JP5070964B2 - NOx purification system and control method of NOx purification system - Google Patents

NOx purification system and control method of NOx purification system Download PDF

Info

Publication number
JP5070964B2
JP5070964B2 JP2007180694A JP2007180694A JP5070964B2 JP 5070964 B2 JP5070964 B2 JP 5070964B2 JP 2007180694 A JP2007180694 A JP 2007180694A JP 2007180694 A JP2007180694 A JP 2007180694A JP 5070964 B2 JP5070964 B2 JP 5070964B2
Authority
JP
Japan
Prior art keywords
nox
exhaust passage
reducing agent
branch exhaust
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007180694A
Other languages
Japanese (ja)
Other versions
JP2009019515A (en
Inventor
我部  正志
大治 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2007180694A priority Critical patent/JP5070964B2/en
Publication of JP2009019515A publication Critical patent/JP2009019515A/en
Application granted granted Critical
Publication of JP5070964B2 publication Critical patent/JP5070964B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関の排気ガス中のNOx(窒素酸化物)を浄化するNOx吸蔵還元型触媒を備えたNOx浄化システム及びNOx浄化システムの制御方法に関する。   The present invention relates to a NOx purification system including a NOx storage reduction catalyst that purifies NOx (nitrogen oxide) in exhaust gas of an internal combustion engine, and a control method for the NOx purification system.

ディーゼルエンジンから排出されるPM(微粒子状物質)、NOx、CO(一酸化炭素)やHC(炭化水素)等は、年々排出規制が強化されてきている。この規制の強化に伴い、エンジンの改良のみでは、規制値への対応が困難になってきている。そこで、エンジンの排気通路に排気ガス後処理装置を着装して、エンジンから排出されるこれらの物質を低減する技術が採用されてきている。   Emission regulations for PM (particulate matter), NOx, CO (carbon monoxide), HC (hydrocarbon), etc. discharged from diesel engines have been strengthened year by year. With the tightening of regulations, it has become difficult to meet the regulation values only by improving the engine. Therefore, a technique has been adopted in which an exhaust gas aftertreatment device is attached to the exhaust passage of the engine to reduce these substances discharged from the engine.

このような状況において、ディーゼルエンジンや一部のガソリンエンジン等の内燃機関や様々な燃焼装置の排気ガス中からNOx(窒素酸化物)を還元除去するためのNOx触媒について種々の研究や提案がなされている。その一つに、ディーゼルエンジン用のNOx低減触媒として、NOx吸蔵還元型触媒がある。このNOx吸蔵還元型触媒の使用により、有効に排気ガス中のNOxを浄化できる。   Under such circumstances, various studies and proposals have been made on NOx catalysts for reducing and removing NOx (nitrogen oxides) from exhaust gases of internal combustion engines such as diesel engines and some gasoline engines and various combustion devices. ing. One of them is a NOx occlusion reduction type catalyst as a NOx reduction catalyst for diesel engines. By using this NOx occlusion reduction type catalyst, NOx in the exhaust gas can be effectively purified.

このNOx吸蔵還元型触媒は、モノリスハニカム等で形成され、このモノリスハニカムのコージィエライト、炭化珪素(SiC)若しくは極薄板ステンレスで形成された構造材の担体に、多数の多角形のセルを形成して構成される。このセルの壁面にはアルミナ(Al2 3 )、ゼオライト、シリカ、各種酸化物等で形成された触媒担持層となる多孔質の触媒コート層が設けられている。この触媒コート層の表面に酸化機能を持つ触媒貴金属(触媒活性金属)と、NOx吸蔵機能を持つNOx吸蔵剤(NOx吸蔵物質:NOx吸蔵材:NOx吸収剤)を担持している。この触媒貴金属は、白金(Pt)等で形成され、NOx吸蔵剤は、カリウム(K),ナトリウム(Na),リチウム(Li),セシウム(Cs)等のアルカリ金属、バリウム(Ba),カルシウム(Ca)等のアルカリ土類金属、ランタン(La),イットリウム(Y)等の希土類等の中から幾つかから形成される。 This NOx occlusion reduction type catalyst is formed of a monolith honeycomb or the like, and a large number of polygonal cells are formed on a carrier of structural material formed of cordierite, silicon carbide (SiC) or ultrathin plate stainless steel of this monolith honeycomb. Configured. A porous catalyst coat layer serving as a catalyst support layer formed of alumina (Al 2 O 3 ), zeolite, silica, various oxides or the like is provided on the wall surface of the cell. A catalytic noble metal (catalytically active metal) having an oxidation function and a NOx storage agent (NOx storage material: NOx storage material: NOx absorbent) having a NOx storage function are supported on the surface of the catalyst coat layer. The catalyst noble metal is formed of platinum (Pt) or the like, and the NOx storage agent is an alkali metal such as potassium (K), sodium (Na), lithium (Li), or cesium (Cs), barium (Ba), calcium ( It is formed from some of alkaline earth metals such as Ca) and rare earths such as lanthanum (La) and yttrium (Y).

これらにより、排気ガス中の酸素濃度によってNOx吸蔵とNOx放出とNOx浄化の三つの機能を発揮する。つまり、このNOx吸蔵還元型触媒は、通常運転時にNOxをNOx吸蔵剤に吸蔵し、吸蔵能力が飽和に近づくと、適時、流入してくる排気ガスの空燃比をリッチ空燃比にして、吸蔵したNOxを放出させると共に、放出されたNOxを触媒貴金属の三元機能で還元する。   Thus, three functions of NOx occlusion, NOx release, and NOx purification are exhibited depending on the oxygen concentration in the exhaust gas. That is, this NOx occlusion reduction type catalyst occludes NOx in the NOx occlusion agent during normal operation, and when the occlusion capacity approaches saturation, the air-fuel ratio of the inflowing exhaust gas is made the rich air-fuel ratio and occluded when appropriate. While releasing NOx, the released NOx is reduced by the ternary function of the catalytic noble metal.

より詳細には、通常のディーゼルエンジン、希薄燃焼ガソリンエンジン等の排気ガス中に酸素(O2 )が含まれるような、排気ガスの空燃比がリーン空燃比状態の場合には、排気ガス中に含まれる酸素によって、エンジンから排出される一酸化窒素(NO)を触媒貴金属の酸化触媒機能によって二酸化窒素(NO2 )に酸化する。そして、その二酸化窒素をNOx吸蔵機能を持つバリウム等のNOx吸蔵剤に硝酸塩等の塩化物のかたちで吸蔵し、NOxを浄化する。 More specifically, when the exhaust gas air-fuel ratio is in a lean air-fuel ratio state in which oxygen (O 2 ) is contained in the exhaust gas of a normal diesel engine, lean burn gasoline engine, etc., Nitrogen monoxide (NO) discharged from the engine is oxidized into nitrogen dioxide (NO 2 ) by the oxygen contained therein by the oxidation catalytic function of the catalytic noble metal. The nitrogen dioxide is stored in the form of chloride such as nitrate in a NOx storage agent such as barium having a NOx storage function to purify NOx.

しかし、このままの状態を継続するとNOx吸蔵機能を持つNOx吸蔵剤は、全て硝酸塩に変化してNOx吸蔵機能を失ってしまう。そこで、エンジンの運転条件を変えたり、排気通路中に燃料等の還元剤を噴射したりして、排気ガス中に酸素が存在しないで、一酸化炭素(CO)や炭化水素(HC)等の還元剤の濃度が高く、排気温度も高い排気ガス、即ち、過濃燃焼排気ガス(リッチスパイクガス)を作り出し触媒に送る。   However, if this state is continued, the NOx occlusion agent having the NOx occlusion function is all changed to nitrate and loses the NOx occlusion function. Therefore, by changing the operating conditions of the engine, or by injecting a reducing agent such as fuel into the exhaust passage, oxygen is not present in the exhaust gas, and carbon monoxide (CO), hydrocarbon (HC), etc. An exhaust gas having a high concentration of reducing agent and a high exhaust temperature, that is, a rich combustion exhaust gas (rich spike gas) is produced and sent to the catalyst.

そして、排気ガス中に酸素が無く、還元剤濃度が高く、排気ガス温度が上昇したリッチ空燃比状態にすると、NOxを吸蔵した硝酸塩は二酸化窒素を放出し元のバリウム等に戻る。この放出された二酸化窒素を、排気ガス中に酸素が存在しないので、排気ガス中の一酸化炭素,炭化水素,水素(H2 )を還元剤として、酸化機能を持つ白金等の触媒貴金属上で、水、二酸化炭素(CO2 )、窒素(N2 )に変換し浄化する。 When the exhaust gas has no oxygen, the reducing agent concentration is high, and the exhaust gas temperature is raised to a rich air-fuel ratio, the NOx occluded nitrate releases nitrogen dioxide and returns to the original barium or the like. Since the released nitrogen dioxide does not contain oxygen in the exhaust gas, carbon monoxide, hydrocarbons, and hydrogen (H 2 ) in the exhaust gas are used as a reducing agent on a catalytic noble metal such as platinum having an oxidizing function. , Converted into water, carbon dioxide (CO 2 ), and nitrogen (N 2 ) for purification.

そのため、NOx吸蔵還元型触媒を備えたNOx浄化システムでは、NOx吸蔵能力が飽和に近くなると、吸蔵されたNOxを放出させて浄化して触媒を再生するために、理論空燃比より燃料を多くして排気ガスの空燃比をリッチにして、流入する排気ガスの酸素濃度を低下させた高温の還元組成排気ガスを触媒に供給する必要がある。このNOx吸蔵能力回復用のリッチ制御を行うことにより吸収したNOxを放出させて、この放出されたNOxを貴金属触媒により還元させるNOx再生操作を行っている。   Therefore, in a NOx purification system equipped with a NOx occlusion reduction catalyst, when the NOx occlusion capacity becomes close to saturation, the stored NOx is released and purified to regenerate the catalyst, so that the fuel is increased from the stoichiometric air-fuel ratio. Therefore, it is necessary to supply the catalyst with high-temperature reducing composition exhaust gas in which the air-fuel ratio of the exhaust gas is made rich and the oxygen concentration of the inflowing exhaust gas is reduced. By performing rich control for recovering the NOx storage capacity, the absorbed NOx is released, and a NOx regeneration operation is performed in which the released NOx is reduced by a noble metal catalyst.

従来技術のNOx浄化システムでは、低負荷で排気温度が約250℃以下のような運転状態では、リッチ燃焼によるNOx再生制御を行っても、NOx吸蔵還元型触媒が活性化しておらず、吸蔵されたNOxが脱離するのみで、NOxの浄化が生じない。そのため、低温域でのNOx浄化ができず、極端にNOx浄化率が低下する。従って、低負荷域では、NOxが飽和し、NOx吸蔵還元型触媒の下流側への流出(NOxスリップ)が起きてしまうという問題がある。   In the NOx purification system of the prior art, in an operation state where the exhaust temperature is about 250 ° C. or less with a low load, the NOx occlusion reduction type catalyst is not activated and occluded even if NOx regeneration control by rich combustion is performed. Only NOx is desorbed and NOx purification does not occur. Therefore, NOx purification cannot be performed in a low temperature range, and the NOx purification rate is extremely reduced. Therefore, in the low load region, there is a problem that NOx is saturated and the NOx occlusion reduction type catalyst flows out downstream (NOx slip).

また、この低負荷域から負荷が増加して排気ガスの温度が上昇した場合には、この温度上昇により、吸蔵剤や触媒表面から吸蔵及び吸着していたNOxが一気に放出されるので、還元剤不足と排気ガス中のO2 濃度が高いことによりNOxの浄化が不十分となり、NOx浄化性能の極端な悪化を招くという問題もある。 Further, when the load increases from this low load region and the temperature of the exhaust gas rises, the NOx that has been occluded and adsorbed from the occlusion agent or the catalyst surface is released at once due to this temperature rise. Due to the shortage and the high O 2 concentration in the exhaust gas, there is a problem that NOx purification becomes insufficient and the NOx purification performance is extremely deteriorated.

また、触媒活性が生じている中温域や高温域においても、触媒に吸蔵されたNOxの放出、浄化のために、エンジン運転条件を切り替えて高温で酸素濃度の極端に低いリッチ排気ガスを発生させて、この排気ガスを触媒に供給することにより、触媒におけるNOxの放出と還元浄化を行っている。この場合、リッチ排気ガスを生成するのが不得意なディーゼルエンジンでは、燃費の極端な悪化や、スモーク、PMの悪化の問題や、この高濃度スモーク生成運転による耐久性の悪化を招くという問題や、更に、不適切な燃焼から車のドライバビリティも悪化させるという問題がある。また、ディーゼルエンジンの場合、NOx再生時のリッチ排気ガス中に、数パーセント程度の酸素が残存しているため、NOx再生時のNOx浄化率も低下している。   In addition, even in the middle temperature range and high temperature range where catalytic activity is occurring, the engine operating conditions are switched to generate rich exhaust gas with extremely low oxygen concentration at high temperatures in order to release and purify NOx stored in the catalyst. Thus, by supplying this exhaust gas to the catalyst, NOx release and reduction purification are performed in the catalyst. In this case, in a diesel engine that is not good at generating rich exhaust gas, problems such as extreme deterioration of fuel consumption, deterioration of smoke and PM, and deterioration of durability due to this high concentration smoke generation operation, Furthermore, there is a problem that the drivability of the car is also deteriorated due to inappropriate combustion. Further, in the case of a diesel engine, about several percent of oxygen remains in the rich exhaust gas during NOx regeneration, so the NOx purification rate during NOx regeneration is also reduced.

この運転条件の切換えによる還元剤添加による燃費の極端な悪化や、スモーク、PMの悪化の問題を解決するために、NOx吸蔵還元型触媒の上流側に、燃料添加手段とプラズマ改質機とを備えたバイパス通路を設け、排気ガス中への放電で発生するプラズマで燃料を水素と一酸化炭素に分解させ、この反応性の高い水素及び一酸化炭素により、低温域での排気ガス中の酸素との反応を高めて排気ガス中の酸素濃度を低下させて、NOxを放出させると共に、このNOxを反応性の高い水素及び一酸化炭素により効率よく窒素に還元する排気浄化装置が提案されている(例えば、特許文献1参照。)。   In order to solve the problems of extreme deterioration of fuel consumption due to addition of the reducing agent by switching of the operating conditions, smoke and PM, the fuel addition means and the plasma reformer are provided upstream of the NOx storage reduction type catalyst. By providing a bypass passage, the fuel is decomposed into hydrogen and carbon monoxide by plasma generated by discharge into the exhaust gas, and the oxygen in the exhaust gas in the low-temperature region is decomposed by this highly reactive hydrogen and carbon monoxide. Has been proposed to reduce the concentration of oxygen in the exhaust gas and release NOx, and to efficiently reduce this NOx to nitrogen by highly reactive hydrogen and carbon monoxide. (For example, refer to Patent Document 1).

しかしながら、希薄燃焼機関で触媒NOx再生用のリッチ排ガスを運転条件変更により生成する場合の上記問題を解決する為に、この排気浄化装置では、リッチ排ガスを生成する為に燃料添加とプラズマ放電によって触媒に有効な還元ガスを生成供給している。この場合は燃料添加とプラズマ放電される排気ガスは流動状態で行われるので、十分なリッチ還元ガスを生成できない。また、十分なO2 濃度低下も生じず、リッチ排ガス生成初期は燃料希薄状態で後半になるに従って深いリッチ排ガスとなり、触媒が効率良くNOx再生できる供給リッチ排ガス条件と反対になってしまう。
特開2006−316654号公報
However, in order to solve the above-mentioned problem when rich exhaust gas for regeneration of catalyst NOx is generated by changing operating conditions in a lean combustion engine, in this exhaust purification device, a catalyst is added by fuel addition and plasma discharge to generate rich exhaust gas. The production and supply of effective reducing gas. In this case, the fuel addition and the exhaust gas that is plasma-discharged are performed in a flowing state, and therefore, a sufficient rich reducing gas cannot be generated. In addition, the O 2 concentration does not sufficiently decrease, and the rich exhaust gas is initially in the rich fuel exhaust state and becomes deep rich exhaust gas in the latter half, which is contrary to the supply rich exhaust gas condition in which the catalyst can efficiently regenerate NOx.
JP 2006-316654 A

本発明は、上記の問題を解決するためになされたものであり、その目的は、内燃機関の運転状態を変更することなく、NOx吸蔵還元型触媒のNOx吸蔵能力を回復できると共に、プラズマにより分解酸化されたHC,CO,H2 が多量に含まれる排気ガスにより低温活性を向上し、低温域からNOx浄化性能を向上させることができ、また、内燃機関の耐久性向上、燃費向上、更に、ドライバビリティの悪化を防ぐことができ、特に、NOx再生初期のO2 濃度を極端に低下させた過濃リッチ排気ガスの供給で、NOx再生初期における残留酸素放出により触媒が昇温して、大量のNOxが放出されることに対しても十分に対応できるNOx浄化システム及びNOx浄化システムの制御方法を提供することにある。 The present invention has been made to solve the above-described problems, and its object is to restore the NOx occlusion ability of the NOx occlusion reduction type catalyst without changing the operation state of the internal combustion engine and to decompose it by plasma. The exhaust gas containing a large amount of oxidized HC, CO, H 2 can improve the low temperature activity, improve the NOx purification performance from the low temperature range, improve the durability of the internal combustion engine, improve the fuel consumption, It is possible to prevent deterioration of drivability, and in particular, by supplying a rich rich exhaust gas in which the O 2 concentration at the initial stage of NOx regeneration is extremely reduced, the temperature of the catalyst increases due to the release of residual oxygen at the initial stage of NOx regeneration. An object of the present invention is to provide a NOx purification system and a control method for the NOx purification system that can sufficiently cope with the release of NOx.

上記のような目的を達成するためのNOx浄化システムは、内燃機関の排気通路に、排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出すると共に還元するNOx吸蔵還元型触媒を備えると共に、該NOx吸蔵還元型触媒のNOx吸蔵能力を回復するためのNOx再生制御を実施する制御装置を備えたNOx浄化システムにおいて、
前記NOx吸蔵還元型触媒の上流側の排気通路の一部分を並行する第1分岐排気通路と第2分岐排気通路に分けて設けると共に、前記第1分岐排気通路に還元剤を添加する還元剤添加装置と、前記第1分岐排気通路内でプラズマを発生させるプラズマ発生装置と、前記第1分岐排気通路の下流部分を開閉する制御弁とを備えると共に、前記制御装置が、前記NOx吸蔵還元型触媒のNOx吸蔵能力の回復が必要であると判定したときに、前記制御弁の閉弁により前記第1分岐排気通路を閉じて、前記還元剤添加装置により前記第1分岐排気通路に還元剤を添加し、前記プラズマ発生装置により前記第1分岐排気通路内にプラズマを発生させるように構成される。
In the NOx purification system for achieving the above object, NOx is occluded in the exhaust passage of the internal combustion engine when the air-fuel ratio of the exhaust gas is lean, and occluded when it is rich. In a NOx purification system including a NOx storage reduction catalyst that releases and reduces NOx, and a control device that performs NOx regeneration control for recovering the NOx storage capacity of the NOx storage reduction catalyst,
A reducing agent addition apparatus for providing a part of the exhaust passage on the upstream side of the NOx occlusion reduction type catalyst to a first branch exhaust passage and a second branch exhaust passage which are arranged in parallel and for adding a reducing agent to the first branch exhaust passage. A plasma generator for generating plasma in the first branch exhaust passage, and a control valve for opening and closing a downstream portion of the first branch exhaust passage, and the control device includes a NOx storage reduction catalyst. When it is determined that the NOx storage capacity needs to be restored, the first branch exhaust passage is closed by closing the control valve, and the reducing agent is added to the first branch exhaust passage by the reducing agent addition device. The plasma generator is configured to generate plasma in the first branch exhaust passage .

また、上記のNOx浄化システムにおいて、前記制御装置が、前記プラズマ発生装置により前記第1分岐排気通路内にプラズマを発生させてから所定の時間の経過後に、前記制御弁の開弁により前記第1分岐排気通路を開き、NOx吸蔵能力が所定の範囲まで回復したと判定するまで、前記還元剤の添加と前記プラズマの発生を継続するように構成される。 In the NOx purification system, the control device opens the control valve after a lapse of a predetermined time after the plasma is generated in the first branch exhaust passage by the plasma generator . The branch exhaust passage is opened, and the addition of the reducing agent and the generation of the plasma are continued until it is determined that the NOx storage capacity has been recovered to a predetermined range.

そして、上記のような目的を達成するためのNOx浄化システムの制御方法は、内燃機関の排気通路に、排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出すると共に還元するNOx吸蔵還元型触媒を備え、該NOx吸蔵還元型触媒の上流側の排気通路の一部分を並行する第1分岐排気通路と第2分岐排気通路に分けて設けると共に、前記第1分岐排気通路に還元剤を添加する還元剤添加装置と、前記第1分岐排気通路内でプラズマを発生させるプラズマ発生装置と、前記第1分岐排気通路の下流部分を開閉する制御弁と、前記NOx吸蔵還元型触媒のNOx吸蔵能力を回復するためのNOx再生制御を実施する制御装置とを備えたNOx浄化システムの制御方法において、前記NOx吸蔵還元型触媒のNOx吸蔵能力の回復が必要であると判定したときに、前記制御弁の閉弁により前記第1分岐排気通路を閉じて、前記還元剤添加装置により前記第1分岐排気通路に還元剤を添加し、前記プラズマ発生装置により前記第1分岐排気通路内にプラズマを発生させ、所定の時間の経過後に、前記制御弁の開弁により前記第1分岐排気通路を開き、NOx吸蔵能力が所定の範囲まで回復したと判定するまで、前記還元剤の添加と前記プラズマの発生を継続することを特徴とする制御方法である。 And, the control method of the NOx purification system for achieving the above object is the case where the exhaust passage of the internal combustion engine stores NOx when the air-fuel ratio of the exhaust gas is lean, and the rich state The NOx occlusion reduction type catalyst that releases and reduces the NOx occluded in the NOx occlusion reduction catalyst is provided, and a part of the exhaust passage on the upstream side of the NOx occlusion reduction type catalyst is divided into a first branch exhaust passage and a second branch exhaust passage in parallel. A reducing agent addition device for adding a reducing agent to the first branch exhaust passage, a plasma generator for generating plasma in the first branch exhaust passage, and opening and closing a downstream portion of the first branch exhaust passage In a control method of a NOx purification system, comprising: a control valve that performs control, and a control device that performs NOx regeneration control for recovering the NOx storage capacity of the NOx storage reduction catalyst. When it is determined that the NOx storage capacity of the Ox storage reduction catalyst needs to be recovered, the first branch exhaust passage is closed by closing the control valve, and the first branch exhaust passage is closed by the reducing agent addition device. A reducing agent is added to the plasma, and plasma is generated in the first branch exhaust passage by the plasma generator, and after the elapse of a predetermined time, the first branch exhaust passage is opened by opening the control valve to store NOx. The control method is characterized in that the addition of the reducing agent and the generation of the plasma are continued until it is determined that the capacity has recovered to a predetermined range.

本発明においては、NOx再生制御に際しては、NOx吸蔵還元型触媒の上流側の排気通路を第1及び第2分岐排気通路の2つに分け、第1分岐排気通路において、燃料の一部等の還元剤を噴射し、プラズマでその還元剤を低温酸化する。これにより、エンジンの運転条件を変えることなく、NOx吸蔵還元型触媒のNOxパージと浄化、即ち、NOx再生が行える。特にプラズマで活性化した還元剤を使用できるので、低温域でもNOx再生ができるようになるとともに、還元剤の反応効率がよくなり、NOx再生時に反応せずに流出する還元剤の量を低減でき、NOx再生による燃費の悪化を抑制できる。   In the present invention, in the NOx regeneration control, the exhaust passage on the upstream side of the NOx occlusion reduction type catalyst is divided into two parts, the first and second branch exhaust passages. A reducing agent is injected, and the reducing agent is oxidized at a low temperature by plasma. Thereby, NOx purge and purification of the NOx storage reduction catalyst, that is, NOx regeneration, can be performed without changing the operating condition of the engine. In particular, since a reducing agent activated by plasma can be used, NOx regeneration can be performed even in a low temperature range, the reaction efficiency of the reducing agent can be improved, and the amount of reducing agent flowing out without reacting during NOx regeneration can be reduced. , Deterioration of fuel consumption due to NOx regeneration can be suppressed.

そして、このNOx再生の開始時に、第1分岐排気通路の下流部分を所定の時間(例えば、1.0s〜1200s程度:NOx吸蔵還元型触媒(LNT触媒)の吸蔵中の時間)の間閉じることにより、第1分岐排気通路内に滞留した排気ガス中の酸素濃度を0%にすると共に、反応活性の高い部分酸化還元剤を大量に共存した排気ガスを作る。そして、NOx吸蔵還元型触媒がNOxで飽和した時に、第1分岐排気通路の下流部分を開いて、この部分酸化還元剤を大量に共存した排気ガスをNOx吸蔵還元型触媒に供給し、吸蔵されていたNOxの放出と還元浄化を行う。これにより、NOx再生の初期に放出される触媒に吸着・吸蔵されていた酸素の処理、また、大量のNOxの処理を効率よく行うことができる。   At the start of this NOx regeneration, the downstream portion of the first branch exhaust passage is closed for a predetermined time (for example, about 1.0 s to 1200 s: the time during which the NOx storage reduction catalyst (LNT catalyst) is stored). As a result, the oxygen concentration in the exhaust gas staying in the first branch exhaust passage is reduced to 0%, and an exhaust gas in which a large amount of a partial oxidation-reduction agent having high reaction activity coexists is produced. When the NOx occlusion reduction type catalyst is saturated with NOx, the downstream portion of the first branch exhaust passage is opened, and the exhaust gas coexisting in a large amount with this partial redox agent is supplied to the NOx occlusion reduction type catalyst and occluded. Release the NOx and reduce purification. As a result, it is possible to efficiently perform the treatment of oxygen adsorbed and stored in the catalyst released in the early stage of NOx regeneration and the treatment of a large amount of NOx.

つまり、NOx再生の初期は、触媒表面にO2 が吸着する。また、酸化状態にあり、HC,CO,H2 が供給されると、酸化反応により触媒表面が昇温し、NOxが大量に放出される。従って、過剰の還元剤が必要となる。 That is, in the initial stage of NOx regeneration, O 2 is adsorbed on the catalyst surface. When the catalyst is in an oxidized state and HC, CO, and H 2 are supplied, the temperature of the catalyst rises due to the oxidation reaction, and a large amount of NOx is released. Therefore, an excessive reducing agent is required.

また、第1分岐排気通路の下流部分を開いた後は、第1分岐排気通路における還元剤の噴射とプラズマ発生を継続し、プラズマでその還元剤を低温酸化し、この活性化した還元剤を供給し、浅いリッチ状態で、NOx吸蔵還元型触媒からNOxを放出させると共に、放出されたNOxを還元浄化する。また、浅いリッチ状態を後半にすることで、HC,CO,H2 の残留ガスを酸化し、スリップを防ぐ。これにより、大量のNOx放出後におけるNOx吸蔵還元型触媒からのNOx放出量に合わせた還元浄化を効率よく行うことができ、燃費の悪化を防止することができる。 Also, after opening the downstream portion of the first branch exhaust passage, the reducing agent injection and plasma generation in the first branch exhaust passage are continued, the reducing agent is oxidized at a low temperature by plasma, and the activated reducing agent is removed. In the shallow rich state, NOx is released from the NOx occlusion reduction catalyst and the released NOx is reduced and purified. Further, by making the shallow rich state in the latter half, residual gases of HC, CO, and H 2 are oxidized to prevent slipping. Thereby, reduction purification according to the amount of NOx released from the NOx occlusion reduction catalyst after releasing a large amount of NOx can be efficiently performed, and deterioration of fuel consumption can be prevented.

本発明に係るNOx浄化システム及びNOx浄化システムの制御方法によれば、内燃機関の運転条件を変えることなく、還元剤を排気通路内に直接噴射し、この還元剤を、プラズマの発生により分解及び改質して、NOx吸蔵還元型触媒に供給するので、この改質された還元剤により、低温域においても、酸素濃度を低下させることができると共に、放出されたNOxを効率よく窒素に還元できる。十分な時間を掛けてプラズマにより、軽油を分解するので、確実にO2 の消費すると共に(O2 濃度0ppmへ)と分解HC,CO,H2 の生成により低温域から触媒活性を生じさせて、浄化率を向上できる。 According to the NOx purification system and the control method of the NOx purification system according to the present invention, the reducing agent is directly injected into the exhaust passage without changing the operating condition of the internal combustion engine, and the reducing agent is decomposed and generated by generation of plasma. Since it is reformed and supplied to the NOx occlusion reduction type catalyst, this reformed reducing agent can reduce the oxygen concentration even in a low temperature range and can efficiently reduce the released NOx to nitrogen. . Gas oil is decomposed by plasma over a sufficient period of time, so that O 2 is consumed (to O 2 concentration 0 ppm) and catalytic activity is generated from a low temperature region by the generation of decomposition HC, CO, H 2. The purification rate can be improved.

従って、低温域からNOx浄化性能を向上させることができ、また、内燃機関の運転条件を変えることなく、NOx吸蔵還元型触媒のNOx再生と、NOx再生時に放出されたNOxの還元浄化を行うことができるので、内燃機関の耐久性向上、燃費向上、更に、ドライバビリティの悪化を防ぐことができる。   Accordingly, NOx purification performance can be improved from a low temperature range, and NOx regeneration of the NOx storage reduction catalyst and NOx released during NOx regeneration are reduced and purified without changing the operating conditions of the internal combustion engine. Therefore, it is possible to improve the durability of the internal combustion engine, improve the fuel consumption, and further prevent the drivability from deteriorating.

特にNOx再生の初期において、酸素濃度を極端に低下し、還元剤も豊富な排気ガスを供給し、しかも、その初期ほど酸素濃度の低下度と還元剤濃度とが極端な大きく、それ以後は酸素濃度の低下度と還元剤濃度とを徐々に減少させ、所定の値にすることができるので、リッチ初期のNOxスリップを防止すると共に、リッチ条件後半でHC,CO,H2 のスリップも防止でき、浄化率を向上させる。 In particular, in the initial stage of NOx regeneration, the exhaust gas is supplied with exhaust gas that is extremely reduced in oxygen concentration and rich in reducing agent. In addition, the degree of decrease in oxygen concentration and reducing agent concentration are extremely large in the initial stage, and thereafter oxygen is reduced. Since the degree of concentration reduction and the reducing agent concentration can be gradually reduced to a predetermined value, it is possible to prevent NOx slip in the rich initial stage and to prevent HC, CO, H 2 slip in the latter half of the rich condition. , Improve the purification rate.

本発明では制御弁を設けて、第1分岐排気通路の下流部分を絞り、排気ガス流動を静止させて添加燃料の分解共存O2 の消費を行うため、十分なO2 消費から確実で必要十分な還元剤が存在するリッチ排ガスを生成できると共に、供給リッチ排ガスの濃度分布も理想的に発生でき、初期過濃で後半に浅いリッチ排ガスを生成できる。 In the present invention provided with a control valve, the diaphragm of the downstream portion of the first branch exhaust passage, for performing the consumption of degradation coexistence of O 2 added fuel was quiescent exhaust gas flow, necessary and sufficient and reliable enough from O 2 consumption The rich exhaust gas in which the reducing agent is present can be generated, and the concentration distribution of the supplied rich exhaust gas can be generated ideally, and the rich exhaust gas that is initially overconcentrated and shallow in the latter half can be generated.

従って、NOx再生初期における酸素放出と大量のNOx放出に対しても十分に対応でき、その後も効率よくNOxの放出と還元を行えるので、NOx浄化率を改善できる。   Accordingly, it is possible to sufficiently cope with oxygen release and a large amount of NOx release at the initial stage of NOx regeneration, and NOx release and reduction can be efficiently performed thereafter, so that the NOx purification rate can be improved.

以下、本発明に係る実施の形態のNOx浄化システム及びNOx浄化システムの制御方法について、図面を参照しながら説明する。本発明はディーゼルエンジンに代表される希薄燃焼機関全体に適用されるが、ここではディーゼルエンジンを例にして説明する。なお、ここでいう排気ガスのリッチ状態とは、必ずしもシリンダ内でリッチ燃焼する必要はなく、NOx吸蔵還元型触媒に流入する排気ガス中に供給した「空気量」と「燃料量(シリンダ内で燃焼した分も含めて)+還元剤(通常は燃料の一部を使用)」との比が理論空燃比に近い状態か又は理論空燃比より燃料量が多いリッチの状態であることをいう。   Hereinafter, an NOx purification system and a control method of the NOx purification system according to an embodiment of the present invention will be described with reference to the drawings. The present invention is applied to an entire lean combustion engine represented by a diesel engine. Here, a diesel engine will be described as an example. The rich state of exhaust gas here does not necessarily need to be richly burned in the cylinder, but the “air amount” and “fuel amount (in the cylinder) supplied to the exhaust gas flowing into the NOx storage reduction catalyst. The ratio of "combusted) + reducing agent (usually using a part of fuel)" is in a state close to the stoichiometric air-fuel ratio or in a rich state in which the amount of fuel is greater than the stoichiometric air-fuel ratio.

図1に、本発明の実施の形態のNOx浄化システム1の構成を示す。このNOx浄化システム1では、エンジン(内燃機関)Eの排気通路3にNOx吸蔵還元型触媒(排気ガス浄化装置:触媒コンバーター)20が配置される。   FIG. 1 shows a configuration of a NOx purification system 1 according to an embodiment of the present invention. In this NOx purification system 1, a NOx occlusion reduction type catalyst (exhaust gas purification device: catalytic converter) 20 is disposed in an exhaust passage 3 of an engine (internal combustion engine) E.

NOx吸蔵還元型触媒20は、コージェライト若しくは炭化珪素(SiC)極薄板ステンレスで形成されたモノリス触媒に、酸化アルミニウム(Al2 3 )、酸化チタン(TiO)等の触媒コート層を設け、この触媒コート層に、白金(Pt)、パラジウム(Pd)等の触媒金属とバリウム(Ba)等のNOx吸蔵材(NOx吸蔵物質)を担持させて構成される。このモノリス触媒の構造材の担体は、多数のセルを有しており、また、このセルの内壁に設けられる触媒コート層は、大きな表面積を持っており、排気ガスとの接触効率を高めている。 The NOx occlusion reduction type catalyst 20 is provided with a catalyst coating layer made of aluminum oxide (Al 2 O 3 ), titanium oxide (TiO) or the like on a monolith catalyst formed of cordierite or silicon carbide (SiC) ultra-thin plate stainless steel. The catalyst coat layer is configured to carry a catalyst metal such as platinum (Pt) or palladium (Pd) and a NOx storage material (NOx storage material) such as barium (Ba). The monolith catalyst structural material carrier has a large number of cells, and the catalyst coat layer provided on the inner wall of the cells has a large surface area to increase the contact efficiency with the exhaust gas. .

このNOx吸蔵還元型触媒20では、酸素濃度が高い排気ガスの状態(リーン空燃比状態)の時に、排気ガス中のNOxをNOx吸蔵材が吸蔵することにより、排気ガス中のNOxを浄化し、酸素濃度が低いかゼロ(0%)の排気ガス状態(リッチ空燃比状態)の時に、吸蔵したNOxを放出すると共に放出されたNOxを触媒金属の触媒作用により還元することにより、大気中へのNOxの流出を防止する。   In the NOx occlusion reduction type catalyst 20, when the oxygen concentration is in the exhaust gas state (lean air-fuel ratio state), the NOx occlusion material occludes NOx in the exhaust gas, thereby purifying NOx in the exhaust gas, When the oxygen concentration is low or zero (0%) in the exhaust gas state (rich air-fuel ratio state), the stored NOx is released and the released NOx is reduced by the catalytic action of the catalytic metal, thereby returning to the atmosphere. Prevent NOx outflow.

そして、エンジンEの運転の全般的な制御を行うと共に、NOx吸蔵還元型触媒20のNOx浄化能力の回復制御も行う制御装置(ECU:エンジンコントロールユニット)30が設けられる。このNOx吸蔵還元型触媒20の上流側(入口側)に、上流側NOx濃度センサー21、上流側空気過剰率(λ)センサー (酸素濃度センサー)22、上流側排気ガス温度センサー23を配置し、NOx吸蔵還元型触媒20の下流側に、下流側排気ガス温度センサー24、下流側NOx濃度センサー25、バイナリーλセンサー (酸素濃度センサー)26を配置する。これらの各センサーの出力は、制御装置(ECU)30に入力される。このバイナリーλセンサー26は、理論空燃比のλ=1で大きく出力特性が変化するセンサーである。   A control device (ECU: engine control unit) 30 that performs overall control of the operation of the engine E and also performs recovery control of the NOx purification ability of the NOx storage reduction catalyst 20 is provided. An upstream NOx concentration sensor 21, an upstream excess air ratio (λ) sensor (oxygen concentration sensor) 22, and an upstream exhaust gas temperature sensor 23 are disposed on the upstream side (inlet side) of the NOx storage reduction catalyst 20. A downstream exhaust gas temperature sensor 24, a downstream NOx concentration sensor 25, and a binary λ sensor (oxygen concentration sensor) 26 are disposed downstream of the NOx storage reduction catalyst 20. The outputs of these sensors are input to a control unit (ECU) 30. The binary λ sensor 26 is a sensor whose output characteristics change greatly when the theoretical air-fuel ratio λ = 1.

この制御装置(ECU)30は、その内部に、中央処理装置(CPU)、ランダムアクセスメモリー(RAM)、リードオンリメモリー(ROM)、入力ポート、出力ポートを双方向パスで接続した構成のデジタルコンピューターからなり、エンジンEの噴射制御、燃料噴射時期制御などの基本制御を行う他、この実施の形態では、エンジン燃焼制御、プラズマ制御、NOx吸蔵還元型触媒制御、排気絞り弁制御、吸気絞り弁制御も行う。   The control unit (ECU) 30 is a digital computer having a configuration in which a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), an input port, and an output port are connected in a bidirectional path. In this embodiment, the engine combustion control, plasma control, NOx occlusion reduction type catalyst control, exhaust throttle valve control, intake throttle valve control are performed. Also do.

そして、これらの制御を行うため、この制御装置30に、更に、アクセル開度からの負荷センサー28、エンジンクランク軸に設けたクランク角センサー29等からの検出値(出力信号)が入力される。また、この制御装置30からエンジンEの吸気絞り弁(吸気スロットル弁)8、EGR弁12、燃料噴射用のコモンレール電子制御燃料噴射装置の燃料噴射弁13等を制御する信号が出力される。   In order to perform these controls, the control device 30 is further supplied with detection values (output signals) from the load sensor 28 from the accelerator opening, the crank angle sensor 29 provided on the engine crankshaft, and the like. The control device 30 outputs a signal for controlling the intake throttle valve (intake throttle valve) 8 of the engine E, the EGR valve 12, the fuel injection valve 13 of the common rail electronic control fuel injection device for fuel injection, and the like.

このNOx浄化システム1においては、エンジンEに吸入される吸入空気Aは、吸気通路2の空気清浄器5、マスエアフローセンサー(MAFセンサー)6を通過して、ターボチャージャ7のコンプレッサにより圧縮昇圧され、更にインタークーラー(図示しない)で冷却され、吸気絞り弁8によりその量を調整されて吸気マニホールドよりシリンダ内に入る。マスエアフローセンサー6は、吸入空気量を計測し、吸入空気Aの流量に対応した電圧が制御装置(ECU)30に入力される。また、吸気絞り弁8は制御装置(ECU)30からの制御信号で制御される。このシリンダに吸入された空気Aに、燃料タンク9から燃料ポンプ10によって昇圧された燃料をコモンレール及び燃料噴射弁13を経由して噴射して燃焼させる。   In this NOx purification system 1, the intake air A sucked into the engine E passes through the air purifier 5 and the mass air flow sensor (MAF sensor) 6 in the intake passage 2 and is compressed and pressurized by the compressor of the turbocharger 7. Further, it is cooled by an intercooler (not shown), the amount thereof is adjusted by the intake throttle valve 8, and enters the cylinder from the intake manifold. The mass air flow sensor 6 measures the amount of intake air, and a voltage corresponding to the flow rate of the intake air A is input to a control device (ECU) 30. The intake throttle valve 8 is controlled by a control signal from a control unit (ECU) 30. The fuel pressurized by the fuel pump 10 from the fuel tank 9 is injected into the air A sucked into the cylinder through the common rail and the fuel injection valve 13 and burned.

この燃焼によりシリンダ内で発生した排気ガスGは、排気マニホールドから排気通路3に出て、ターボチャージャ7のタービンを駆動した後、NOx吸蔵還元型触媒20を通過して浄化された排気ガスGcとなって、図示しない消音器を通って大気中に排出される。また、排気ガスGの一部はEGRガスGeとして、EGR通路4の高効率EGRクーラー11を通過し冷却され、EGR通路4の出口側に設置したEGR弁12でその量を調整されて、吸気絞り弁8の下流側の吸気マニホールドに再循環される。なお、この実施の形態では、大量のEGRガスを還流できるように構成される。   The exhaust gas G generated in the cylinder by this combustion exits from the exhaust manifold to the exhaust passage 3, drives the turbine of the turbocharger 7, and then passes through the NOx occlusion reduction catalyst 20 to be purified. Then, it is discharged into the atmosphere through a silencer (not shown). Part of the exhaust gas G is cooled as EGR gas Ge through the high-efficiency EGR cooler 11 in the EGR passage 4, and the amount thereof is adjusted by the EGR valve 12 installed on the outlet side of the EGR passage 4. It is recirculated to the intake manifold on the downstream side of the throttle valve 8. In this embodiment, a large amount of EGR gas can be recirculated.

そして、本発明においては、排気通路3をNOx吸蔵還元型触媒20の上流側で分岐し、第1分岐排気通路3aと第2分岐排気通路3bに分けると共に、これらの第1分岐排気通路3aと第2分岐排気通路3bとを、NOx吸蔵還元型触媒20の上流側で合流させる。つまり、NOx吸蔵還元型触媒20の上流側の排気通路3の一部分を並行する第1分岐排気通路3aと第2分岐排気通路3bに分けて設ける。   In the present invention, the exhaust passage 3 is branched upstream of the NOx storage reduction catalyst 20 and divided into a first branch exhaust passage 3a and a second branch exhaust passage 3b, and the first branch exhaust passage 3a The second branch exhaust passage 3 b is joined on the upstream side of the NOx storage reduction catalyst 20. That is, a part of the exhaust passage 3 on the upstream side of the NOx storage reduction catalyst 20 is divided into a first branch exhaust passage 3a and a second branch exhaust passage 3b which are arranged in parallel.

この第1分岐排気通路3aには、高圧電源31に接続されたプラズマ発生装置32と排気絞り弁33を設ける。この排気絞り弁33は、第1分岐排気通路3aの下流部分を開閉する制御弁となる。この排気絞り弁33の下流で、第1分岐排気通路3aは第2分岐排気通路3bと合流するように構成する。この合流点の下流にNOx吸蔵還元型触媒20が配置されることになる。また、この第1分岐排気通路3a内の排気ガスに燃料の一部を添加する還元剤添加弁34を図1に示すような第1分岐排気通路3aの上流を臨む位置、又は、第1分岐排気通路3a内の上流側に配設する。これらの高圧電源31と排気絞り弁33と還元剤添加弁34は、制御装置(ECU)30からの制御信号で制御される。   The first branch exhaust passage 3 a is provided with a plasma generator 32 and an exhaust throttle valve 33 connected to a high-voltage power supply 31. The exhaust throttle valve 33 is a control valve that opens and closes the downstream portion of the first branch exhaust passage 3a. The first branch exhaust passage 3a is configured to join the second branch exhaust passage 3b downstream of the exhaust throttle valve 33. The NOx occlusion reduction type catalyst 20 is disposed downstream of this junction. Further, the reducing agent addition valve 34 for adding a part of the fuel to the exhaust gas in the first branch exhaust passage 3a is located at a position facing the upstream of the first branch exhaust passage 3a as shown in FIG. It arrange | positions in the upstream in the exhaust passage 3a. The high-voltage power supply 31, the exhaust throttle valve 33, and the reducing agent addition valve 34 are controlled by control signals from a control device (ECU) 30.

次に、このNOx浄化システム1における制御方法について説明する。この制御方法では、ディーゼルエンジンEの通常の運転では、希薄燃焼状態のリーン運転が行われ、このリーン空燃比状態では排気ガス中のNOxはNOx吸蔵還元型触媒20に吸蔵され排気ガスは浄化される。NOx吸蔵還元型触媒20にNOxが吸蔵され、NOx吸蔵能力が飽和状態近くになると、事前試験により定められた触媒のNOx吸蔵量の閾値に達したか否かを判定し、閾値に達した場合には、NOxを放出させて還元して浄化するNOx再生制御を行い、NOx浄化性能を維持する。   Next, a control method in the NOx purification system 1 will be described. In this control method, in the normal operation of the diesel engine E, lean operation in a lean combustion state is performed. In this lean air-fuel ratio state, NOx in the exhaust gas is stored in the NOx storage reduction catalyst 20 and the exhaust gas is purified. The When NOx is occluded in the NOx occlusion reduction type catalyst 20 and the NOx occlusion capacity becomes close to saturation, it is determined whether or not the NOx occlusion amount threshold value of the catalyst determined by the preliminary test has been reached, and the threshold value has been reached. First, NOx regeneration control for releasing and reducing NOx to purify is performed, and NOx purification performance is maintained.

本発明では、このNOx再生制御は、図2に例示するような制御フローに従って、次のように行われる。この図2の制御フローは、このエンジンEの運転全般を制御する上級の制御フローから、NOx吸蔵還元型触媒20のNOx再生制御の要否の判断の必要がある時に、呼ばれては実行されて戻り、繰り返し実行されるものとして示してある。この図2の制御フローは、エンジンEの運転が開始されると、上級の制御フローと共にスタートし、エンジンEの運転が終了と、上級の制御フローと共に終了する。   In the present invention, this NOx regeneration control is performed as follows according to the control flow illustrated in FIG. The control flow shown in FIG. 2 is called and executed when it is necessary to determine whether or not the NOx regeneration control of the NOx storage reduction catalyst 20 is necessary from the advanced control flow for controlling the overall operation of the engine E. Are shown as being repeatedly executed. The control flow of FIG. 2 starts with the advanced control flow when the operation of the engine E is started, and ends with the completion of the operation of the engine E and the advanced control flow.

この図2の制御フローが上級の制御フローから呼ばれてスタートすると、ステップS11で、NOx吸蔵還元型触媒20に吸蔵されたNOx吸蔵量Vaを推定する。次のステップS12で、このNOx吸蔵量Vaをチェックし、所定の開始用判定量(閾値)Vacより大きいか否かを判定する。この判定は、NOx再生制御を開始するか否かの判定であり、周知のNOx再生制御の開始の判定を使用することができる。   When the control flow of FIG. 2 is called from the advanced control flow and starts, the NOx occlusion amount Va occluded in the NOx occlusion reduction type catalyst 20 is estimated in step S11. In the next step S12, the NOx occlusion amount Va is checked to determine whether or not it is larger than a predetermined start determination amount (threshold value) Vac. This determination is a determination of whether or not to start NOx regeneration control, and the well-known determination of the start of NOx regeneration control can be used.

例えば、このNOx吸蔵量Vaの推定は、エンジンEの運転状態から排出されるNOx量を算出したり、上流側NOx濃度センサー21の検出値と排気ガス量とから、NOx吸蔵還元型触媒20に流入するNOx流入量を算定し、下流側NOx濃度センサー25の検出値と排気ガス量とから、NOx吸蔵還元型触媒20から流出するNOx流出量を算定する。このNOx流入量とNOx流出量との差からNOx吸蔵還元型触媒20に吸蔵される量を算出し、この量を時間的に積算してNOx吸蔵量とする。なお、排気ガス量は吸気量と燃料噴射量とから算出できる。   For example, the NOx occlusion amount Va is estimated by calculating the NOx amount exhausted from the operating state of the engine E, or by detecting the NOx occlusion reduction type catalyst 20 from the detected value of the upstream NOx concentration sensor 21 and the exhaust gas amount. The inflowing NOx inflow amount is calculated, and the NOx outflow amount flowing out from the NOx occlusion reduction type catalyst 20 is calculated from the detection value of the downstream NOx concentration sensor 25 and the exhaust gas amount. The amount stored in the NOx storage reduction catalyst 20 is calculated from the difference between the NOx inflow amount and the NOx outflow amount, and this amount is integrated over time to obtain the NOx storage amount. The exhaust gas amount can be calculated from the intake air amount and the fuel injection amount.

このステップS12の判定で、NOx吸蔵量Vaが所定の開始用判定量Vac以下の場合は、NOx再生制御の開始では無いとして、ステップS13に行き、リーン空燃比運転の通常運転を継続する。この通常運転を所定の時間(NOx吸蔵量のチェックのインターバルに関係する時間)の間行って、リターンする。   If it is determined in step S12 that the NOx occlusion amount Va is equal to or less than the predetermined start determination amount Vac, it is determined that the NOx regeneration control is not started and the routine proceeds to step S13 to continue the normal operation of the lean air-fuel ratio operation. This normal operation is performed for a predetermined time (a time related to the NOx occlusion amount check interval), and the process returns.

また、ステップS12の判定で、NOx吸蔵量Vaが所定の開始用判定量Vacより大きい場合は、NOx再生制御の開始であるとして、ステップS20に行き、NOx再生制御を行う。このNOx再生制御は、従来技術のリッチ空燃比制御ではなく、本発明では次のようにして行われる。   Further, if the NOx occlusion amount Va is larger than the predetermined start determination amount Vac in the determination in step S12, it is determined that the NOx regeneration control is started, the process proceeds to step S20, and NOx regeneration control is performed. This NOx regeneration control is not the rich air-fuel ratio control of the prior art, but is performed as follows in the present invention.

最初に、ステップS21で、プラズマ発生装置32の下流部分に設置した排気絞り弁33を閉じる。これにより、排気ガスの全量を第2分岐排気通路3bに流す。略同時に、次のステップS22で、高圧電源31及びプラズマ発生装置32をオンにして作動させ、排気ガスの流れが中断した第1分岐排気通路3a内にプラズマを発生させる。それと共に、還元剤添加弁34をオンにして還元剤添加弁34を開弁し、排気管還元剤添加を行う。これにより、排気絞り弁33が閉じた状態で、第1分岐排気通路3aに排気ガスが滞留し、この排気ガス中に噴射された還元剤(燃料の一部)の炭化水素(HC)がプラズマによって、分解及び改質される。この分解及び改質により活性化した炭化水素(HC)により、排気絞り弁33で閉じられた第1分岐排気通路3aにおいて、リッチ排気ガス中に残留していた酸素が、プラズマで活性化した炭化水素と反応し消費されるので、酸素濃度ゼロの排気ガスが生成されるので、下流先端側が深いリッチな排気ガスとなり、上流側が比較的浅いリッチの排気ガスとなる。   First, in step S21, the exhaust throttle valve 33 installed in the downstream portion of the plasma generator 32 is closed. As a result, the entire amount of exhaust gas flows through the second branch exhaust passage 3b. At substantially the same time, in the next step S22, the high-voltage power supply 31 and the plasma generator 32 are turned on to operate, and plasma is generated in the first branch exhaust passage 3a where the flow of exhaust gas is interrupted. At the same time, the reducing agent addition valve 34 is turned on to open the reducing agent addition valve 34, and the exhaust pipe reducing agent is added. Thereby, with the exhaust throttle valve 33 closed, the exhaust gas stays in the first branch exhaust passage 3a, and hydrocarbon (HC) of the reducing agent (a part of the fuel) injected into the exhaust gas is plasma. Are decomposed and modified. By the hydrocarbon (HC) activated by the decomposition and reforming, oxygen remaining in the rich exhaust gas is carbonized by plasma activation in the first branch exhaust passage 3a closed by the exhaust throttle valve 33. Since it is consumed by reacting with hydrogen, exhaust gas having an oxygen concentration of zero is generated, so that the downstream tip side becomes deep rich exhaust gas and the upstream side becomes relatively shallow rich exhaust gas.

このステップS22のプラズマ発生と排気管還元剤添加を、予め実験などで設定された所定の時間(例えば、1s〜1200s)の間行い、次のステップS23に行き、排気絞り弁33を瞬時に開く。この排気絞り弁33の開弁により、排気ガスの流路が元の第1分岐排気通路3aに戻るので、今までに停留していたリッチな排気ガスがNOx吸蔵還元触媒20に供給される。この排気絞り弁33の開弁後もプラズマ放電と排気管還元剤添加は継続する。   The generation of the plasma and the addition of the exhaust pipe reducing agent in step S22 are performed for a predetermined time (for example, 1 s to 1200 s) set in advance by an experiment or the like, the process proceeds to the next step S23, and the exhaust throttle valve 33 is instantaneously opened. . By opening the exhaust throttle valve 33, the exhaust gas flow path returns to the original first branch exhaust passage 3a, so that the rich exhaust gas that has stopped so far is supplied to the NOx storage reduction catalyst 20. Even after the exhaust throttle valve 33 is opened, plasma discharge and exhaust pipe reducing agent addition continue.

このステップS23の排気絞り弁33の開弁後は、ステップS24で、排気管還元剤添加の調整制御を所定の時間(NOx放出量のチェックのインターバルに関係する時間)の間行い、ステップS25のNOx放出量Vbのチェックに行く。この排気管還元剤添加の調整制御では、上流側空気過剰率(λ)センサー22の検出値を監視しながら、還元剤添加弁34の弁開度を制御し、浅いリッチ空燃比である所定の空気過剰率(λ)(例えば、空気過剰率換算で、1.00〜0.97程度)になるように、排気管還元剤添加の還元剤添加量を調整する。つまり、検出されたλm値が目標のλc値より大きければ、還元剤添加量を減少し、検出されたλm値が目標のλc値より小さければ、還元剤添加量を増加する。   After the exhaust throttle valve 33 is opened in step S23, in step S24, the exhaust pipe reducing agent addition adjustment control is performed for a predetermined time (time related to the NOx release amount check interval). Go to check NOx release amount Vb. In this adjustment control of the exhaust pipe reducing agent addition, the valve opening degree of the reducing agent addition valve 34 is controlled while monitoring the detection value of the upstream excess air ratio (λ) sensor 22, and a predetermined rich air-fuel ratio is set. The reducing agent addition amount of the exhaust pipe reducing agent is adjusted so that the excess air ratio (λ) (for example, about 1.00 to 0.97 in terms of excess air ratio) is obtained. That is, if the detected λm value is larger than the target λc value, the reducing agent addition amount is decreased, and if the detected λm value is smaller than the target λc value, the reducing agent addition amount is increased.

ステップS25のNOx放出量Vbのチェックは、NOx再生が完了したか否か、言い換えれば、NOx再生制御を終了していいか否かを判定するためのものであり、従来技術の判定方法を使用することができる。   The check of the NOx release amount Vb in step S25 is for determining whether or not NOx regeneration has been completed, in other words, whether or not the NOx regeneration control can be terminated, and uses a conventional determination method. be able to.

例えば、上記のステップS21〜ステップS23の初期のNOx再生のための制御と、ステップS24によるNOx再生のための制御とより、NOx吸蔵還元触媒20から放出されるNOx量を、予め実験などにより求めておき、エンジンの運転状態に対応させてマップデータ等で設定し、制御装置30に入力しておく。再生時のエンジン運転状態からこれらのマップデータを参照して放出されるNOx量を算出し、この放出されるNOx量を時間的に積算してNOx放出量を算出する。   For example, the amount of NOx released from the NOx occlusion reduction catalyst 20 is obtained in advance through experiments or the like based on the control for initial NOx regeneration in steps S21 to S23 and the control for NOx regeneration in step S24. It is set by map data or the like corresponding to the operating state of the engine and input to the control device 30. The amount of NOx released is calculated from the engine operating state at the time of regeneration with reference to these map data, and the amount of NOx released is integrated over time to calculate the amount of NOx released.

ステップS25のNOx放出量Vbのチェックで、このNOx放出量VbがNOx吸蔵量Vaを考慮した所定の終了用判定量(閾値)Vbc以下の場合には、まだ、NOx再生の継続が必要であるとして、ステップS24に戻り、排気管還元剤添加の調整制御を行う。このステップS24の排気管還元剤添加の調整制御を、ステップS25で、NOx放出量Vbが所定の終了用判定量Vbcよりもも大きくなるまで行う。   In the check of the NOx release amount Vb in step S25, if the NOx release amount Vb is equal to or less than the predetermined end determination amount (threshold value) Vbc considering the NOx occlusion amount Va, it is still necessary to continue the NOx regeneration. Then, the process returns to step S24, and the exhaust pipe reducing agent addition adjustment control is performed. The adjustment control of the exhaust pipe reducing agent addition in step S24 is performed until the NOx release amount Vb becomes larger than the predetermined end determination amount Vbc in step S25.

ステップS25のNOx放出量Vbのチェックで、このNOx放出量Vbが所定の終了用判定量Vbcより大きい場合には、NOxの放出が完了し、NOx再生を終了してもよいとして、ステップS26のNOx再生終了作業を行う。このNOx再生終了作業では、排気管還元剤添加を停止し、プラズマ発生を停止する。これにより、ステップS20のNOx再生制御が終了する。   In the check of the NOx release amount Vb in step S25, if the NOx release amount Vb is larger than the predetermined end determination amount Vbc, the NOx release may be completed and the NOx regeneration may be ended. The NOx regeneration end work is performed. In this NOx regeneration end operation, the exhaust pipe reducing agent addition is stopped and plasma generation is stopped. Thereby, the NOx regeneration control in step S20 ends.

このNOx再生終了の後、上級の制御フローにリターンする。なお、NOx吸蔵還元型触媒にもよるが、一例をあげれば、排気絞り弁33の閉弁中の所定の時間が、リーン条件の内であるのに対して、還元剤の添加とプラズマの発生の期間となるNOx再生時間は、1s〜30s程度であり、NOx再生制御の終了から開始までのリーン運転時間は、1s〜1200s程度である。 After the end of the NOx regeneration, the process returns to the advanced control flow. Although depending on the NOx occlusion reduction type catalyst, for example, while the predetermined time during the closing of the exhaust throttle valve 33 is within the lean condition, the addition of the reducing agent and the generation of plasma The NOx regeneration time that is the period is about 1 s to 30 s, and the lean operation time from the end to the start of NOx regeneration control is about 1 s to 1200 s.

この制御方法によれば、NOx再生の初期においては、ステップS23の排気絞り弁33の開弁により、第1分岐排気通路3a内において生成された深いリッチ状態の排気ガスを一気にNOx吸蔵還元型触媒20に流入させることができるので、NOx再生によって大量に放出されるNOxも効率よく還元できる。この深いリッチ状態の排気ガスは、酸素濃度が略ゼロで、かつ、還元剤となる炭化水素の量も多く、NOxの還元に適したガスとなっている。しかも、この還元剤となる炭化水素はプラズマによって改質されているので、放出されたNOxを効率よく還元できる。従って、このNOx再生の初期におけるNOx浄化率を著しく向上できる。   According to this control method, in the initial stage of NOx regeneration, the exhaust throttle valve 33 in step S23 is opened, and the rich rich exhaust gas generated in the first branch exhaust passage 3a is immediately discharged into the NOx storage reduction catalyst. Therefore, NOx released in large quantities by NOx regeneration can also be efficiently reduced. This deep rich exhaust gas has a substantially zero oxygen concentration and a large amount of hydrocarbon as a reducing agent, and is suitable for NOx reduction. In addition, since the hydrocarbon serving as the reducing agent is modified by plasma, the released NOx can be reduced efficiently. Therefore, the NOx purification rate in the initial stage of this NOx regeneration can be remarkably improved.

また、その後は、ステップS24の排気管還元剤添加の調整制御により、浅いリッチ状態に排気ガスを、NOx吸蔵還元型触媒20に流入させることができ、しかも、排気ガス中に供給された還元剤となる炭化水素をプラズマにより改質しているので、活性化した炭化水素により、少ない還元剤添加量で、効率よく酸素を消費したり、放出されるNOxを効率よく還元したりすることができる。また、この浅いリッチ排気ガスであるので、NOx吸蔵還元型触媒20を通過中に炭化水素が酸化され、この酸化反応熱によりNOx吸蔵還元型触媒20が昇温するので、この面からも、触媒の活性化が促進され、NOx浄化性能が向上する。   Further, after that, the exhaust gas can be caused to flow into the shallow rich state by the adjustment control of the exhaust pipe reducing agent addition in step S24, and the reducing agent supplied into the exhaust gas. Since the hydrocarbon to be modified by plasma is activated, the activated hydrocarbon can efficiently consume oxygen and efficiently reduce the released NOx with a small amount of reducing agent added. . Further, since this shallow rich exhaust gas, hydrocarbons are oxidized while passing through the NOx occlusion reduction catalyst 20, and the NOx occlusion reduction catalyst 20 is heated by this oxidation reaction heat. The activation of NOx is promoted, and the NOx purification performance is improved.

これらのNOx再生制御では、通常の軽油還元剤HCでは触媒活性が発生しない低温度域となる300℃以下の温度域でも、プラズマを通過し活性化した、一酸化炭素(CO),水素(H2 ),低級炭化水素等の成分が多い排気ガスをNOx吸蔵還元型触媒20に流入させているので、低温域から触媒活性が向上し、高いNOx浄化率となる。 In these NOx regeneration controls, carbon monoxide (CO), hydrogen (H) that has passed through the plasma and was activated even in a temperature range of 300 ° C. or lower, which is a low temperature range in which catalytic activity does not occur with a normal light oil reducing agent HC. 2 ) Since exhaust gas having a large amount of components such as lower hydrocarbons is allowed to flow into the NOx occlusion reduction type catalyst 20, the catalytic activity is improved from a low temperature range and a high NOx purification rate is obtained.

従って、上記のNOx浄化システムの制御方法及びNOx浄化システムによれば、エンジンEの運転条件を変えることなく、還元剤を排気通路3a内に直接噴射し、この還元剤を、プラズマの発生により分解及び改質して、NOx吸蔵還元型触媒20に供給するので、この改質された還元剤により、低温域においても、酸素濃度を低下させることができると共に、放出されたNOxを効率よく窒素に還元できる。十分な時間を掛けてプラズマにより、燃料(軽油)を分解するので、確実にO2 の消費してO2 濃度を0ppmにすると共に、分解HC,CO,H2 の生成により低温域から触媒活性を生じさせて、浄化率を向上できる。 Therefore, according to the control method of the NOx purification system and the NOx purification system, the reducing agent is directly injected into the exhaust passage 3a without changing the operating condition of the engine E, and the reducing agent is decomposed by generation of plasma. In addition, since the reformed and supplied NOx occlusion reduction type catalyst 20 is supplied, the reformed reducing agent can reduce the oxygen concentration even in a low temperature range and efficiently convert the released NOx into nitrogen. It can be reduced. Since fuel (light oil) is decomposed by plasma over a sufficient period of time, O 2 is consumed and O 2 concentration is reduced to 0 ppm, and catalytic activity is generated from a low temperature range by generating decomposed HC, CO, and H 2. The purification rate can be improved.

その結果、低温域からNOx浄化性能を向上させることができ、また、エンジンEの運転条件を変えることなく、NOx吸蔵還元型触媒20のNOx再生と、NOx再生時に放出されたNOxの還元浄化を行うことができるので、エンジンEの耐久性向上、燃費向上、更に、ドライバビリティの悪化を防ぐことができる。特に、低温時のNOx再生とエンジン運転条件を悪化させないシステムを実現できる。   As a result, the NOx purification performance can be improved from a low temperature range, and NOx regeneration of the NOx occlusion reduction type catalyst 20 and NOx released during NOx regeneration can be reduced and purified without changing the operating conditions of the engine E. Therefore, the durability of the engine E can be improved, the fuel consumption can be improved, and the drivability can be prevented from deteriorating. In particular, a system that does not deteriorate NOx regeneration and engine operating conditions at low temperatures can be realized.

特にNOx再生の初期において、酸素濃度を極端に低下し、還元剤も豊富な排気ガスを供給し、しかも、その初期ほど酸素濃度の低下度と還元剤濃度とが極端な大きく、それ以後は酸素濃度の低下度と還元剤濃度とを徐々に減少させ、所定の値にすることができるので、リッチ初期のNOxスリップを防止すると共に、リッチ条件後半でHC,CO,H2 のスリップも防止でき、浄化率を向上させる。 In particular, in the initial stage of NOx regeneration, the exhaust gas is supplied with exhaust gas that is extremely reduced in oxygen concentration and rich in reducing agent. In addition, the degree of decrease in oxygen concentration and reducing agent concentration are extremely large in the initial stage, and thereafter oxygen is reduced. Since the degree of concentration reduction and the reducing agent concentration can be gradually reduced to a predetermined value, it is possible to prevent NOx slip in the rich initial stage and to prevent HC, CO, H 2 slip in the latter half of the rich condition. , Improve the purification rate.

また、排気絞り弁(制御弁)33を設けて、第1分岐排気通路3aの下流部分を絞り、排気ガス流動を静止させて添加燃料の分解と、残存酸素の消費を行うため、十分な酸素消費と確実で必要十分な還元剤が存在するリッチ排ガスを生成できると共に、供給リッチ排ガスの濃度分布も理想的に発生でき、初期過濃で後半に浅いリッチ排ガスを生成できる。   In addition, an exhaust throttle valve (control valve) 33 is provided to throttle the downstream portion of the first branch exhaust passage 3a and stop the exhaust gas flow to decompose the added fuel and consume residual oxygen. It is possible to generate rich exhaust gas that contains consumption and certain necessary and sufficient reducing agent, and it is possible to ideally generate the concentration distribution of the supply rich exhaust gas, and it is possible to generate rich exhaust gas that is initially excessively concentrated and shallow in the latter half.

従って、NOx再生初期における酸素放出と大量のNOx放出に対しても十分に対応でき、その後も効率よくNOxの放出と還元を行えるので、NOx浄化率を改善できる。   Accordingly, it is possible to sufficiently cope with oxygen release and a large amount of NOx release at the initial stage of NOx regeneration, and NOx release and reduction can be efficiently performed thereafter, so that the NOx purification rate can be improved.

本発明に係る実施の形態のNOx浄化システムの構成を示す図である。It is a figure which shows the structure of the NOx purification system of embodiment which concerns on this invention. 発明に係る実施の形態のNOx浄化システムの制御方法を実施するための制御フローの一例を示す図である。It is a figure which shows an example of the control flow for enforcing the control method of the NOx purification system of embodiment which concerns on invention.

符号の説明Explanation of symbols

E エンジン(内燃機関)
1 NOx浄化システム
3 排気通路
3a 第1分岐排気通路
3b 第2分岐排気通路
20 吸蔵還元型触媒(排気ガス浄化装置:触媒コンバーター)
30 制御装置(ECU)
31 高圧電源
32 プラズマ発生装置
33 排気絞り弁
34 還元剤添加弁
A 吸入空気
G 排気ガス
Gc 浄化された排気ガス
E engine (internal combustion engine)
DESCRIPTION OF SYMBOLS 1 NOx purification system 3 Exhaust passage 3a 1st branch exhaust passage 3b 2nd branch exhaust passage 20 Occlusion reduction type catalyst (exhaust gas purification apparatus: catalytic converter)
30 control unit (ECU)
31 High-voltage power supply 32 Plasma generator 33 Exhaust throttle valve 34 Reducing agent addition valve A Intake air G Exhaust gas Gc Purified exhaust gas

Claims (3)

内燃機関の排気通路に、排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出すると共に還元するNOx吸蔵還元型触媒を備えると共に、該NOx吸蔵還元型触媒のNOx吸蔵能力を回復するためのNOx再生制御を実施する制御装置を備えたNOx浄化システムにおいて、
前記NOx吸蔵還元型触媒の上流側の排気通路の一部分を並行する第1分岐排気通路と第2分岐排気通路に分けて設けると共に、前記第1分岐排気通路に還元剤を添加する還元剤添加装置と、前記第1分岐排気通路内でプラズマを発生させるプラズマ発生装置と、前記第1分岐排気通路の下流部分を開閉する制御弁とを備えると共に、
前記制御装置が、前記NOx吸蔵還元型触媒のNOx吸蔵能力の回復が必要であると判定したときに、前記制御弁の閉弁により前記第1分岐排気通路を閉じて、前記還元剤添加装置により前記第1分岐排気通路に還元剤を添加し、前記プラズマ発生装置により前記第1分岐排気通路内にプラズマを発生させることを特徴とするNOx浄化システム。
The exhaust passage of the internal combustion engine is provided with a NOx occlusion reduction type catalyst that occludes NOx when the air-fuel ratio of the exhaust gas is lean, and releases and reduces NOx occluded when it is rich. In the NOx purification system comprising a control device for performing NOx regeneration control for recovering the NOx storage capacity of the NOx storage reduction catalyst,
A reducing agent addition apparatus for providing a part of the exhaust passage on the upstream side of the NOx occlusion reduction type catalyst to a first branch exhaust passage and a second branch exhaust passage which are arranged in parallel and for adding a reducing agent to the first branch exhaust passage. And a plasma generator for generating plasma in the first branch exhaust passage, and a control valve for opening and closing a downstream portion of the first branch exhaust passage ,
When the control device determines that the NOx storage capacity of the NOx storage reduction catalyst needs to be restored, the control valve closes the first branch exhaust passage by closing the control valve, and the reducing agent addition device A NOx purification system , wherein a reducing agent is added to the first branch exhaust passage, and plasma is generated in the first branch exhaust passage by the plasma generator .
前記制御装置が、前記プラズマ発生装置により前記第1分岐排気通路内にプラズマを発生させてから所定の時間の経過後に、前記制御弁の開弁により前記第1分岐排気通路を開き、NOx吸蔵能力が所定の範囲まで回復したと判定するまで、前記還元剤の添加と前記プラズマの発生を継続することを特徴とする請求項1記載のNOx浄化システム。 The control device opens the first branch exhaust passage by opening the control valve after a lapse of a predetermined time after the plasma is generated in the first branch exhaust passage by the plasma generator , and the NOx storage capacity 2. The NOx purification system according to claim 1, wherein the addition of the reducing agent and the generation of the plasma are continued until it is determined that has recovered to a predetermined range. 内燃機関の排気通路に、排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出すると共に還元するNOx吸蔵還元型触媒を備え、該NOx吸蔵還元型触媒の上流側の排気通路の一部分を並行する第1分岐排気通路と第2分岐排気通路に分けて設けると共に、前記第1分岐排気通路に還元剤を添加する還元剤添加装置と、前記第1分岐排気通路内でプラズマを発生させるプラズマ発生装置と、前記第1分岐排気通路の下流部分を開閉する制御弁と、前記NOx吸蔵還元型触媒のNOx吸蔵能力を回復するためのNOx再生制御を実施する制御装置とを備えたNOx浄化システムの制御方法において、
前記NOx吸蔵還元型触媒のNOx吸蔵能力の回復が必要であると判定したときに、前記制御弁の閉弁により前記第1分岐排気通路を閉じて、前記還元剤添加装置により前記第1分岐排気通路に還元剤を添加し、前記プラズマ発生装置により前記第1分岐排気通路内にプラズマを発生させ、所定の時間の経過後に、前記制御弁の開弁により前記第1分岐排気通路を開き、NOx吸蔵能力が所定の範囲まで回復したと判定するまで、前記還元剤の添加と前記プラズマの発生を継続することを特徴とするNOx浄化システムの制御方法。
The exhaust passage of the internal combustion engine is provided with a NOx occlusion reduction type catalyst that occludes NOx when the air-fuel ratio of the exhaust gas is lean, and releases and reduces NOx occluded when it is rich. A part of the exhaust passage on the upstream side of the NOx occlusion reduction catalyst is divided into a first branch exhaust passage and a second branch exhaust passage which are provided in parallel, and a reducing agent addition device which adds a reducing agent to the first branch exhaust passage. A plasma generator for generating plasma in the first branch exhaust passage, a control valve for opening and closing a downstream portion of the first branch exhaust passage, and a NOx storage capacity of the NOx storage reduction catalyst for recovering In a control method of a NOx purification system including a control device that performs NOx regeneration control,
When it is determined that the NOx occlusion capacity of the NOx occlusion reduction catalyst needs to be restored, the first branch exhaust passage is closed by closing the control valve, and the first branch exhaust is made by the reducing agent addition device. A reducing agent is added to the passage, plasma is generated in the first branch exhaust passage by the plasma generator, and after a predetermined time has elapsed, the first branch exhaust passage is opened by opening the control valve, and NOx The control method of the NOx purification system, wherein the addition of the reducing agent and the generation of the plasma are continued until it is determined that the storage capacity has recovered to a predetermined range.
JP2007180694A 2007-07-10 2007-07-10 NOx purification system and control method of NOx purification system Expired - Fee Related JP5070964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007180694A JP5070964B2 (en) 2007-07-10 2007-07-10 NOx purification system and control method of NOx purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180694A JP5070964B2 (en) 2007-07-10 2007-07-10 NOx purification system and control method of NOx purification system

Publications (2)

Publication Number Publication Date
JP2009019515A JP2009019515A (en) 2009-01-29
JP5070964B2 true JP5070964B2 (en) 2012-11-14

Family

ID=40359380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180694A Expired - Fee Related JP5070964B2 (en) 2007-07-10 2007-07-10 NOx purification system and control method of NOx purification system

Country Status (1)

Country Link
JP (1) JP5070964B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240611B2 (en) * 2009-01-09 2013-07-17 東京瓦斯株式会社 Exhaust gas denitration treatment system
KR101855788B1 (en) * 2016-11-15 2018-06-20 현대자동차 주식회사 Reforming system and reformer malfunction diagnosis method using pressure sensor
JP6866755B2 (en) * 2017-04-27 2021-04-28 日産自動車株式会社 Exhaust gas purification system and control method of exhaust gas purification system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4372958B2 (en) * 2000-04-07 2009-11-25 本田技研工業株式会社 Engine exhaust gas purification device
JP4114581B2 (en) * 2003-09-18 2008-07-09 トヨタ自動車株式会社 Exhaust purification device
JP2006161768A (en) * 2004-12-10 2006-06-22 Hino Motors Ltd Exhaust emission control device
JP2006322329A (en) * 2005-05-17 2006-11-30 Hino Motors Ltd Exhaust emission control device

Also Published As

Publication number Publication date
JP2009019515A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP3852461B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4415648B2 (en) Sulfur purge control method and exhaust gas purification system
JP4417878B2 (en) Exhaust gas purification method and exhaust gas purification system
US8356470B2 (en) Method of controlling NOx purification system and NOx purification system
JP3901194B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4175427B1 (en) NOx purification system control method and NOx purification system
JP4140636B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4972914B2 (en) Exhaust gas purification system regeneration control method and exhaust gas purification system
JP5217102B2 (en) NOx purification system control method and NOx purification system
JP5476677B2 (en) Exhaust gas purification method and exhaust gas purification system
WO2006027904A1 (en) Guide structure and exhaust emission control device
JP4539758B2 (en) Exhaust gas purification device for internal combustion engine
JP2007100572A (en) Exhaust emission control device of internal combustion engine
JP3925357B2 (en) Control method of exhaust gas purification system
JP5070964B2 (en) NOx purification system and control method of NOx purification system
JP2006226190A (en) Controller of lean burn engine
JP4442373B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4396159B2 (en) NOx purification system
JP2007113497A (en) Exhaust emission control device of internal combustion engine
JP2007009810A (en) METHOD FOR CONTROLLING SULFUR PURGE OF NOx ELIMINATION SYSTEM AND NOx ELIMINATION SYSTEM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees