JP2012159054A - Exhaust gas purification system for internal combustion engine - Google Patents

Exhaust gas purification system for internal combustion engine Download PDF

Info

Publication number
JP2012159054A
JP2012159054A JP2011020531A JP2011020531A JP2012159054A JP 2012159054 A JP2012159054 A JP 2012159054A JP 2011020531 A JP2011020531 A JP 2011020531A JP 2011020531 A JP2011020531 A JP 2011020531A JP 2012159054 A JP2012159054 A JP 2012159054A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas purification
catalyst
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011020531A
Other languages
Japanese (ja)
Inventor
Kazuo Osumi
和生 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011020531A priority Critical patent/JP2012159054A/en
Publication of JP2012159054A publication Critical patent/JP2012159054A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas purification system for an internal combustion engine capable of making efficient use of exhaust gas heat, capable of being downsized while reducing the amount of hydrocarbon such as light oil supplied to an oxidation catalyst to increase the temperature of exhaust gas, and also capable of suppressing an EGR cooler and an EGR valve provided in an EGR passage from being clogged with SOF.SOLUTION: In an exhaust gas purification system 1, 1A for an internal combustion engine for purifying harmful substances in exhaust gas G of an internal combustion engine 10, a first oxidation catalyst 18 is placed between a discharge port and a discharge manifold 11a for every cylinder, and a second oxidation catalyst 19, an urea injection nozzle 20, a diesel particulate filter 21a and a selective reduction catalyst 21b are placed in a discharge passage 13, in this order from the side of the discharge manifold 11a.

Description

本発明は、ディーゼル車等の内燃機関の排気ガス中の粒子状物質、窒素酸化物、一酸化炭素、炭化水素等の有害物質を浄化する内燃機関の排気ガス浄化システムに関する。   The present invention relates to an exhaust gas purification system for an internal combustion engine that purifies harmful substances such as particulate matter, nitrogen oxides, carbon monoxide, and hydrocarbons in the exhaust gas of an internal combustion engine such as a diesel vehicle.

ディーゼル車等のエンジン(内燃機関)の排気ガス中の粒子状物質(PM)、窒素酸化物(NOx)、一酸化炭素(CO)、炭化水素(HC)等の有害物質を浄化する目的で、エンジンのシリンダ内における燃焼状態の改良による有害物質の発生の低減と、エンジンの排気通路に設けられる酸化触媒装置(DOC)、ディーゼルパティキュレートフィルタ装置(DPF)、尿素選択還元型触媒(尿素SCR触媒)装置等の複数の排気ガス浄化装置の搭載で構成された排気ガス浄化システムによる有害物質の除去が進んでいる。   For the purpose of purifying harmful substances such as particulate matter (PM), nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC) in the exhaust gas of engines such as diesel cars (internal combustion engines) Reduction of generation of harmful substances by improving the combustion state in the engine cylinder, oxidation catalyst device (DOC), diesel particulate filter device (DPF), urea selective reduction catalyst (urea SCR catalyst) provided in the exhaust passage of the engine ) Removal of harmful substances is progressing by an exhaust gas purification system configured by mounting a plurality of exhaust gas purification devices such as an apparatus.

その一つに、排気通路の上流側から順に、酸化触媒、尿素噴射装置、ディーゼルパティキュレートフィルタ装置、選択還元型NOx触媒コンバータ、酸化触媒を配置すると共に、ディーゼルパティキュレートフィルタ装置に酸化機能を有する触媒を担持させずに、尿素分解触媒を担持させた排気ガス浄化システムが提案されている(例えば、特許文献1参照。)。   For example, an oxidation catalyst, a urea injection device, a diesel particulate filter device, a selective reduction type NOx catalytic converter, and an oxidation catalyst are arranged in this order from the upstream side of the exhaust passage, and the diesel particulate filter device has an oxidation function. An exhaust gas purification system that supports a urea decomposition catalyst without supporting a catalyst has been proposed (see, for example, Patent Document 1).

しかしながら、エンジンの燃焼状態の改良の結果、排気ガス温度が従来に比べて30℃〜50℃あるいはそれ以上の温度幅で低下してきていることと、排気ガス浄化装置が複数化して大型になってきていることから、排気ガス浄化システムにおける排気ガス浄化装置全体の熱容量が増大して触媒の活性温度を確保することが困難となってきている。また、大型化することで、排気ガス浄化装置がエンジンの排気口より遠方に配置されるので、ますます触媒を活性温度以上に維持することが難しくなる傾向にある。そのため、各排気ガス浄化装置における有害物質の低減効果が小さくなっているという問題がある。   However, as a result of improvements in the combustion state of the engine, the exhaust gas temperature has been decreasing at a temperature range of 30 ° C. to 50 ° C. or more than before, and multiple exhaust gas purification devices have become larger. Therefore, the heat capacity of the entire exhaust gas purification device in the exhaust gas purification system has increased, and it has become difficult to ensure the activation temperature of the catalyst. Further, since the exhaust gas purification device is disposed farther from the exhaust port of the engine due to the increase in size, it tends to be more difficult to maintain the catalyst at the activation temperature or higher. Therefore, there is a problem that the effect of reducing harmful substances in each exhaust gas purification device is reduced.

加えて、尿素選択還元型触媒(尿素SCR)装置においては、尿素水を均一に拡散し、また、尿素がアンモニアに分解されるのを促進する必要があるために、尿素水噴射ノズルから、尿素選択還元型触媒装置までの距離を短くすることが困難であり、このことも排気ガス浄化システムが大型化する大きな要因となっている。   In addition, in the urea selective reduction type catalyst (urea SCR) device, it is necessary to diffuse urea water uniformly and to promote the decomposition of urea into ammonia. It is difficult to shorten the distance to the selective catalytic reduction catalyst device, which is a major factor in increasing the size of the exhaust gas purification system.

特開2010−242515号公報JP 2010-242515 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、排気ガスの熱を有効利用できて、排気ガスの温度上昇のために酸化触媒に供給する軽油等の炭化水素の量を減少できると共に小型化できて、更に、EGR通路に設けたEGRクーラやEGRバルブのSOF成分による詰まり等を抑制できる内燃機関の排気ガス浄化システムを提供することにある。   The present invention has been made in view of the above situation, and an object of the present invention is to effectively use the heat of the exhaust gas and to supply the amount of hydrocarbons such as light oil supplied to the oxidation catalyst to increase the temperature of the exhaust gas. It is another object of the present invention to provide an exhaust gas purification system for an internal combustion engine that can reduce the size of the engine and reduce the size of the EGR passage, and can further prevent clogging caused by the SOF component of an EGR cooler and an EGR valve provided in an EGR passage.

上記のような目的を達成するための本発明の内燃機関の排気浄化システムは、内燃機関の排気ガス中の有害物質を浄化する内燃機関の排気ガス浄化システムにおいて、第1酸化触媒を排気ポートから排気マニホールドの間に気筒毎に配置すると共に、前記排気マニホールド側から順に、第2酸化触媒、尿素噴射ノズル、ディーゼルパティキュレートフィルタ、選択還元型触媒を排気通路に配置して構成される。   An exhaust gas purification system for an internal combustion engine according to the present invention for achieving the above-described object is an exhaust gas purification system for an internal combustion engine that purifies harmful substances in the exhaust gas of the internal combustion engine. Each cylinder is disposed between the exhaust manifolds, and a second oxidation catalyst, a urea injection nozzle, a diesel particulate filter, and a selective reduction catalyst are disposed in the exhaust passage sequentially from the exhaust manifold side.

この構成によれば、第1酸化触媒を排気ポートから排気マニホールドの間に気筒毎に配置しているので、排気ガスが冷却されて温度が下がる前の高温の排気ガスを使用して第1酸化触媒を触媒活性温度以上に維持することが容易となり、この第1酸化触媒で効率良く、排気ガス中の一酸化炭素や炭化水素を酸化することができる。これらの酸化により、第2酸化触媒に流入する排気ガスの温度を高くすることができるので、第2酸化触媒も触媒活性温度以上に維持することが容易となる。   According to this configuration, since the first oxidation catalyst is arranged for each cylinder between the exhaust port and the exhaust manifold, the first oxidation is performed using the high-temperature exhaust gas before the exhaust gas is cooled and the temperature is lowered. It becomes easy to maintain the catalyst at or above the catalyst activation temperature, and the first oxidation catalyst can efficiently oxidize carbon monoxide and hydrocarbons in the exhaust gas. By these oxidations, the temperature of the exhaust gas flowing into the second oxidation catalyst can be increased, so that the second oxidation catalyst can be easily maintained at a temperature higher than the catalyst activation temperature.

従って、排気ガスの熱を有効利用できる排気ガス浄化システムとなり、排気ガスの温度上昇のために酸化触媒に供給する軽油等の炭化水素の量を減少でき、燃費を低減できる。また、この第1酸化触媒の配置により、排気ガス浄化システム全体を小型化できる。   Therefore, the exhaust gas purification system can effectively use the heat of the exhaust gas, and the amount of hydrocarbons such as light oil supplied to the oxidation catalyst for increasing the temperature of the exhaust gas can be reduced, thereby reducing the fuel consumption. Further, the arrangement of the first oxidation catalyst can reduce the size of the entire exhaust gas purification system.

更に、EGRで使用する排気ガスは、通常、排気マニホールド、又は、排気通路から吸気通路側に供給されるので、第1酸化触媒を通過して排気ガス中のSOF(Soluble organic Fraction:未燃焼物質、液体状の炭化水素微粒子)成分が低減した排気ガスをEGR通路に流すことができるようになる。そのため、EGR通路に設けたEGRクーラやEGRバルブのSOF成分による詰まり等の悪影響を抑制できる。   Further, since the exhaust gas used in EGR is normally supplied from the exhaust manifold or the exhaust passage to the intake passage side, it passes through the first oxidation catalyst and is SOF (Soluble Organic Fraction: unburned substance) in the exhaust gas. , Liquid hydrocarbon fine particles) component-exhausted exhaust gas can be flowed through the EGR passage. Therefore, adverse effects such as clogging due to the SOF component of the EGR cooler and the EGR valve provided in the EGR passage can be suppressed.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記尿素供噴射ノズルと前記ディーゼルパティキュレートフィルタとの間にターボチャージャのタービンを配置して構成する。   In the exhaust gas purification system for an internal combustion engine, a turbocharger turbine is arranged between the urea injection nozzle and the diesel particulate filter.

この構成によれば、尿素噴射ノズルから噴射した尿素がタービン内で撹拌されて拡散するため、尿素の熱分解や加水分解が促進され、また、タービン通過後では、噴霧された尿素が排気管中へ均一に拡散される。従って、尿素噴射ノズルから選択還元型触媒までの距離を短縮でき、排気ガス浄化システムを小型化できる。また、尿素の熱分解や加水分解の促進により尿素からアンモニアを高い変換率で生成できるため、下流側の選択還元型触媒の浄化性能を向上できる。   According to this configuration, since the urea injected from the urea injection nozzle is stirred and diffused in the turbine, the thermal decomposition and hydrolysis of urea are promoted, and after passing through the turbine, the sprayed urea is in the exhaust pipe. Is evenly diffused. Therefore, the distance from the urea injection nozzle to the selective reduction catalyst can be shortened, and the exhaust gas purification system can be miniaturized. In addition, since ammonia can be generated from urea at a high conversion rate by promoting the thermal decomposition and hydrolysis of urea, the purification performance of the selective catalytic reduction catalyst on the downstream side can be improved.

その上、高EGR燃焼で生じる硫黄酸化物が、尿素噴射ノズルから噴射された尿素と反応して中和されるので、尿素噴射ノズルより下流側の排気管やタービンにおける硫黄酸化物による腐食等を抑制できる。   In addition, since sulfur oxides generated by high EGR combustion react with urea injected from the urea injection nozzle and are neutralized, corrosion or the like caused by sulfur oxide in the exhaust pipe or turbine downstream of the urea injection nozzle. Can be suppressed.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記第1酸化触媒に酸素吸蔵能力を有する酸化物と酸化物半導体が混在した触媒を担持させると共に、前記第2酸化触媒に貴金属触媒又は炭化水素吸着材と貴金属触媒が混在した触媒を担持させて構成する。この構成によれば、第1酸化触媒は一酸化炭素の浄化に優れた排気ガス浄化装置となり、また、第2酸化触媒は、炭化水素の浄化及び低温活性に優れた排気ガス浄化装置となる。   In the exhaust gas purification system for an internal combustion engine, the first oxidation catalyst supports a catalyst in which an oxide having an oxygen storage ability and an oxide semiconductor are mixed, and the second oxidation catalyst has a noble metal catalyst or a hydrocarbon. A catalyst in which an adsorbent and a precious metal catalyst are mixed is supported. According to this configuration, the first oxidation catalyst becomes an exhaust gas purification device excellent in purifying carbon monoxide, and the second oxidation catalyst becomes an exhaust gas purification device excellent in hydrocarbon purification and low-temperature activity.

本発明に係る内燃機関の排気ガス浄化システムによれば、第1酸化触媒を排気ポートと排気マニホールドの間に設けているため、排気ガスの熱を有効利用できて、排気ガスの温度上昇のために酸化触媒に供給する軽油等の炭化水素の量を減少でき、燃費を低減できる。また、排気ガス浄化システムを小型化できる。   According to the exhaust gas purification system for an internal combustion engine according to the present invention, since the first oxidation catalyst is provided between the exhaust port and the exhaust manifold, the heat of the exhaust gas can be used effectively and the temperature of the exhaust gas is increased. In addition, the amount of hydrocarbons such as light oil supplied to the oxidation catalyst can be reduced, and fuel consumption can be reduced. Further, the exhaust gas purification system can be reduced in size.

更に、第1酸化触媒を通過してSOF成分が低減した排気ガスをEGR通路に流すことができるようになるので、EGR通路に設けたEGRクーラやEGRバルブのSOF成分による詰まり等を抑制できる。   Furthermore, since the exhaust gas that has passed through the first oxidation catalyst and has a reduced SOF component can flow into the EGR passage, clogging of the EGR cooler provided in the EGR passage and the SGR component of the EGR valve can be suppressed.

本発明の第1の実施の形態の内燃機関の排気ガスシステムの構成を示す図である。It is a figure which shows the structure of the exhaust-gas system of the internal combustion engine of the 1st Embodiment of this invention. 本発明の第2の実施の形態の内燃機関の排気ガスシステムの構成を示す図である。It is a figure which shows the structure of the exhaust-gas system of the internal combustion engine of the 2nd Embodiment of this invention. 実施例1〜3のアンモニア変換率を示す図である。It is a figure which shows the ammonia conversion rate of Examples 1-3. 実施例1〜3のJE05モードでのNOx平均浄化率を示す図である。It is a figure which shows the NOx average purification rate in JE05 mode of Examples 1-3.

以下、本発明に係る実施の形態の内燃機関の排気ガス浄化システムについて、図面を参照しながら説明する。   Hereinafter, an exhaust gas purification system for an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、第1の実施の形態の内燃機関の排気ガス浄化システム1は、エンジン(内燃機関)10の排気ガスG中の粒子状物質(PM)、窒素酸化物(NOx)、一酸化炭素(CO)、炭化水素(HC)等の有害物質を浄化するためのシステムである。   As shown in FIG. 1, an exhaust gas purification system 1 for an internal combustion engine according to a first embodiment includes particulate matter (PM), nitrogen oxide (NOx) in exhaust gas G of an engine (internal combustion engine) 10, This is a system for purifying harmful substances such as carbon monoxide (CO) and hydrocarbons (HC).

この内燃機関の排気ガス浄化システム1が設けられるエンジン10は、エンジン本体11に設けられた吸気マニホールド11aに接続する吸気通路12と、エンジン本体11に設けられた排気マニホールド11bに接続する排気通路13とを有して構成される。   An engine 10 provided with the exhaust gas purification system 1 for an internal combustion engine includes an intake passage 12 connected to an intake manifold 11 a provided in the engine body 11 and an exhaust passage 13 connected to an exhaust manifold 11 b provided in the engine body 11. And is configured.

吸気通路12には、上流側から順に、低圧段ターボチャージャ14の低圧段コンプレッサ14a、高圧段ターボチャージャ15の高圧段コンプレッサ15aが配置されている。また、第1酸化触媒18が排気ポートから排気マニホールド11bの間に気筒毎に配置される。   In the intake passage 12, a low-pressure stage compressor 14 a of a low-pressure stage turbocharger 14 and a high-pressure stage compressor 15 a of a high-pressure stage turbocharger 15 are arranged in this order from the upstream side. A first oxidation catalyst 18 is disposed for each cylinder between the exhaust port and the exhaust manifold 11b.

それと共に、排気マニホールド11b側から順に、第2酸化触媒19、高圧段ターボチャージャ15の高圧段タービン15b、尿素噴射ノズル20、低圧段ターボチャージャ14の低圧段タービン14b、ディーゼルパティキュレートフィルタ(DPF)21a、選択還元型触媒(SCR)21b、第3酸化触媒21cを配置して構成される。   At the same time, in order from the exhaust manifold 11b side, the second oxidation catalyst 19, the high pressure turbine 15b of the high pressure turbocharger 15, the urea injection nozzle 20, the low pressure turbine 14b of the low pressure turbocharger 14, and the diesel particulate filter (DPF). 21a, a selective reduction catalyst (SCR) 21b, and a third oxidation catalyst 21c are arranged.

図1の構成では、このディーゼルパティキュレートフィルタ(DPF)21a、選択還元型触媒(SCR)21b、第3酸化触媒21cは同じ容器に配置された排気ガス浄化ユニット21として構成されているが、それぞれ別の容器に配置された別体構造であってもよい。   In the configuration of FIG. 1, the diesel particulate filter (DPF) 21a, the selective reduction catalyst (SCR) 21b, and the third oxidation catalyst 21c are configured as an exhaust gas purification unit 21 disposed in the same container. The separate structure arrange | positioned at another container may be sufficient.

また、EGR通路16を、第1酸化触媒18より下流側となる排気マニホールド11bと高圧段コンプレッサ15aの下流側の吸気通路12を接続して設け、第1酸化触媒18を通過した排気ガスGeを再循環に用いるように構成される。このEGR通路16にEGRバルブ17が配置される。これにより、高圧の排気ガスを再循環するHP−EGRシステムが構成される。   Further, the EGR passage 16 is provided by connecting the exhaust manifold 11b on the downstream side of the first oxidation catalyst 18 and the intake passage 12 on the downstream side of the high pressure compressor 15a, and the exhaust gas Ge that has passed through the first oxidation catalyst 18 is provided. Configured for use in recirculation. An EGR valve 17 is disposed in the EGR passage 16. Thus, an HP-EGR system that recirculates high-pressure exhaust gas is configured.

この内燃機関の排気ガス浄化システム1では、第1酸化触媒18と第2酸化触媒19とで上流側の酸化触媒を構成するが、第1酸化触媒18は、一酸化炭素の浄化に優れている、酸素吸蔵能力(OSC)を有する酸化物と酸化物半導体が混在した触媒を担持させて構成する。   In the exhaust gas purification system 1 of the internal combustion engine, the first oxidation catalyst 18 and the second oxidation catalyst 19 constitute an upstream oxidation catalyst, and the first oxidation catalyst 18 is excellent in purifying carbon monoxide. In addition, a catalyst in which an oxide having an oxygen storage capacity (OSC) and an oxide semiconductor are mixed is supported.

この酸素吸蔵能力を有する酸化物としてはセリウム(Ce)を含む酸化物等があり、酸化物半導体としては酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化イットリウム(Y23)等がある。また、好ましくは、この酸素吸蔵能力を有する酸化物に貴金属を担持させる。また、第2酸化触媒19は、炭化水素の浄化に優れている、金属触媒又は炭化水素吸着材と貴金属触媒が混在した触媒を担持させて構成する。この貴金属触媒としては、白金(Pt) 等がある。 Examples of the oxide having oxygen storage ability include oxide containing cerium (Ce), and examples of the oxide semiconductor include titanium oxide (TiO 2 ), zinc oxide (ZnO), yttrium oxide (Y 2 O 3 ), and the like. is there. Preferably, a noble metal is supported on the oxide having oxygen storage capacity. In addition, the second oxidation catalyst 19 is configured to carry a catalyst that is excellent in hydrocarbon purification and is a mixture of a metal catalyst or a hydrocarbon adsorbent and a noble metal catalyst. Examples of the noble metal catalyst include platinum (Pt).

これにより、第1酸化触媒は一酸化炭素の浄化に優れた排気ガス浄化装置となり、また、第2酸化触媒は、炭化水素の浄化及び低温活性に優れた排気ガス浄化装置となるので、低温活性に優れている触媒構成が得られると共に、酸化触媒の構成を小型化できる。   As a result, the first oxidation catalyst becomes an exhaust gas purification device excellent in purifying carbon monoxide, and the second oxidation catalyst becomes an exhaust gas purification device excellent in hydrocarbon purification and low-temperature activity. As a result, it is possible to obtain an excellent catalyst structure and to reduce the size of the oxidation catalyst.

尿素噴射ノズル20は第2酸化触媒19とタービン(図1では、低圧段タービン14b)の間に設置されるので、噴射された尿素は低圧段タービン14b内で撹拌されて拡散するために尿素の加水分解や熱分解が促進される。このため、尿素噴射ノズル20から選択還元型触媒21bまでの距離を短くできる。更に、噴射された尿素が低圧段タービン14bを通過した後では排気管内へ拡散して均一化された状態となる。 この尿素噴射ノズル20から尿素を噴射すると、高EGR燃焼で発生する硫黄酸化物(SOx)が尿素と反応して中和される。つまり、「2NH3+SO3+H2O→(NH42SO4」の反応をして中和物である硫酸アンモニウム((NH42SO4)が生成する。従って、高EGR燃焼で生じる硫黄酸化物に起因する尿素噴射ノズルより下流側の排気管やタービンにおける腐食等を抑制できる。なお、図1の構成では、低圧段ターボチャージャ14と高圧段ターボチャージャ15の2つのターボチャージャを備えているが、低圧段ターボチャージャ14に相当するターボチャージャが一つの構成でもあってもよい。 Since the urea injection nozzle 20 is installed between the second oxidation catalyst 19 and the turbine (in FIG. 1, the low-pressure turbine 14b), the injected urea is stirred and diffused in the low-pressure turbine 14b, so Hydrolysis and thermal decomposition are promoted. For this reason, the distance from the urea injection nozzle 20 to the selective catalytic reduction catalyst 21b can be shortened. Further, after the injected urea passes through the low-pressure turbine 14b, it is diffused into the exhaust pipe and becomes uniform. When urea is injected from the urea injection nozzle 20, sulfur oxide (SOx) generated by high EGR combustion reacts with the urea and is neutralized. That is, a reaction of “2NH 3 + SO 3 + H 2 O → (NH 4 ) 2 SO 4 ” is generated to produce ammonium sulfate ((NH 4 ) 2 SO 4 ) as a neutralized product. Therefore, corrosion and the like in the exhaust pipe and the turbine on the downstream side from the urea injection nozzle due to the sulfur oxide generated by the high EGR combustion can be suppressed. In the configuration of FIG. 1, the two low-pressure stage turbochargers 14 and the high-pressure stage turbocharger 15 are provided, but the turbocharger corresponding to the low-pressure stage turbocharger 14 may be a single configuration.

ディーゼルパティキュレートフィルタ21aは、流側の尿素噴射ノズル20で噴霧する尿素が酸化されるのを防止するために、貴金属触媒を塗布しない構成とし、更に、ろ過壁表面に加水分解触媒層を形成する。つまり、ナノオーダーの粒子で形成した多孔層を尿素の加水分解に利用する。この加水分解触媒としては、二酸化チタン(TiO2)、二酸化ジルコニウム(ZrO2)、塩基性の大きい希土類酸化物等を用いることができる。 The diesel particulate filter 21a has a configuration in which noble metal catalyst is not applied in order to prevent the urea sprayed from the urea injection nozzle 20 on the flow side from being oxidized, and further, a hydrolysis catalyst layer is formed on the surface of the filtration wall. . That is, a porous layer formed of nano-order particles is used for urea hydrolysis. As the hydrolysis catalyst, titanium dioxide (TiO 2 ), zirconium dioxide (ZrO 2) , a rare earth oxide having a high basicity, or the like can be used.

また、ディーゼルパティキュレートフィルタ21aは、気孔率や気孔径、壁厚を適正化することで、浄化特性が高くかつ圧力損失の少ない構造のもの用いることが好ましい。また、このディーゼルパティキュレートフィルタ21aは、ろ過表面にナノオーダーの粒子で形成した多孔層を形成して、PM捕集時の圧損の低減や捕集のばらつきの低減などの効果を奏することができるようにすることが好ましい。   Moreover, it is preferable to use the diesel particulate filter 21a having a structure with high purification characteristics and low pressure loss by optimizing the porosity, pore diameter, and wall thickness. Further, the diesel particulate filter 21a can form a porous layer formed of nano-order particles on the filtration surface, and can exhibit effects such as reduction of pressure loss at the time of PM collection and reduction of variation in collection. It is preferable to do so.

このディーゼルパティキュレートフィルタ21aの上流側で排気ガス中に噴霧された尿素((NH22CO)は、主に、尿素の熱分解と、この熱分解で生成したイソシアン酸(HCNO)の加水分解によりアンモニア(NH3)に変換される。熱分解に比べて加水分解は反応速度が遅いので、レイアウトに制限がある車載用の選択還元型触媒を用いた排気ガス浄化システムにおいては、尿素の拡散を均一化するだけでは尿素からアンモニアを生成する変換率は十分ではない。 The urea ((NH 2 ) 2 CO) sprayed into the exhaust gas upstream of the diesel particulate filter 21a mainly contains the thermal decomposition of urea and the hydrolysis of isocyanic acid (HCNO) generated by this thermal decomposition. It is converted to ammonia (NH 3 ) by decomposition. Since the reaction rate of hydrolysis is slower than that of thermal decomposition, in an exhaust gas purification system that uses a selective catalytic reduction catalyst for vehicles with limited layout, ammonia is generated from urea simply by making the diffusion of urea uniform. The conversion rate to do is not enough.

しかし、ディーゼルパティキュレートフィルタ21aに設けた加水分解層により、尿素の熱分解「(NH22CO→(NH3)+HNCO」で生じたイソシアン酸が加水分解「HCNO+H2O→NH3+CO2」でアンモニアを生成することができる。 However, due to the hydrolysis layer provided in the diesel particulate filter 21a, isocyanic acid generated by the thermal decomposition of urea ((NH 2 ) 2 CO → (NH 3 ) + HNCO) is hydrolyzed “HCNO + H 2 O → NH 3 + CO 2. Can produce ammonia.

更に、このディーゼルパティキュレートフィルタ21aで、粒子状物質(PM)を燃焼させた後に生じる灰分成分(炭酸カルシウム:CaCO3)と硫酸アンモニウム((NH42SO4)とが反応して、「(NH42SO4+CaCO3→(NH42CO3+CaSO4」の反応で、炭酸アンモニウム((NH42CO3)を生じる。この炭酸アンモニウムは、58℃以上で「(NH42CO3→2NH3+H2O+CO2」の熱分解し、アンモニアを生成する。 Furthermore, in this diesel particulate filter 21a, the ash component (calcium carbonate: CaCO 3 ) generated after burning the particulate matter (PM) reacts with ammonium sulfate ((NH 4 ) 2 SO 4 ), and “( NH 4 ) 2 SO 4 + CaCO 3 → (NH 4 ) 2 CO 3 + CaSO 4 ”produces ammonium carbonate ((NH 4 ) 2 CO 3 ). This ammonium carbonate undergoes thermal decomposition of “(NH 4 ) 2 CO 3 → 2NH 3 + H 2 O + CO 2 ” at 58 ° C. or higher to produce ammonia.

従って、このディーゼルパティキュレートフィルタ21aにより、十分なアンモニア変換率を得ることができるようになり、変換されたアンモニアは、下流側の選択還元型触媒21bで、NOx浄化反応に使用される。   Therefore, a sufficient ammonia conversion rate can be obtained by the diesel particulate filter 21a, and the converted ammonia is used for the NOx purification reaction in the downstream selective reduction catalyst 21b.

選択還元型触媒21bは、触媒担体(モノリス触媒)等を用いて形成されるが、比体積当りの触媒量を増加させて、容積を低減させた小型のものを使用することが好ましい。   The selective reduction catalyst 21b is formed using a catalyst carrier (monolith catalyst) or the like, but it is preferable to use a small catalyst having a reduced volume by increasing the amount of catalyst per specific volume.

第3酸化触媒21cは、選択還元型触媒21bで消費されなかったアンモニアを分解して、アンモニアが流出(スリップ)するのを防止するためのものであるが、排気ガス浄化システム1の用途に応じて省略してもよい。   The third oxidation catalyst 21c is for decomposing ammonia that has not been consumed by the selective catalytic reduction catalyst 21b to prevent ammonia from flowing out (slipping), but depending on the use of the exhaust gas purification system 1. May be omitted.

次に第2の実施の形態の内燃機関の排気ガス浄化システムについて説明する。図2に示す第2の実施の形態の排気ガス浄化システム1Aは、図1の第1の実施の形態の排気ガス浄化システム1と、尿素噴射ノズル20と排気ガス浄化ユニット21の位置が異なっている。   Next, an exhaust gas purification system for an internal combustion engine according to a second embodiment will be described. The exhaust gas purification system 1A of the second embodiment shown in FIG. 2 differs from the exhaust gas purification system 1 of the first embodiment of FIG. 1 in the positions of the urea injection nozzle 20 and the exhaust gas purification unit 21. Yes.

図1の排気ガス浄化システム1では、尿素噴射ノズル20を低圧段タービン14bよりも上流側に設けると共に、排気ガス浄化ユニット21を低圧段タービン14bの直後に配置して、排気ガス浄化ユニット21をエンジン10に近づけて配置されているのに対して、図2の排気ガス浄化システム1Aでは、尿素噴射ノズル20を低圧段タービン14bよりも下流側に設けると共に、この尿素噴射ノズル20から離れた位置に排気ガス浄化ユニット21を設けて、排気ガス浄化ユニット21がエンジン10から遠方になるように配置されている。   In the exhaust gas purification system 1 of FIG. 1, the urea injection nozzle 20 is provided upstream of the low-pressure stage turbine 14b, and the exhaust gas purification unit 21 is disposed immediately after the low-pressure stage turbine 14b. In the exhaust gas purification system 1A shown in FIG. 2, the urea injection nozzle 20 is provided on the downstream side of the low-pressure turbine 14b, and at a position away from the urea injection nozzle 20 in contrast to the engine 10 disposed close to the engine 10. Is provided with an exhaust gas purification unit 21, and the exhaust gas purification unit 21 is disposed far from the engine 10.

上記の構成の内燃機関の排気ガス浄化システム1、1Aによれば、尿素から生成したアンモニア(NH3)で排気ガス中の硫黄酸化物(SOx)と「2NH3+SO3+H2O→(NH42SO4」の反応を生じさせ、更に、下流側のディーゼルパティキュレートフィルタ21aで粒子状物質(PM)を燃焼させた後に生じる灰分成分(CaCO3)と硫酸アンモニウム((NH42SO4)で「(NH42SO4+CaCO3→(NH42CO3+CaSO4」の反応を生じさせ、かつ、この生成した炭酸アンモニウム((NH42CO3)の熱分解「(NH42CO3→2NH3+H2O+CO2」で生じたアンモニア(NH3)をディーゼルパティキュレートフィルタ21aの下流側の選択還元型触媒21bで捕捉して、NOx浄化反応に使用することができる。 According to the exhaust gas purification systems 1 and 1A of the internal combustion engine having the above-described configuration, ammonia (NH 3 ) generated from urea and sulfur oxide (SOx) in the exhaust gas and “2NH 3 + SO 3 + H 2 O → (NH 4 ) 2 SO 4 ”reaction, and the ash component (CaCO 3 ) and ammonium sulfate ((NH 4 ) 2 SO generated after the particulate matter (PM) is burned by the downstream diesel particulate filter 21a. 4 ) causes a reaction of “(NH 4 ) 2 SO 4 + CaCO 3 → (NH 4 ) 2 CO 3 + CaSO 4 ”, and the thermal decomposition of the produced ammonium carbonate ((NH 4 ) 2 CO 3 ) “(NH 4) captured by 2 CO 3 → 2NH 3 + H 2 O + CO 2 "in the resulting ammonia (downstream side of the selective reduction catalyst 21b of the NH 3) a diesel particulate filter 21a, It can be used to Ox clean reaction.

従って、上記の構成の内燃機関の排気ガス浄化システム1、1Aによれば、第1酸化触媒18を排気ポートと排気マニホールド11aの間に設けているため、排気ガスGの熱を有効利用できて、排気ガスGの温度上昇のために酸化触媒に供給する軽油等の炭化水素量を減少でき、燃費を低減できる。また、排気ガス浄化システム1、1Aを小型化できる。   Therefore, according to the exhaust gas purification systems 1 and 1A for the internal combustion engine having the above-described configuration, the heat of the exhaust gas G can be effectively utilized because the first oxidation catalyst 18 is provided between the exhaust port and the exhaust manifold 11a. In addition, the amount of hydrocarbons such as light oil supplied to the oxidation catalyst for increasing the temperature of the exhaust gas G can be reduced, and fuel consumption can be reduced. Further, the exhaust gas purification systems 1 and 1A can be reduced in size.

更に、第1酸化触媒18を通過してSOF成分が低減した排気ガスGをEGR通路16に流すことができるようになるので、EGR通路16に設けたEGRクーラ(図示しない)やEGRバルブ17のSOF成分による詰まり等の悪影響を抑制できる。   Further, since the exhaust gas G having a reduced SOF component passing through the first oxidation catalyst 18 can be flowed to the EGR passage 16, an EGR cooler (not shown) provided in the EGR passage 16 and the EGR valve 17 An adverse effect such as clogging due to the SOF component can be suppressed.

次に、上記の内燃機関の排気ガス浄化システム1、1AによるJE05モードの試験結果について説明する。図1の第1の実施の形態の排気ガス浄化システム1の構成で、ディーゼルパティキュレートフィルタ21aに加水分解層を設けた構成を実施例1とし、加水分解層を設けない構成を実施例2とし、図2の第2の実施の形態の排気ガス浄化システム1Aの構成で、ディーゼルパティキュレートフィルタ21aに加水分解層を設けた構成を実施例3とし、JE05モード試験を行い、その結果を図3と図4に示す。   Next, the test results in the JE05 mode by the exhaust gas purification systems 1 and 1A for the internal combustion engine will be described. In the configuration of the exhaust gas purification system 1 of the first embodiment of FIG. 1, the configuration in which the diesel particulate filter 21a is provided with a hydrolysis layer is referred to as Example 1, and the configuration in which the hydrolysis layer is not provided is referred to as Example 2. The configuration of the exhaust gas purification system 1A of the second embodiment in FIG. 2 is a configuration in which a hydrolysis layer is provided on the diesel particulate filter 21a as Example 3, and a JE05 mode test was conducted. The results are shown in FIG. And shown in FIG.

実施例1では、JE05モード中平均入口温度は、第1酸化触媒18の入口で200℃、ディーゼルパティキュレートフィルタ21aの入口で175℃、選択還元型触媒21bの入口で170℃となった。一方、実施例3では、JE05モード中平均入口温度は、第1酸化触媒18の入口で150℃、ディーゼルパティキュレートフィルタ21aの入口で140℃、選択還元型触媒21bの入口で125℃となった。   In Example 1, the average inlet temperature during the JE05 mode was 200 ° C. at the inlet of the first oxidation catalyst 18, 175 ° C. at the inlet of the diesel particulate filter 21a, and 170 ° C. at the inlet of the selective catalytic reduction catalyst 21b. On the other hand, in Example 3, the average inlet temperature during JE05 mode was 150 ° C. at the inlet of the first oxidation catalyst 18, 140 ° C. at the inlet of the diesel particulate filter 21a, and 125 ° C. at the inlet of the selective catalytic reduction catalyst 21b. .

また、図3は、実施例1〜3の選択還元型触媒21bの入口におけるアンモニア変換率を示し、図4は、JE05モードにおけるNOx平均浄化率を示す。実施例1は、図3に示すように、200℃でも高いアンモニア変換率を示している。一方、実施例3では、150℃では第1酸化触媒18の炭化水素(HC)浄化率は10%以下(一酸化炭素(CO)浄化率も同じ)であった。また、125℃では選択還元型触媒21bのNOx浄化率は5%以下であった。従って、平均浄化率は炭化水素、一酸化炭素、NOxとも50%以下であった。また、実施例3では、尿素を噴射して均一拡散させるためには、尿素噴射ノズル20の位置から選択還元型触媒21bまで25cm以上の距離が必要となり、これより距離を短くするためには、拡散板を設ける必要が生じた。   3 shows the ammonia conversion rate at the inlet of the selective catalytic reduction catalyst 21b of Examples 1 to 3, and FIG. 4 shows the NOx average purification rate in the JE05 mode. Example 1 shows a high ammonia conversion rate even at 200 ° C., as shown in FIG. On the other hand, in Example 3, at 150 ° C., the hydrocarbon (HC) purification rate of the first oxidation catalyst 18 was 10% or less (the carbon monoxide (CO) purification rate was the same). Further, at 125 ° C., the NOx purification rate of the selective catalytic reduction catalyst 21b was 5% or less. Therefore, the average purification rate was 50% or less for hydrocarbons, carbon monoxide, and NOx. In the third embodiment, in order to inject and uniformly diffuse urea, a distance of 25 cm or more is required from the position of the urea injection nozzle 20 to the selective reduction catalyst 21b. To reduce the distance, It became necessary to provide a diffusion plate.

本発明の内燃機関の排気ガス浄化システムによれば、排気ガスの熱を有効利用できて、排気ガスの温度上昇のために酸化触媒に供給する軽油等の炭化水素の量を減少できると共に排気ガス浄化システムを小型化でき、更に、EGR通路に設けたEGRクーラやEGRバルブのSOF成分による詰まり等を抑制できるので、自動車等に搭載した内燃機関のための排気ガス浄化システムとして利用できる。   According to the exhaust gas purification system for an internal combustion engine of the present invention, the heat of the exhaust gas can be used effectively, the amount of hydrocarbons such as light oil supplied to the oxidation catalyst for increasing the temperature of the exhaust gas can be reduced, and the exhaust gas Since the purification system can be reduced in size and clogging due to the SOF component of the EGR cooler and EGR valve provided in the EGR passage can be suppressed, it can be used as an exhaust gas purification system for an internal combustion engine mounted on an automobile or the like.

1、1A 内燃機関の排気ガス浄化システム
10 エンジン(内燃機関)
11b 排気マニホールド
13 排気通路
14 低圧段ターボチャージャ
14b 低圧段タービン
18 第1酸化触媒
19 第2酸化触媒
20 尿素噴射ノズル
21 排気ガス浄化ユニット
21a ディーゼルパティキュレートフィルタ(DPF)
21b 選択還元型触媒(SCR)
21c 第3酸化触媒
A 吸気
G 排気ガス
Ge EGRガス
1, 1A Exhaust gas purification system for internal combustion engine 10 Engine (internal combustion engine)
11b Exhaust manifold 13 Exhaust passage 14 Low pressure turbocharger 14b Low pressure turbine 18 First oxidation catalyst 19 Second oxidation catalyst 20 Urea injection nozzle 21 Exhaust gas purification unit 21a Diesel particulate filter (DPF)
21b Selective reduction catalyst (SCR)
21c Third oxidation catalyst A Intake G Exhaust gas Ge EGR gas

Claims (3)

内燃機関の排気ガス中の有害物質を浄化する内燃機関の排気ガス浄化システムにおいて、第1酸化触媒を排気ポートから排気マニホールドの間に気筒毎に配置すると共に、前記排気マニホールド側から順に、第2酸化触媒、尿素噴射ノズル、ディーゼルパティキュレートフィルタ、選択還元型触媒を排気通路に配置したことを特徴とする内燃機関の排気ガス浄化システム。   In the exhaust gas purification system for an internal combustion engine that purifies harmful substances in the exhaust gas of the internal combustion engine, the first oxidation catalyst is disposed between the exhaust port and the exhaust manifold for each cylinder, and in order from the exhaust manifold side, the second An exhaust gas purification system for an internal combustion engine, wherein an oxidation catalyst, a urea injection nozzle, a diesel particulate filter, and a selective reduction catalyst are arranged in an exhaust passage. 前記尿素噴射ノズルと前記ディーゼルパティキュレートフィルタとの間にターボチャージャのタービンを配置したことを特徴とする請求項1記載の内燃機関の排気ガス浄化システム。   The exhaust gas purification system for an internal combustion engine according to claim 1, wherein a turbine of a turbocharger is disposed between the urea injection nozzle and the diesel particulate filter. 前記第1酸化触媒に酸素吸蔵能力を有する酸化物と酸化物半導体が混在した触媒を担持させると共に、前記第2酸化触媒に貴金属触媒又は炭化水素吸着材と貴金属触媒が混在した触媒を担持させたことを特徴とする請求項1又は2記載の内燃機関の排気ガス浄化システム。   The first oxidation catalyst carries a catalyst in which an oxide having an oxygen storage capability and an oxide semiconductor are mixed, and the second oxidation catalyst carries a catalyst in which a noble metal catalyst or a hydrocarbon adsorbent and a noble metal catalyst are mixed. The exhaust gas purification system for an internal combustion engine according to claim 1 or 2.
JP2011020531A 2011-02-02 2011-02-02 Exhaust gas purification system for internal combustion engine Pending JP2012159054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011020531A JP2012159054A (en) 2011-02-02 2011-02-02 Exhaust gas purification system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011020531A JP2012159054A (en) 2011-02-02 2011-02-02 Exhaust gas purification system for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2012159054A true JP2012159054A (en) 2012-08-23

Family

ID=46839784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020531A Pending JP2012159054A (en) 2011-02-02 2011-02-02 Exhaust gas purification system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2012159054A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130000277A1 (en) * 2011-06-29 2013-01-03 Electro-Motive Diesel, Inc. System for reducing engine emissions and backpressure using parallel emission reduction equipment
CN104074573A (en) * 2014-07-25 2014-10-01 谢仕荣 Superfluous oil and water purification and muffler device for tail gas of oil-fired vehicle
JP2021175404A (en) * 2019-03-22 2021-11-04 株式会社クボタ combine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239109A (en) * 2003-02-04 2004-08-26 Hino Motors Ltd Exhaust gas emission control device for engine
JP2005061362A (en) * 2003-08-19 2005-03-10 Hino Motors Ltd Exhaust emission control device
JP2008114153A (en) * 2006-11-02 2008-05-22 Isuzu Motors Ltd Catalyst for purification of exhaust gas and system and method for purification of exhaust gas
JP2008296090A (en) * 2007-05-29 2008-12-11 Isuzu Motors Ltd Exhaust cleaning catalyst, exhaust cleaning system, and exhaust cleaning method
JP2009114930A (en) * 2007-11-06 2009-05-28 Hino Motors Ltd Exhaust purification device
JP2010084695A (en) * 2008-10-01 2010-04-15 Diesel United:Kk Exhaust emission control device
JP2010242515A (en) * 2009-04-01 2010-10-28 Isuzu Motors Ltd Exhaust emission control system and exhaust emission control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239109A (en) * 2003-02-04 2004-08-26 Hino Motors Ltd Exhaust gas emission control device for engine
JP2005061362A (en) * 2003-08-19 2005-03-10 Hino Motors Ltd Exhaust emission control device
JP2008114153A (en) * 2006-11-02 2008-05-22 Isuzu Motors Ltd Catalyst for purification of exhaust gas and system and method for purification of exhaust gas
JP2008296090A (en) * 2007-05-29 2008-12-11 Isuzu Motors Ltd Exhaust cleaning catalyst, exhaust cleaning system, and exhaust cleaning method
JP2009114930A (en) * 2007-11-06 2009-05-28 Hino Motors Ltd Exhaust purification device
JP2010084695A (en) * 2008-10-01 2010-04-15 Diesel United:Kk Exhaust emission control device
JP2010242515A (en) * 2009-04-01 2010-10-28 Isuzu Motors Ltd Exhaust emission control system and exhaust emission control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130000277A1 (en) * 2011-06-29 2013-01-03 Electro-Motive Diesel, Inc. System for reducing engine emissions and backpressure using parallel emission reduction equipment
US8950176B2 (en) * 2011-06-29 2015-02-10 Electro-Motive Diesel, Inc. System for reducing engine emissions and backpressure using parallel emission reduction equipment
CN104074573A (en) * 2014-07-25 2014-10-01 谢仕荣 Superfluous oil and water purification and muffler device for tail gas of oil-fired vehicle
JP2021175404A (en) * 2019-03-22 2021-11-04 株式会社クボタ combine
JP7355787B2 (en) 2019-03-22 2023-10-03 株式会社クボタ combine

Similar Documents

Publication Publication Date Title
JP5630024B2 (en) Diesel engine exhaust purification device and exhaust purification method
JP6074912B2 (en) Exhaust gas purification system and exhaust gas purification method
WO2013172215A1 (en) Exhaust gas purification system and method for purifying exhaust gas
JP5630025B2 (en) Diesel engine exhaust purification device and exhaust purification method
KR101631149B1 (en) Diesel engine exhaust gas purification device having ammonia decomposition module
RU2584084C2 (en) EXHAUST SYSTEM CONTAINING NOx REDUCTION CATALYST AND EXHAUST GAS RECYCLING LOOP
WO2013137309A1 (en) Exhaust gas purification device
RU2011132163A (en) SYNERGIC SCR / DOC CONFIGURATIONS TO REDUCE DIESEL ENGINE EMISSIONS
RU2591753C2 (en) Exhaust system comprising catalyst for preventing penetration of ammonia in exhaust gas recycling circuit
US20100077739A1 (en) Exhaust system implementing dual stage SCR
KR20130087146A (en) Apparatus and controlling method of urea-scr system
JP2013142363A (en) Exhaust emission control device of diesel engine
US20100115930A1 (en) Exhaust after treatment system
JP2010031769A (en) Exhaust emission control device
JP2008128046A (en) Exhaust gas purification device
JP2012159054A (en) Exhaust gas purification system for internal combustion engine
KR101022018B1 (en) Exhaust gas purification system of engine and marine engine with the same
JP6020105B2 (en) Diesel engine exhaust gas purification method and exhaust gas purification system
WO2017104668A1 (en) Internal-combustion engine exhaust gas purification system, and internal-combustion engine exhaust gas purification method
CN216381563U (en) Aftertreatment system, engine and vehicle
CN219548957U (en) Gas engine aftertreatment system, engine and vehicle
JP5476770B2 (en) Exhaust gas purification system and control method of exhaust gas purification system
JP5396959B2 (en) Exhaust gas purification system and control method of exhaust gas purification system
JP2012159053A (en) Exhaust gas purification apparatus
JP5293337B2 (en) Internal combustion engine and control method for internal combustion engine

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150928

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20151204