JP3896223B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3896223B2
JP3896223B2 JP14423199A JP14423199A JP3896223B2 JP 3896223 B2 JP3896223 B2 JP 3896223B2 JP 14423199 A JP14423199 A JP 14423199A JP 14423199 A JP14423199 A JP 14423199A JP 3896223 B2 JP3896223 B2 JP 3896223B2
Authority
JP
Japan
Prior art keywords
nox
exhaust gas
fuel ratio
air
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14423199A
Other languages
Japanese (ja)
Other versions
JPH11350947A (en
Inventor
修 黒田
秀宏 飯塚
良太 土井
敏雄 小川
寿生 山下
茂 小豆畑
幸二郎 奥出
雄一 北原
俊史 平塚
教広 篠塚
敏雄 間中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Hitachi Ltd
Original Assignee
Honda Motor Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Ltd filed Critical Honda Motor Co Ltd
Priority to JP14423199A priority Critical patent/JP3896223B2/en
Publication of JPH11350947A publication Critical patent/JPH11350947A/en
Application granted granted Critical
Publication of JP3896223B2 publication Critical patent/JP3896223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は自動車等の内燃機関から排出される排気ガスを浄化する装置に係わり、特に希薄空燃比(リーンバーン)で運転可能な内燃機関及び該内燃機関を搭載した自動車から排出される排ガスの浄化装置に関する。
【0002】
【従来の技術】
自動車等の内燃機関から排出される排ガスに含まれる、一酸化炭素(CO),炭化水素(HC:Hydrocarbon),窒素酸化物(NOx)等は大気汚染物質として人体に悪影響を及ぼす他、植物の生育を妨げる等の問題を生起する。そこで、従来より、これらの排出量低減には多大の努力が払われ、内燃機関の燃焼方法の改善による発生量の低減に加え、排出された排ガスを触媒等を利用して浄化する方法の開発が進められ、着実な成果を挙げてきた。ガソリンエンジン車に関しては、三元触媒なるPt,Rhを活性の主成分とし、HC及びCOの酸化とNOxの還元を同時に行って無害化する触媒を用いる方法が主流となっている。
【0003】
ところで、三元触媒はその特性から、ウィンドウと称される理論空気燃料比近傍で燃焼させて生成した排ガスにしか効果的に作用しない。そこで従来は、空燃比は自動車の運転状況に応じて変動するものの変動範囲は原則として理論空燃比ガソリンの場合A(空気の重量)/F(燃料の重量)=約14.7 ;以下本明細書では理論空撚比をA/F=14.7 で代表させるが燃料種によりこの数値は変る。)近傍に調節されてきた。しかし、理論空燃比より希薄(リーン)な空燃比でエンジンを運転できると燃費を向上させる事ができることから、リーンバーン燃焼技術の開発が進められ、最近では空燃比18以上のリーン域で内燃機関を燃焼させる自動車が珍しくない。しかし前述の様に現用三元触媒でリーンバーン排気の浄化を行わせるとHC,COの酸化浄化は行えるもののNOxを効果的に還元浄化することはできない。したがって、リーンバーン方式の大型車への適用、リーンバーン燃焼時間の拡大(リーンバーン方式の適用運転域の拡大)を進めるには、リーンバーン対応排ガス浄化技術が必要となる。そこでリーンバーン対応排気浄化技術、すなわち酸素(O2 )が多量に含まれる排ガス中のHC,NO,NOxを浄化する技術の開発、特にNOxを浄化する技術の開発が精力的に進められている。
【0004】
特開昭63−61708 号公報では、リーンバーン排ガスの上流にHCを供給し、排ガス中のO2 濃度を触媒が有効に機能する濃度域まで低め触媒の能力を引き出す方法が提案されている。
【0005】
特開昭62−97630号,同62−106826号,同62−117620号公報は排ガス中のNOxを(NOは酸化して吸収され易いNO2 に変換した後)NOx吸収能を有する触媒と接触させて吸収除去し、吸収効率が低下した時点で排ガスの通過を止めて H2 ,メタン・ガソリン等のHC、等の還元剤を用いて蓄積されたNOxを還元除去し、触媒のNOx吸収能を再生する方法が示されている。
【0006】
また、PCT/JP92/01279及びPCT/JP92/01330には、排ガスがリーンの時にNOxを吸収し排ガス中の酸素濃度を低下させると吸収したNOxを放出するNOx吸収剤を排気通路に設置し、排気ガスがリーンのときにNOxを吸収させ、吸収させたNOxをNOx吸収剤に流入する排ガス中のO2 濃度を低下せしめて放出させる、排気浄化装置が提案されている。
【0007】
しかし、特開昭63−61708 号公報において触媒が機能する空燃比である(A/F)14.7程度に相当する排ガスの組成(O2 濃度約0.5%程度)を達成するには多量のHCが必要となる。同発明のブローバイガスの利用は有効であるものの、内燃機関運転中の排ガスを処理するに十分な量ではない。燃料を投入することも技術的には不可能ではないが、リーンバーン方式で節減した燃費を低下させる結果となる。
【0008】
また、特開昭62−97630号,同62−106826号,同62−117620号公報では、NOx吸収剤の再生にあたり排ガスの流通を停止してHC等の還元剤をNOx吸収剤に接触させるため、還元剤の排ガス中のO2 による燃焼消費が大幅に抑制されて還元剤の使用量が激減する。しかし、NOx吸収剤を2つ設け、且つ、排ガスをこれらに交互に流通させるための排気切り替え機構が必要で、排気処理装置の構造が複雑になることは否定できない。
【0009】
さらに、PCT/JP92/01279及びPCT/JP92/01330では、排ガスを常時NOx吸収剤に流通させておき、排ガスがリーンの時にNOxを吸収させ、排ガス中のO2 濃度を低下させて吸収したNOxを放出させて吸収剤を再生するため、排ガス流の切り替えは不要で、上記方式の問題点は解消する。しかし、排ガスがリーンのときにNOxを吸収し排ガス中のO2 濃度が低下せしめられたときにNOxを放出できる材料の適用が前提となる。この材料の場合、NOxの吸収と放出を行うことは必然的に吸収剤の結晶構造の周期的な変化を繰り返すこととなり、耐久性に対する慎重な配慮が必要となる。また、放出NOx の処理が必要であり大量に放出される場合には三元触媒による後処理も考慮する必要が生じる。
【0010】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点に鑑み、排気処理装置の構造が簡単であり、且つ、還元剤の消費量が少なく、且つ、耐久性に優れた、内燃機関のリーンバーン排ガスからNOx等の有害成分を効果的に除去・無害化できる装置を提供することにある。
【0011】
【課題を解決するための手段】
上記課題は、以下の本発明の各方法により解決することができる。
【0012】
本発明では、排ガス中の各成分間の酸化還元化学量論関係において還元剤に対して酸化剤が多い状態でNOxを化学吸着し、酸化剤に対し還元剤が同量以上の状態で吸着したNOxを接触還元するNOx吸着触媒を排ガス流路に配置し、排ガス中の各成分間の酸化還元化学量論関係において還元剤に対して酸化剤が多い状態をつくって吸着触媒上にNOxを化学吸着させ、次に酸化剤に対し還元剤が同量以上の状態をつくり、吸着触媒上に吸着したNOxを還元剤と接触反応させてN2 に還元して無害化する。
【0013】
ここで吸着触媒は、NOx等の物質を吸着する能力を持ち同時に触媒機能を持つ材料を指す。本発明では、NOxを吸着して捕捉する能力とNOxを接触的に還元する能力及びHC,CO等を接触的に酸化する能力を持つ材料を指す。
【0014】
また、酸化剤はO2 ,NO,NO2 等で主として酸素である。還元剤は、内燃機関に供されたHC、燃焼過定で生成するその派生物としてHC(含む含酸素炭化水素),CO,H2 等、さらには、後述の還元成分として排ガス中に添加されるHC等の還元性物質である。
【0015】
前述のように、リーン排ガスとNOxを窒素にまで還元するための還元剤としてのHC,CO,H2 等とを接触させるとこれらは排ガス中の酸化剤としての O2 と燃焼反応を起こす。NOx(NO及びNO2 )もこれらと反応して窒素に還元される。通常は両反応が平行して進行するため酸素の共存下では還元剤の利用率が低い。特に反応温度が(触媒材料にも依るが)500℃以上の高温では後者の割合がかなり大きくなる。そこで、NOxを吸着触媒で排ガスから分離し (少なくとも排ガス中のO2 から分離し)しかる後に還元剤と接触反応させることによりNOxのN2 への還元を効果的に行うことが可能となる。本発明では、NOx吸着触媒によりリーン排ガス中のNOxを吸着除去することにより排ガス中のNOxをO2 から分離する。
【0016】
本発明においては、次に、排ガス中の酸化剤(O2,NOx等)と還元剤(HC,CO,H2 等)で構成される酸化還元系において還元剤が同量かもしくは卓越する状態をつくり、吸着触媒上に吸着したNOxをHC等の還元剤と接触反応させてN2 に還元する。
【0017】
ところで排ガス中のNOxはほぼNOとNO2 からなる。NO2 はNOに比べて反応性に富む。したがってNO2 の吸着除去と還元はNOよりも容易である。したがってNOをNO2 に酸化すれば排ガス中のNOxの吸着除去と還元が容易となる。本発明はリーン排ガス中のNOxを共存するO2 によりNO2 に酸化し除去する方法、そのための酸化手段例えば吸着触媒にNO酸化機能を持たせたり吸着触媒前段に酸化触媒を設けることをも包含するものである。
【0018】
本発明における、化学吸着したNOxの還元反応はおおよそ以下の反応式で記述できる。
【0019】
M−NO3+HC→MO+N2 +CO2 +H2O→MCO3+N2 +H2
ここに、Mは金属元素
(還元生成物にMCO3 を採用した理由は後述する)
上記の反応は発熱反応である。金属Mとしてアルカリ金属とアルカリ土類金属を取り上げ、それぞれNa及びBaを代表させて反応熱を評価すると標準状態 (1気圧,25℃)では以下となる。
【0020】
2NaNO3(s)+5/9C36→Na2CO3(s)+N2 +2/3CO2
+5/3H2
[−ΔH=873kjule]
Ba(NO3)2+5/9C36→BaCO3(s)+N2 +2/3CO2
+5/3H2
[−ΔH=751kjule]
ここに、s:固体 g:気体
吸着種の熱力学量には相当する固体の値を用いた。
【0021】
ちなみにC36 5/9moleの燃焼熱は1070kjuleであり、上記各反応は HCの燃焼熱に匹敵する発熱量である。当然のことながらこの発熱は接触する排ガスに伝えられ吸着触媒表面の局部的な温度上昇は抑制される。
【0022】
NOxの捕捉剤がNOx吸収剤の場合、吸収剤のバルク内に捕捉されたNOxも還元されるため発熱量は大きくなり、排ガスへの伝達には限度があるため吸収剤の温度上昇をもたらす。この発熱は下式に示す吸収反応の平衡を放出側にずらす。
【0023】

Figure 0003896223
【0024】
放出したNOxを速やかに還元して装置外へ排出される排ガス中のNOx濃度を低減すべく還元剤の濃度を高めても、気相においてはNO2 とHCの反応はあまり進まない。したがって、還元剤の増量でNOx放出量を十分に減ずることができない。また、NOx吸収量が少ない段階で還元反応による操作を行うことも考えられるが、NOx吸収剤の再生頻度が増し、実用的でない。
【0025】
本発明の吸着触媒は、その表面近傍でのみNOxを捕捉するため発熱の絶対量としては少なく、且つ速やかに排ガスに伝達されるため吸着触媒の温度上昇は少ない。したがって一旦捕捉したNOxの放出を防止することができる。
【0026】
本発明のNOx吸着触媒は、NOxをその表面で化学吸着により捕捉しNOxの還元に際しての発熱反応でNOxの放出を生起しない材料として特徴付けられる。また、本発明のNOx吸着触媒は、NOxをその表面で化学吸着によりもしくは表面近傍で化学結合により捕捉し、NOxの還元に際しての発熱反応でNOx の放出を生起しない材料として特徴付けられる。
【0027】
本発明者等は、少なくともカリウム(K),ナトリウム(Na),マグネシウム(Mg),ストロンチウム(Sr)及びカルシウム(Ca)から選ばれる一種以上の元素を成分の一部として含むNOx吸着触媒で上記特徴を実現し得ることを見出した。
【0028】
本発明の内燃機関の排ガス浄化装置は、少なくともカリウム(K),ナトリウム(Na),マグネシウム(Mg),ストロンチウム(Sr)及びカルシウム
(Ca)から選ばれる一種以上の元素を成分の一部として含むNOx吸着触媒を排ガス流路に配置し、排ガス中の各成分間の酸化還元化学量論関係において還元剤に対して酸化剤が多い状態をつくって吸着触媒上にNOxを化学吸着させ、次に酸化剤に対し還元剤が同量以上の状態をつくり、吸着触媒上に吸着したNOxを還元剤と接触反応させてN2 に還元して無害化することを特徴とする。
【0029】
本発明の内燃機関の排ガス浄化装置は、また、少なくともカリウム(K),ナトリウム(Na),マグネシウム(Mg),ストロンチウム(Sr)及びカルシウム(Ca)から選ばれる一種以上の元素を成分の一部として含むNOx吸着触媒を排ガス流路に配置し、酸化還元化学量論関係においてHC等の還元剤に対してO2 等の酸化剤が多い状態をつくって吸着触媒表面及び表面近傍にNOxを化学結合により捕捉し、次に酸化剤に対し還元剤が同量かもしくは多い状態をつくり、吸着触媒に捕捉されたNOxを還元剤と接触反応させてN2 に還元して無害化することを特徴とする。
【0030】
本発明におけるNOx吸着触媒としては特に以下が好適に適用できる。
【0031】
カリウム(K),ナトリウム(Na),マグネシウム(Mg),ストロンチウム(Sr)及びカルシウム(Ca)から選ばれる少なくとも一種と、セリウム等からなる希土類から選ばれる少なくとも一種と、白金,ロジウム,パラヂウム等からなる貴金属から選ばれる少なくとも一種の元素を含む、金属および金属酸化物(もしくは複合酸化物)からなる組成物、該組成物を多孔質耐熱性金属酸化物に担持してなる組成物。本組成物は、優れたNOx吸着能に加え優れた耐SOx性を有する。
【0032】
本発明の方法における、酸化剤に対し還元剤が同量かもしくは多い状態は以下の方法で作る事ができる。
【0033】
内燃機関における燃焼条件を理論空燃比もしくは燃料過剰(リッチ)とする。また、リーンバーン排ガスに還元剤を添加する。
【0034】
前者は以下の方法で達成することができる。
【0035】
排気ダクトに設けられた酸素濃度センサー出力及び吸気流量センサー出力等に応じて燃料噴射量を制御する方法。本法では、複数の気筒の一部を燃料過剰とし残部を燃料不足とし、全気筒からの混合排ガス中の成分が酸化還元化学量論関係において酸化剤に対して還元剤が同量かもしくは多い状態をつくる方法をも含む。
【0036】
後者は以下の各方法で達成することができる。
【0037】
排ガス流の吸着触媒上流に還元剤を投入する方法。還元剤には内燃機関の燃料としてのガソリン,軽油,灯油,天然ガス、これらの改質物,水素,アルコール類,アンモニア等が適用できる。ブローバイガス及びキャニスターパージガスを吸着触媒上流に導きこれらに含まれる炭化水素等の還元剤を投入することも有効である。燃料直噴式内燃機関においては、排気行程で燃料を噴射し還元剤としての燃料を投入することが有効である。
【0038】
本発明における吸着触媒は、各種の形状で適用することができる。コージェライト,ステンレス等の金属材料からなるハニカム状構造体に吸着触媒成分をコーティングして得られるハニカム形状を始めとし、ペレット状,板状,粒状,粉末として適用できる。
【0039】
本発明における、酸化剤に対し還元剤が同量かもしくは多い状態を作るタイミングは以下の各方法によることができる。
【0040】
ECU(Engine Control Unit)で決定される空燃比設定信号,エンジン回転数信号,吸入空気量信号,吸気管圧力信号,速度信号,スロットル開度,排ガス温度等からリーン運転時におけるNOx排出量を推定し、その積算値が所定の設定値を超えたとき。
【0041】
排気流路の吸着触媒上流または後流に置かれた酸素センサー(もしくはA/Fセンサー)の信号により累積酸素量を検出し累積酸素量が所定の量を超えたとき。
【0042】
その変形態様として、リーン運転時の累積酸素量が所定の量を超えたとき。
【0043】
排気流路の吸着触媒上流に置かれたNOxセンサー信号により累積NOx量を算出し、リーン運転時における累積NOx量が所定の量を超えたとき。
【0044】
排気流路の吸着触媒後流に置かれたNOxセンサーの信号によりリーン運転時におけるNOx濃度を検出し、NOx濃度が所定濃度を超えたとき。
【0045】
本発明における、酸化剤に対し還元剤が同量かもしくは多い状態を維持する時間もしくは維持すべく投入する還元剤量は、前述のごとく、予め吸着触媒の特性,内燃機関の諸元と特性等を考慮して決めることができるが、これらは、燃料噴射弁のストローク,噴射時間及び噴射間隔を調整して実現できる。
【0046】
【発明の実施の形態】
本発明の具体的実施態様を挙げて本発明を詳細に説明する。なお、本発明は以下の実施態様及び実施例に限定されるものでなく、その思想範囲内において各種の実施態様があることは言うまでもない。
【0047】
[吸着触媒]
本発明の方法による吸着触媒の特性について説明する。アルカリ金属として Naを含むN−N9とKを含むN−K9の特性は次の様である。
【0048】
《吸着触媒調製法》
吸着触媒N−N9を以下の方法で得た。
【0049】
アルミナ粉末とベーマイトを硝酸邂逅して得たバインダーとしてのアルミナゾルを混合し硝酸酸性アルミナスラリーを得た。該コーティング液にハニカムを浸漬した後速やかに引き上げ、セル内に閉塞した液をエアブローして除去した後、乾燥、続いて450℃で焼成した。この操作を繰返しハニカムの見掛け容積1Lあたり150gのアルミナをコーティングした。該アルミナコートハニカムに触媒活性成分担持しハニカム状吸着触媒を得た。例えば、硝酸セリウム(硝酸Ce)溶液を含浸し乾燥後600℃で1時間焼成した。続いて硝酸ナトリウム(硝酸Na)溶液とチタニアゾル溶液と硝酸マグネシウム(硝酸Mg)溶液の混合溶液を含浸し、同様に乾燥,焼成した。さらにジニトジアンミンPt硝酸溶液と硝酸ロジウム(硝酸Rh)溶液の混合溶液に含浸し、乾燥後450℃で1時間焼成した。最後に硝酸Mg溶液を含浸し450℃で1時間焼成した。以上によりアルミナ(Al23)にCe,Mg,Na,Ti,Rh,Ptを担持したハニカム状吸着触媒、2Mg−(0.2Rh,2.7Pt)−(18Na,4Ti,2Mg)−27Ce/Al23を得た。ここで、/Al23は活性成分がAl23上に担持されたことを示し、元素記号前の数値はハニカム見掛け容積1L当たりに担持した表示金属成分の重量(g)である。表記順序は担持順序を示しており、Al23に近く表記される成分から離れる成分の順で担持し、( )で括られた成分は同時に担持した。ちなみに各活性成分の担持量は含浸溶液中の活性成分濃度を変化させることにより変えることができる。
【0050】
吸着触媒N−K9を以下の方法で調製した。
【0051】
吸着触媒N−N9調製における硝酸Na溶液に代わり硝酸カリウム(硝酸K)溶液を用い、その他は吸着触媒N−N9と同様の方法でN−K9 2Mg− (0.2Rh,2.7Pt)−(18K,4Ti,2Mg)−27Ce/Al23を得た。また同様の方法で比較触媒N−R2 2Mg−(0.2Rh,2.7Pt)− 27Ce/Al23を得た。
【0052】
《性能評価法》
上記方法で得た吸着触媒を700℃で5時間酸化雰囲気で熱処理した後、以下の方法で特性を評価した。
【0053】
排気量1.8L のリーンバーン仕様ガソリンエンジンを搭載した乗用車に本発明の方法により調製した容積1.7L のハニカム状吸着触媒を搭載しNOx浄化特性を評価した。
【0054】
《吸着触媒の特性》
吸着触媒N−N9を搭載し、A/F=13.3 のリッチ運転30秒間とA/F=22のリーン運転約20分間を交互に繰り返し図2のNOx浄化率経時特性を得た。同図から本吸着触媒によりリーン運転期間中のNOxが浄化されることが伺える。リーン運転中NOx浄化率は徐々に低下し初期に100%あった浄化率は20分後には約40%となる。しかしこの低下した浄化率は30秒間のリッチ運転で100%にまで回復する。再びリーン運転を行うとNOx浄化能は回復して前述の経時変化を繰り返す。リーン運転とリッチ運転を複数回繰返してもリーン運転中のNOx浄化率の経時低下の速度は不変であり、これはリッチ運転によりNOx吸着性能が十分に再生されたことを示している。
【0055】
車速を約40km/h一定(排ガスの空間速度(SV)約20,000/h一定)とし点火時期を変化させて排ガス中のNOx濃度を変え、NOx濃度とリーン排ガス中のNOx浄化率の関係を求めて図3を得た。NOx浄化率は経時的に低下するがNOx濃度が低いほど低下速度は小さい。NOx浄化率50%及び30%に至るまでに捕捉されたNOx量を同図から求めると表1となる。
【0056】
【表1】
Figure 0003896223
【0057】
NOx捕捉量はNOx濃度に依らずほぼ一定である。吸着量が吸着質の濃度 (圧力)に寄らないのは化学吸着の特徴である。
【0058】
供試吸着触媒中でNOx吸着楳として先ず考えられるのはPt粒子である。露出Pt量を評価する手段として多用されるCO吸着量評価を行ったところCO吸着量(at 100℃)は4.5×10-4molであった。この値は上記NOx吸着量の約1/100でありPtがNOx吸着楳の主役でないことは明らかである。
【0059】
一方、本吸着触媒のコーディェライトごと測定したBET比表面積(窒素吸着で測定)は約25m2/gでハニカム1.7L当たり28,050m2であった。また、本発明の吸着触媒のNaの化学構造について検討したところ、鉱酸にCO2 ガスを発生して溶解すること及び鉱酸による中和滴定曲線における変曲点の値から判断して主にNa2CO3として存在すると判断できた。仮に全ての表面が Na2CO3で占められているとすると表面には0.275molのNa2CO3が露出していることになる(Na2CO3の比重が2.533g/mlであることから Na2CO31分子の体積が求まる(Na2CO3を立方体と仮定してその1面の面積を求めこれを表面Na2CO3の占有面積とした)。前出の反応式に従えば 0.275molのNa2CO3は0.55molのNO2 を吸着する能力がある。しかし、実際に本発明の吸着触媒が除去したNOx量はその1/10以下の0.04molのオーダーである。この相違はBET法が物理表面積を評価するものでAl23等のNa2CO3以外の表面積も評価していることによる。以上の評価は、吸着 NOx量はNa2CO3バルクのNOx捕捉能よりはるかに少なく、少なくとも NOxがNa2CO3表面か表面近傍の限られた領域で捕捉されていることを示している。
【0060】
なお、図3においてNOx浄化率20%前後から浄化率低下の速度が低下しているが、これは触媒機能による還元反応が生じていることを示すものである。
【0061】
図4は、リーン運転からストイキ運転に切替えた直後のNOx浄化率を示す。本吸着触媒では、ストイキ運転への切替え直後から90%以上のNOx浄化率が得られることが分かる。
【0062】
図5,図6に、リーンからストイキあるいはリッチへの切替え前後における NOx浄化特性を示した。図5は吸着触媒N−N9の入口と出口のNOx濃度を示したもので、図(a)はA/F=22のリーンからA/F=14.2のリッチへ空燃比を切替えた場合である。リッチ切替え直後の再生の開始時点においてはA/F=14.2 の排ガスNOx濃度が高いためリッチ運転の入口NOx濃度が大きく増加し、これに伴い過渡的に出口NOx濃度は増加するが、常時出口NOx濃度は入口NOx濃度を大きく下回る。再生は速やかに進み短時間で出口NOx濃度は0近傍に到達する。図(b)はA/F=22のリーンからA/F=13.2のリッチへ空燃比を切替えた場合であるが、図(a)と同様に、常時出口NOx濃度は入口NOx濃度を大きく下回り、且つ、より短時間で出口NOx濃度は0近傍に到達する。
【0063】
以上から明らかであるが、再生条件としてのA/F値は再生に要する時間に影響する。再生に適したA/F値,時間、さらには還元剤量は、吸着触媒の組成,形状,温度,SV値,還元剤の種類,排気流路の形状や長さの影響を受ける。従って、再生条件はこれらを考慮して総合的に決められるものである。
【0064】
図6は吸着触媒N−K9の入口と出口のNOx濃度を示したもので、図(a)はA/F=22のリーンからA/F=14.2 のリッチへ空燃比を切替えた場合、図(b)はA/F=22のリーンからA/F=13.2のリッチへ空燃比を切替えた場合であるが、上述の吸着触媒N−N9の場合と同様に常時出口NOx濃度は入口NOx濃度を大きく下回り、且つ、短時間で吸着触媒の再生が進んでいる。《吸着触媒の基礎特性》
モデルガスを用い基礎特性、特にNOx浄化率に与える酸素濃度の影響を評価した。
【0065】
N−N9の6ml小ハニカムを内径28mmφの石英半応管内に充填し、モデルガスを流通させた。モデルガス中の酸素濃度を変化させNOx浄化率に与える影響を検討した。反応温度は触媒入り口ガス温度で300℃とした。
【0066】
先ず、O2 5%(体積分率;以下同じ),NO600ppm,C36500ppm (1500ppm as Cl),CO1000ppm,CO2 10%,H2O10%及び N2 Balance なる組成のガスを流通させNOx浄化率が安定した10分後に酸素濃度のみを所定の値まで低下させて20分間保持し、最後に再び初期のガス組成に戻した。この間のNOx濃度変化を、低下させる酸素濃度を0%,0.5%, 0.7%,1%,2% 及び3%の6種変化させ図19を得た。図19では、リーンガス中の酸素濃度が低くなるとすなわち酸化雰囲気が弱まり還元雰囲気が強くなるとNOx浄化率が高くなる傾向が認められ、本吸着触媒がNOxを還元により浄化していることを示唆している。また、図19では、NOx浄化率は常に正の値であり本吸着触媒では酸素濃度の如何に因らず吸着触媒通過後NOx濃度が増すことはない。
【0067】
次に、O2 5%,NO600ppm,N2 Balanceなる組成のガスを流通させつつこのガス中の酸素濃度を同様に変化させて図20を得た。本検討ではガス中に還元剤が含まれていないことに特徴がある。図20において酸素濃度を低下させて酸化雰囲気が弱めてもNOx浄化率は向上しない。この事は本吸着触媒がNOxを還元により浄化していることを示唆している。図20において、NOx浄化率が負になることはなく、本吸着触媒では酸化還元の雰囲気によって、一旦捕捉したNOxを放出することはない。
【0068】
[排気浄化装置]
図1は本発明の排ガス浄化装置の一実施態様を示す装置の全体構成である。
【0069】
本発明の装置は、リーンバーン可能なエンジン99,エアフローセンサー2,スロットルバルブ3等を擁する吸気系,酸素濃度センサー(or A/Fセンサー)19,排気温度センサー21,NOx吸着触媒18等を擁する排気系及び制御ユニット(ECU)等から構成される。ECUは入出力インターフェイスとしてのI/O LSI,演算処理装置MPU,多数の制御プログラムを記憶させた記憶装置RAMおよびROM,タイマーカウンター等より構成される。
【0070】
以上の排気浄化装置は、以下のように機能する。エンジンへの吸入空気はエアクリーナー1により濾過された後エアフローセンサー2により計量され、スロットルバルブ3を経て、さらにインジェクター5から燃料噴射を受け、混合気としてエンジン99に供給される。エアフローセンサー信号その他のセンサー信号はECU(Engine Control Unit)へ入力される。
【0071】
ECUでは後述の方法によって内燃機関の運転状態及びNOx吸着触媒の状態を評価して運転空燃比を決定し、インジェクター5の噴射時間等を制御して混合気の燃料濃度を所定値に設定する。シリンダーに吸入された混合気はECU25からの信号で制御される点火プラグ6により着火され燃焼する。燃焼排ガスは排気浄化系に導かれる。排気浄化系にはNOx吸着触媒が設けられ、ストイキ運転時にはその三元触媒機能により排ガス中のNOx,HC,COを浄化し、また、リーン運転時にはNOx吸着能によりNOxを浄化すると同時に併せ持つ燃焼機能により、HC,COを浄化する。さらに、ECUの判定及び制御信号により、リーン運転時にはNOx吸着触媒のNOx浄化能力を常時判定して、NOx浄化能力が低下した場合燃焼の空燃比等をリッチ側にシフトして吸着触媒のNOx吸着能を回復させる。以上の操作により、本装置では、リーン運転,ストイキ(含むリッチ)運転の全てのエンジン燃焼条件下における排ガスを効果的に浄化する。
【0072】
エンジンに供給される混合気の燃料濃度(以下空燃比)は次の様に制御される。図7に空燃比制御方法をブロック線図で示した。
【0073】
アクセルペダルの踏み込みに応じた信号を出力する負荷センサー出力,エアフローセンサーにより計量された吸気量の出力信号,クランク角センサーにより検出されるエンジン回転数信号,排ガス温度信号,スロットル開度を検出するスロットルセンサー信号,エンジン冷却水温信号,スターター信号等の情報から ECU25は空燃比(A/F)を決定し、さらにこの信号は酸素センサーからフィードバックされる信号に基づき補正され、燃料噴射量を決定する。なお、低温時,アイドル時,高負荷時等では各センサー及びスイッチの信号によりフィードバック制御を停止する。また、空燃比補正学習機能により空燃比の微妙な変化や急な変化にも正確に対応できるよう空燃比補正学習機能で対応する。
【0074】
決定された空燃比がストイキ(A/F=14.7)及びリッチ(A/F<14.7)のときECUの指示によりインジェクタの噴射条件が決定されストイキ及びリッチ運転が行われる。一方、リーン(A/F>14.7)運転が決定された場合、 NOx吸着触媒のNOx吸着能の有無の判定を行い吸着能があると判定された場合に指示通りのリーン運転を行うべく燃料噴射量が決定され、吸着能がないと判定された場合には空燃比を所定期間リッチシフトしてNOx吸着触媒を再生する。
【0075】
図8に空燃比制御のフローチャートを示した。ステップ1002で各種の運転条件を指示するあるいは運転状態を検出する信号を読み込む。これらの信号に基づきステップ1003で空燃比を決定、ステップ1004では決定された空燃比を検出する。ステップ1005で決定された空燃比と理論空燃比との大小を比較する。ここでの比較対象となる理論空燃比は、正確には吸着触媒においてNOxの接触還元反応の速度が吸着による捕捉速度を上回る空燃比であり、予め吸着触媒の特性を評価して決定されるもので、理論空燃比近傍の空燃比が選定される。ここで、設定空燃比≦理論空燃比の場合ステップ1006に進み吸着触媒の再生操作を行うことなく指示通りの空燃比運転を行う。設定空燃比>理論空燃比の場合ステップ1007に進む。ステップ1007ではNOx吸着量の推定演算を行う。推定演算方法については後述する。続いてステップ1008で推定NOx吸着量が所定限界量以下であるか否かを判定する。限界吸着量は予め実験等により吸着触媒のNOx捕捉特性を評価して、また排ガス温度や吸着触媒温度等を考慮して、排ガス中のNOxが十分に浄化できる値に設定される。NOx吸着能がある場合にはステップ1006に進み、吸着触媒の再生操作を行うことなく指示通りの空燃比運転を行う。NOx吸着能がない場合にはステップ1009に進み、空燃比をリッチ側にシフトする。ステップ1010ではリッチシフト時間をカウントし、経過時間Trが所定の時間(Tr)cを超えればリッチシフトを終了する。
【0076】
NOx吸着能の判定は次のように行うことができる。
【0077】
図9はリーン運転時の各種運転条件からNOx排出量を積算し判定する方法である。
【0078】
ステップ1007−E01で排ガス温度等のNOx吸着触媒の作動条件に関する信号と排ガス中のNOx濃度に影響する各種の機関運転条件に関する信号とを読み込み単位時間に吸着するNOx量EN を推算する。ステップ1007−E02 でEN を積算し、ステップ1008−E01で積算値ΣENと吸着量の上限値 (EN )cとの大小を比較する。ΣEN≦(EN )cの場合は積算を継続し、ΣEN>(EN )cの場合ステップ1008−E02で積算を解除しステップ1009に進む。
【0079】
図10はリーン運転の積算時間で判定する方法である。
【0080】
ステップ1007−H01でリーンの運転時間HL を積算し、ステップ1008−H01で積算値ΣHL と積算時間の上限値(HL )cとの大小を比較する。ΣHL ≦(HL )cの場合積算を継続し、ΣHL >(HL )cの場合ステップ1008− H02で積算を解除しステップ1009に進む。
【0081】
図11はリーン運転時の酸素センサー信号で判定する方法である。
【0082】
ステップ1007−O01でリーン運転における酸素量QO を積算し、ステップ1008−O01で積算値ΣQO と積算酸素量の上限値(QO )cとの大小を比較する。ΣQO ≦(QO )cの場合積算を継続し、ΣQO >(QO )cの場合ステップ1008−O02で積算を解除しステップ1009に進む。
【0083】
図12はリーン運転時のNOx吸着触媒入口で検出したNOx濃度センサー信号で判定する方法である。
【0084】
ステップ1007−N01でNOx濃度センサー信号に基づきNOx吸着触媒入口におけるNOx量QN を積算する。ステップ1008−N01で積算値 ΣQN と積算NOx量の上限値(QN )cとの大小を比較する。ΣQN ≦(QN )cの場合積算を継続し、ΣQN >(QN )cの場合ステップ1008−N02で積算を解除しステップ1009に進む。
【0085】
図13はリーン運転時のNOx吸着触媒出口で検出したNOx濃度センサー信号で判定する方法である。
【0086】
ステップ1007−C01でNOx濃度センサー信号に基づきNOx吸着触媒入口におけるNOx濃度CNを検出する。ステップ1008−C01でCN と CN の上限値(CN )cとの大小を比較する。CN ≦(CN )cの場合検出を継続し、CN >(CN )cの場合ステップ1009に進む。
【0087】
図14に本発明の排ガス浄化装置の他の実施態様を示す。図1の態様との相違は、エンジン近くの排気ダクトにマニホールド触媒17を設けた点にある。自動車排ガスの排出規制の強化は、エンジン起動直後に排出されるHC等の有害物の浄化を必要としている。すなわち従来は触媒が作動温度に達するまで未処理で排出されていたが、この量を大幅に低減する必要がある。これには、触媒を作動温度まで急速に昇温する方法が有効である。図14はエンジン起動時のHC,CO排出量低減と、リーン及びストイキ(含むリッチ)運転における排ガス浄化に対応できる装置構成である。図14の構成においてマニホールド触媒17にはPt,Rh,CeO2 を主たる成分とするいわゆる三元触媒やこれらにPdを添加したりあるいはPd等の燃焼活性成分を中心成分とした燃焼触媒が適用できる。本構成では、起動時にはマニホールド触媒17が短時間で昇温してHCやCOの浄化を起動直後から行い、ストイキ運転時にはマニホールド触媒と吸着触媒18の双方が機能してHC,CO,NOxの浄化を行い、リーン運転時は吸着触媒が NOxを吸着浄化する。吸着触媒の再生にあたり空燃比をリッチシフトすると還元剤としてのHC,COはマニホールド触媒で大きな化学変化を受けることなく吸着触媒に到達し、これを再生する。このような構成を可能とするのは吸着触媒の大きなな特長である。
【0088】
図15に本発明の排ガス浄化装置のさらに他の実施態様を示す。図1の態様との相違は、エンジン99が筒内噴射方式である点にある。本発明の装置は筒内噴射方式エンジンにも良好に適用することができる。
【0089】
図16に本発明の排ガス浄化装置のさらに他の実施態様を示す。図1及び15の態様との相違は、吸着触媒の下流に後触媒24を設けたことにある。たとえば後触媒に燃焼触媒を置くことによりHC浄化能を向上させた装置が、三元触媒を置くことによりストイキ時の三元機能を強化させた装置が、実現する。
【0090】
図17に本発明の排ガス浄化装置のさらに他の実施態様を示す。図1及び14−16の図との相違は、リッチシフトの指示により、還元剤インジェクタ23を通じて吸着触媒上流に燃料を添加することにある。本方式ではエンジンの運転状態を吸着触媒の状態と無関係に設定することができるという大きな利点がある。
以下、具体例を挙げて本発明の効果を説明する。
【0091】
本発明の吸着触媒及び装置の排ガス浄化性能を評価した。排気量1.8L のリーンバーン仕様車に吸着触媒及び比較触媒を搭載し、シャシダイナモメータ上で走行させた。両供試触媒は容積1.7Lのハニカム状(400cell/in2)で、700℃で5時間酸化雰囲気で熱処理したものを床下に置いた。走行は、定常走行及び国内排ガス規制測定法に基づく10−15モード走行とした。排ガス分析は自動車排気ガス測定装置を用いダイレクト分析で排ガス中のNOx,HC, COの濃度を測定する方法と、自動車定容量希釈サンプリング装置でCVS (Constant Volume Sampling)を求める方法を適用した。
【0092】
なお、10−15モード走行においては、10モード及び15モードの定常走行時と10モードの20km/hから40km/hへの加速時及び15モードの40km/hから60km/hへの加速時と50km/hから70km/hへの加速時をリーン(A/F=22〜23)走行としその他をストイキ走行とした。図18に、本発明の方法による吸着触媒N−N9を搭載した場合、吸着触媒N−K9を搭載した場合、また比較の触媒N−R2を搭載した場合の、3度繰返される10モードの最後の10モードとそれに続く15モードにおける吸着触媒前後のNOx濃度を示した。比較触媒は後掲の表2に示す組成のものとした。
【0093】
図18において、吸着触媒N−N9およびN−K9を搭載した場合全運転域において出口NOx濃度は入口NOx濃度を下回り、リーン運転とストイキ運転が繰返されることにより吸着触媒が効果的に再生されNOx浄化機能を保持し続けていることが分かる。一方、比較触媒N−R2においては出口NOx濃度が入口NOx濃度を上回る部分が生じている。
【0094】
各種吸着触媒および比較触媒で得たCVS値を吸着触媒組成とともに表2及び3に示した。吸着触媒および比較触媒の調製は前述の方法によったが、調製原料として、シリコン(Si)にはシリカゾルを用いた。Siはシリカ(SiO2 )もしくはその複合酸化物として存在すると推定される。
【0095】
【表2】
Figure 0003896223
【0096】
【表3】
Figure 0003896223
【0097】
【発明の効果】
以上から明らかな様に、本発明の装置によれば、排ガス流路にNOx吸着触媒を設け、リーン排ガスの酸化雰囲気でNOxを吸着捕捉し還元雰囲気をつくって吸着触媒を再生することにより、リーンバーン排ガス中のNOx等を、燃費に大きな影響を与えることなく高効率で浄化できる。
【図面の簡単な説明】
【図1】本発明の代表的な実施態様を示す本発明の方法による排ガス浄化装置の構成図。
【図2】本発明の方法によりリッチ運転とリーン運転を交互に繰返したときのNOx浄化率の経時特性。
【図3】リーン排ガス中のNOx濃度とNOx浄化率の関係。
【図4】ストイキ排ガス中のNOx浄化率。
【図5】リッチ(ストイキ)運転からリーン運転に切替えたときの吸着触媒入口NOx濃度と出口NOx濃度の関係。
【図6】リッチ(ストイキ)運転からリーン運転に切替えたときの吸着触媒入口NOx濃度と出口NOx濃度の関係。
【図7】空燃比の制御方法を示すブロック線図。
【図8】空燃比の制御方法を示すフローチャート。
【図9】リーン運転時のNOx排出量の積算方法を示すフローチャート。
【図10】図8のフローチャートにおけるNOx量推算部分。
【図11】図8のフローチャートにおけるNOx量推算部分。
【図12】図8のフローチャートにおけるNOx量推算部分。
【図13】図8のフローチャートにおけるNOx量推算部分。
【図14】マニホールド触媒を設けた実施態様を示す装置の構成図。
【図15】筒内噴射エンジンにおける実施態様を示す装置の構成図。
【図16】後触媒を設けた実施態様を示す装置の構成図。
【図17】吸着触媒の上流に還元剤を添加する実施態様を示す装置構成図。
【図18】モード運転したときのNOx浄化特性図。
【図19】モデルガスを用いて酸素濃度を変化させたときのNOx浄化特性を示すグラフ。
【図20】モデルガスを用いて酸素濃度を変化させたときのNOx浄化特性を示すグラフ。
【符号の説明】
1…エアクリーナー、2…エアフローセンサー、3…スロットルバルブ、5…インジェクタ、6…点火プラグ、7…アクセルペダル、8…負荷センサー、9…吸気温度センサー、12…燃料ポンプ、13…燃料タンク、17…マニホールド触媒、18…吸着触媒、19…酸素センサー、20…吸着触媒温度センサー、
21…排ガス温度センサー、22…NOx濃度サンサー、23…還元剤インジェクター、24…後触媒、25…ECU、26…ノックセンサー、28…水温サンサー、29…クランク角センサー、99…エンジン。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for purifying exhaust gas discharged from an internal combustion engine such as an automobile, and more particularly to purification of exhaust gas discharged from an internal combustion engine that can be operated at a lean air-fuel ratio (lean burn) and an automobile equipped with the internal combustion engine. Relates to the device.
[0002]
[Prior art]
Carbon monoxide (CO), hydrocarbons (HC: Hydrocarbon), nitrogen oxides (NOx), etc. contained in exhaust gas discharged from internal combustion engines such as automobiles are harmful to the human body as air pollutants. It causes problems such as preventing growth. Therefore, a great deal of effort has been made to reduce these emissions, and in addition to reducing the amount generated by improving the combustion method of internal combustion engines, development of a method to purify the exhaust gas using a catalyst etc. Has been steadily achieved. With respect to gasoline engine vehicles, a method using a catalyst that uses Pt and Rh, which are three-way catalysts, as active main components and detoxifies them by simultaneously oxidizing HC and CO and reducing NOx has become the mainstream.
[0003]
By the way, the three-way catalyst effectively works only on the exhaust gas generated by burning near the theoretical air fuel ratio called a window. Conventionally, the air-fuel ratio fluctuates in accordance with the driving condition of the automobile, but the fluctuation range is in principle the theoretical air-fuel ratio gasoline A (weight of air) / F (weight of fuel) = about 14.7; In the book, the theoretical air twist ratio is represented by A / F = 14.7, but this value varies depending on the fuel type. ) Has been adjusted in the vicinity. However, if the engine can be operated at a leaner air / fuel ratio than the stoichiometric air / fuel ratio, fuel efficiency can be improved. Therefore, the development of lean burn combustion technology has been promoted, and recently an internal combustion engine in a lean region with an air / fuel ratio of 18 or more. It is not uncommon for cars to burn. However, when the lean burn exhaust gas is purified with the current three-way catalyst as described above, the HC and CO can be oxidized and purified, but NOx cannot be effectively reduced and purified. Therefore, in order to promote the application of lean burn to large vehicles and the expansion of lean burn combustion time (expansion of lean burn applied operating range), lean burn compatible exhaust gas purification technology is required. Therefore, lean-burn exhaust purification technology, that is, oxygen (O2), A technology for purifying HC, NO, NOx in exhaust gas containing a large amount of NOx, especially a technology for purifying NOx, has been energetically advanced.
[0004]
In Japanese Patent Laid-Open No. 63-61708, HC is supplied upstream of lean burn exhaust gas, and O in the exhaust gas is supplied.2A method has been proposed in which the concentration of the catalyst is lowered by reducing the concentration to a concentration range where the catalyst functions effectively.
[0005]
JP-A-62-297630, JP-A-62-106826, and JP-A-62-117620 disclose NOx in exhaust gas (NO is oxidized and easily absorbed by NO).2After conversion to NO), the catalyst is absorbed and removed by contacting with a catalyst having NOx absorption ability.2, A method of reducing and removing NOx accumulated using a reducing agent such as HC such as methane and gasoline to regenerate the NOx absorption capacity of the catalyst is shown.
[0006]
In addition, in PCT / JP92 / 01279 and PCT / JP92 / 01330, a NOx absorbent that absorbs NOx when the exhaust gas is lean and releases the absorbed NOx when the oxygen concentration in the exhaust gas is reduced is installed in the exhaust passage, NOx is absorbed when the exhaust gas is lean, and the absorbed NOx flows into the NOx absorbent.2There has been proposed an exhaust emission control device that lowers the concentration and discharges it.
[0007]
However, in Japanese Patent Laid-Open No. 63-61708, the exhaust gas composition (O / F) corresponding to about 14.7 (A / F) which is the air-fuel ratio at which the catalyst functions (O / F)2A large amount of HC is required to achieve a concentration of about 0.5%. Although the use of blow-by gas of the present invention is effective, it is not an amount sufficient for treating exhaust gas during operation of the internal combustion engine. Although it is not technically impossible to add fuel, it results in a reduction in fuel consumption that was saved by the lean burn method.
[0008]
In JP-A-62-297630, JP-A-62-106826, and JP-A-62-117620, in the regeneration of the NOx absorbent, the circulation of the exhaust gas is stopped to bring the reducing agent such as HC into contact with the NOx absorbent. , O in the exhaust gas of the reducing agent2Combustion consumption due to is greatly suppressed and the amount of reducing agent used is drastically reduced. However, it is undeniable that the structure of the exhaust gas treatment apparatus becomes complicated because two exhaust gas switching mechanisms for providing two NOx absorbents and alternately circulating the exhaust gas are required.
[0009]
Further, in PCT / JP92 / 01279 and PCT / JP92 / 01330, exhaust gas is always circulated through the NOx absorbent, and when the exhaust gas is lean, it absorbs NOx, and O in the exhaust gas.2Since the absorbent is regenerated by releasing the absorbed NOx by reducing the concentration, it is not necessary to switch the exhaust gas flow, and the problem of the above method is solved. However, NOx is absorbed when the exhaust gas is lean and O in the exhaust gas.2The premise is the application of a material that can release NOx when the concentration is lowered. In the case of this material, absorption and release of NOx inevitably repeats periodic changes in the crystal structure of the absorbent, and careful consideration of durability is required. Further, when it is necessary to treat the released NOx and a large amount of it is released, it is necessary to consider post-treatment with a three-way catalyst.
[0010]
[Problems to be solved by the invention]
In view of the above-described problems of the prior art, the present invention has a simple exhaust treatment device structure, consumes a small amount of reducing agent, and is excellent in durability. An object of the present invention is to provide a device capable of effectively removing and detoxifying harmful components.
[0011]
[Means for Solving the Problems]
The above problems can be solved by the following methods of the present invention.
[0012]
In the present invention, in the redox stoichiometric relationship between the components in the exhaust gas, NOx is chemisorbed in a state where the oxidizing agent is more than the reducing agent, and the reducing agent is adsorbed in the same amount or more to the oxidizing agent. A NOx adsorption catalyst for catalytic reduction of NOx is placed in the exhaust gas flow path, and in the oxidation-reduction stoichiometric relationship between the components in the exhaust gas, a state in which the oxidizing agent is more than the reducing agent is used to chemistry NOx on the adsorption catalyst. Next, a state in which the amount of the reducing agent is equal to or more than that of the oxidizing agent is made to adsorb, and NOx adsorbed on the adsorption catalyst is contacted with the reducing agent to react with N.2Reduced to harmless.
[0013]
Here, the adsorption catalyst refers to a material having the ability to adsorb a substance such as NOx and simultaneously having a catalytic function. In the present invention, it refers to a material having the ability to adsorb and capture NOx, the ability to catalytically reduce NOx, and the ability to catalytically oxidize HC, CO and the like.
[0014]
The oxidizing agent is O2, NO, NO2Etc., mainly oxygen. The reducing agent is HC supplied to an internal combustion engine, HC (including oxygen-containing hydrocarbons), CO, H as its derivative produced by combustion excessive2Furthermore, it is a reducing substance such as HC which is added to the exhaust gas as a reducing component described later.
[0015]
As mentioned above, HC, CO, H as reducing agents for reducing lean exhaust gas and NOx to nitrogen2And so on, these are O as an oxidant in the exhaust gas.2Causes a combustion reaction. NOx (NO and NO2) Also reacts with these and is reduced to nitrogen. Usually, both reactions proceed in parallel, so the utilization rate of the reducing agent is low in the presence of oxygen. In particular, the proportion of the latter is considerably increased at a high temperature of 500 ° C. or higher (depending on the catalyst material). Therefore, NOx is separated from the exhaust gas by the adsorption catalyst (at least O in the exhaust gas)2NOx N by contact reaction with a reducing agent.2Can be effectively reduced. In the present invention, NOx in the lean exhaust gas is adsorbed and removed by the NOx adsorption catalyst to remove NOx in the exhaust gas as O.sub.x.2Separate from.
[0016]
In the present invention, next, an oxidizing agent (O2, NOx, etc.) and reducing agents (HC, CO, H2Etc.) in the redox system composed of the same amount or excellent condition, NOx adsorbed on the adsorption catalyst is contacted with a reducing agent such as HC to react with N2To reduce.
[0017]
By the way, NOx in exhaust gas is almost NO and NO.2Consists of. NO2Is more reactive than NO. Therefore NO2Adsorption removal and reduction are easier than NO. Therefore NO to NO2If it is oxidized, NOx adsorption removal and reduction in the exhaust gas are facilitated. In the present invention, Ox coexists with NOx in lean exhaust gas.2NO2This includes a method of oxidizing and removing the catalyst, and an oxidation means for that purpose, for example, providing the adsorption catalyst with a NO oxidation function or providing an oxidation catalyst in the preceding stage of the adsorption catalyst.
[0018]
In the present invention, the reduction reaction of chemisorbed NOx can be roughly described by the following reaction formula.
[0019]
M-NOThree+ HC → MO + N2+ CO2+ H2O → MCOThree+ N2+ H2O
Where M is a metal element
(MCO as reduction productThreeThe reason for adopting the
The above reaction is an exothermic reaction. Taking the alkali metal and the alkaline earth metal as the metal M, and evaluating the heat of reaction by representing Na and Ba respectively, the following is obtained in the standard state (1 atm, 25 ° C.).
[0020]
2NaNOThree(s) + 5 / 9CThreeH6→ Na2COThree(s) + N2+ 2 / 3CO2
+ 5 / 3H2O
[-ΔH = 873 kjule]
Ba (NOThree)2+ 5 / 9CThreeH6→ BaCOThree(s) + N2+ 2 / 3CO2
+ 5 / 3H2O
[-ΔH = 751 kjule]
Where s: solid g: gas
The corresponding solid value was used as the thermodynamic quantity of the adsorbed species.
[0021]
By the way, CThreeH6The combustion heat of 5/9 mole is 1070 kjule, and each of the above reactions is a calorific value comparable to that of HC. As a matter of course, this heat generation is transmitted to the exhaust gas in contact with it, and a local temperature rise on the surface of the adsorption catalyst is suppressed.
[0022]
When the NOx trapping agent is a NOx absorbent, NOx trapped in the bulk of the absorbent is also reduced, resulting in a large amount of heat generation, and there is a limit to transmission to the exhaust gas, leading to an increase in the temperature of the absorbent. This exotherm shifts the equilibrium of the absorption reaction shown in the following equation to the release side.
[0023]
Figure 0003896223
[0024]
Even if the concentration of the reducing agent is increased to reduce the released NOx quickly and reduce the NOx concentration in the exhaust gas discharged out of the apparatus, NO in the gas phase2The reaction between HC and HC does not progress much. Therefore, the amount of NOx released cannot be reduced sufficiently by increasing the reducing agent. Although it is conceivable to perform a reduction reaction operation at a stage where the amount of NOx absorbed is small, the regeneration frequency of the NOx absorbent increases, which is not practical.
[0025]
Since the adsorption catalyst of the present invention captures NOx only in the vicinity of its surface, the absolute amount of heat generation is small, and since it is quickly transmitted to the exhaust gas, the temperature rise of the adsorption catalyst is small. Therefore, once trapped NOx can be prevented from being released.
[0026]
The NOx adsorption catalyst of the present invention is characterized as a material that captures NOx on its surface by chemical adsorption and does not cause NOx release by an exothermic reaction during NOx reduction. The NOx adsorption catalyst of the present invention is characterized as a material that captures NOx on its surface by chemical adsorption or by a chemical bond near the surface and does not cause NOx release by an exothermic reaction during NOx reduction.
[0027]
The inventors of the present invention are NOx adsorption catalysts containing at least one element selected from potassium (K), sodium (Na), magnesium (Mg), strontium (Sr), and calcium (Ca) as a component. We found that the feature can be realized.
[0028]
The exhaust gas purifying apparatus for an internal combustion engine according to the present invention includes at least potassium (K), sodium (Na), magnesium (Mg), strontium (Sr), and calcium.
A NOx adsorption catalyst containing at least one element selected from (Ca) as a component is disposed in the exhaust gas flow path, and the oxidizing agent is present with respect to the reducing agent in a redox stoichiometric relationship between the components in the exhaust gas. The NOx is chemisorbed on the adsorbing catalyst by creating a large number of states, and then the reducing agent is in the same amount or more with respect to the oxidizing agent.2It is characterized by being rendered harmless by reduction.
[0029]
The exhaust gas purifying apparatus for an internal combustion engine of the present invention also includes at least one element selected from potassium (K), sodium (Na), magnesium (Mg), strontium (Sr) and calcium (Ca) as a part of the component. NOx adsorbing catalyst contained in the exhaust gas passage is placed in the exhaust gas flow path, and O in the redox stoichiometric relationship with respect to a reducing agent such as HC.2NOx trapped by the adsorption catalyst by creating a state where there is a large amount of oxidant such as NOx trapped by chemical bonding on the surface of the adsorption catalyst and in the vicinity of the surface, and then creating a state where the amount of reducing agent is the same or greater than the oxidant Is contacted with a reducing agent to form N2It is characterized by being rendered harmless by reduction.
[0030]
As the NOx adsorption catalyst in the present invention, the following can be suitably applied.
[0031]
From at least one selected from potassium (K), sodium (Na), magnesium (Mg), strontium (Sr) and calcium (Ca), at least one selected from rare earths such as cerium, platinum, rhodium, palladium, etc. A composition comprising a metal and a metal oxide (or composite oxide) containing at least one element selected from the above-mentioned noble metals, and a composition obtained by supporting the composition on a porous heat-resistant metal oxide. The present composition has excellent SOx resistance in addition to excellent NOx adsorption ability.
[0032]
In the method of the present invention, the state in which the amount of reducing agent is the same or larger than the oxidizing agent can be produced by the following method.
[0033]
The combustion condition in the internal combustion engine is the stoichiometric air-fuel ratio or excess fuel (rich). A reducing agent is added to the lean burn exhaust gas.
[0034]
The former can be achieved by the following method.
[0035]
A method of controlling the fuel injection amount in accordance with an oxygen concentration sensor output, an intake flow rate sensor output, etc. provided in the exhaust duct. In this method, a part of the plurality of cylinders is excessively fueled and the remaining part is insufficiently fueled, and the components in the mixed exhaust gas from all the cylinders have the same or more reducing agent than the oxidant in the redox stoichiometric relationship. Also includes a method of creating a state.
[0036]
The latter can be achieved by the following methods.
[0037]
A method of introducing a reducing agent upstream of the adsorption catalyst in the exhaust gas flow. As the reducing agent, gasoline, light oil, kerosene, natural gas, reformed products thereof, hydrogen, alcohols, ammonia and the like as fuel for the internal combustion engine can be applied. It is also effective to introduce blow-by gas and canister purge gas upstream of the adsorption catalyst and introduce a reducing agent such as hydrocarbon contained therein. In a direct fuel injection internal combustion engine, it is effective to inject fuel in the exhaust stroke and to inject fuel as a reducing agent.
[0038]
The adsorption catalyst in the present invention can be applied in various shapes. The present invention can be applied to pellets, plates, granules, and powders, including honeycombs obtained by coating an adsorption catalyst component on a honeycomb structure made of a metal material such as cordierite and stainless steel.
[0039]
In the present invention, the timing for producing a state in which the amount of the reducing agent is the same or larger than that of the oxidizing agent can be determined by the following methods.
[0040]
Estimate NOx emissions during lean operation from air-fuel ratio setting signal determined by ECU (Engine Control Unit), engine speed signal, intake air amount signal, intake pipe pressure signal, speed signal, throttle opening, exhaust gas temperature, etc. When the integrated value exceeds a predetermined set value.
[0041]
When the accumulated oxygen amount exceeds the predetermined amount when the accumulated oxygen amount is detected by the signal of the oxygen sensor (or A / F sensor) placed upstream or downstream of the adsorption catalyst in the exhaust passage.
[0042]
As a variation thereof, when the cumulative oxygen amount during lean operation exceeds a predetermined amount.
[0043]
When the accumulated NOx amount is calculated from the NOx sensor signal placed upstream of the adsorption catalyst in the exhaust passage, and the accumulated NOx amount during the lean operation exceeds a predetermined amount.
[0044]
When the NOx concentration during lean operation is detected by a signal from the NOx sensor placed in the downstream of the adsorption catalyst in the exhaust passage, and the NOx concentration exceeds a predetermined concentration.
[0045]
In the present invention, as described above, the time for maintaining the amount of reducing agent equal to or greater than the oxidizing agent or the amount of reducing agent to be added to maintain the properties of the adsorption catalyst, the specifications and characteristics of the internal combustion engine, etc. However, these can be realized by adjusting the stroke of the fuel injection valve, the injection time, and the injection interval.
[0046]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail with reference to specific embodiments of the present invention. In addition, this invention is not limited to the following embodiment and an Example, It cannot be overemphasized that there are various embodiments within the thought range.
[0047]
[Adsorption catalyst]
The characteristics of the adsorption catalyst according to the method of the present invention will be described. The characteristics of N-N9 containing Na as an alkali metal and N-K9 containing K are as follows.
[0048]
《Adsorption catalyst preparation method》
Adsorption catalyst N-N9 was obtained by the following method.
[0049]
Alumina sol as a binder obtained by nitric acid-separating alumina powder and boehmite was mixed to obtain a nitric acid acidic alumina slurry. The honeycomb was dipped in the coating solution and then immediately pulled up, and the liquid blocked in the cell was removed by air blowing, followed by drying and subsequent firing at 450 ° C. This operation was repeated to coat 150 g of alumina per liter of apparent volume of the honeycomb. A catalytically active component was supported on the alumina-coated honeycomb to obtain a honeycomb-like adsorption catalyst. For example, it was impregnated with a cerium nitrate (Ce nitrate) solution, dried, and then fired at 600 ° C. for 1 hour. Subsequently, it was impregnated with a mixed solution of a sodium nitrate (Na nitrate) solution, a titania sol solution, and a magnesium nitrate (Mg nitrate) solution, and similarly dried and fired. Furthermore, it was impregnated with a mixed solution of dinitodiammine Pt nitric acid solution and rhodium nitrate (nitric acid Rh) solution, dried and calcined at 450 ° C. for 1 hour. Finally, it was impregnated with an Mg nitrate solution and calcined at 450 ° C. for 1 hour. As described above, alumina (Al2OThree) Honeycomb-like adsorption catalyst carrying Ce, Mg, Na, Ti, Rh, Pt, 2Mg- (0.2Rh, 2.7Pt)-(18Na, 4Ti, 2Mg) -27Ce / Al2OThreeGot. Where / Al2OThreeThe active ingredient is Al2OThreeThe numerical value before the element symbol is the weight (g) of the display metal component supported per 1 L of honeycomb apparent volume. The notation order indicates the loading order, Al2OThreeThe components listed in parentheses are carried in the order of the components that are separated from the components indicated in the order of (). Incidentally, the loading amount of each active ingredient can be changed by changing the active ingredient concentration in the impregnation solution.
[0050]
Adsorption catalyst NK9 was prepared by the following method.
[0051]
Instead of the sodium nitrate solution in the preparation of the adsorption catalyst N-N9, a potassium nitrate (nitric acid K) solution was used, and the other methods were the same as those of the adsorption catalyst N-N9. , 4Ti, 2Mg) -27Ce / Al2OThreeGot. In the same manner, the comparative catalyst N-R2 2Mg- (0.2Rh, 2.7Pt) -27Ce / Al2OThreeGot.
[0052]
《Performance evaluation method》
The adsorption catalyst obtained by the above method was heat-treated at 700 ° C. for 5 hours in an oxidizing atmosphere, and then the characteristics were evaluated by the following method.
[0053]
A passenger car equipped with a 1.8 L lean burn gasoline engine was loaded with a 1.7 L honeycomb adsorbent catalyst prepared by the method of the present invention, and the NOx purification characteristics were evaluated.
[0054]
<Characteristics of adsorption catalyst>
The adsorption catalyst N-N9 was mounted, and the NOx purification rate aging characteristics of FIG. 2 were obtained by alternately repeating the rich operation for 30 seconds with A / F = 13.3 and the lean operation for about 20 minutes with A / F = 22. From this figure, it can be seen that this adsorption catalyst purifies NOx during the lean operation period. During the lean operation, the NOx purification rate gradually decreases, and the purification rate that was 100% in the initial stage becomes approximately 40% after 20 minutes. However, this reduced purification rate recovers to 100% after 30 seconds of rich operation. When the lean operation is performed again, the NOx purification ability is restored and the above-mentioned change with time is repeated. Even if the lean operation and the rich operation are repeated a plurality of times, the rate of decrease in the NOx purification rate with time during the lean operation remains unchanged, which indicates that the NOx adsorption performance has been sufficiently regenerated by the rich operation.
[0055]
Relationship between NOx concentration and NOx purification rate in lean exhaust gas by changing the ignition timing and changing NOx concentration in exhaust gas with vehicle speed constant at about 40 km / h (exhaust gas space velocity (SV) about 20,000 / h constant) To obtain FIG. The NOx purification rate decreases with time, but the lower the NOx concentration, the lower the rate of decrease. Table 1 shows the amounts of NOx trapped up to NOx purification rates of 50% and 30%.
[0056]
[Table 1]
Figure 0003896223
[0057]
The NOx trapping amount is almost constant regardless of the NOx concentration. It is a characteristic of chemisorption that the amount of adsorption does not depend on the concentration (pressure) of the adsorbate.
[0058]
Pt particles are first considered as NOx adsorption soot in the test adsorption catalyst. When CO adsorption amount evaluation frequently used as a means for evaluating the amount of exposed Pt was performed, the CO adsorption amount (at 100 ° C.) was 4.5 × 10.-Fourmol. This value is about 1/100 of the NOx adsorption amount, and it is clear that Pt is not the main role of NOx adsorption soot.
[0059]
On the other hand, the BET specific surface area (measured by nitrogen adsorption) measured for each cordierite of this adsorption catalyst is about 25 m.2/ G at 28,050m per 1.7L of honeycomb2Met. In addition, when the chemical structure of Na of the adsorption catalyst of the present invention was examined, CO was added to the mineral acid.2Judging from the value of the inflection point in the neutralization titration curve by the generation and dissolution of gas and the neutral acid, mainly Na2COThreeI was able to judge that it exists. Suppose all surfaces are Na2COThreeThe surface is 0.275 mol Na2COThreeWill be exposed (Na2COThreeSince the specific gravity of 2.533 g / ml is Na2COThreeThe volume of one molecule is obtained (Na2COThreeAssuming that the surface is a cube, the area of one surface is obtained and this is the surface Na2COThreeOccupied area). According to the above reaction formula, 0.275 mol of Na2COThreeIs 0.55 mol of NO2Has the ability to adsorb. However, the amount of NOx actually removed by the adsorption catalyst of the present invention is on the order of 0.04 mol, which is 1/10 or less. This difference is because the BET method evaluates the physical surface area.2OThreeNa2COThreeIt is because the surface area other than is evaluated. The above evaluation shows that the amount of adsorbed NOx is Na2COThreeMuch less than bulk NOx trapping capacity, at least NOx is Na2COThreeIt shows that it is captured in a limited area on or near the surface.
[0060]
In FIG. 3, the rate of reduction of the purification rate is reduced from about 20% of the NOx purification rate, which indicates that a reduction reaction by the catalytic function occurs.
[0061]
FIG. 4 shows the NOx purification rate immediately after switching from lean operation to stoichiometric operation. It can be seen that with the present adsorption catalyst, a NOx purification rate of 90% or more can be obtained immediately after switching to the stoichiometric operation.
[0062]
5 and 6 show the NOx purification characteristics before and after switching from lean to stoichiometric or rich. FIG. 5 shows the NOx concentration at the inlet and outlet of the adsorption catalyst N-N9. FIG. 5A shows the case where the air-fuel ratio is switched from lean at A / F = 22 to rich at A / F = 14.2. It is. At the start of regeneration immediately after the rich switching, the exhaust gas NOx concentration at A / F = 14.2 is high, so that the inlet NOx concentration in the rich operation greatly increases. With this, the outlet NOx concentration increases transiently. The outlet NOx concentration is much lower than the inlet NOx concentration. The regeneration proceeds promptly and the outlet NOx concentration reaches near 0 in a short time. Fig. (B) shows the case where the air-fuel ratio is switched from lean (A / F = 22) to rich (A / F = 13.2). As in Fig. (A), the outlet NOx concentration is always equal to the inlet NOx concentration. The outlet NOx concentration reaches near 0 in a shorter time and in a shorter time.
[0063]
As is apparent from the above, the A / F value as the reproduction condition affects the time required for reproduction. The A / F value, time, and amount of reducing agent suitable for regeneration are affected by the composition, shape, temperature, SV value, type of reducing agent, shape and length of the exhaust passage of the adsorption catalyst. Therefore, the reproduction conditions are determined comprehensively in consideration of these.
[0064]
FIG. 6 shows the NOx concentration at the inlet and outlet of the adsorption catalyst N-K9. FIG. 6A shows the case where the air-fuel ratio is switched from lean at A / F = 22 to rich at A / F = 14.2. FIG. 5B shows the case where the air-fuel ratio is switched from lean at A / F = 22 to rich at A / F = 13.2. However, as in the case of the adsorption catalyst N-N9, the outlet NOx concentration is always constant. Is far below the inlet NOx concentration, and the regeneration of the adsorption catalyst proceeds in a short time. <Basic characteristics of adsorption catalyst>
Model gas was used to evaluate the influence of oxygen concentration on basic characteristics, particularly NOx purification rate.
[0065]
A 6 ml small honeycomb of N-N9 was filled in a quartz semi-responding tube having an inner diameter of 28 mmφ, and a model gas was circulated. The effect of changing the oxygen concentration in the model gas on the NOx purification rate was examined. The reaction temperature was 300 ° C. at the catalyst inlet gas temperature.
[0066]
First, O25% (volume fraction; the same applies below), NO600ppm, CThreeH6500ppm (1500ppm as Cl), CO1000ppm, CO210%, H2O10% and N2A gas having a composition of Balance was circulated, and after 10 minutes when the NOx purification rate was stabilized, only the oxygen concentration was reduced to a predetermined value and maintained for 20 minutes, and finally returned to the initial gas composition. During this period, the NOx concentration change was made by changing the oxygen concentration to be reduced to six types of 0%, 0.5%, 0.7%, 1%, 2% and 3%, thereby obtaining FIG. In FIG. 19, when the oxygen concentration in the lean gas decreases, that is, when the oxidizing atmosphere is weakened and the reducing atmosphere is strengthened, the NOx purification rate tends to increase, suggesting that the present adsorption catalyst purifies NOx by reduction. Yes. In FIG. 19, the NOx purification rate is always a positive value, and in this adsorption catalyst, the NOx concentration after passing through the adsorption catalyst does not increase regardless of the oxygen concentration.
[0067]
Next, O25%, NO600ppm, N2FIG. 20 was obtained by changing the oxygen concentration in the gas in the same manner while circulating the gas having the composition of Balance. This study is characterized by the fact that no reducing agent is contained in the gas. In FIG. 20, even if the oxygen concentration is lowered to weaken the oxidizing atmosphere, the NOx purification rate is not improved. This suggests that the present adsorption catalyst purifies NOx by reduction. In FIG. 20, the NOx purification rate does not become negative, and in the present adsorption catalyst, once trapped NOx is not released by the oxidation-reduction atmosphere.
[0068]
[Exhaust gas purification device]
FIG. 1 is an overall configuration of an apparatus showing an embodiment of an exhaust gas purification apparatus of the present invention.
[0069]
The apparatus of the present invention includes a lean burnable engine 99, an air flow sensor 2 having an air flow sensor 2, a throttle valve 3, and the like, an oxygen concentration sensor (or A / F sensor) 19, an exhaust temperature sensor 21, a NOx adsorption catalyst 18, and the like. It consists of an exhaust system and a control unit (ECU). The ECU includes an I / O LSI as an input / output interface, an arithmetic processing unit MPU, a storage device RAM and ROM that store a large number of control programs, a timer counter, and the like.
[0070]
The above exhaust purification device functions as follows. The intake air to the engine is filtered by the air cleaner 1 and then measured by the air flow sensor 2. The fuel is injected from the injector 5 through the throttle valve 3 and supplied to the engine 99 as an air-fuel mixture. The airflow sensor signal and other sensor signals are input to an ECU (Engine Control Unit).
[0071]
The ECU evaluates the operating state of the internal combustion engine and the state of the NOx adsorption catalyst by a method described later to determine the operating air-fuel ratio, and controls the injection time of the injector 5 to set the fuel concentration of the air-fuel mixture to a predetermined value. The air-fuel mixture sucked into the cylinder is ignited and burned by a spark plug 6 controlled by a signal from the ECU 25. The combustion exhaust gas is led to an exhaust purification system. The exhaust purification system is equipped with a NOx adsorption catalyst. During the stoichiometric operation, the three-way catalyst function purifies NOx, HC, CO in the exhaust gas, and during the lean operation, the NOx is adsorbed by the NOx adsorption capacity and simultaneously has a combustion function. To purify HC and CO. Further, the NOx purification ability of the NOx adsorption catalyst is always judged by the ECU's judgment and control signal during lean operation, and if the NOx purification capacity is reduced, the combustion air-fuel ratio, etc. is shifted to the rich side and the NOx adsorption of the adsorption catalyst. Restore the ability. With the above operation, the present apparatus effectively purifies exhaust gas under all engine combustion conditions of lean operation and stoichiometric (including rich) operation.
[0072]
The fuel concentration (hereinafter referred to as air-fuel ratio) of the air-fuel mixture supplied to the engine is controlled as follows. FIG. 7 is a block diagram showing the air-fuel ratio control method.
[0073]
A load sensor output that outputs a signal corresponding to the depression of the accelerator pedal, an output signal of the intake air measured by the airflow sensor, an engine speed signal detected by the crank angle sensor, an exhaust gas temperature signal, and a throttle that detects the throttle opening The ECU 25 determines the air-fuel ratio (A / F) from information such as the sensor signal, the engine coolant temperature signal, the starter signal, and the like, and this signal is corrected based on the signal fed back from the oxygen sensor to determine the fuel injection amount. It should be noted that feedback control is stopped by signals from the sensors and switches at low temperatures, idle times, high loads, and the like. In addition, the air-fuel ratio correction learning function is used to accurately cope with subtle or sudden changes in the air-fuel ratio.
[0074]
When the determined air-fuel ratio is stoichiometric (A / F = 14.7) and rich (A / F <14.7), the injection conditions of the injector are determined by an instruction from the ECU, and stoichiometric and rich operation are performed. On the other hand, when the lean (A / F> 14.7) operation is determined, it is determined whether or not the NOx adsorption catalyst has the NOx adsorption capability, and if it is determined that the adsorption capability is present, the lean operation as instructed should be performed. When the fuel injection amount is determined and it is determined that there is no adsorption capacity, the air-fuel ratio is richly shifted for a predetermined period to regenerate the NOx adsorption catalyst.
[0075]
FIG. 8 shows a flowchart of air-fuel ratio control. In step 1002, signals for instructing various operating conditions or detecting an operating state are read. Based on these signals, the air-fuel ratio is determined in step 1003, and the determined air-fuel ratio is detected in step 1004. The air-fuel ratio determined in step 1005 is compared with the theoretical air-fuel ratio. The theoretical air-fuel ratio to be compared here is precisely the air-fuel ratio at which the NOx catalytic reduction reaction speed exceeds the trapping speed by adsorption in the adsorption catalyst, and is determined in advance by evaluating the characteristics of the adsorption catalyst. Thus, an air-fuel ratio in the vicinity of the theoretical air-fuel ratio is selected. Here, when the set air-fuel ratio ≦ theoretical air-fuel ratio, the routine proceeds to step 1006, and the air-fuel ratio operation is performed as instructed without performing the regeneration operation of the adsorption catalyst. If set air-fuel ratio> stoichiometric air-fuel ratio, the routine proceeds to step 1007. In step 1007, the NOx adsorption amount is estimated. The estimation calculation method will be described later. Subsequently, at step 1008, it is determined whether or not the estimated NOx adsorption amount is equal to or less than a predetermined limit amount. The limit adsorption amount is set to a value that can sufficiently purify NOx in the exhaust gas in advance by evaluating the NOx trapping characteristics of the adsorption catalyst through experiments or the like and considering the exhaust gas temperature, the adsorption catalyst temperature, and the like. If there is NOx adsorption capability, the routine proceeds to step 1006, and the air-fuel ratio operation is performed as instructed without performing the regeneration operation of the adsorption catalyst. When the NOx adsorption ability is not present, the routine proceeds to step 1009 and the air-fuel ratio is shifted to the rich side. In step 1010, the rich shift time is counted, and if the elapsed time Tr exceeds a predetermined time (Tr) c, the rich shift is terminated.
[0076]
Determination of NOx adsorption ability can be performed as follows.
[0077]
FIG. 9 shows a method of integrating and determining NOx emission from various operating conditions during lean operation.
[0078]
In step 1007-E01, a signal related to the operating condition of the NOx adsorption catalyst such as the exhaust gas temperature and a signal related to various engine operating conditions that affect the NOx concentration in the exhaust gas are read, and the NOx amount E adsorbed per unit time.NIs estimated. In step 1007-E02NIn step 1008-E01, the integrated value ΣEN and the upper limit value (EN) Compare the size with c. ΣEN ≦ (EN) In case of c, the integration is continued and ΣEN> (EN) In the case of c, the integration is canceled in step 1008-E02 and the process proceeds to step 1009.
[0079]
FIG. 10 shows a method of determining based on the accumulated time of lean operation.
[0080]
In step 1007-H01, the lean operation time HLIs integrated, and in step 1008-H01, the integrated value ΣHLAnd the upper limit of accumulated time (HL) Compare the size with c. ΣHL≦ (HL) In case of c, continue integration and ΣHL> (HL) In the case of c, the integration is canceled in step 1008-H02 and the process proceeds to step 1009.
[0081]
FIG. 11 shows a method of determination based on an oxygen sensor signal during lean operation.
[0082]
Step 1007-O01 Oxygen amount Q in lean operationOIs integrated, and in step 1008-O01, the integrated value ΣQOAnd the upper limit of accumulated oxygen (QO) Compare the size with c. ΣQO≦ (QO) In case of c, continue integration and ΣQO> (QO) In the case of c, the integration is canceled in Step 1008-O02 and the process proceeds to Step 1009.
[0083]
FIG. 12 shows a method of determination based on the NOx concentration sensor signal detected at the NOx adsorption catalyst inlet during the lean operation.
[0084]
In step 1007-N01, the NOx amount Q at the NOx adsorption catalyst inlet based on the NOx concentration sensor signal.NIs accumulated. In step 1008-N01, the integrated value ΣQNAnd the upper limit of accumulated NOx amount (QN) Compare the size with c. ΣQN≦ (QN) In case of c, continue integration and ΣQN> (QN) In the case of c, the integration is canceled at step 1008-N02 and the process proceeds to step 1009.
[0085]
FIG. 13 shows a method for determination based on the NOx concentration sensor signal detected at the NOx adsorption catalyst outlet during lean operation.
[0086]
In step 1007-C01, the NOx concentration CN at the NOx adsorption catalyst inlet is detected based on the NOx concentration sensor signal. In step 1008-C01, CNAnd CNUpper limit (CN) Compare the size with c. CN≦ (CN) If c, continue detection and CN> (CN) If c, go to Step 1009.
[0087]
FIG. 14 shows another embodiment of the exhaust gas purifying apparatus of the present invention. 1 is that a manifold catalyst 17 is provided in an exhaust duct near the engine. The tightening of emission regulations for automobile exhaust gas requires purification of harmful substances such as HC discharged immediately after engine startup. That is, conventionally, the catalyst was discharged untreated until the operating temperature was reached, but this amount needs to be greatly reduced. For this purpose, a method of rapidly raising the temperature of the catalyst to the operating temperature is effective. FIG. 14 shows an apparatus configuration that can cope with HC and CO emission reduction at engine startup and exhaust gas purification in lean and stoichiometric (including rich) operation. In the configuration of FIG. 14, the manifold catalyst 17 has Pt, Rh, CeO.2A so-called three-way catalyst having a main component as a catalyst, a Pd added thereto, or a combustion catalyst having a combustion active component such as Pd as a central component can be applied. In this configuration, the temperature of the manifold catalyst 17 is raised in a short time at the time of start-up, and the purification of HC and CO is performed immediately after the start-up. During lean operation, the adsorption catalyst adsorbs and purifies NOx. When the air-fuel ratio is richly shifted during regeneration of the adsorption catalyst, HC and CO as reducing agents reach the adsorption catalyst without undergoing a large chemical change in the manifold catalyst and regenerate it. This configuration is a major feature of the adsorption catalyst.
[0088]
FIG. 15 shows still another embodiment of the exhaust gas purifying apparatus of the present invention. 1 is that the engine 99 is a cylinder injection system. The apparatus of the present invention can be applied well to a cylinder injection engine.
[0089]
FIG. 16 shows still another embodiment of the exhaust gas purifying apparatus of the present invention. 1 and 15 is that a post-catalyst 24 is provided downstream of the adsorption catalyst. For example, a device that improves the HC purification performance by placing a combustion catalyst in the rear catalyst, and a device that enhances the three-way function during stoichiometry by placing a three-way catalyst are realized.
[0090]
FIG. 17 shows still another embodiment of the exhaust gas purifying apparatus of the present invention. The difference from FIGS. 1 and 14-16 is that fuel is added upstream of the adsorption catalyst through the reducing agent injector 23 in response to a rich shift instruction. This method has a great advantage that the operating state of the engine can be set irrespective of the state of the adsorption catalyst.
Hereinafter, the effects of the present invention will be described with specific examples.
[0091]
The exhaust gas purification performance of the adsorption catalyst and apparatus of the present invention was evaluated. An adsorption catalyst and a comparative catalyst were mounted on a lean-burn vehicle with a displacement of 1.8L and run on a chassis dynamometer. Both test catalysts are in the form of honeycomb with a capacity of 1.7 L (400 cell / in2) And heat treated in an oxidizing atmosphere at 700 ° C. for 5 hours was placed under the floor. The traveling was 10-15 mode traveling based on steady traveling and domestic exhaust gas regulation measurement method. For exhaust gas analysis, a method of measuring NOx, HC, CO concentration in exhaust gas by direct analysis using an automobile exhaust gas measuring device and a method of obtaining CVS (Constant Volume Sampling) by an automobile constant volume dilution sampling device were applied.
[0092]
In 10-15 mode driving, during steady driving in 10 mode and 15 mode, acceleration from 20 km / h to 40 km / h in 10 mode, and acceleration from 40 km / h to 60 km / h in 15 mode During acceleration from 50 km / h to 70 km / h, lean (A / F = 22 to 23) travel was used, and the rest was stoichiometric travel. In FIG. 18, when the adsorption catalyst N-N9 according to the method of the present invention is installed, when the adsorption catalyst N-K9 is installed, or when the comparative catalyst N-R2 is installed, the last of 10 modes repeated three times The NOx concentrations before and after the adsorption catalyst in the 10 mode and the subsequent 15 mode are shown. The comparative catalyst had a composition shown in Table 2 below.
[0093]
In FIG. 18, when the adsorption catalysts N-N9 and N-K9 are mounted, the outlet NOx concentration is lower than the inlet NOx concentration in the entire operation range, and the adsorption catalyst is effectively regenerated by repeating the lean operation and the stoichiometric operation. It can be seen that the purification function is maintained. On the other hand, in the comparative catalyst N-R2, there is a portion where the outlet NOx concentration exceeds the inlet NOx concentration.
[0094]
The CVS values obtained with various adsorption catalysts and comparative catalysts are shown in Tables 2 and 3 together with the adsorption catalyst composition. The adsorption catalyst and the comparative catalyst were prepared according to the method described above, but silica sol was used as the preparation raw material for silicon (Si). Si is silica (SiO2) Or its complex oxide.
[0095]
[Table 2]
Figure 0003896223
[0096]
[Table 3]
Figure 0003896223
[0097]
【The invention's effect】
As is clear from the above, according to the apparatus of the present invention, a NOx adsorption catalyst is provided in the exhaust gas flow path, and NOx is adsorbed and captured in the oxidizing atmosphere of the lean exhaust gas, and a reducing atmosphere is created to regenerate the adsorption catalyst. NOx and the like in the burned exhaust gas can be purified with high efficiency without greatly affecting fuel consumption.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an exhaust gas purifying apparatus according to the method of the present invention showing a typical embodiment of the present invention.
FIG. 2 is a time-dependent characteristic of NOx purification rate when a rich operation and a lean operation are alternately repeated by the method of the present invention.
FIG. 3 shows the relationship between the NOx concentration in the lean exhaust gas and the NOx purification rate.
FIG. 4 shows the NOx purification rate in stoichiometric exhaust gas.
FIG. 5 shows the relationship between the adsorption catalyst inlet NOx concentration and the outlet NOx concentration when the rich (stoichiometric) operation is switched to the lean operation.
FIG. 6 shows the relationship between the adsorption catalyst inlet NOx concentration and the outlet NOx concentration when the rich (stoichiometric) operation is switched to the lean operation.
FIG. 7 is a block diagram showing an air-fuel ratio control method.
FIG. 8 is a flowchart showing a method for controlling the air-fuel ratio.
FIG. 9 is a flowchart showing a method of integrating NOx emissions during lean operation.
10 is a NOx amount estimation portion in the flowchart of FIG.
11 is a NOx amount estimation portion in the flowchart of FIG.
12 is a NOx amount estimation portion in the flowchart of FIG.
13 is a NOx amount estimation portion in the flowchart of FIG.
FIG. 14 is a configuration diagram of an apparatus showing an embodiment in which a manifold catalyst is provided.
FIG. 15 is a configuration diagram of an apparatus showing an embodiment in a cylinder injection engine.
FIG. 16 is a configuration diagram of an apparatus showing an embodiment in which a post-catalyst is provided.
FIG. 17 is an apparatus configuration diagram showing an embodiment in which a reducing agent is added upstream of an adsorption catalyst.
FIG. 18 is a NOx purification characteristic diagram when the mode operation is performed.
FIG. 19 is a graph showing NOx purification characteristics when the oxygen concentration is changed using a model gas.
FIG. 20 is a graph showing NOx purification characteristics when the oxygen concentration is changed using a model gas.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Air cleaner, 2 ... Air flow sensor, 3 ... Throttle valve, 5 ... Injector, 6 ... Spark plug, 7 ... Accelerator pedal, 8 ... Load sensor, 9 ... Intake temperature sensor, 12 ... Fuel pump, 13 ... Fuel tank, 17 ... Manifold catalyst, 18 ... Adsorption catalyst, 19 ... Oxygen sensor, 20 ... Adsorption catalyst temperature sensor,
21 ... exhaust gas temperature sensor, 22 ... NOx concentration sensor, 23 ... reducing agent injector, 24 ... post catalyst, 25 ... ECU, 26 ... knock sensor, 28 ... water temperature sensor, 29 ... crank angle sensor, 99 ... engine.

Claims (10)

排ガス中の各成分間の酸化還元化学量論関係が還元剤に対して酸化剤が多い状態にあるときに排ガスに含まれるNOxを表面近傍にNO2 として化学吸着(但し、硝酸イオンNO 3 - の形で吸収保持するものを除く)により捕捉し、酸化剤に対し還元剤が同量以上の状態にあるときに前記表面近傍に捕捉されているNO2 をN2 に還元するNOx吸着触媒を、空燃比A/Fが18以上のリーン状態で運転される内燃機関の排ガス流路に配置し、該酸化還元化学量論関係が還元剤に対して酸化剤が多い空燃比A/Fが18以上の状態にあるリーン運転時のNOx排出量を空燃比設定信号,エンジン回転数信号,吸入空気量信号,吸気管圧力信号,速度信号,スロットル開度及び排ガス温度の少なくともいずれかを用いて推定し、その積算値が所定の設定値を超えたときに酸化剤に対し還元剤が同量かもしくは多い状態をつくり該NOx吸着触媒表面近傍に捕捉されているNO2 を還元剤と接触させてN2 に還元するようにしたことを特徴とする内燃機関の排ガス浄化装置。Redox stoichiometry relationship between the components in the exhaust gas chemisorption as NO 2 in the vicinity of the surface of the NOx contained in the exhaust gas when in the oxidizing agent is more state against reducing agents (provided that nitrate ions NO 3 - was captured by excluding those held in the form of absorption), the NOx adsorbing catalyst for reducing NO 2 to a reducing agent to oxidizing agent is trapped in the vicinity of the surface when it is in the same amount or more states in N 2 The air-fuel ratio A / F is disposed in an exhaust gas flow path of an internal combustion engine that is operated in a lean state of 18 or more, and the air-fuel ratio A / F in which the oxidation-reduction stoichiometry is greater than the reducing agent is 18 Estimate NOx emissions during lean operation using the air / fuel ratio setting signal, engine speed signal, intake air amount signal, intake pipe pressure signal, speed signal, throttle opening, and exhaust gas temperature. The integrated value is When the set value is exceeded, the state in which the reducing agent is the same or larger than the oxidizing agent is created, and NO 2 trapped in the vicinity of the NOx adsorption catalyst surface is brought into contact with the reducing agent and reduced to N 2 . An exhaust gas purification apparatus for an internal combustion engine characterized by the above. 排ガス中の各成分間の酸化還元化学量論関係が還元剤に対して酸化剤が多い状態にあるときに排ガス中のNOxを表面近傍にNO2 として化学吸着(但し、硝酸イオンNO 3 - の形で吸収保持するものを除く)により捕捉し、酸化剤に対し還元剤が同量以上の状態にあるときに前記表面近傍に捕捉されているNO2 をN2 に還元するNOx吸着触媒を、空燃比A/Fが18以上のリーン状態で運転される内燃機関の排ガス流路に配置し、該酸化還元化学量論関係が還元剤に対して酸化剤が多い空燃比A/Fが18以上の状態にあるリーン運転時の累積酸素量を、該排ガス流路の該NOx吸着触媒上流または後流に置かれた酸素センサーもしくは空燃比センサーの信号により検出し、該累積酸素量が所定の量を超えたときに酸化剤に対し還元剤が同量かもしくは多い状態をつくり該NOx吸着触媒表面近傍に捕捉されているNO2 を還元剤と接触させてN2 に還元するようにしたことを特徴とする内燃機関の排ガス浄化装置。Redox stoichiometry relationship between the components in the exhaust gas chemisorption as NO 2 to NOx in the exhaust gas in the vicinity of the surface when it is in a state oxidizing agent is more to the reducing agent (where nitrate ions NO 3 - in was captured by excluding those which absorb held in the form), the NOx adsorbing catalyst for reducing NO 2 to a reducing agent to oxidizing agent is trapped in the vicinity of the surface when it is in the same amount or more states in N 2, The air-fuel ratio A / F is disposed in an exhaust gas flow path of an internal combustion engine that is operated in a lean state of 18 or more, and the air-fuel ratio A / F in which the oxidation-reduction stoichiometry is greater than the reducing agent is 18 or more. The amount of accumulated oxygen during lean operation in the state of is detected by a signal from an oxygen sensor or air-fuel ratio sensor placed upstream or downstream of the NOx adsorption catalyst in the exhaust gas flow path, and the accumulated oxygen amount is a predetermined amount. The same as the reducing agent. An exhaust gas purifying apparatus for an internal combustion engine characterized in that NO 2 trapped in the vicinity of the surface of the NOx adsorption catalyst is produced in an amount or large state and is brought into contact with a reducing agent to reduce it to N 2 . 排ガス中の各成分間の酸化還元化学量論関係が還元剤に対して酸化剤が多い状態にあるときに排ガス中のNOxを表面近傍にNO2 として化学吸着(但し、硝酸イオンNO 3 - の形で吸収保持するものを除く)により捕捉し、酸化剤に対し還元剤が同量以上の状態にあるときに前記表面近傍に捕捉されているNO2 をN2 に還元するNOx吸着触媒を、空燃比A/Fが18以上のリーン状態で運転される内燃機関の排ガス流路に配置し、該酸化還元化学量論関係が還元剤に対して酸化剤が多い空燃比A/Fが18以上の状態にあるリーン運転時の累積NOx量を、該排ガス流路の該NOx吸着触媒上流に置かれたNOxセンサー信号により算出して、該累積NOx量が所定の値を超えたときに酸化剤に対し還元剤が同量かもしくは多い状態をつくり該NOx吸着触媒表面近傍に捕捉されているNO2 を還元剤と接触させてN2 に還元するようにしたことを特徴とする内燃機関の排ガス浄化装置。Redox stoichiometry relationship between the components in the exhaust gas chemisorption as NO 2 to NOx in the exhaust gas in the vicinity of the surface when it is in a state oxidizing agent is more to the reducing agent (where nitrate ions NO 3 - in was captured by excluding those which absorb held in the form), the NOx adsorbing catalyst for reducing NO 2 to a reducing agent to oxidizing agent is trapped in the vicinity of the surface when it is in the same amount or more states in N 2, The air-fuel ratio A / F is disposed in an exhaust gas flow path of an internal combustion engine that is operated in a lean state of 18 or more, and the air-fuel ratio A / F in which the oxidation-reduction stoichiometry is greater than the reducing agent is 18 or more. The amount of accumulated NOx at the time of lean operation in the state of is calculated by a NOx sensor signal placed upstream of the NOx adsorption catalyst in the exhaust gas flow path, and the oxidizer when the accumulated NOx amount exceeds a predetermined value The same or more reducing agent An exhaust gas purifying apparatus for an internal combustion engine, wherein NO 2 trapped in the vicinity of the NOx adsorption catalyst surface is brought into contact with a reducing agent and reduced to N 2 . 排ガス中の各成分間の酸化還元化学量論関係が還元剤に対して酸化剤が多い状態にあるときに排ガス中のNOxを表面近傍にNO2 として化学吸着(但し、硝酸イオンNO 3 - の形で吸収保持するものを除く)により捕捉し、酸化剤に対し還元剤が同量以上の状態にあるときに前記表面近傍に捕捉されているNO2 をN2 に還元するNOx吸着触媒を、空燃比A/Fが18以上のリーン状態で運転される内燃機関の排ガス流路に配置し、該酸化還元化学量論関係が還元剤に対して酸化剤が多い空燃比A/Fが18以上の状態にあるリーン運転時に該NOx吸着触媒後流の排ガス流路に存在するNOx濃度を該NOx吸着触媒後流に置かれたNOxセンサーの信号により検出し、該NOx濃度が所定濃度を超えたときに酸化剤に対し還元剤が同量かもしくは多い状態をつくり該NOx吸着触媒表面近傍に捕捉されているNO2 を還元剤と接触させてN2 に還元するようにしたことを特徴とする内燃機関の排ガス浄化装置。Redox stoichiometry relationship between the components in the exhaust gas chemisorption as NO 2 to NOx in the exhaust gas in the vicinity of the surface when it is in a state oxidizing agent is more to the reducing agent (where nitrate ions NO 3 - in was captured by excluding those which absorb held in the form), the NOx adsorbing catalyst for reducing NO 2 to a reducing agent to oxidizing agent is trapped in the vicinity of the surface when it is in the same amount or more states in N 2, The air-fuel ratio A / F is disposed in an exhaust gas flow path of an internal combustion engine that is operated in a lean state of 18 or more, and the air-fuel ratio A / F in which the oxidation-reduction stoichiometry is greater than the reducing agent is 18 or more. The NOx concentration present in the exhaust gas flow path downstream of the NOx adsorption catalyst during the lean operation in the state is detected by a signal of the NOx sensor placed in the downstream flow of the NOx adsorption catalyst, and the NOx concentration exceeds a predetermined concentration Sometimes the same amount of reducing agent to oxidizing agent Alternatively, an exhaust gas purifying apparatus for an internal combustion engine characterized in that NO 2 trapped in the vicinity of the surface of the NOx adsorption catalyst is produced and brought into contact with a reducing agent to reduce it to N 2 . 流入する排ガスの空燃比がリーンのときに該排ガス中のNOxを表面近傍にNO2 として化学吸着(但し、硝酸イオンNO 3 - の形で吸収保持するものを除く)により捕捉し、流入する排ガスの空燃比がストイキ或いはリッチのときに前記表面近傍に化学吸着により捕捉されているNO2 をN2 に還元するNOx吸着触媒を空燃比A/Fが18以上のリーン状態で運転される内燃機関の排ガス流路に備え、更に排ガスの温度と前記NOx吸着触媒の温度とエンジン回転数と空燃比と吸入空気量及び点火時期の少なくともいずれかを用いて該NOx吸着触媒の単位時間あたりのNOx吸着量を推定して該NOx吸着触媒がNOx吸着性能を保有しているか否かを判定するNOx吸着能判定手段を含む空燃比制御ユニットを備えたことを特徴とする内燃機関の排ガス浄化装置。Exhaust gas by capturing and flows - fuel ratio of the exhaust gas flowing chemical adsorbing NOx in the exhaust gas as NO 2 in the vicinity of the surface at the time of lean (excluding those which absorb held in the form of However, the nitrate ions NO 3) An internal combustion engine in which a NOx adsorption catalyst that reduces NO 2 trapped by chemical adsorption near the surface to N 2 when the air-fuel ratio of the engine is stoichiometric or rich is operated in a lean state in which the air-fuel ratio A / F is 18 or more. NOx adsorption per unit time of the NOx adsorption catalyst using at least one of exhaust gas temperature, NOx adsorption catalyst temperature, engine speed, air-fuel ratio, intake air amount and ignition timing An internal combustion engine comprising an air-fuel ratio control unit including NOx adsorption capacity determination means for estimating the amount and determining whether or not the NOx adsorption catalyst has NOx adsorption performance Seki's exhaust gas purification equipment. 流入する排ガスの空燃比が理論空燃比よりも高いときに該排ガス中のNOxを表面近傍にNO2 として化学吸着(但し、硝酸イオンNO 3 - の形で吸収保持するものを除く)により捕捉し、流入する排ガスの空燃比が理論空燃比または以下のときに前記表面近傍に化学吸着により捕捉されているNO2 をN2 に還元するNOx吸着触媒を空燃比A/Fが18以上のリーン状態で運転される内燃機関の排ガス流路に備え、更に該内燃機関が理論空燃比よりも高い状態で運転された時間を積算して該NOx吸着触媒がNOx吸着性能を保有しているか否かを判定するNOx吸着能判定手段を含む空燃比制御ユニットを備えたことを特徴とする内燃機関の排ガス浄化装置。Chemisorption fuel ratio of the exhaust gas flowing is as NO 2 in the vicinity of the surface of the NOx in the exhaust gas when higher than the stoichiometric air-fuel ratio (provided that nitrate ions NO 3 - excluding those which absorb held in the form of) a capture When the air-fuel ratio of the inflowing exhaust gas is the stoichiometric air-fuel ratio or below, the NOx adsorption catalyst for reducing NO 2 trapped by chemical adsorption near the surface to N 2 is in a lean state with an air-fuel ratio A / F of 18 or more. Whether or not the NOx adsorption catalyst possesses NOx adsorption performance by integrating the time during which the internal combustion engine is operated in a state higher than the stoichiometric air-fuel ratio. An exhaust gas purifying apparatus for an internal combustion engine, comprising an air-fuel ratio control unit including a NOx adsorption capacity determining means for determining. 流入する排ガスの空燃比がリーンのときに該排ガス中のNOxを表面近傍にNO2 として化学吸着(但し、硝酸イオンNO 3 - の形で吸収保持するものを除く)により捕捉し、流入する排ガスの空燃比がストイキ或いはリッチのときに前記表面近傍に化学吸着により捕捉されたNO2 をN2 に還元するNOx吸着触媒を空燃比A/Fが18以上のリーン状態で運転される内燃機関の排ガス流路に備え、更に該排ガス流路の該NOx吸着触媒上流に設置された酸素センサーからの信号により算出されたリーン運転中の積算酸素量に基づいて該NOx吸着触媒がNOx吸着能力を保持しているか否かを判定するNOx吸着能判定手段を含む空燃比制御ユニットを備えたことを特徴とする内燃機関の排ガス浄化装置。Exhaust gas by capturing and flows - fuel ratio of the exhaust gas flowing chemical adsorbing NOx in the exhaust gas as NO 2 in the vicinity of the surface at the time of lean (excluding those which absorb held in the form of However, the nitrate ions NO 3) An NOx adsorption catalyst for reducing NO 2 trapped by chemical adsorption near the surface to N 2 when the air-fuel ratio of the engine is stoichiometric or rich is an internal combustion engine operated in a lean state where the air-fuel ratio A / F is 18 or more. The NOx adsorption catalyst retains NOx adsorption capacity based on the accumulated oxygen amount during lean operation calculated from a signal from an oxygen sensor installed upstream of the NOx adsorption catalyst in the exhaust gas flow path. An exhaust gas purifying apparatus for an internal combustion engine, comprising an air-fuel ratio control unit including a NOx adsorption capacity determining means for determining whether or not 流入する排ガスの空燃比がリーンのときに該排ガス中のNOxを表面近傍にNO2 として化学吸着(但し、硝酸イオンNO 3 - の形で吸収保持するものを除く)により捕捉し、流入する排ガスの空燃比がストイキ或いはリッチのときに前記表面近傍に化学吸着により捕捉されたNO2 をN2 に還元するNOx吸着触媒を空燃比A/Fが18以上のリーン状態で運転される内燃機関の排ガス流路に備え、更に該排ガス流路の該NOx吸着触媒入口側に設置されたNOxセンサーからの信号により算出されたリーン運転時の積算NOx量に基づいて該NOx吸着触媒がNOx吸着能力を保持しているか否かを判定するNOx吸着能判定手段を含む空燃比制御ユニットを備えたことを特徴とする内燃機関の排ガス浄化装置。Exhaust gas by capturing and flows - fuel ratio of the exhaust gas flowing chemical adsorbing NOx in the exhaust gas as NO 2 in the vicinity of the surface at the time of lean (excluding those which absorb held in the form of However, the nitrate ions NO 3) An NOx adsorption catalyst for reducing NO 2 trapped by chemical adsorption near the surface to N 2 when the air-fuel ratio of the engine is stoichiometric or rich is an internal combustion engine operated in a lean state where the air-fuel ratio A / F is 18 or more. The NOx adsorption catalyst has a NOx adsorption capacity based on an integrated NOx amount during lean operation calculated from a signal from a NOx sensor installed on the NOx adsorption catalyst inlet side of the exhaust gas flow path. An exhaust gas purifying apparatus for an internal combustion engine, comprising an air-fuel ratio control unit including a NOx adsorption capacity determining means for determining whether or not it is held. 流入する排ガスの空燃比がリーンのときに該排ガス中のNOxを表面近傍にNO2 として化学吸着(但し、硝酸イオンNO 3 - の形で吸収保持するものを除く)により捕捉し、流入する排ガスの空燃比がストイキ或いはリッチのときに前記表面近傍に化学吸着により捕捉されたNO2 をN2 に還元するNOx吸着触媒を空燃比A/Fが18以上のリーン状態で運転される内燃機関の排ガス流路に備え、更に該排ガス流路の該NOx吸着触媒出口側に設置されたNOxセンサーからの信号により算出されたリーン運転時のNOx濃度に基づいて該NOx吸着触媒がNOx吸着能力を保持しているか否かを判定するNOx吸着能判定手段を含む空燃比制御ユニットを備えたことを特徴とする内燃機関の排ガス浄化装置。Exhaust gas by capturing and flows - fuel ratio of the exhaust gas flowing chemical adsorbing NOx in the exhaust gas as NO 2 in the vicinity of the surface at the time of lean (excluding those which absorb held in the form of However, the nitrate ions NO 3) An NOx adsorption catalyst for reducing NO 2 trapped by chemical adsorption near the surface to N 2 when the air-fuel ratio of the engine is stoichiometric or rich is an internal combustion engine operated in a lean state where the air-fuel ratio A / F is 18 or more. The NOx adsorption catalyst retains the NOx adsorption capability based on the NOx concentration during lean operation calculated from the signal from the NOx sensor installed in the exhaust gas flow path and on the NOx adsorption catalyst outlet side of the exhaust gas flow path An exhaust gas purifying apparatus for an internal combustion engine, comprising an air-fuel ratio control unit including a NOx adsorption capacity determining means for determining whether or not 流入する排ガスの空燃比がリーンのときに該排ガス中のNOxを表面近傍にNO2 として化学吸着(但し、硝酸イオンNO 3 - の形で吸収保持するものを除く)により捕捉し、流入する排ガスの空燃比がストイキ或いはリッチのときに前記表面近傍に化学吸着により捕捉されたNO2 をN2 に還元するNOx吸着触媒を内燃機関の排ガス流路に備え、更に該内燃機関の状態を監視する各種センサーの信号により該NOx吸着触媒がNOx吸着能力を維持しているか否かを判定して空燃比をストイキ或いはリッチに制御する空燃比制御ユニットを備えたことを特徴とする内燃機関の排ガス浄化装置。Exhaust gas by capturing and flows - fuel ratio of the exhaust gas flowing chemical adsorbing NOx in the exhaust gas as NO 2 in the vicinity of the surface at the time of lean (excluding those which absorb held in the form of However, the nitrate ions NO 3) When the air-fuel ratio of the engine is stoichiometric or rich, the exhaust gas passage of the internal combustion engine is provided with a NOx adsorption catalyst for reducing NO 2 trapped by chemical adsorption to N 2 in the vicinity of the surface, and the state of the internal combustion engine is further monitored An exhaust gas purification system for an internal combustion engine, comprising an air-fuel ratio control unit for determining whether or not the NOx adsorption catalyst maintains NOx adsorption capacity based on signals from various sensors and controlling the air-fuel ratio stoichiometrically or richly. apparatus.
JP14423199A 1999-05-25 1999-05-25 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3896223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14423199A JP3896223B2 (en) 1999-05-25 1999-05-25 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14423199A JP3896223B2 (en) 1999-05-25 1999-05-25 Exhaust gas purification device for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP09013655A Division JP3107294B2 (en) 1996-06-10 1997-01-28 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11350947A JPH11350947A (en) 1999-12-21
JP3896223B2 true JP3896223B2 (en) 2007-03-22

Family

ID=15357301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14423199A Expired - Fee Related JP3896223B2 (en) 1999-05-25 1999-05-25 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3896223B2 (en)

Also Published As

Publication number Publication date
JPH11350947A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
KR100290272B1 (en) Exhaust gas purifying apparatus for internal combustion engine and exhaust gas purifying catalyst for internal combustion engine
JP2009092076A (en) Exhaust emission control device of diesel engine
JP3613083B2 (en) Exhaust purification control device
JP3746179B2 (en) Exhaust gas purification device for internal combustion engine
US20020050135A1 (en) Apparatus for purifying and controlling exhaust gases
JP4464472B2 (en) Internal combustion engine exhaust gas purification method and purification device
JP4147702B2 (en) NOx adsorption catalyst for exhaust gas purification of internal combustion engine
JP3896224B2 (en) Control device for internal combustion engine
JP3896223B2 (en) Exhaust gas purification device for internal combustion engine
JP3107303B2 (en) Exhaust gas purification device for internal combustion engine
JP3772478B2 (en) Regeneration method of exhaust gas purification catalyst for internal combustion engine
JPH11169708A (en) Exhaust gas purification device for internal combustion engine
WO2007029339A1 (en) Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification
JPH11190210A (en) Exhaust emission control device
JP2004100483A (en) Exhaust gas cleaning method
JP2006037790A (en) Exhaust emission control device and exhaust emission control method of gas heat pump
JP2001050033A (en) Exhaust emission control system
AU742434B2 (en) Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
JP2002115534A (en) Exhaust emission control device for internal combustion engine
JPH1181987A (en) Nox purifying method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees