内燃機関の始動時や低負荷時等の排気ガス温度が低温の場合では触媒活性が高くないという問題がある。   As this oxidation catalyst, a catalyst in which a noble metal is supported on a noble metal oxide is mainly used, and appropriate configurations, components, and loadings are selected for each use, but in these oxidation catalysts, the internal combustion engine is started. There is a problem that the catalyst activity is not high when the exhaust gas temperature is low, such as when the load is low or when the load is low.

そのため、この酸化触媒の性能を向上し、低温活性の高い酸化触媒として機能するようにするために、HC,COを吸着する助触媒を使用したり、酸素吸蔵能(OSC)を有する材料を助触媒として添加したりしている。   Therefore, in order to improve the performance of this oxidation catalyst and to function as an oxidation catalyst having high low-temperature activity, a promoter that adsorbs HC and CO is used, or a material having an oxygen storage capacity (OSC) is supported. Or added as a catalyst.

この酸素吸蔵能を有する材料の一つに二酸化セリウム(セリア:CeO2 )があり、排気ガスの空燃比状態がリッチ状態で酸素を放出し、リーン状態で酸素を吸蔵すると共に自己発熱する酸素貯蔵物質としてCe(セリウム)元素を含む物質を使用して、この酸素貯蔵物質の酸素吸蔵時における自己発熱作用を利用して、触媒温度を昇温する排気ガス浄化装置の昇温方法及び排気ガス浄化装置が提案されている(例えば、特許文献1、2参照。)。 One material having this oxygen storage capability is cerium dioxide (ceria: CeO 2 ), which releases oxygen when the air-fuel ratio of the exhaust gas is rich, stores oxygen in a lean state, and stores oxygen in a self-heating manner. Using a substance containing Ce (cerium) element as a substance and utilizing the self-heating action of this oxygen storage substance during oxygen storage, the temperature raising method of the exhaust gas purification apparatus and the exhaust gas purification for raising the catalyst temperature An apparatus has been proposed (see, for example, Patent Documents 1 and 2).

また、今までの触媒に関する実験の分析や性能評価から、酸素濃度が高いディーゼルエンジンの排ガス中においても、酸素吸蔵能材から放出される活性酸素がHC,COの低温活性に大きく寄与することが分かっており、酸素吸蔵能材を有する触媒の低温活性を上げるための方策として活性酸素の放出温度の低温化が有効であることも分かっている。   In addition, from the analysis and performance evaluation of experiments on catalysts up to now, active oxygen released from the oxygen storage capacity material greatly contributes to the low temperature activity of HC and CO even in exhaust gas of diesel engines with high oxygen concentration. It is known that it is effective to lower the release temperature of active oxygen as a measure for increasing the low temperature activity of the catalyst having an oxygen storage capacity material.

しかしながら、これらの触媒も、内燃機関の始動時や低負荷時等の排気ガス温度が低温である場合においては十分に触媒活性が高くないという問題や、HC、CO、NOxが共存すると競争反応や吸着阻害により、十分な性能が得られない等という問題があった。
特開2006−207524号公報 特開2006−207549号公報
However, these catalysts also have a problem that the catalytic activity is not sufficiently high when the exhaust gas temperature is low, such as when the internal combustion engine is started or when the load is low, and when HC, CO, NOx coexist, There was a problem that sufficient performance could not be obtained due to adsorption inhibition.
JP 2006-207524 A JP 2006-207549 A

本発明は、上記の問題を解決するためになされたものであり、その目的は、内燃機関の始動時や低負荷時の低温の排気ガスに対しても活性が高く、また、一酸化炭素(CO)と炭化水素(HC)が共存していても高い浄化能力を発揮できる排気ガス浄化触媒、排気ガス浄化システム及び排気ガス浄化方法を提供することにある。   The present invention has been made to solve the above-described problems, and has an object of being highly active against low-temperature exhaust gas at the start of an internal combustion engine or at a low load, and carbon monoxide ( An object of the present invention is to provide an exhaust gas purification catalyst, an exhaust gas purification system, and an exhaust gas purification method capable of exhibiting a high purification capacity even when CO) and hydrocarbons (HC) coexist.

上記のような目的を達成するための排気ガス浄化触媒は、排気ガスを浄化するための排気ガス浄化触媒において、排気ガスの流路の上流側に、酸素吸蔵能を有する酸化物と酸化物半導体を混在させて担持した第1触媒層を配置すると共に、前記排気ガスの流路の下流側に、貴金属触媒、又は、炭化水素吸着材(HC吸着材)と貴金属触媒を混在させて担持した第2触媒層を配置して構成される。   An exhaust gas purifying catalyst for achieving the above object is an exhaust gas purifying catalyst for purifying exhaust gas, and an oxide and an oxide semiconductor having an oxygen storage capacity upstream of the exhaust gas flow path. The first catalyst layer supported in a mixed manner is disposed, and a noble metal catalyst or a hydrocarbon adsorbent (HC adsorbent) and a noble metal catalyst are supported in the downstream side of the exhaust gas flow path. Two catalyst layers are arranged.

また、上記の排気ガス浄化触媒で、前記第1触媒層において、該第1触媒層内での排気ガスの拡散方向に関して、排気ガスが前記第1触媒層を拡散により通過した後の側に、貴金属触媒、又は、炭化水素吸着材と貴金属触媒を混在させて担持した第3触媒層を設けて構成する。   Further, in the exhaust gas purification catalyst, in the first catalyst layer, with respect to the diffusion direction of the exhaust gas in the first catalyst layer, on the side after the exhaust gas has passed through the first catalyst layer by diffusion, A noble metal catalyst or a third catalyst layer on which a hydrocarbon adsorbent and a noble metal catalyst are mixed and provided is provided.

あるいは、上記のような目的を達成するための排気ガス浄化触媒は、排気ガスを浄化するための排気ガス浄化触媒において、該排気ガス浄化触媒の触媒層内での排気ガスの拡散方向に関して、排気ガスが最初に通過する側に、酸素吸蔵能を有する酸化物と酸化物半導体とを混在させて担持した第1触媒層を設け、排気ガスが拡散によりその後に通過する側に、貴金属触媒、又は、炭化水素吸着材と貴金属触媒を混在させて担持した第2触媒層を設けて構成する。   Alternatively, an exhaust gas purifying catalyst for achieving the above object is an exhaust gas purifying catalyst for purifying exhaust gas, wherein the exhaust gas purifying catalyst has an exhaust gas diffusion direction in the catalyst layer of the exhaust gas purifying catalyst. A first catalyst layer in which an oxide having an oxygen storage ability and an oxide semiconductor are mixed and supported is provided on the side through which gas first passes, and a noble metal catalyst, or on the side through which exhaust gas passes after diffusion, or In addition, a second catalyst layer in which a hydrocarbon adsorbent and a noble metal catalyst are mixed and supported is provided.

これらの構成で、排気ガスの上流側に、一酸化炭素(CO)の浄化に優れた酸素吸蔵能を有する材料と酸化物半導体を組み合わせた第1触媒層を配置し、下流側に炭化水素(HC)の浄化に優れている白金(Pt)触媒等の第2触媒層を配置することにより、低温活性に優れた触媒が得られる。   In these configurations, a first catalyst layer that combines an oxide semiconductor and a material having an oxygen storage capacity that is excellent in purifying carbon monoxide (CO) is disposed upstream of the exhaust gas, and a hydrocarbon ( By disposing a second catalyst layer such as a platinum (Pt) catalyst that is excellent in the purification of HC), a catalyst having excellent low-temperature activity can be obtained.

これらの構成の第1触媒層においては、二酸化セリウム(セリア:CeO2 )等の酸素吸蔵能(OSC)を有する材料と、二酸化チタン(チタニア:TiO2 )等の酸化物半導体を組み合わせることで、低温から酸素吸蔵能特性を発揮し、低温活性の高い酸化触媒として機能するようになる。この酸素吸蔵能を有する酸化物と、酸化物半導体とを混合した触媒が低温から酸素吸蔵能を示すのは、酸素吸蔵能材と酸化物半導体の共存により、電子のエネルギーの平行移動が生じ、不安定な状態になるバンドオフセット効果が生じているためと考えられる。 In the first catalyst layer of these configurations, by combining a material having an oxygen storage capacity (OSC) such as cerium dioxide (ceria: CeO 2 ) and an oxide semiconductor such as titanium dioxide (titania: TiO 2 ), It exhibits oxygen storage capacity characteristics from low temperatures and functions as an oxidation catalyst with high low-temperature activity. The catalyst in which the oxide having the oxygen storage ability and the oxide semiconductor are mixed exhibits the oxygen storage ability from a low temperature because the coexistence of the oxygen storage ability and the oxide semiconductor causes the parallel movement of electron energy. This is considered to be due to the band offset effect that causes an unstable state.

この第1触媒層で排気ガス中の一酸化炭素(CO)を浄化することができるので、その下流側においては、一酸化炭素は極低濃度となる。そのため、下流側の第2触媒層においては、第1触媒層で浄化できなかった炭化水素(HC)とNOxを浄化すればよいことになる。従って、白金触媒や白金−パラジウム触媒で形成される第2触媒層では、一酸化炭素による阻害や被毒の影響を受けずに低温から炭化水素浄化性能を十分に発揮できるようになる。また、HC/NOx比が3以上に高ければ、炭化水素選択還元によりNOx浄化も可能となる。   Since the first catalyst layer can purify carbon monoxide (CO) in the exhaust gas, the carbon monoxide has a very low concentration on the downstream side. Therefore, in the second catalyst layer on the downstream side, it is only necessary to purify hydrocarbons (HC) and NOx that could not be purified by the first catalyst layer. Therefore, the second catalyst layer formed of a platinum catalyst or a platinum-palladium catalyst can sufficiently exhibit hydrocarbon purification performance from a low temperature without being affected by inhibition or poisoning by carbon monoxide. Further, if the HC / NOx ratio is higher than 3, NOx purification can be achieved by hydrocarbon selective reduction.

そして、上記の排気ガス浄化触媒で、前記酸化吸蔵能を有する酸化物を、セリウム(Ce)を含む酸化物で形成し、前記酸化半導体を二酸化チタン(TiO2 ),酸化亜鉛(ZnO),酸化イットリウム(Y2 3 )のいずれか一つ又はこれらの組合せで形成する。 Then, in the exhaust gas purification catalyst, the oxide having an oxidative storage capacity is formed of an oxide containing cerium (Ce), and the oxide semiconductor is formed of titanium dioxide (TiO 2 ), zinc oxide (ZnO), oxidized It is formed of any one of yttrium (Y 2 O 3 ) or a combination thereof.

また、更に、酸素吸蔵能を有する酸化物に、白金(Pt),金(Au),銀(Ag),ロジウム(Rh),イリジウム(Ir)等の貴金属を担持したり、酸化物半導体に同様な貴金属を担持することで、酸化物半導体の表面における酸化反応を調整できる。この貴金属の担持量は、排気ガス中に種々のHCや水分が含まれているため、排気ガスの組成に合わせて調整する。   Further, a noble metal such as platinum (Pt), gold (Au), silver (Ag), rhodium (Rh), iridium (Ir) is supported on an oxide having an oxygen storage capacity, or similar to an oxide semiconductor. By supporting a noble metal, the oxidation reaction on the surface of the oxide semiconductor can be adjusted. The amount of the noble metal supported is adjusted according to the composition of the exhaust gas because various HC and moisture are contained in the exhaust gas.

酸素吸蔵能を有する酸化物に貴金属を担持すると、CO,HCが活性の高い貴金属に吸着し、二酸化セリウム(セリア:CeO2 )等の酸素吸蔵能を有する材料中の酸素が放出され、CO,HCが酸化される。つまり、貴金属が酸素の放出を手助けする。一方、酸化物半導体に貴金属を担持すると、CO,HCが貴金属に吸着し、そこでCO,HCが酸化される。 When a noble metal is supported on an oxide having an oxygen storage capacity, CO and HC are adsorbed on a highly active noble metal, and oxygen in the material having an oxygen storage capacity such as cerium dioxide (ceria: CeO 2 ) is released, and CO, HC is oxidized. That is, precious metals help release oxygen. On the other hand, when a noble metal is supported on the oxide semiconductor, CO and HC are adsorbed on the noble metal, and CO and HC are oxidized there.

そして、上記の目的を達成するための排気ガス浄化システムは、自動車搭載の内燃機関の排気ガスを浄化する排気ガス浄化システムにおいて、上記の排気ガス浄化触媒を使用するように構成される。また、上記の目的を達成するための排気ガス浄化方法は、自動車搭載の内燃機関の排気ガスを浄化する排気ガス浄化方法において、上記の排気ガス浄化触媒を使用することを特徴とする。   And the exhaust gas purification system for achieving said objective is comprised so that the said exhaust gas purification catalyst may be used in the exhaust gas purification system which purifies | cleans the exhaust gas of the internal combustion engine mounted in a motor vehicle. An exhaust gas purification method for achieving the above object is characterized in that the exhaust gas purification catalyst is used in the exhaust gas purification method for purifying exhaust gas of an internal combustion engine mounted on an automobile.

本発明に係る排気ガス浄化触媒、排気ガス浄化システム及び排気ガス浄化方法によれば、排気ガスの上流側の第1触媒層では、酸素吸蔵能材と酸化物半導体の共存によって、電子のエネルギーの平行移動が生じ、不安定な状態になるバンドオフセット効果が生じるので、このバンドオフセット効果を利用して、触媒の低温活性を高くすることができる。   According to the exhaust gas purification catalyst, the exhaust gas purification system, and the exhaust gas purification method of the present invention, in the first catalyst layer on the upstream side of the exhaust gas, the coexistence of the oxygen storage capacity material and the oxide semiconductor allows the energy of electrons to be absorbed. Since the band offset effect that results in parallel movement and becomes unstable occurs, the low temperature activity of the catalyst can be increased by using this band offset effect.

この第1触媒層は、一酸化炭素浄化に優れ、高濃度の一酸化炭素も低温で浄化できるので、その下流側の第2触媒層又は第3触媒層においては、一酸化炭素は極低濃度となるので、第1触媒層で浄化できなかった炭化水素とNOxを浄化すればよいことになり、一酸化炭素による阻害や被毒の影響を受けずに白金触媒や白金−パラジウム触媒は低温から炭化水素浄化性能を十分に発揮できるようになる。また、HC/NOx比が3以上に高ければ、炭化水素選択還元によりNOx浄化も可能となる。   Since this first catalyst layer is excellent in purifying carbon monoxide and can also purify high-concentration carbon monoxide at a low temperature, carbon monoxide has an extremely low concentration in the second catalyst layer or the third catalyst layer on the downstream side thereof. Therefore, hydrocarbons and NOx that could not be purified by the first catalyst layer need only be purified, and platinum catalysts and platinum-palladium catalysts are not affected by inhibition and poisoning by carbon monoxide. The hydrocarbon purification performance can be fully exhibited. Further, if the HC / NOx ratio is higher than 3, NOx purification can be achieved by hydrocarbon selective reduction.

従って、内燃機関の始動時や低負荷時の低温排気ガス中においても触媒の活性を高く維持して排気ガスを効率よく浄化することができる。また、この低温活性の現象はバンドオフセット効果に基づくものなので、排気ガス浄化触媒に担持する貴金属の量を従来技術の排気ガス浄化触媒に比べて低減できる。   Therefore, even when the internal combustion engine is started or in a low temperature exhaust gas at a low load, the catalyst activity can be kept high and the exhaust gas can be purified efficiently. Moreover, since this phenomenon of low temperature activity is based on the band offset effect, the amount of noble metal supported on the exhaust gas purification catalyst can be reduced as compared with the exhaust gas purification catalyst of the prior art.

以下、本発明に係る実施の形態の排気ガス浄化触媒、排気ガス浄化システム、及び、排気ガス浄化方法について、図面を参照しながら説明する。   Hereinafter, an exhaust gas purification catalyst, an exhaust gas purification system, and an exhaust gas purification method according to embodiments of the present invention will be described with reference to the drawings.

図1〜図6に示すように、本発明に係る実施の形態の排気ガス浄化触媒1A〜1Fは、コージェライト、炭化ケイ素(SiC)、ステンレス等の構造材で形成された、多数の多角形セルを有するモノリスハニカムで形成される。このセルの内壁を構成する担持体11であるハニカムに、触媒を担持させる。これらの図1〜図6の実施の形態では、担持体11をコージェライトで形成する。   As shown in FIGS. 1 to 6, exhaust gas purification catalysts 1 </ b> A to 1 </ b> F according to an embodiment of the present invention are a large number of polygons formed of structural materials such as cordierite, silicon carbide (SiC), and stainless steel. It is formed of a monolith honeycomb having cells. The catalyst is supported on the honeycomb which is the support 11 constituting the inner wall of the cell. In the embodiment shown in FIGS. 1 to 6, the carrier 11 is formed of cordierite.

本発明においては、次のような第1触媒層12、第2触媒層13、第3触媒層14、第4触媒層15を用いる。この第1触媒層12は、酸素吸蔵能(OSC)を有する酸化物、即ち酸素吸蔵材(OSC材)と、酸化物半導体を混在させた触媒を担持して形成される。この酸素吸蔵材は、白金(Pt)を担持した二酸化セリウム(セリア:CeO2 )等で形成され、酸化物半導体は白金(Pt)を担持した二酸化チタン(チタニア:TiO2 )等で形成される。この第1触媒層12は、酸素吸蔵材と酸化物半導体を混在させて担持した、HC浄化特性に優れた触媒層となる。 In the present invention, the following first catalyst layer 12, second catalyst layer 13, third catalyst layer 14, and fourth catalyst layer 15 are used. The first catalyst layer 12 is formed by supporting an oxide having an oxygen storage capacity (OSC), that is, an oxygen storage material (OSC material) and a catalyst in which an oxide semiconductor is mixed. This oxygen storage material is made of cerium dioxide (ceria: CeO 2 ) or the like carrying platinum (Pt), and the oxide semiconductor is made of titanium dioxide (titania: TiO 2 ) or the like carrying platinum (Pt). . The first catalyst layer 12 is a catalyst layer excellent in HC purification characteristics in which an oxygen storage material and an oxide semiconductor are mixed and supported.

この酸素吸蔵材は、二酸化セリウム(CeO2 )等の酸化物や酸化ジルコニウム(ZrO2 )−二酸化セリウム(CeO2 )の複合酸化物等のセリウム(Ce)を含む酸化物で形成する。また、酸化半導体は、二酸化チタン(TiO2 ),酸化亜鉛(ZnO),酸化イットリウム(Y2 3 )のいずれか一つ又はこれらの組合せで形成する。 The oxygen storage material, oxides or zirconium oxide, such as cerium dioxide (CeO 2) (ZrO 2) - is formed of an oxide containing cerium dioxide, cerium, such composite oxide (CeO 2) (Ce). The oxide semiconductor is formed of any one of titanium dioxide (TiO 2 ), zinc oxide (ZnO), yttrium oxide (Y 2 O 3 ), or a combination thereof.

更に、酸素吸蔵材に白金(Pt),金(Au),銀(Ag),ロジウム(Rh),イリジウム(Ir)等のいずれか一つ又は幾つかの組み合せの貴金属触媒を担持したり、更に、酸化物半導体に同様の貴金属触媒を担持することで、酸素吸蔵材や酸化物半導体の表面における酸化反応を調整する。これらの貴金属触媒の担持量は、排気ガス中に種々のHCや水分が含まれているため、浄化対象の排気ガスの組成に合わせて調整する。   Furthermore, platinum (Pt), gold (Au), silver (Ag), rhodium (Rh), iridium (Ir), or any other combination of noble metal catalysts may be supported on the oxygen storage material, By supporting the same noble metal catalyst on the oxide semiconductor, the oxidation reaction on the surface of the oxygen storage material or the oxide semiconductor is adjusted. The amount of these noble metal catalysts supported is adjusted according to the composition of the exhaust gas to be purified because various types of HC and moisture are contained in the exhaust gas.

第2触媒層13と第3触媒層14は、炭化水素吸着材(HC吸着材)と、白金触媒(Pt触媒)とで構成された、HC浄化特性に優れた触媒を担持して形成される。HC吸着材はゼオライト等で形成され、Pt触媒は、白金(Pt)を担持した酸化アルミニウム(アルミナ:Al2 3 )等で形成される。なお、第2触媒層13と第3触媒層14は、HC吸着材を設けずに、貴金属触媒だけを担持して形成することもできる。この貴金属触媒は、白金(Pt)を担持した酸化アルミニウム等のPt触媒等で形成される。即ち、第2触媒層13と第3触媒層14は、貴金属触媒又は炭化水素吸着材(HC吸着材)と貴金属触媒を混在させて担持した触媒層となる。 The second catalyst layer 13 and the third catalyst layer 14 are formed by supporting a catalyst that is composed of a hydrocarbon adsorbent (HC adsorbent) and a platinum catalyst (Pt catalyst) and has excellent HC purification characteristics. . The HC adsorbent is formed of zeolite or the like, and the Pt catalyst is formed of aluminum oxide (alumina: Al 2 O 3 ) or the like carrying platinum (Pt). Note that the second catalyst layer 13 and the third catalyst layer 14 can be formed by supporting only the noble metal catalyst without providing the HC adsorbent. This noble metal catalyst is formed of a Pt catalyst such as aluminum oxide carrying platinum (Pt). That is, the second catalyst layer 13 and the third catalyst layer 14 are catalyst layers in which a noble metal catalyst or a hydrocarbon adsorbent (HC adsorbent) and a noble metal catalyst are mixed and supported.

また、第4触媒層15は、Pt触媒を担持して形成される。この第4触媒層15は、HC吸着材を設けずに、貴金属触媒だけを担持して形成した第2触媒層13と第3触媒層14と同じ構成の触媒層となる。   The fourth catalyst layer 15 is formed by supporting a Pt catalyst. The fourth catalyst layer 15 is a catalyst layer having the same configuration as the second catalyst layer 13 and the third catalyst layer 14 formed by supporting only the noble metal catalyst without providing the HC adsorbent.

図1に示すように、本発明に係る第1の実施の形態の触媒1Aは、排気通路2の上流側(前段)に第1触媒層12を担持体11に積層した触媒1Aaを配置し、下流側(後段)に第2触媒層13を担持体11に積層した触媒1Abを配置して構成される。   As shown in FIG. 1, the catalyst 1A according to the first embodiment of the present invention includes a catalyst 1Aa in which a first catalyst layer 12 is stacked on a support 11 on the upstream side (front stage) of an exhaust passage 2, The catalyst 1Ab in which the second catalyst layer 13 is laminated on the carrier 11 is arranged on the downstream side (rear stage).

また、図2に示すように、第2の実施の形態の触媒1Bは、排気通路2の上流側(前段)に、第3触媒層14を触媒コンバータの担持体11に積層し、その表面側に第1触媒層12を積層した触媒1Baを配置し、下流側(後段)に、第2触媒層13を担持体11に積層した触媒1Bbを配置して構成される。   Further, as shown in FIG. 2, the catalyst 1B of the second embodiment has a third catalyst layer 14 laminated on the support 11 of the catalytic converter on the upstream side (front stage) of the exhaust passage 2 and the surface side thereof. The catalyst 1Ba having the first catalyst layer 12 laminated thereon is arranged, and the catalyst 1Bb having the second catalyst layer 13 laminated on the carrier 11 is arranged on the downstream side (rear stage).

また、図3に示すように、第3の実施の形態の触媒1Cは、排気通路2の上流側(前段)に、第4触媒層15を担持体11に積層し、その表面側に第1触媒層12を積層した触媒1Caを配置し、下流側(後段)に第2触媒層13を担持体11に積層した触媒1Cbを配置して構成される。   As shown in FIG. 3, the catalyst 1 </ b> C of the third embodiment has a fourth catalyst layer 15 stacked on the carrier 11 on the upstream side (front stage) of the exhaust passage 2, and the first catalyst is formed on the surface side thereof. The catalyst 1Ca in which the catalyst layer 12 is stacked is disposed, and the catalyst 1Cb in which the second catalyst layer 13 is stacked on the carrier 11 is disposed on the downstream side (rear stage).

また、図4に示すように、第4の実施の形態の触媒1Dは、排気通路2の上流側に、第4触媒層15を担持体11に積層し、その表面側に第1触媒層12(A)を積層した触媒1Daを配置し、下流側に第4触媒層15を担持体11に積層し、その表面側に第2触媒層13を積層した触媒1Dbを配置して構成される。言い換えれば、第3の実施の形態の触媒1Cbの代りに、第4触媒層15が加わった触媒1Dbを使用する。   As shown in FIG. 4, the catalyst 1 </ b> D of the fourth embodiment has a fourth catalyst layer 15 laminated on the carrier 11 on the upstream side of the exhaust passage 2, and the first catalyst layer 12 on the surface side thereof. The catalyst 1Da in which (A) is laminated is arranged, the fourth catalyst layer 15 is laminated on the carrier 11 on the downstream side, and the catalyst 1Db in which the second catalyst layer 13 is laminated on the surface side is arranged. In other words, instead of the catalyst 1Cb of the third embodiment, the catalyst 1Db to which the fourth catalyst layer 15 is added is used.

これらの第1〜第4の実施の形態の排気ガスを浄化するための排気ガス浄化触媒1A〜1Dは、排気ガスの流路2の上流側に、酸素吸蔵能を有する酸化物(酸素吸蔵材)と酸化物半導体を混在させて担持した第1触媒層12を配置すると共に、排気ガスの流路2の下流側に、貴金属触媒又は炭化水素吸着材(HC吸着材)と貴金属触媒を混在させて担持した第2触媒層13を配置して構成される。この構成により、上流側に、HC浄化特性に優れた触媒1Aa〜1Daが、下流側に、HC浄化特性に優れた触媒1Ab〜1Dbが配置される。   The exhaust gas purification catalysts 1A to 1D for purifying the exhaust gas according to the first to fourth embodiments are provided with an oxide (oxygen storage material) having an oxygen storage capacity upstream of the exhaust gas flow path 2. ) And an oxide semiconductor and the first catalyst layer 12 is disposed, and a noble metal catalyst or a hydrocarbon adsorbent (HC adsorbent) and a noble metal catalyst are mixed on the downstream side of the exhaust gas flow path 2. The second catalyst layer 13 supported in this manner is arranged. With this configuration, the catalysts 1Aa to 1Da excellent in HC purification characteristics are arranged on the upstream side, and the catalysts 1Ab to 1Db excellent in HC purification characteristics are arranged on the downstream side.

また、第2〜第4の構成によれば、第1の実施の形態の構成に加えて、第1触媒層12における排気ガスGの拡散方向に関して、排気ガスGが第1触媒層12を拡散により通過した後の側(図2〜図4では下層側)に、HC吸着材と貴金属触媒を混在させて担持した第3触媒層14、又は、貴金属触媒を担持した第4触媒15を設けることができる。   According to the second to fourth configurations, in addition to the configuration of the first embodiment, the exhaust gas G diffuses through the first catalyst layer 12 with respect to the diffusion direction of the exhaust gas G in the first catalyst layer 12. The third catalyst layer 14 carrying the HC adsorbent and the noble metal catalyst mixedly or the fourth catalyst 15 carrying the noble metal catalyst is provided on the side after passing through (the lower layer side in FIGS. 2 to 4). Can do.

次に、本発明に係る第5及び第6の実施の形態について説明する。図5に示すように、第5の実施の形態の触媒1Eは、担持体11の表面側において、排気通路2の上流側から下流側、言い換えれば、入口側から出口側に、第1触媒層12と第2触媒層13を傾斜組成で積層する。即ち、上流側から下流側に向かって、第1触媒層12の厚みを表面側に沿って徐々に減少させると共に、第2触媒層13の厚みを担持体11側に沿って徐々に増加させる。     Next, fifth and sixth embodiments according to the present invention will be described. As shown in FIG. 5, the catalyst 1E of the fifth embodiment has a first catalyst layer on the surface side of the carrier 11 from the upstream side to the downstream side of the exhaust passage 2, in other words, from the inlet side to the outlet side. 12 and the second catalyst layer 13 are laminated with a gradient composition. That is, the thickness of the first catalyst layer 12 is gradually decreased along the surface side from the upstream side toward the downstream side, and the thickness of the second catalyst layer 13 is gradually increased along the carrier 11 side.

また、図6に示すように、第6の実施の形態の触媒1Fは、担持体11に第4触媒層14を積層し、その表面側において、排気通路2の上流側から下流側、言い換えれば、入口側から出口側に、第1触媒層12と第2触媒層13を傾斜組成で積層する。   Further, as shown in FIG. 6, the catalyst 1F of the sixth embodiment has a fourth catalyst layer 14 laminated on a carrier 11, and on the surface side, from the upstream side to the downstream side of the exhaust passage 2, in other words, The first catalyst layer 12 and the second catalyst layer 13 are laminated with a gradient composition from the inlet side to the outlet side.

つまり、この第5及び第6の実施の形態の排気ガスを浄化するための排気ガス浄化触媒1E、1Fは、この排気ガス浄化触媒1E、1Fの触媒層内での排気ガスGの拡散方向に関して、排気ガスGが最初に通過する側に、酸素吸蔵能を有する酸化物と酸化物半導体とを混在させて担持した第1触媒層12を設け、排気ガスGが拡散によりその後に通過する側に、貴金属触媒、又は、HC吸着材と貴金属触媒を混在させて担持した第2触媒層13を設けて構成される。   That is, the exhaust gas purification catalysts 1E and 1F for purifying the exhaust gas of the fifth and sixth embodiments are related to the diffusion direction of the exhaust gas G in the catalyst layers of the exhaust gas purification catalysts 1E and 1F. The first catalyst layer 12 is provided on the side through which the exhaust gas G first passes, and the oxide catalyst having the oxygen storage ability and the oxide semiconductor are supported on the side where the exhaust gas G passes through. In addition, the second catalyst layer 13 that supports the noble metal catalyst or the HC adsorbent and the noble metal catalyst is provided.

また、この排気ガス浄化触媒1A〜1Fを用いた排気ガス浄化装置を自動車搭載の内燃機関の排気通路に配設することにより、この内燃機関の排気ガスを浄化する排気ガス浄化システムを構成することができ、また、内燃機関の排気ガスを浄化する排気ガス浄化方法を実施することができる。   An exhaust gas purification system that purifies the exhaust gas of the internal combustion engine is configured by disposing an exhaust gas purification device using the exhaust gas purification catalysts 1A to 1F in the exhaust passage of the internal combustion engine mounted on the automobile. In addition, an exhaust gas purification method for purifying exhaust gas of an internal combustion engine can be implemented.

上記の構成の排気ガス浄化触媒1、排気ガス浄化システム及び排気ガス浄化方法によれば、排気ガスの上流側の第1触媒層12では、酸素吸蔵能材と酸化物半導体の共存によって、電子のエネルギーの平行移動が生じ、不安定な状態になるバンドオフセット効果が生じるので、このバンドオフセット効果を利用して、触媒の低温活性を高くすることができる。   According to the exhaust gas purification catalyst 1, the exhaust gas purification system, and the exhaust gas purification method having the above-described configuration, in the first catalyst layer 12 on the upstream side of the exhaust gas, due to the coexistence of the oxygen storage capacity material and the oxide semiconductor, Since a band offset effect that causes parallel movement of energy and an unstable state occurs, the low temperature activity of the catalyst can be increased by using this band offset effect.

この第1触媒層12では、一酸化炭素浄化に優れ、高濃度の一酸化炭素も低温で浄化できるので、その下流側の第2触媒層13においては、一酸化炭素は極低濃度となる。その結果、第1触媒層12で浄化できなかった炭化水素とNOxを浄化すればよいことになり、一酸化炭素による阻害や被毒の影響を受けずに白金触媒や白金−パラジウム触媒は低温から炭化水素浄化性能を十分に発揮できるようになる。また、HC/NOx比が3以上に高ければ、炭化水素選択還元によりNOx浄化も可能となる。   The first catalyst layer 12 is excellent in purifying carbon monoxide and can also purify high-concentration carbon monoxide at a low temperature. Therefore, in the second catalyst layer 13 on the downstream side, the carbon monoxide has an extremely low concentration. As a result, hydrocarbons and NOx that could not be purified by the first catalyst layer 12 need only be purified, and the platinum catalyst and the platinum-palladium catalyst are not affected by inhibition or poisoning by carbon monoxide from a low temperature. The hydrocarbon purification performance can be fully exhibited. Further, if the HC / NOx ratio is higher than 3, NOx purification can be achieved by hydrocarbon selective reduction.

従って、内燃機関の始動時や低負荷時の低温排気ガス中においても触媒の活性を高く維持して排気ガスを効率よく浄化することができる。また、この低温活性の現象はバンドオフセット効果に基づくものなので、排気ガス浄化触媒に担持する貴金属の量を従来技術の排気ガス浄化触媒に比べて低減できる。   Therefore, even when the internal combustion engine is started or in a low temperature exhaust gas at a low load, the catalyst activity can be kept high and the exhaust gas can be purified efficiently. Moreover, since this phenomenon of low temperature activity is based on the band offset effect, the amount of noble metal supported on the exhaust gas purification catalyst can be reduced as compared with the exhaust gas purification catalyst of the prior art.

上記の触媒1A〜1Fの性能を確認するために、第1触媒層12で形成した第1触媒と第2触媒層14で形成した第2触媒におけるCO,HCの浄化性能を試験すると共に、上記の第3〜第6の実施の形態の触媒1C〜1Fの実施例C〜Fと、次のような比較用の触媒1X、1Yの比較例X及び比較例Yとにおいて、CO,HCの浄化性能試験を実施した。なお、実施例C,Dでは、図7に示すように、触媒1C及び触媒1Dをそれぞれ排気ガスの通路3に設け、実施例E,Fでは、図8に示すように、触媒1E及び触媒1Fをそれぞれ排気ガスの通路3に設けた。   In order to confirm the performance of the catalysts 1A to 1F, the CO and HC purification performances of the first catalyst formed by the first catalyst layer 12 and the second catalyst formed by the second catalyst layer 14 were tested, and Purification of CO and HC in Examples C to F of the catalysts 1C to 1F of the third to sixth embodiments and Comparative Examples X and Y of the following comparative catalysts 1X and 1Y A performance test was performed. In Examples C and D, the catalyst 1C and the catalyst 1D are respectively provided in the exhaust gas passage 3 as shown in FIG. 7, and in Examples E and F, the catalyst 1E and the catalyst 1F are shown in FIG. Are provided in the exhaust gas passage 3.

また、比較例Xでは、図9に示すように、担持体11に第4触媒層15を積層し、その表面側に第1触媒層12を積層した触媒1Xを用いて、この触媒1Xを図11に示すように排気ガスの通路2に設けた。また、第2比較例Yでは、図10に示すように、担持体11に第4触媒層15を積層し、その表面側に第2触媒層13を積層した触媒1Yを用いて、この触媒1Yを図11に示すように排気ガスの通路2に設けた。   Further, in Comparative Example X, as shown in FIG. 9, a catalyst 1X in which a fourth catalyst layer 15 is laminated on a support 11 and a first catalyst layer 12 is laminated on the surface side is used to illustrate this catalyst 1X. 11, the exhaust gas passage 2 was provided. Further, in the second comparative example Y, as shown in FIG. 10, a catalyst 1Y in which a fourth catalyst layer 15 is laminated on a carrier 11 and a second catalyst layer 13 is laminated on the surface side is used. Is provided in the exhaust gas passage 2 as shown in FIG.

図12〜図13に、第1触媒層12で形成した第1触媒と第2触媒層14で形成した第2触媒のCO及びHCの浄化性能に関する試験結果を示す。この図12 は、第1触媒層12で形成した触媒における、CO濃度が1000ppm,HC(プロピレン)濃度が500ppm,その他のガス組成ではO2 濃度が4%,NO濃度が100ppm,CO2 濃度が8%,H2 Oが8%の排気ガスを模擬した混合ガス中におけるCO及びHCの浄化性能を示す。また、図13は、第2触媒における、同じ組成の排気ガスを模擬した混合ガス中におけるCO及びHCの浄化性能を示す。また、図14は、第2触媒における、CO濃度を500ppmに下げた(その他は、同じ組成)排気ガスを模擬した混合ガス中におけるCO及びHCの浄化性能を示す。 12 to 13 show the test results regarding the CO and HC purification performance of the first catalyst formed by the first catalyst layer 12 and the second catalyst formed by the second catalyst layer 14. FIG. 12 shows that the catalyst formed in the first catalyst layer 12 has a CO concentration of 1000 ppm, an HC (propylene) concentration of 500 ppm, and other gas compositions having an O 2 concentration of 4%, an NO concentration of 100 ppm, and a CO 2 concentration of The purification performance of CO and HC in a mixed gas simulating an exhaust gas of 8% and H 2 O of 8% is shown. FIG. 13 shows the CO and HC purification performance in a mixed gas that simulates exhaust gas having the same composition in the second catalyst. FIG. 14 shows the purification performance of CO and HC in a mixed gas simulating exhaust gas with the CO concentration lowered to 500 ppm (others have the same composition) in the second catalyst.

CO濃度が1000ppmの模擬ガスに対しては、第1触媒に比べて、第2触媒は、CO,HC浄化率は低い値を示すが、CO濃度を500ppmまで下げた模擬ガスに対しては、第1触媒に比べて、第2触媒はCO,HCの浄化性能が高いことが分かる。   For the simulated gas with a CO concentration of 1000 ppm, the CO and HC purification rate of the second catalyst is lower than that of the first catalyst, but for the simulated gas with the CO concentration lowered to 500 ppm, It can be seen that the second catalyst has higher CO and HC purification performance than the first catalyst.

図15と図16に、HC濃度を500ppm一定とし、CO濃度を変化させた場合の浄化性能を測定した結果を示す。図15のCO−T80はCOの80%浄化温度を示し、図16のHC−T50はHCの50%浄化温度を示す。これらの結果から、第1触媒に比べて、第2触媒は、COの濃度に対して敏感で、かつ、CO濃度が高くなるとCO,HCの浄化性能が著しく低下することが分かる。また、CO濃度が低くなると、第1触媒のHC−T50は第2触媒のHC−T50よりも低くなることが分かる。   15 and 16 show the results of measuring the purification performance when the HC concentration is 500 ppm constant and the CO concentration is changed. 15 indicates the 80% purification temperature of CO, and HC-T50 in FIG. 16 indicates the 50% purification temperature of HC. From these results, it can be seen that the second catalyst is more sensitive to the CO concentration than the first catalyst, and that the CO and HC purification performance is significantly reduced as the CO concentration increases. It can also be seen that the HC-T50 of the first catalyst is lower than the HC-T50 of the second catalyst when the CO concentration is lowered.

図17と図18に、実施例C〜Fと比較例X,Yを用いてCO濃度が1500ppm,HC濃度が1000ppmの条件で、CO,HCの浄化性能を測定した。その結果、図17に示す通り、実施例Cは、比較例X,Yに比べて、CO,HCとも高い浄化性能を示した。これは、COの浄化性能に優れた第1触媒層を含む上流側(前段)の触媒により、COが十分に浄化され、かつ、HCも浄化が進んで、下流側(後段)に配置した第2触媒層を含む触媒がCOの影響を受けずに、有効に反応の活性点を活かし、HCを効果的に浄化している結果である。   17 and 18, CO and HC purification performance was measured using Examples C to F and Comparative Examples X and Y under the conditions of a CO concentration of 1500 ppm and an HC concentration of 1000 ppm. As a result, as shown in FIG. 17, Example C showed higher purification performance for both CO and HC than Comparative Examples X and Y. This is because the upstream side (front stage) catalyst including the first catalyst layer excellent in CO purification performance is sufficiently purified of CO, and the HC is also purified, and the downstream side (rear stage) is arranged. This is the result that the catalyst including the two catalyst layers effectively purifies HC by effectively utilizing the active points of the reaction without being influenced by CO.

また、図18に示すように、触媒の構成を変えた実施例C〜Fでは、そのCO,HC浄化性能に多少の差はあるものの、上流側に第1触媒層を下流側に第2触媒層を配置することで、優れた浄化性能を得られることが分かった。更に、実施例Eのように上層に第1触媒層,下層に第2触媒層を配置しても同様な効果が得られたので、これから、ガスの流れに対して、層状となるように触媒を配置しても、ガスが拡散により下層の触媒層に接触するので、ガスの流れに沿って触媒を配置しても良好なCO,HC浄化性能が得られることが分かった。   Further, as shown in FIG. 18, in Examples C to F in which the configuration of the catalyst is changed, the CO and HC purification performance is slightly different, but the first catalyst layer is disposed upstream and the second catalyst is disposed downstream. It was found that excellent purification performance can be obtained by arranging the layers. Furthermore, since the same effect was obtained even when the first catalyst layer was arranged in the upper layer and the second catalyst layer was arranged in the lower layer as in Example E, the catalyst was made to be layered with respect to the gas flow. Even when the gas is disposed, the gas comes into contact with the lower catalyst layer by diffusion, and it has been found that good CO and HC purification performance can be obtained even when the catalyst is disposed along the gas flow.

本発明に係る第1の実施の形態の排気ガス浄化用触媒の構成を示す図である。It is a figure which shows the structure of the exhaust gas purification catalyst of 1st Embodiment which concerns on this invention. 本発明に係る第2の実施の形態の排気ガス浄化用触媒の構成を示す図である。It is a figure which shows the structure of the catalyst for exhaust gas purification of 2nd Embodiment which concerns on this invention. 本発明に係る第3の実施の形態の排気ガス浄化用触媒の構成を示す図である。It is a figure which shows the structure of the catalyst for exhaust gas purification of 3rd Embodiment which concerns on this invention. 本発明に係る第4の実施の形態の排気ガス浄化用触媒の構成を示す図である。It is a figure which shows the structure of the exhaust gas purification catalyst of 4th Embodiment which concerns on this invention. 本発明に係る第5の実施の形態の排気ガス浄化用触媒の構成を示す図である。It is a figure which shows the structure of the exhaust gas purification catalyst of 5th Embodiment which concerns on this invention. 本発明に係る第6の実施の形態の排気ガス浄化用触媒の構成を示す図である。It is a figure which shows the structure of the catalyst for exhaust gas purification of 6th Embodiment which concerns on this invention. 本発明に係る第1〜第4の実施の形態の排気ガス浄化用触媒の配置を示す図である。It is a figure which shows arrangement | positioning of the exhaust gas purification catalyst of the 1st-4th embodiment which concerns on this invention. 本発明に係る第5と第6の実施の形態の排気ガス浄化用触媒の配置を示す図である。It is a figure which shows arrangement | positioning of the exhaust gas purification catalyst of 5th and 6th embodiment which concerns on this invention. 比較例の排気ガス浄化用触媒の構成を示す図である。It is a figure which shows the structure of the catalyst for exhaust gas purification of a comparative example. 他の比較例の排気ガス浄化用触媒の構成を示す図である。It is a figure which shows the structure of the exhaust gas purification catalyst of another comparative example. 比較例の排気ガス浄化用触媒の配置を示す図である。It is a figure which shows arrangement | positioning of the exhaust gas purification catalyst of a comparative example. 本発明に係る第1触媒のCO,HC浄化性能を示す図である。It is a figure which shows the CO and HC purification performance of the 1st catalyst which concerns on this invention. 本発明に係る第2触媒のCO,HC浄化性能を示す図である。It is a figure which shows the CO and HC purification performance of the 2nd catalyst which concerns on this invention. CO濃度が図13の模擬ガスよりも低い場合の本発明に係る第2触媒のCO,HC浄化性能を示す図である。It is a figure which shows CO and HC purification | cleaning performance of the 2nd catalyst based on this invention when CO concentration is lower than the simulation gas of FIG. 本発明に係る第1触媒及び第2触媒のCO浄化性能を示す図である。It is a figure which shows the CO purification performance of the 1st catalyst and 2nd catalyst which concern on this invention. 本発明に係る第1触媒及び第2触媒のHC浄化性能を示す図である。It is a figure which shows the HC purification performance of the 1st catalyst and 2nd catalyst which concern on this invention. 実施例Cと比較例X,YのCO,HC浄化性能を示す図である。It is a figure which shows CO and HC purification performance of Example C and Comparative Examples X and Y. 実施例C〜FのCO,HC浄化性能を示す図である。It is a figure which shows CO and HC purification performance of Examples C-F.

符号の説明Explanation of symbols

1A〜1F 排気ガス浄化触媒
2 排気通路
11 コージェライト(担持体)
12 第1触媒層
13 第2触媒層
14 第3触媒層
15 第4触媒層
1Aa,1Ba,1Ca,1Da 第1触媒層を積層した触媒
1Ab,1Bb,1Cb,1Db 第2触媒層を積層した触媒
1A to 1F Exhaust gas purification catalyst 2 Exhaust passage 11 Cordierite (support)
12 1st catalyst layer 13 2nd catalyst layer 14 3rd catalyst layer 15 4th catalyst layer 1Aa, 1Ba, 1Ca, 1Da Catalyst which laminated | stacked 1st catalyst layer 1Ab, 1Bb, 1Cb, 1Db Catalyst which laminated | stacked 2nd catalyst layer

Claims (8)

排気ガスを浄化するための排気ガス浄化触媒において、排気ガスの流路の上流側に、酸素吸蔵能を有する酸化物と酸化物半導体を混在させて担持した第1触媒層を配置すると共に、前記排気ガスの流路の下流側に、貴金属触媒、又は、炭化水素吸着材と貴金属触媒を混在させて担持した第2触媒層を配置したことを特徴とする排気ガス浄化触媒。   In the exhaust gas purifying catalyst for purifying the exhaust gas, the first catalyst layer supporting the mixed oxide and oxide semiconductor having an oxygen storage capacity is disposed on the upstream side of the exhaust gas flow path. An exhaust gas purification catalyst, wherein a second catalyst layer on which a noble metal catalyst or a hydrocarbon adsorbent and a noble metal catalyst are mixed is disposed downstream of an exhaust gas flow path. 前記第1触媒層において、該第1触媒層内での排気ガスの拡散方向に関して、排気ガスが前記第1触媒層を拡散により通過した後の側に、貴金属触媒、又は、炭化水素吸着材と貴金属触媒を混在させて担持した第3触媒層を設けたことを特徴とする請求項1記載の排気ガス浄化触媒。   In the first catalyst layer, with respect to the diffusion direction of the exhaust gas in the first catalyst layer, a noble metal catalyst or a hydrocarbon adsorbent is disposed on the side after the exhaust gas has passed through the first catalyst layer by diffusion. The exhaust gas purification catalyst according to claim 1, further comprising a third catalyst layer on which a noble metal catalyst is mixed and supported. 排気ガスを浄化するための排気ガス浄化触媒において、該排気ガス浄化触媒の触媒層内での排気ガスの拡散方向に関して、排気ガスが最初に通過する側に、酸素吸蔵能を有する酸化物と酸化物半導体とを混在させて担持した第1触媒層を設け、排気ガスが拡散によりその後に通過する側に、貴金属触媒、又は、炭化水素吸着材と貴金属触媒を混在させて担持した第2触媒層を設けたことを特徴とする排気ガス浄化触媒。   In an exhaust gas purification catalyst for purifying exhaust gas, an oxide having an oxygen storage capacity and an oxidation are formed on the side where the exhaust gas first passes with respect to the diffusion direction of the exhaust gas in the catalyst layer of the exhaust gas purification catalyst. A first catalyst layer supported by mixing a semiconductor and a second catalyst layer supported by mixing a noble metal catalyst or a hydrocarbon adsorbent and a noble metal catalyst on a side where exhaust gas passes after diffusion. An exhaust gas purification catalyst characterized by comprising: 前記酸素吸蔵能を有する酸化物を、セリウム(Ce)を含む酸化物で形成し、前記酸化半導体を二酸化チタン(TiO2 ),酸化亜鉛(ZnO),酸化イットリウム(Y2 3 )のいずれか一つ又はこれらの組合せで形成することを特徴とする請求項1,2又は3記載の排気ガス浄化触媒。 The oxide having oxygen storage capacity is formed of an oxide containing cerium (Ce), and the oxide semiconductor is any one of titanium dioxide (TiO 2 ), zinc oxide (ZnO), and yttrium oxide (Y 2 O 3 ). The exhaust gas purification catalyst according to claim 1, 2 or 3, wherein the exhaust gas purification catalyst is formed of one or a combination thereof. 前記酸素吸蔵能を有する酸化物に貴金属が担持されていることを特徴とする請求項1、2,3又は4記載の排気ガス浄化触媒。   The exhaust gas purification catalyst according to claim 1, 2, 3, or 4, wherein a noble metal is supported on the oxide having oxygen storage capacity. 前記酸化物半導体に貴金属が担持されていることを特徴とする請求項1、2、3,4又は5に記載の排気ガス浄化触媒。   6. The exhaust gas purifying catalyst according to claim 1, wherein a noble metal is supported on the oxide semiconductor. 自動車搭載の内燃機関の排気ガスを浄化する排気ガス浄化システムにおいて、請求項1、2、3、4,5又は6の排気ガス浄化触媒を使用することを特徴とする排気ガス浄化システム。   An exhaust gas purification system for purifying exhaust gas of an internal combustion engine mounted on an automobile, wherein the exhaust gas purification catalyst according to claim 1, 2, 3, 4, 5, or 6 is used. 自動車搭載の内燃機関の排気ガスを浄化する排気ガス浄化方法において、請求項1、2、3、4,5又は6の排気ガス浄化触媒を使用することを特徴とする排気ガス浄化方法。   An exhaust gas purification method for purifying exhaust gas of an internal combustion engine mounted on an automobile, wherein the exhaust gas purification catalyst according to claim 1, 2, 3, 4, 5, or 6 is used.
JP2007142251A 2007-05-29 2007-05-29 Exhaust cleaning catalyst, exhaust cleaning system, and exhaust cleaning method Pending JP2008296090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142251A JP2008296090A (en) 2007-05-29 2007-05-29 Exhaust cleaning catalyst, exhaust cleaning system, and exhaust cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142251A JP2008296090A (en) 2007-05-29 2007-05-29 Exhaust cleaning catalyst, exhaust cleaning system, and exhaust cleaning method

Publications (1)

Publication Number Publication Date
JP2008296090A true JP2008296090A (en) 2008-12-11

Family

ID=40170129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142251A Pending JP2008296090A (en) 2007-05-29 2007-05-29 Exhaust cleaning catalyst, exhaust cleaning system, and exhaust cleaning method

Country Status (1)

Country Link
JP (1) JP2008296090A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144562A (en) * 2008-12-17 2010-07-01 Honda Motor Co Ltd Control device for internal combustion engine
JP2011111922A (en) * 2009-11-24 2011-06-09 Toyota Motor Corp Control device and exhaust emission control device of internal combustion engine
JP2012159054A (en) * 2011-02-02 2012-08-23 Isuzu Motors Ltd Exhaust gas purification system for internal combustion engine
JP2016026112A (en) * 2010-01-04 2016-02-12 トヨタ自動車株式会社 Exhaust gas purification catalyst
CN110344919A (en) * 2018-04-05 2019-10-18 铃木株式会社 Emission-control equipment
DE102010046844B4 (en) 2009-10-05 2022-07-07 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Catalyst comprising a hydrocarbon adsorber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144562A (en) * 2008-12-17 2010-07-01 Honda Motor Co Ltd Control device for internal combustion engine
DE102010046844B4 (en) 2009-10-05 2022-07-07 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Catalyst comprising a hydrocarbon adsorber
JP2011111922A (en) * 2009-11-24 2011-06-09 Toyota Motor Corp Control device and exhaust emission control device of internal combustion engine
JP2016026112A (en) * 2010-01-04 2016-02-12 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP2012159054A (en) * 2011-02-02 2012-08-23 Isuzu Motors Ltd Exhaust gas purification system for internal combustion engine
CN110344919A (en) * 2018-04-05 2019-10-18 铃木株式会社 Emission-control equipment
CN110344919B (en) * 2018-04-05 2021-06-25 铃木株式会社 Exhaust gas purification device

Similar Documents

Publication Publication Date Title
US20100050604A1 (en) SCR-LNT CATALYST COMBINATION FOR IMPROVED NOx CONTROL OF LEAN GASOLINE AND DIESEL ENGINES
JP2011527403A5 (en)
WO2012147411A1 (en) Lean nox trap type exhaust gas purification catalyst and exhaust gas purification system
JP5218092B2 (en) Exhaust gas purification catalyst
JP4197029B2 (en) Exhaust gas purification catalyst, exhaust gas purification system, and exhaust gas purification method
JP2009165904A (en) Exhaust gas purifier
JP5065180B2 (en) Exhaust gas purification catalyst
US10408102B2 (en) Oxidation catalyst device for exhaust gas purification
WO2006059471A1 (en) NOx PURIFICAITION SYSTEM
JP2008296090A (en) Exhaust cleaning catalyst, exhaust cleaning system, and exhaust cleaning method
JP2010005592A (en) Catalyst for cleaning exhaust
JP5391664B2 (en) Exhaust gas purification catalyst
JP4978781B2 (en) S storage catalyst and exhaust gas purification device
JP2011220123A (en) Exhaust purification catalyst
JP5232258B2 (en) Exhaust gas purification device for internal combustion engine
JP5003042B2 (en) Exhaust gas purification system
JP5094199B2 (en) Exhaust gas purification device
JP2009167844A (en) Exhaust emission control catalyst device
JP4097362B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
JP5772167B2 (en) Exhaust gas purification catalyst
JP4543689B2 (en) Exhaust purification catalyst
JP5628487B2 (en) Nitrogen oxide purification method
JP2004016850A (en) Exhaust gas cleaning catalyst, production method and exhaust gas cleaning system
JP5525493B2 (en) Exhaust gas purification device for internal combustion engine
WO2014050361A1 (en) NOx REMOVAL SYSTEM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100420

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110830