JP5347372B2 - Exhaust gas purification system and exhaust gas purification method - Google Patents

Exhaust gas purification system and exhaust gas purification method Download PDF

Info

Publication number
JP5347372B2
JP5347372B2 JP2008211125A JP2008211125A JP5347372B2 JP 5347372 B2 JP5347372 B2 JP 5347372B2 JP 2008211125 A JP2008211125 A JP 2008211125A JP 2008211125 A JP2008211125 A JP 2008211125A JP 5347372 B2 JP5347372 B2 JP 5347372B2
Authority
JP
Japan
Prior art keywords
temperature
exhaust gas
catalyst
valve
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008211125A
Other languages
Japanese (ja)
Other versions
JP2010048112A (en
Inventor
隆行 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2008211125A priority Critical patent/JP5347372B2/en
Publication of JP2010048112A publication Critical patent/JP2010048112A/en
Application granted granted Critical
Publication of JP5347372B2 publication Critical patent/JP5347372B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control system heating a section carrying catalyst to uniform temperature and quickly and efficiently using purification function of the catalyst in the exhaust emission control system provided with an exhaust emission control device such as an NOx conversion catalyst device, an oxidation catalyst device, and a filter device with catalyst. <P>SOLUTION: In the exhaust emission control system 1 provided with the exhaust emission control device 10 carrying catalyst converting harmful components in exhaust gas G, an outer circumference of the section carrying catalyst of the exhaust emission control device 10 is covered by a heater 31 and a conductive part of a heater 31 is divided in a longitudinal direction to make current applied to the heater 31 pass in the circumference direction. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、触媒を担持した部分の外周にヒータを配置した排気ガス浄化装置を備えた排気ガス浄化システム及び排気ガス浄化方法に関する。   The present invention relates to an exhaust gas purification system and an exhaust gas purification method provided with an exhaust gas purification device in which a heater is disposed on the outer periphery of a portion carrying a catalyst.

内燃機関の排気ガスを浄化するための装置の一つに、排気ガス中のNOx(窒素酸化物)の浄化のためのNOx浄化触媒装置がある。このNOx浄化触媒装置の一つに、アルカリ金属又はアルカリ土類金属を貴金属と共に担持して、酸素過剰な排気ガス中のNO(一酸化窒素)を酸化して硝酸塩として触媒上に吸着させて、NOxを浄化するNOx吸蔵還元型触媒を担持した装置がある。このNOx吸蔵還元型触媒は、排気ガスが酸素過剰なリーン空燃比状態では、NOxを吸蔵し、酸素濃度が低いか、空燃比が1より小さいリッチ空燃比状態では、吸蔵したNOxを放出すると共に、この放出されたNOxを還元雰囲気中で還元して、NOxを低減する。   One device for purifying exhaust gas from an internal combustion engine is a NOx purification catalyst device for purifying NOx (nitrogen oxide) in the exhaust gas. In one of these NOx purification catalyst devices, an alkali metal or alkaline earth metal is supported together with a noble metal, NO (nitrogen monoxide) in exhaust gas containing excess oxygen is oxidized and adsorbed on the catalyst as a nitrate, There is an apparatus carrying a NOx occlusion reduction type catalyst for purifying NOx. This NOx occlusion reduction type catalyst occludes NOx when the exhaust gas is in a lean air-fuel ratio state with excess oxygen, and releases the occluded NOx in a rich air-fuel ratio state where the oxygen concentration is low or the air-fuel ratio is less than 1. The released NOx is reduced in a reducing atmosphere to reduce NOx.

また、排気ガス浄化装置の別の装置として、NOxを吸蔵することはできないが、貴金属を主に担持して、その酸化作用により、CO(一酸化炭素)やHC(炭化水素)を酸化除去する酸化触媒装置がある。更に、排気ガス中のPM(微粒子状物質)を捕集して、フィルタに担持した酸化触媒やPM酸化触媒により酸化除去する触媒付きフィルタ装置がある。   Moreover, as another device of the exhaust gas purification device, it cannot occlude NOx, but mainly supports precious metals and oxidizes and removes CO (carbon monoxide) and HC (hydrocarbon) by its oxidation action. There is an oxidation catalyst device. Furthermore, there is a filter device with a catalyst that collects PM (particulate matter) in exhaust gas and oxidizes and removes it with an oxidation catalyst supported on a filter or a PM oxidation catalyst.

これらの排気ガス浄化装置を使用して、内燃機関から排出される排気ガス中のNOx、CO、HC、PM等の有害成分を浄化して、これらの有害成分の大気中への放出量を減少し、排出基準以下にまで下げている。   By using these exhaust gas purification devices, NOx, CO, HC, PM and other harmful components in the exhaust gas discharged from the internal combustion engine are purified, and the amount of these harmful components released into the atmosphere is reduced. However, it has been reduced to below the emission standard.

しかしながら、これらの触媒を使用した排気ガス浄化システム(排気ガスの後処理システム)では、触媒が活性化して浄化反応が可能となる温度まで、触媒を昇温させる必要がある。触媒の種類にもよるが、概略、200℃〜250℃の温度に到達すると、触媒はその浄化反応を開始する。そのため、触媒の温度がこの活性化温度に到達するまでは、排気ガス中の有害成分を触媒反応で除去することはできず、有害成分がそのまま大気中へ排出されてしまうという問題がある。言い換えれば、触媒を用いた排気ガス浄化システムでは、触媒が浄化反応を始める温度への到達時間が短ければ、その分だけ大気中へ放出される有害成分の量を減らすことができる。   However, in an exhaust gas purification system (exhaust gas aftertreatment system) using these catalysts, it is necessary to raise the temperature of the catalyst to a temperature at which the catalyst is activated and a purification reaction is possible. Depending on the type of catalyst, the catalyst generally starts its purification reaction when a temperature of 200 ° C. to 250 ° C. is reached. Therefore, until the temperature of the catalyst reaches this activation temperature, there is a problem that harmful components in the exhaust gas cannot be removed by catalytic reaction, and the harmful components are discharged into the atmosphere as they are. In other words, in an exhaust gas purification system using a catalyst, if the time to reach the temperature at which the catalyst starts the purification reaction is short, the amount of harmful components released into the atmosphere can be reduced accordingly.

従って、これらのNOx浄化触媒装置、酸化触媒装置、触媒付きフィルタ装置を備えた排気ガス浄化システムにおいては、エンジン始動直後等で、触媒の温度が低い場合に活性化温度までの到達時間を短くするために、排気ガスを触媒の内周部へ集中して流し、加熱される触媒を担持した部分を少なくすることが考えられる。   Therefore, in the exhaust gas purification system including these NOx purification catalyst device, oxidation catalyst device, and filter device with catalyst, when the temperature of the catalyst is low, such as immediately after the engine is started, the time to reach the activation temperature is shortened. Therefore, it is conceivable that exhaust gas is concentrated and flowed to the inner peripheral portion of the catalyst to reduce the portion carrying the catalyst to be heated.

これに関連して、触媒の上流に流路制御機構を設けて、排気ガスの温度が低い時には触媒の中心部に排気ガスの流れを集中して、触媒温度の活性化温度への到達を早くし、排気ガスの温度が高い時には触媒の周辺部に集中して排気ガスを流し、排気ガスが高温となっても、触媒でのサルフェートの生成、及び堆積を防止するディーゼルエンジンの触媒コンバータが提案されている(例えば、特許文献1参照)。   In this connection, a flow path control mechanism is provided upstream of the catalyst, and when the exhaust gas temperature is low, the exhaust gas flow is concentrated at the center of the catalyst so that the catalyst temperature reaches the activation temperature quickly. In addition, when the exhaust gas temperature is high, the exhaust gas is concentrated in the periphery of the catalyst, and even if the exhaust gas becomes hot, a catalytic converter for a diesel engine that prevents the formation and accumulation of sulfate in the catalyst is proposed. (For example, refer to Patent Document 1).

このディーゼルエンジンの触媒コンバータでは、触媒コンバータのハウジングの外表面に複数の冷却ファンを設けると効果的であるとし、サルフェートの生成を抑えるために、排気ガスが高温状態になった時に、排気ガスを、触媒の中央部には流さずに、温度が低い触媒の周辺部に集中して通過させている。   In this diesel engine catalytic converter, it is considered effective to provide a plurality of cooling fans on the outer surface of the catalytic converter housing, and in order to suppress the generation of sulfate, the exhaust gas is discharged when the exhaust gas reaches a high temperature. Instead of flowing in the central part of the catalyst, the catalyst is passed through in a concentrated manner at the periphery of the catalyst having a low temperature.

しかしながら、外周部の温度を低温に保つことは、サルフェートの生成を抑えることには有効であると考えられるが、NOx浄化のためには触媒の活性化温度以上に触媒全体の温度を上げる必要があるので、外周部の低温化はNOx浄化の面からは好ましくない。また、触媒内に生成したサルフェートを除去するために、温度を上げて脱硫させる場合に、触媒の外周部の温度上昇が難しく、外周部の脱硫再生が難しくなるという問題がある。   However, maintaining the temperature of the outer peripheral portion at a low temperature is considered to be effective in suppressing the formation of sulfate, but it is necessary to raise the temperature of the entire catalyst above the activation temperature of the catalyst for NOx purification. Therefore, lowering the temperature of the outer peripheral portion is not preferable from the viewpoint of NOx purification. In addition, when desulfurizing by raising the temperature in order to remove the sulfate generated in the catalyst, there is a problem that it is difficult to increase the temperature of the outer peripheral portion of the catalyst and to desulfurize and regenerate the outer peripheral portion.

また、酸化触媒を担持させた高温排気ガス処理部を中央に、加熱手段を取り付けた低温排気ガス処理部を周辺に設けて、排気ガス温度が酸化触媒活性化温度以下である場合には、加熱手段を作動させて排気ガスを酸化触媒活性化温度以上に加熱して低温排気ガス処理部に流して、始動時や排気ガス温度が低下した場合における排気ガス浄化効率を向上させ、また、排気ガス温度が酸化触媒活性化温度以上である場合には、加熱手段の作動を停止し、排気ガスを高温排気ガス処理部に流して、酸化触媒による有害成分の浄化を行う自動車用排気ガス処理装置が提案されている(例えば、特許文献2参照)。   If the exhaust gas temperature is lower than the oxidation catalyst activation temperature, a high-temperature exhaust gas treatment unit carrying the oxidation catalyst is provided in the center and a low-temperature exhaust gas treatment unit equipped with heating means is provided in the periphery. The exhaust gas is heated above the oxidation catalyst activation temperature and flowed to the low temperature exhaust gas processing section to improve the exhaust gas purification efficiency at start-up and when the exhaust gas temperature decreases, and the exhaust gas When the temperature is equal to or higher than the oxidation catalyst activation temperature, an automobile exhaust gas treatment device that stops the operation of the heating means and flows exhaust gas to the high-temperature exhaust gas treatment unit to purify harmful components by the oxidation catalyst. It has been proposed (see, for example, Patent Document 2).

この自動車用排気ガス処理装置では、排気ガス温度が高い場合には高温排気ガス処理部と低温排気ガス処理部に排気ガスを流して浄化し、また、エンジンの始動時や排気ガスが高温から低温になった場合には、経路を切り換えて、加熱手段経由で周辺部の低温排気ガス処理部に流入させる。これにより排気ガスを加熱手段で触媒活性化温度以上に加熱し、この加熱された排気ガスを低温排気ガス処理部に流入させて浄化している。   In this automobile exhaust gas treatment device, when the exhaust gas temperature is high, the exhaust gas is flowed through the high temperature exhaust gas treatment unit and the low temperature exhaust gas treatment unit to purify it. In such a case, the path is switched to flow into the peripheral low temperature exhaust gas processing section via the heating means. As a result, the exhaust gas is heated to a temperature higher than the catalyst activation temperature by the heating means, and the heated exhaust gas flows into the low-temperature exhaust gas processing section for purification.

しかしながら、一般的には、放熱の関係から、触媒の中央部が高い温度に成り易く、周辺部は低い温度に成り易いので、低温排気ガス処理部を周辺側に設けているこの自動車用排気ガス処理装置の構成は熱効率が悪いという問題がある。   However, in general, because of the heat dissipation, the central part of the catalyst is likely to be at a high temperature, and the peripheral part is likely to be at a low temperature. The configuration of the processing apparatus has a problem of poor thermal efficiency.

これに対して、本発明者は、外周部の触媒の昇温時間を短くする手段として、電熱ヒータを低温に成り易い外周部の外周を覆って配置して、このヒータに通電することにより、外周部を外側から加熱することを考えた。   On the other hand, the present inventor, as a means for shortening the temperature rise time of the catalyst at the outer peripheral portion, arranges the electric heater so as to cover the outer periphery of the outer peripheral portion that is likely to be low temperature, and energizes this heater, We considered heating the outer periphery from the outside.

この外周側にヒータを配置することに関連して、ディーゼルエンジンの排気ガス中に含まれるパティキュレートを捕集するランダムに積層された不織布から成るセラミック繊維材の外側に通電金網を巻き付けたディーゼルパティキュレートフィルタが提案されている(例えば、特許文献3参照)。   In connection with the arrangement of the heater on the outer peripheral side, a diesel patty in which an energizing wire mesh is wound around the outside of a ceramic fiber material made of randomly laminated nonwoven fabric that collects particulates contained in exhaust gas of a diesel engine. A curate filter has been proposed (see, for example, Patent Document 3).

このディーゼルパティキュレートフィルタでは、排気ガスを外周側の通電金網から内周側のセラミック繊維材に流すとともに、この通電金網に通電してフィルタ本体を加熱してセラミック繊維材に捕集されたパティキュレートを加熱して焼却してフィルタを再生している。   In this diesel particulate filter, the exhaust gas is allowed to flow from the outer peripheral side of the current-carrying wire mesh to the inner peripheral side ceramic fiber material, and the filter body is heated by energizing the current-carrying wire mesh and collected in the ceramic fiber material. The filter is regenerated by incineration by heating.

しかしながら、単純に排気ガス浄化装置の外周に通電金網を設けただけでは、通電金網に通電して加熱しようとすると、外周全体が一様に加熱されてしまう。そのため、排気ガス中の有害成分が触媒反応で生じる熱が排気ガスの移動により下流側に伝達されるため、下流側の温度が上流側の温度よりも高くなってしまい、排気ガス浄化装置の触媒を均一温度に加熱できない。触媒が均一温度にならないと、再生処理を行わない通常の排気ガスの有害成分の浄化時においては、低温部では活性化が不完全となり、高温部ではサルフェートの蓄積の問題が生じ、また、触媒を高温にする必要がある脱硫処理時には、低温部では脱硫処理が不完全となり、高温部では触媒の劣化の問題が生じる。
特開平10−299465号公報 特開2002−295233号公報 特開平08−312328号公報
However, simply providing an energizing wire mesh on the outer periphery of the exhaust gas purifying device will cause the entire outer periphery to be heated uniformly when energizing and heating the energizing wire mesh. For this reason, the heat generated by the catalytic reaction of harmful components in the exhaust gas is transferred to the downstream side by the movement of the exhaust gas, so the downstream temperature becomes higher than the upstream temperature, and the catalyst of the exhaust gas purification device Cannot be heated to a uniform temperature. If the catalyst does not reach a uniform temperature, during the purification of the harmful components of normal exhaust gas that is not regenerated, activation is incomplete in the low temperature part, and there is a problem of sulfate accumulation in the high temperature part. At the time of desulfurization treatment in which the temperature needs to be increased, the desulfurization treatment is incomplete at the low temperature portion, and the problem of catalyst deterioration occurs at the high temperature portion.
JP-A-10-299465 JP 2002-295233 A Japanese Patent Laid-Open No. 08-312328

本発明は、上記の状況を鑑みてなされたものであり、その目的は、NOx浄化触媒装置、酸化触媒装置、触媒付きフィルタ装置等の排気ガス浄化装置を備えた排気ガス浄化システムにおいて、触媒を担持した部分の温度を均一温度に加熱することができて、速やかに触媒の浄化機能を効率よく利用できる排気ガス浄化システム及び排気ガス浄化方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a catalyst in an exhaust gas purification system including an exhaust gas purification device such as a NOx purification catalyst device, an oxidation catalyst device, and a filter device with a catalyst. An object of the present invention is to provide an exhaust gas purification system and an exhaust gas purification method that can heat the temperature of a supported portion to a uniform temperature and can efficiently use the purification function of a catalyst quickly.

上記の目的を達成するための本発明の排気ガス浄化システムは、排気ガス中の有害成分を浄化する触媒を担持した排気ガス浄化装置を備えた排気ガス浄化システムにおいて、前記排気ガス浄化装置の触媒を担持した部分の外周を温度が上昇すると通電抵抗が増加する材料を使用したヒータで包み、該ヒータに流す電流が周方向に流れるように、該ヒータの通電部分を長手方向に分割して設けると共に、分割されたそれぞれの前記ヒータが通電電極に電気的に並列に接続されており、前記排気ガス浄化装置の触媒を担持した部分を遮熱構造の筒状の仕切り壁により外周部と中央筒部の二つに分けて、内燃機関の排気通路と前記外周部との間に第1バルブを、前記排気通路と前記中央筒部との間に第2バルブを設け、前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第1判定温度以下では、前記第1バルブを閉じると共に前記第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第1判定温度を超えたときには、前記第2バルブを開いたまま前記第1バルブを開いて排気ガスを前記中央筒部と前記外周部の両方に流すと共に前記ヒータに通電して加熱しながら通電量を調整して外周部の温度を調整し、脱硫処理を行っている場合に、前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第2判定温度以下では、前記第1バルブを閉じると共に前記第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第2判定温度を超えてから、前記第1指標温度が前記第2判定温度を超えた時間の総和である第1脱硫処理時間が予め設定された第1判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態をそのまま継続し、前記第1脱硫処理時間が前記第1判定時間を経過したときに、前記第1バルブを開いて前記第2バルブを閉じて排気ガスを前記外周部のみに流すと共に前記ヒータに通電して加熱しながら通電量を調整して外周部の温度を調整し、更に、前記外周部を昇温する前記ヒータへの通電電流が予め設定した判定電流値を超えると、前記通電電流が前記判定電流値を超えた時間の総和である第2脱硫処理時間が予め設定した第2判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態と前記ヒータによる温度調整をそのまま継続し、前記第2脱硫処理時間が前記第2判定時間を経過すると、脱硫処理を終了するように、前記第1バルブを開くことにより排気ガスを前記外周部に流し、前記第2バルブを開くことにより排気ガスを前記中央筒部に流すように構成する。 In order to achieve the above object, an exhaust gas purification system of the present invention is an exhaust gas purification system comprising an exhaust gas purification device carrying a catalyst for purifying harmful components in the exhaust gas, the catalyst of the exhaust gas purification device. Enclose the outer periphery of the part carrying the heater with a heater that uses a material whose energization resistance increases as the temperature rises, and divide the energized part of the heater in the longitudinal direction so that the current flowing through the heater flows in the circumferential direction In addition, each of the divided heaters is electrically connected in parallel to the energizing electrode, and the portion carrying the catalyst of the exhaust gas purifying device is connected to the outer peripheral portion and the central tube by a cylindrical partition wall having a heat shielding structure. Divided into two parts, a first valve is provided between the exhaust passage of the internal combustion engine and the outer peripheral part, and a second valve is provided between the exhaust passage and the central cylinder part, and the catalyst of the central cylinder part The temperature of When the first index temperature to be marked is equal to or lower than the first determination temperature set in advance, the first valve is closed and the second valve is opened to allow the exhaust gas to flow only through the central tube portion. When the temperature exceeds one judgment temperature, the first valve is opened while the second valve is opened, and exhaust gas is allowed to flow through both the central tube portion and the outer peripheral portion, and the heater is energized while being heated. When the temperature of the outer peripheral portion is adjusted to perform desulfurization treatment, the first index temperature indicating the temperature of the catalyst in the central cylinder portion is equal to or lower than the second determination temperature set in advance. The valve is closed and the second valve is opened to allow the exhaust gas to flow only through the central tube portion. After the first index temperature exceeds the second determination temperature, the first index temperature becomes equal to the second determination temperature. The first that is the sum of the times exceeded The first valve and the second valve are kept in the open / closed state until the sulfurization treatment time has passed the first determination time set in advance, and the first desulfurization treatment time has passed the first determination time. When the first valve is opened and the second valve is closed, the exhaust gas is allowed to flow only to the outer peripheral portion and the heater is energized to adjust the energization amount while adjusting the temperature of the outer peripheral portion, Further, when the energization current to the heater that raises the temperature of the outer peripheral portion exceeds a preset determination current value, a second desulfurization treatment time that is the sum of the times when the energization current exceeds the determination current value is preset. Until the elapse of the second determination time, the open / closed state of the first valve and the second valve and the temperature adjustment by the heater are continued as they are, and when the second desulfurization processing time elapses the second determination time, Finish desulfurization treatment As described above, the exhaust gas is caused to flow to the outer peripheral portion by opening the first valve, and the exhaust gas is caused to flow to the central cylinder portion by opening the second valve .

この構成によれば、排気ガス浄化装置の触媒容器を介して放熱する熱量を、ヒータへの通電による加熱で補うことができ、触媒を担持した部分の外周部全体の温度低下を抑制することができる。また、触媒を担持した部分の外周部を、内燃機関からの排気ガスの熱量に依存することなく、ヒータへの通電により加熱して昇温させて活性化温度域内に維持できるので、活性化温度に昇温するまでの時間を著しく短縮できる。従って、触媒が活性化温度域に昇温するまでの間に放出される有害成分の排出量を著しく減少することができる。   According to this configuration, the amount of heat dissipated through the catalyst container of the exhaust gas purification device can be supplemented by heating by energizing the heater, and the temperature decrease of the entire outer peripheral portion of the portion carrying the catalyst can be suppressed. it can. In addition, the outer peripheral portion of the portion carrying the catalyst can be heated by energizing the heater without being dependent on the heat quantity of the exhaust gas from the internal combustion engine, and the temperature can be maintained within the activation temperature range. The time until the temperature rises can be significantly shortened. Accordingly, it is possible to significantly reduce the emission amount of harmful components released until the catalyst is heated to the activation temperature range.

また、一般的には、排気ガス浄化装置の下流側では触媒反応によって発生する熱により上流側よりも温度が高くなるが、ヒータの電流を周方向に並列的に流すことで、排気ガス浄化装置の長手方向毎に電流量を変化させることができ、排気ガスの上流側から下流側になるに従って、それぞれ異なった加熱ができるようになり、触媒の温度を全体的に均一に維持することが比較的容易にできる。つまり、ヒータの材料に温度が上昇すると通電抵抗が増加する一般的なヒータの材料を使用すると、温度が低く通電抵抗値が小さい部分には電流量が増加して効率よく加熱できると共に、温度が高く通電抵抗値が高い部分では電流量が減少して加熱を抑制することができる。 In general, the temperature on the downstream side of the exhaust gas purification device is higher than that on the upstream side due to the heat generated by the catalytic reaction, but by flowing the heater current in parallel in the circumferential direction, the exhaust gas purification device The amount of electric current can be changed for each longitudinal direction of the exhaust gas, and as the exhaust gas moves from the upstream side to the downstream side, different heating can be performed, and the temperature of the catalyst can be maintained uniformly throughout. Easily. In other words, when a general heater material whose energization resistance increases as the temperature rises is used as the heater material, the amount of current increases in a portion where the temperature is low and the energization resistance value is small, and heating can be performed efficiently. In a portion where the energization resistance value is high and the amount of current is reduced, heating can be suppressed.

この構成によれば、暖機運転や低負荷運転等の排気ガス温度が低い場合には、中央筒部のみに排気ガスを流して中央筒部の触媒の温度を迅速に活性化温度以上にすることができる。その一方で、排気ガスの容積流量が増加して、排気ガスを外周部へも流す時に、外周部の触媒の昇温の遅れが著しく大きくなるが、ヒータを設けてこのヒータで加熱することで、この外周部の触媒の昇温の遅れを防止できる。つまり、この2分割構造において、特に外周部にヒータを設ける効果が大きくなる。   According to this configuration, when the exhaust gas temperature is low, such as during warm-up operation or low-load operation, the exhaust gas is allowed to flow only in the central cylinder part, and the temperature of the catalyst in the central cylinder part is quickly brought to the activation temperature or higher. be able to. On the other hand, when the exhaust gas volumetric flow rate increases and the exhaust gas flows also to the outer peripheral part, the delay in the temperature rise of the catalyst on the outer peripheral part becomes remarkably large. Thus, it is possible to prevent a delay in the temperature rise of the catalyst on the outer periphery. That is, in this two-divided structure, the effect of providing a heater on the outer peripheral portion is particularly great.

また、内燃機関の始動直後において、排気ガスにより内燃機関からの排気熱が触媒を担持する部分に伝達されて触媒の温度を上昇させる場合に、排気ガスを中心部分に集中させることが行われる。この場合に、外周部と中央筒部の間に遮熱構造の筒状の仕切り壁、言い換えれば、保温リングを設けているので、熱容量を小さくした中央筒部に被加熱部を限定することができる。   Further, immediately after the start of the internal combustion engine, when exhaust heat from the internal combustion engine is transmitted to the portion carrying the catalyst by the exhaust gas to raise the temperature of the catalyst, the exhaust gas is concentrated at the central portion. In this case, since a cylindrical partition wall having a heat insulation structure is provided between the outer peripheral portion and the central cylindrical portion, in other words, a heat retaining ring is provided, the heated portion can be limited to the central cylindrical portion having a reduced heat capacity. it can.

従って、加熱すべき熱容量を小さくすると共に中央筒部から外周部への熱伝達を少なくしているので、活性化温度まで昇温するのに必要な時間を短くすることができる。また、外周部を昇温する必要が生じて、ヒータに通電して外周部の外周を加熱する際でも、遮熱構造の筒状の仕切り壁で加熱部分の熱容量を少なくすると共に外周部から中央筒部への熱伝達を少なくしているので、外周部の温度を短時間で昇温させることができる。   Therefore, since the heat capacity to be heated is reduced and the heat transfer from the central tube portion to the outer peripheral portion is reduced, the time required for raising the temperature to the activation temperature can be shortened. In addition, even when the temperature of the outer peripheral part needs to be raised and the heater is heated by energizing the heater, the cylindrical partition wall of the heat shielding structure reduces the heat capacity of the heating part and the center from the outer peripheral part. Since heat transfer to the cylindrical portion is reduced, the temperature of the outer peripheral portion can be raised in a short time.

上記の排気ガス浄化システムにおいて、前記ヒータに通電する電流量により前記触媒を担持した部分の外周部位の温度を推定し、この推定値に基づいて、前記ヒータへの通電量を制御して、前記触媒を担持した部分の温度制御を行うように構成する。   In the exhaust gas purification system, the temperature of the outer peripheral portion of the portion carrying the catalyst is estimated from the amount of current flowing to the heater, and the amount of current supplied to the heater is controlled based on the estimated value, The temperature of the portion carrying the catalyst is controlled.

ヒータの抵抗はその配置した場所の温度によって変化し、その抵抗に応じて、一定電圧で通電する電流量は変化するので、電流量を温度のセンサ信号として使用でき、この電流量から触媒外周部温度を推定しながら、印加電圧の制御を行うことにより、より適切な温度分布にすることが比較的容易にできる。   The resistance of the heater changes depending on the temperature of the place where it is placed, and the amount of current applied at a constant voltage changes according to the resistance. Therefore, the amount of current can be used as a temperature sensor signal. By controlling the applied voltage while estimating the temperature, a more appropriate temperature distribution can be made relatively easily.

なお、通電時以外においても、加熱には至らない程度の低電圧をヒータに印加すれば微弱電流が流れるので、この微弱電流を検知することで、この微弱電流からヒータ部位の温度を求め、触媒を担持した部分の外周温度を推定し、その値に応じて通電電圧のオンオフと通電量を制御して触媒を担持した部分の外周部位の温度制御を行うことが容易にできる。   Even when not energized, if a low voltage that does not lead to heating is applied to the heater, a weak current flows. By detecting this weak current, the temperature of the heater part is obtained from this weak current, and the catalyst The temperature of the outer peripheral portion of the portion carrying the catalyst can be easily controlled by estimating the outer peripheral temperature of the portion carrying the catalyst, and controlling the on / off of the energization voltage and the energization amount according to the estimated value.

上記の排気ガス浄化システムにおいて、前記ヒータの通電電流を計測することで、触媒の活性化温度を推定し、この活性化温度から触媒の劣化度合いを推定する。   In the exhaust gas purification system, the activation temperature of the catalyst is estimated by measuring the energization current of the heater, and the degree of deterioration of the catalyst is estimated from the activation temperature.

また、触媒が活性化して触媒反応が発生するようになると、反応熱が発生して温度が上昇し始めるので、この温度上昇の開始時のヒータ通電電流を計測することで、触媒の活性化温度の上昇の程度を推定することができる。一方、触媒は劣化により触媒反応の開始温度である活性化温度が次第に高温側にシフトする。従って、触媒温度に密接な関係を持つヒータの電流値の温度上昇開始時の通電電流の変化から触媒の劣化度合いを把握することができる。なお、排気ガスの流れ方向(排気ガス浄化装置の長手方向)にヒータを分割して数列配置することで、触媒の劣化状況を更に細かく把握することも可能となる。   In addition, when the catalyst is activated and a catalytic reaction occurs, reaction heat is generated and the temperature starts to rise. By measuring the heater energization current at the start of this temperature rise, the activation temperature of the catalyst is measured. The degree of increase can be estimated. On the other hand, the activation temperature, which is the starting temperature of the catalytic reaction, gradually shifts to the high temperature side due to deterioration of the catalyst. Therefore, the degree of catalyst deterioration can be grasped from the change in energization current at the start of temperature rise of the heater current value closely related to the catalyst temperature. In addition, by dividing the heater in the exhaust gas flow direction (longitudinal direction of the exhaust gas purification device) and arranging several rows, it becomes possible to grasp the deterioration state of the catalyst in more detail.

そして、上記の目的を達成するための排気ガス浄化方法は、排気ガス浄化装置の触媒を担持した部分を遮熱構造の筒状の仕切り壁により外周部と中央筒部の二つに分けて、内燃機関の排気通路と前記外周部との間に第1バルブを、前記排気通路と前記中央筒部との間に第2バルブを設け、前記第1バルブを開くことにより排気ガスを前記外周部に流し、前記第2バルブを開くことにより排気ガスを前記中央筒部に流すように構成すると共に、前記外周部の外周を温度が上昇すると通電抵抗が増加する材料を使用したヒータで包み、該ヒータに流す電流が周方向に流れるように、該ヒータの通電部分を長手方向に分割して設けると共に、分割されたそれぞれの前記ヒータが通電電極に電気的に並列に接続されている排気ガス浄化システムの排気ガス浄化方法であって、前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第1判定温度以下では、前記第1バルブを閉じると共に前記第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第1判定温度を超えたときには、前記第2バルブを開いたまま前記第1バルブを開いて排気ガスを前記中央筒部と前記外周部の両方に流すと共に前記ヒータに通電して加熱しながら通電量を調整して外周部の温度を調整し、脱硫処理を行っている場合に、前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第2判定温度以下では、前記第1バルブを閉じると共に前記第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第2判定温度を超えてから、前記第1指標温度が前記第2判定温度を超えた時間の総和である第1脱硫処理時間が予め設定された第1判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態をそのまま継続し、前記第1脱硫処理時間が前記第1判定時間を経過したときに、前記第1バルブを開いて前記第2バルブを閉じて排気ガスを前記外周部のみに流すと共に前記ヒータに通電して加熱しながら通電量を調整して外周部の温度を調整し、更に、前記外周部を昇温する前記ヒータへの通電電流が予め設定した判定電流値を超えると、前記通電電流が前記判定電流値を超えた時間の総和である第2脱硫処理時間が予め設定した第2判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態と前記ヒータによる温度調整をそのまま継続し、前記第2脱硫処理時間が前記第2判定時間を経過すると、脱硫処理を終了することを特徴とする。 And, in the exhaust gas purification method for achieving the above object, the part carrying the catalyst of the exhaust gas purification device is divided into the outer peripheral part and the central cylindrical part by the cylindrical partition wall of the heat shielding structure, A first valve is provided between the exhaust passage of the internal combustion engine and the outer peripheral portion, a second valve is provided between the exhaust passage and the central cylinder portion, and the first valve is opened to allow the exhaust gas to flow to the outer peripheral portion. The exhaust gas is caused to flow through the central cylinder by opening the second valve, and the outer periphery of the outer periphery is wrapped with a heater that uses a material that increases energization resistance when the temperature rises. Exhaust gas purification in which the energized portion of the heater is divided in the longitudinal direction so that the current flowing through the heater flows in the circumferential direction, and each of the divided heaters is electrically connected in parallel to the energized electrode System exhaust When the first index temperature indicating the temperature of the catalyst in the central cylinder portion is equal to or lower than a first determination temperature set in advance, the first valve is closed and the second valve is opened to exhaust the exhaust gas. When the first index temperature exceeds the first determination temperature when the first index temperature exceeds the first cylindrical portion, the first valve is opened while the second valve is open, and the exhaust gas is discharged from the central cylindrical portion and the outer peripheral portion. When the desulfurization treatment is performed by adjusting the energization amount while heating by energizing the heater and heating the heater, the first temperature indicator of the temperature of the catalyst in the central cylinder portion is used. When the index temperature is equal to or lower than a second determination temperature set in advance, the first valve is closed and the second valve is opened to allow exhaust gas to flow only through the central tube portion, and the first index temperature is equal to the second determination temperature. After exceeding, the first index temperature The first valve and the second valve are kept open and closed until the first desulfurization treatment time, which is the sum of the times over which the second determination temperature has been exceeded, has passed a preset first determination time. When the first desulfurization processing time has passed the first determination time, the first valve is opened and the second valve is closed to allow exhaust gas to flow only to the outer periphery and to heat the heater. While adjusting the energization amount to adjust the temperature of the outer peripheral portion, and further when the energization current to the heater that raises the temperature of the outer peripheral portion exceeds a preset determination current value, the energization current becomes the determination current value Until the second desulfurization processing time, which is the sum of the times exceeding the predetermined time, has passed the second determination time set in advance, the open / close state of the first valve and the second valve and the temperature adjustment by the heater are continued as they are, During the second desulfurization process The desulfurization process is terminated when the second determination time elapses .

この「第1指標温度」は、中央筒部の触媒の温度そのもの又はその温度を指標する温度のことを言う。これは、触媒の温度を直接計測するのは難しい場合が多いので、代わりにこの触媒の温度に密接な関係を持った温度、例えば、中央筒部に流入する排気ガスの温度や中央筒部から流出する排気ガスの温度を用いることもある。そのため、この代わりに用いる温度も含む表現として「第1指標温度」と表現している。   The “first index temperature” refers to the temperature of the catalyst in the central cylinder portion itself or a temperature indicating the temperature. This is because it is often difficult to directly measure the temperature of the catalyst. Instead, a temperature closely related to the temperature of the catalyst, for example, the temperature of the exhaust gas flowing into the central cylinder or the central cylinder is used. The temperature of the exhaust gas flowing out may be used. Therefore, “first index temperature” is expressed as an expression including the temperature used instead.

また、第1判定温度は触媒の活性化温度以上の温度であり、触媒の種類にもよるが、200℃〜300℃の範囲内の温度であり、例えば250℃に設定される。   The first determination temperature is a temperature equal to or higher than the activation temperature of the catalyst, and is a temperature within a range of 200 ° C. to 300 ° C., for example, set to 250 ° C., depending on the type of catalyst.

この方法によれば、エンジン始動直後の暖機運転や低負荷運転のときには、第1指標温度が低く、排気ガスの容積流量も小さいので保温性が良い中央筒部に排気ガスを流して、中央筒部の触媒を迅速に昇温して、活性化までの時間を短縮することができる。また、第1指標温度が高く排気ガスの容積流量が大きいときには、中央筒部と外周部の両方に排気ガスを流して、排気ガスが通過する部分の容積を増やして、排気ガスに対する空間速度を下げて、排気ガスが触媒に接触する時間を長くして触媒反応を促進することができる。   According to this method, at the time of warm-up operation or low load operation immediately after engine start, the first index temperature is low and the exhaust gas volumetric flow rate is also small. It is possible to quickly raise the temperature of the catalyst in the tube portion and shorten the time until activation. In addition, when the first index temperature is high and the exhaust gas volume flow rate is large, the exhaust gas is flowed through both the central tube portion and the outer peripheral portion, the volume of the portion through which the exhaust gas passes is increased, and the space velocity relative to the exhaust gas is increased. The catalyst reaction can be promoted by increasing the time during which the exhaust gas contacts the catalyst.

また、外周部に排気ガスを流す場合に、ヒータに通電して加熱しながら通電量を調整して外周部の温度を調整するので、外周部を外周側から加熱して速やかに活性化温度に昇温させることができ、昇温後は通電量を調整して外周部の触媒の温度を活性化温度域内に維持することができる。 In addition, when exhaust gas is allowed to flow to the outer periphery, the energization amount is adjusted while the heater is energized and heated to adjust the temperature of the outer periphery, so the outer periphery is heated from the outer periphery to quickly reach the activation temperature. The temperature can be raised, and after the temperature rise, the amount of energization can be adjusted to maintain the temperature of the catalyst at the outer peripheral portion within the activation temperature range.

また、上記の排気ガス浄化方法において、脱硫処理を行っている場合に、前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第2判定温度以下では、前記第1バルブを閉じると共に前記第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第2判定温度を超えてから、前記第1指標温度が前記第2判定温度を超えた時間の総和である第1脱硫処理時間が予め設定された第1判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態をそのまま継続し、前記第1脱硫処理時間が前記第1判定時間を経過したときに、前記第1バルブを開いて前記第2バルブを閉じて排気ガスを前記外周部のみに流すと共に前記ヒータに通電して加熱しながら通電量を調整して外周部の温度を調整し、更に、前記外周部の触媒の温度を指標する第2指標温度が予め設定した第3判定温度を超えると、前記第2指標温度が前記第3判定温度を超えた時間の総和である第2脱硫処理時間が予め設定した第2判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態前記ヒータによる温度調整をそのまま継続し、前記第2脱硫処理時間が前記第2判定時間を経過すると、脱硫処理を終了する。 Further, in the above exhaust gas purification method, when the desulfurization treatment is performed, when the first index temperature indicating the temperature of the catalyst in the central cylinder portion is equal to or lower than the preset second determination temperature, the first valve is set. The first valve temperature exceeds the second determination temperature after the first valve temperature exceeds the second determination temperature after the first valve temperature exceeds the second determination temperature by closing and opening the second valve. The first valve and the second valve are kept open and closed until the first determination time set in advance, which is the sum of the times, has passed, and the first desulfurization time is When the first determination time has elapsed, the first valve is opened, the second valve is closed, exhaust gas is allowed to flow only to the outer peripheral portion, and the heater is energized to adjust the energization amount while heating the outer periphery. Adjust the temperature of the When the second index temperature indicating the temperature of the catalyst at the outer peripheral portion exceeds a preset third determination temperature, the second desulfurization treatment is the sum of the time when the second index temperature exceeds the third determination temperature until passage of a second determination time period is preset, the first valve opening and closing state of the second valve the temperature adjustment by the heater as it continues, the second desulfurization treatment time is the second determination time After elapses, the desulfurization process is terminated.

この「第1指標温度」は、中央筒部の触媒の温度そのもの又はその温度を指標する温度のことを言い、この「第2指標温度」は、外周部の触媒の温度そのもの又はその温度を指標する温度のことを言う。これは、触媒の温度を直接計測するのは難しい場合が多いので、代わりにこの触媒の温度に密接な関係を持った温度、例えば、中央筒部又は外周部に流入する排気ガスの温度や中央筒部又は外周部から流出する排気ガスの温度を用いることもある。そのため、この代わりに用いる温度も含む表現として「第1指標温度」「第2指標温度」と表現している。   The “first index temperature” refers to the temperature of the catalyst in the central cylinder portion itself or a temperature indicating the temperature thereof. The “second index temperature” refers to the temperature of the catalyst in the outer peripheral portion itself or the temperature thereof. Say the temperature to do. This is because it is often difficult to directly measure the temperature of the catalyst. Instead, a temperature closely related to the temperature of the catalyst, for example, the temperature of the exhaust gas flowing into the central cylinder or the outer periphery or the center The temperature of the exhaust gas flowing out from the cylinder part or the outer peripheral part may be used. Therefore, the expression including the temperature used instead is expressed as “first index temperature” and “second index temperature”.

また、第2判定温度及び第3判定温度は、中央筒部又は外周部の触媒の脱硫処理が可能となる温度以上の温度であり、触媒の種類にもよるが、650℃〜750℃の範囲内の温度であり、例えば700℃と650℃に設定される。なお、通常は熱劣化という理由から、第3判定温度は第2判定温度よりも低く設定される。 The second determination temperature and the third determination temperature are temperatures equal to or higher than the temperature at which the desulfurization treatment of the catalyst in the central cylinder portion or the outer peripheral portion can be performed, and depending on the type of the catalyst, a range of 650 ° C to 750 ° C For example, 700 ° C. and 650 ° C. Note that the third determination temperature is usually set lower than the second determination temperature because of thermal degradation.

また、第1判定時間は、中央筒部の触媒の脱硫処理が完了するまでの時間であり、第2判定時間は、外周部の触媒の脱硫処理が完了するまでの時間である。これらの時間は、予め行った実験の結果等に基づいて設定される。なお、通常は低温用のNOx吸蔵還元型触媒で使用するバリウムの方が高温用のNOx吸蔵還元型触媒で使用するカリウムよりも脱離し易いという理由から第2判定時間は第1判定時間よりも短く設定される。   The first determination time is the time until the desulfurization treatment of the catalyst in the central cylinder portion is completed, and the second determination time is the time until the desulfurization treatment of the catalyst in the outer peripheral portion is completed. These times are set based on the results of experiments conducted in advance. In general, the second determination time is longer than the first determination time because barium used in the NOx occlusion reduction catalyst for low temperature is more easily desorbed than potassium used in the NOx occlusion reduction catalyst for high temperature. Set short.

この方法によれば、触媒を高温にする必要がある脱硫処理において、第1指標温度が第2判定温度を超えてから第1判定時間を超えるまでは、筒状の仕切り壁の遮熱構造により保温性がよく昇温が早い中央筒部に排気ガスを流して、この中央筒部の脱硫処理を完了するまで行う。また、中央筒部の脱硫処理が完了したら、中央筒部に比べて触媒の昇温が遅れ易い外周部に排気ガスを流して外周部の脱硫処理を集中的に行う。そのため、触媒全体の脱硫を効率よく行うことができる。また、この外周部に排気ガスを流す時には、前記ヒータに通電して加熱しながら通電量を調整して外周部の温度を調整するので、速やかに外周部の触媒の温度を脱硫処理可能な温度に昇温して維持することができる。   According to this method, in the desulfurization process that requires the catalyst to be at a high temperature, the first index temperature exceeds the second determination temperature until it exceeds the first determination time, due to the heat shielding structure of the cylindrical partition wall. Exhaust gas is allowed to flow through the central tube portion where heat retention is high and the temperature rises quickly, and the desulfurization process of the central tube portion is completed. Further, when the desulfurization process of the central cylinder part is completed, the exhaust gas is flowed to the outer peripheral part where the temperature rise of the catalyst is likely to be delayed as compared with the central cylindrical part, and the desulfurization process of the outer peripheral part is performed intensively. Therefore, desulfurization of the entire catalyst can be performed efficiently. Further, when exhaust gas is allowed to flow to the outer periphery, the temperature of the outer peripheral portion is adjusted by adjusting the energization amount while energizing and heating the heater, so that the temperature of the catalyst at the outer peripheral portion can be quickly desulfurized. The temperature can be maintained at a high temperature.

例えば、NOx吸蔵還元型触媒では、NOx浄化性能は硫黄の吸着により悪化する。この硫黄の吸着は約600℃以下の温度で生じるが、その一方で、脱硫には約650℃以上の高温を必要とする。従って、硫黄の吸着は高温には達し難い触媒の外周部にまで及ぶことになるが、脱硫では、触媒温度を更に高い温度にする必要がある。しかし、外周部は容易に高温に達しないため、硫黄が残留し易いという問題がある。   For example, in a NOx occlusion reduction type catalyst, the NOx purification performance deteriorates due to sulfur adsorption. This sulfur adsorption occurs at temperatures below about 600 ° C, while desulfurization requires high temperatures above about 650 ° C. Therefore, the adsorption of sulfur extends to the outer periphery of the catalyst which does not easily reach a high temperature. However, in the desulfurization, the catalyst temperature needs to be further increased. However, since the outer peripheral portion does not easily reach a high temperature, there is a problem that sulfur tends to remain.

この問題に対して、本発明では、筒状の遮熱構造(仕切り壁)を触媒を担持する部分の径方向の内側と外側の間に設けて、中央筒部と外周部を形成し、脱硫処理の後半で外周部だけの脱硫処理を行って、排気ガスが通過し難く温度も上がり難い外周部を、執拗に脱硫処理することで、触媒の全体に亘って十分な脱硫を行うことができるようになる。   In order to solve this problem, in the present invention, a cylindrical heat shield structure (partition wall) is provided between the inner side and the outer side in the radial direction of the portion supporting the catalyst to form a central cylindrical portion and an outer peripheral portion, and desulfurization is performed. In the latter half of the treatment, only the outer periphery is desulfurized, and the exhaust gas is difficult to pass through and the outer periphery where the temperature is difficult to rise is persistently desulfurized, so that sufficient desulfurization can be performed over the entire catalyst. It becomes like this.

その結果、触媒の浄化性能の維持に必要な還元処理、言い換えれば、触媒の浄化能力を回復する再生処理のための時間や回数を減少できるので、この再生処理で必要な燃料消費量を低減できる。従って、車両に搭載する触媒の容量を減少して、搭載性を確保すると共にコストを低減することができる。また、脱硫処理において、冷え易い触媒の外周部のみを高温に加熱することで中央筒部が過剰な高温に晒されて触媒が劣化することを抑制することができる。   As a result, it is possible to reduce the time and number of reduction processes necessary for maintaining the purification performance of the catalyst, in other words, the regeneration process for recovering the purification capacity of the catalyst, thereby reducing the fuel consumption required for the regeneration process. . Therefore, the capacity of the catalyst mounted on the vehicle can be reduced to ensure the mountability and reduce the cost. In addition, in the desulfurization treatment, it is possible to suppress the deterioration of the catalyst due to the central cylinder portion being exposed to an excessively high temperature by heating only the outer peripheral portion of the catalyst that is easily cooled to a high temperature.

また、更に、外周部の周囲にヒータを設けているので、脱硫処理時において外周部の触媒をより効率よく昇温することができる。   Furthermore, since the heater is provided around the outer periphery, the temperature of the catalyst at the outer periphery can be increased more efficiently during the desulfurization process.

また、上記の排気ガス浄化方法において、前記第2指標温度として、前記ヒータの通電電流量を用いる。ヒータの抵抗はその配置した場所の温度によって変化し、その抵抗に応じて、一定電圧で通電する電流量は変化するので、電流量を温度のセンサ信号として使用できる。なお、通電時以外においても、加熱には至らない程度の低電圧をヒータに印加すれば微弱電流が流れるので、この微弱電流を検知することで、この微弱電流からヒータ部位の温度を求め、触媒を担持した部分の外周温度を推定できる。   Further, in the above exhaust gas purification method, an energization current amount of the heater is used as the second index temperature. The resistance of the heater varies depending on the temperature of the place where the heater is disposed, and the amount of current that is energized at a constant voltage varies depending on the resistance. Therefore, the amount of current can be used as a temperature sensor signal. Even when not energized, if a low voltage that does not lead to heating is applied to the heater, a weak current flows. By detecting this weak current, the temperature of the heater part is obtained from this weak current, and the catalyst Can be estimated.

本発明に係る排気ガス浄化システムによれば、NOx浄化触媒装置、酸化触媒装置、触媒付きフィルタ装置等の触媒を用いた排気ガス浄化装置において、触媒の浄化性能の温度依存性を考慮して、触媒の浄化性能を速やかに且つ効率よく利用できる。   According to the exhaust gas purification system of the present invention, in the exhaust gas purification device using a catalyst such as a NOx purification catalyst device, an oxidation catalyst device, a filter device with a catalyst, etc., considering the temperature dependence of the purification performance of the catalyst, The purification performance of the catalyst can be used quickly and efficiently.

この構成によれば、排気ガス浄化装置から放熱する熱量を、ヒータによる加熱で補うことができ、触媒を担持した部分の温度低下を抑制することができる。また、触媒を担持した部分の外周部の温度を、排気ガスの熱量に依存することなく、ヒータによる加熱で昇温させて活性化温度域に維持できるので、活性化温度に昇温な時間を殆ど無くすことができる。従って、触媒が活性化温度域までの昇温するまでの間に放出される有害成分の排出を著しく減少することができる。   According to this configuration, the amount of heat dissipated from the exhaust gas purification device can be supplemented by heating with the heater, and the temperature drop of the portion carrying the catalyst can be suppressed. In addition, the temperature of the outer peripheral portion of the portion carrying the catalyst can be raised by heating with a heater and maintained in the activation temperature range without depending on the amount of heat of the exhaust gas. Almost can be eliminated. Therefore, it is possible to significantly reduce the emission of harmful components that are released before the catalyst is heated to the activation temperature range.

また、長手方向に分割したヒータに対して、電流を周方向に並列的に流すことで、長手方向毎に異なった加熱ができ、温度が低い部分の加熱と、温度が高い部分の加熱の抑制を簡単に行うことができるので、触媒の温度を短時間で昇温して全体的に均一に維持することが比較的容易にできるようになる。   In addition, the heaters divided in the longitudinal direction can be heated differently for each longitudinal direction by flowing current in parallel in the circumferential direction, and the heating at the low temperature part and the heating at the high temperature part are suppressed. Thus, it is relatively easy to raise the temperature of the catalyst in a short time and maintain it uniformly as a whole.

また、一般的なヒータの材料は温度が上昇すると通電抵抗が増加する特性を示すことが多いので、このヒータの材料を使用すると、通常は、排気ガス浄化装置の加熱過程では触媒の反応熱により下流側の触媒を担持している部分の昇温が速くなるが、下流側の温度が上昇してその部分のヒータの温度が他の部位のヒータの温度よりも高くなると、その部位の通電抵抗が他の部位の通電抵抗よりも大きくなるので、一定電圧で並列に通電するだけでも、通電抵抗が大きくなった分だけ通電電流が小さくなり発熱量が減少するので、温度が均一化するように加熱される。 In addition, since a general heater material often shows a characteristic that the energization resistance increases as the temperature rises, the use of this heater material usually causes the reaction heat of the catalyst during the heating process of the exhaust gas purification device. The temperature of the part carrying the catalyst on the downstream side becomes faster, but if the temperature on the downstream side rises and the temperature of the heater in that part becomes higher than the temperature of the heater in the other part, the energization resistance of that part Since the energization resistance of other parts is larger than the energization resistance of the other parts, even if energization is performed in parallel at a constant voltage, the energization current is reduced by the amount of energization resistance and the amount of heat generation is reduced. Heated.

また、本発明に係る排気ガス浄化方法によれば、NOx浄化触媒装置、酸化触媒装置、触媒付きフィルタ装置等の触媒を用いた排気ガス浄化装置において、エンジン始動直後の暖機運転や低負荷運転のときには、保温性が良い中央筒部に排気ガスを流して、中央筒部の触媒を迅速に昇温して、活性化までの時間を短縮することができる。   Further, according to the exhaust gas purification method of the present invention, in an exhaust gas purification device using a catalyst such as a NOx purification catalyst device, an oxidation catalyst device, a catalyst-equipped filter device, etc., warm-up operation or low load operation immediately after engine startup In this case, the exhaust gas is allowed to flow through the central cylinder portion having good heat retention, and the catalyst in the central cylinder portion can be quickly heated to shorten the time until activation.

また、排気ガスの容積流量が大きいときには、中央筒部と外周部の両方に排気ガスを流して、排気ガスが通過する部分の容積を増やして、排気ガスに対する空間速度を下げて、排気ガスが触媒に接触する時間を長くして触媒反応を促進することができる。この外周部に排気ガスを流す場合に、ヒータに通電して加熱しながら通電量を調整して外周部の温度を調整するので、外周部を外周側から加熱して速やかに活性化温度に昇温させることができ、昇温後は通電量を調整して外周部の触媒の温度を活性化温度域内に維持することができる。 Also, when the exhaust gas volume flow rate is large, the exhaust gas is allowed to flow through both the central cylinder part and the outer peripheral part, the volume of the part through which the exhaust gas passes is increased, the space velocity relative to the exhaust gas is reduced, and the exhaust gas The catalytic reaction can be promoted by increasing the time of contact with the catalyst. When exhaust gas is allowed to flow through the outer peripheral portion, the energizing amount is adjusted while the heater is energized and heated to adjust the temperature of the outer peripheral portion. Therefore, the outer peripheral portion is heated from the outer peripheral side to quickly rise to the activation temperature. The temperature of the catalyst at the outer peripheral portion can be maintained within the activation temperature range by adjusting the energization amount after the temperature rise.

以下、本発明に係る実施の形態の排気ガス浄化システム及び排気ガス浄化方法について、図面を参照しながら説明する。   Hereinafter, an exhaust gas purification system and an exhaust gas purification method according to embodiments of the present invention will be described with reference to the drawings.

図1に、本発明の実施の形態の排気ガス浄化システム1の構成を示す。この排気ガス浄化システム1は、エンジン(内燃機関)の排気通路2に、排気ガスG中の有害成分を浄化する触媒を担持したNOx浄化触媒装置、酸化触媒装置、触媒付きフィルタ装置のいずれか又は幾つかの組み合わせで形成される排気ガス浄化装置10を配置して構成される。   FIG. 1 shows a configuration of an exhaust gas purification system 1 according to an embodiment of the present invention. This exhaust gas purification system 1 is one of a NOx purification catalyst device, an oxidation catalyst device, a catalyst-equipped filter device in which an exhaust passage 2 of an engine (internal combustion engine) carries a catalyst that purifies harmful components in the exhaust gas G, or The exhaust gas purification device 10 formed by several combinations is arranged and configured.

排気ガス浄化装置10がNOx吸蔵還元型触媒を担持したNOx浄化触媒装置の場合には、排気ガスG中のNOxを浄化するために、モノリス触媒で形成される。このモノリス触媒のコージェライトハニカム等の担持体に酸化アルミニウム、酸化チタン等の触媒コート層を設ける。この触媒コート層に、白金(Pt)、パラジウム(Pd)等の触媒金属と、バリウム(Ba)等のNOx吸蔵材(NOx吸蔵物質)とからなるNOx吸蔵還元触媒を担持させて構成される。 When the exhaust gas purification device 10 is a NOx purification catalyst device carrying a NOx occlusion reduction type catalyst, in order to purify NOx in the exhaust gas G , it is formed of a monolith catalyst. A catalyst coat layer of aluminum oxide, titanium oxide or the like is provided on a carrier such as a cordierite honeycomb of the monolith catalyst. This catalyst coat layer is configured to carry a NOx occlusion reduction catalyst comprising a catalyst metal such as platinum (Pt) or palladium (Pd) and a NOx occlusion material (NOx occlusion material) such as barium (Ba).

このNOx吸蔵還元型触媒は、酸素濃度が高い排気ガスGの状態、即ち、空燃比リーン状態の時に、排気ガスG中のNOxをNOx吸蔵材が吸蔵することにより、排気ガスG中のNOxを浄化し、酸素濃度が低いか空燃比が1より小さい空燃比リッチ状態か、あるいは、空燃比が1の空燃比ストイキ状態の時に、吸蔵したNOxを放出すると共に、この放出されたNOxを触媒金属の触媒作用により還元することにより、大気中へのNOxの流出を防止する。 The NOx occlusion reduction type catalyst, oxygen concentration of the high exhaust gas G state, i.e., when the air-fuel ratio lean state, the NOx in the exhaust gas G NOx occlusion material occludes the NOx in the exhaust gas G Purifies and releases the stored NOx when the oxygen concentration is low, the air-fuel ratio is in an air-fuel ratio rich state smaller than 1, or the air-fuel ratio is in an air-fuel ratio stoichiometric state of 1. By reducing by the catalytic action, NOx outflow into the atmosphere is prevented.

このNOx吸蔵還元型触媒は、空燃比リーン状態が継続すると、NOx吸蔵材が硝酸塩に変化してしまうため、NOx吸蔵能力が飽和する前に、排気ガスGを空燃比リッチ状態にする再生制御を行って、吸蔵したNOxを放出及び還元して、NOx吸蔵能力を回復している。 In this NOx occlusion reduction type catalyst, if the air-fuel ratio lean state continues, the NOx occlusion material changes to nitrate. Therefore, before the NOx occlusion capacity is saturated, the regeneration control for bringing the exhaust gas G into the air-fuel ratio rich state is performed. The NOx occlusion capacity is restored by releasing and reducing the occluded NOx.

この排気ガス浄化装置10が、酸化触媒を担持した酸化触媒装置の場合には、排気ガスG中のHC(炭化水素)を酸化して排気ガス温度を上昇させたり、排気ガスG中のNO(一酸化窒素)を酸化してNO2(二酸化窒素)にしてNOx(窒素酸化物)を浄化し易くしたりするために、多孔質のセラミックのハニカム構造等の担持体に、白金等の酸化触媒を担持させて形成される。 When the exhaust gas purification device 10 is an oxidation catalyst device that supports an oxidation catalyst, the exhaust gas G is oxidized by HC (hydrocarbon) to raise the exhaust gas temperature, or the NO ( In order to easily purify NOx (nitrogen oxide) by oxidizing NO (nitrogen monoxide) to NO 2 (nitrogen dioxide), an oxidation catalyst such as platinum is supported on a porous ceramic honeycomb structure or the like. Is formed.

また、排気ガス浄化装置10が、触媒付きフィルタ装置の場合には、排気ガスG中のPM(微粒子状物質)を浄化するために、多孔質のセラミックのハニカムのチャンネル(排気ガスの通路)の入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルタ等で形成される。このフィルタの部分に、比較的高温ではPMやHCの酸化を促進するように、また、比較的低温ではHCを吸着できるように、白金や酸化セリウム等の触媒が担持される。排気ガスG中のPMは、この触媒付きフィルタ装置の多孔質セラミックの壁で捕集される。 Further, when the exhaust gas purification device 10 is a filter device with a catalyst, in order to purify PM (particulate matter) in the exhaust gas G , a porous ceramic honeycomb channel (exhaust gas passage) is used. It is formed of a monolith honeycomb wall flow type filter or the like in which the inlet and the outlet are alternately sealed. A catalyst such as platinum or cerium oxide is supported on the filter so as to promote the oxidation of PM and HC at a relatively high temperature and to adsorb HC at a relatively low temperature. PM in the exhaust gas G is collected by the porous ceramic wall of the catalyst-equipped filter device.

この触媒付きフィルタ装置では、PMの捕集量が増加して圧力損失が増加するのを防止するために、PMの捕集量が所定の捕集量を超えた場合や触媒付きフィルタ装置の前後差圧が所定の差圧量を超えた場合に、排気ガス温度を上昇して、触媒付きフィルタ装置をPMの燃焼温度以上に昇温する排気昇温制御を行う。この排気昇温制御では、未燃燃料供給制御を含む空燃比リッチ制御が行われる。 In this filter device with a catalyst, in order to prevent the amount of collected PM from increasing and pressure loss to increase, when the collected amount of PM exceeds a predetermined collected amount or before and after the filter device with catalyst When the differential pressure exceeds a predetermined differential pressure amount, exhaust gas temperature control is performed to raise the exhaust gas temperature and to raise the temperature of the filter device with catalyst to the PM combustion temperature or higher . In the exhaust gas temperature raising control, air-fuel ratio rich control including unburned fuel supply control is performed.

この排気ガス浄化装置10の触媒を担持した部分を、図1及び図3に示すように、外周部11と中央筒部12の二つに分けて、その間隙に筒状のリングである仕切り壁13を遮熱構造に形成して配置する。更に、その外周部11の周囲に保温のための遮熱性を有する保温構造14を設けて構成する。この保温構造14は、空気を多量に含む発泡材等で形成し、保温性と遮熱性(断熱性)を高めると共に、触媒の担持体を格納する容器としての役割も果たすように構成される。この保温構造14を設けることにより、触媒の活性化時や脱硫処理時において、触媒をより効率よく昇温することができるようになる。 As shown in FIGS. 1 and 3, the exhaust gas purifying device 10 carrying the catalyst is divided into two parts, an outer peripheral part 11 and a central cylindrical part 12, and a partition wall which is a cylindrical ring in the gap. 13 is formed and arranged in a heat shield structure. Further, a heat insulating structure 14 having a heat insulating property for heat insulation is provided around the outer peripheral portion 11. The heat retaining structure 14 is formed of a foam material or the like containing a large amount of air, and is configured to enhance the heat retaining property and the heat shielding property (heat insulating property) and also serve as a container for storing the catalyst carrier. By providing the heat retaining structure 14, the temperature of the catalyst can be raised more efficiently during the activation of the catalyst and the desulfurization process.

この中央筒部12を円筒形状に形成し、外周部11をその周囲に設けて、排気ガス浄化装置10を円筒形状に形成した場合には、この中央筒部12の外径と、外周部11の外径の比を、昇温時間を基にして、触媒の使用条件を考慮して設定する。言い換えれば、中央筒部12の断面積と外周部11の断面積の比を昇温時間を基にして触媒の使用条件を考慮して設定する。 When the central cylindrical portion 12 is formed in a cylindrical shape, the outer peripheral portion 11 is provided around the periphery, and the exhaust gas purification device 10 is formed in a cylindrical shape, the outer diameter of the central cylindrical portion 12 and the outer peripheral portion 11 are formed. The ratio of the outer diameters is set in consideration of the use conditions of the catalyst based on the temperature raising time. In other words, the ratio of the cross-sectional area of the central cylindrical portion 12 to the cross-sectional area of the outer peripheral portion 11 is set in consideration of the use conditions of the catalyst based on the temperature rise time.

例えば、触媒を担持した部分の断面積を同じにして、中央筒部12の容積と外周部11の容積を等しいものとして形成し、触媒の加熱に必要な熱量を変えずに、触媒を担持した部分の熱容量を半減するようにして、中央筒部12にのみに排気ガスGを流すように構成すると、この場合には、エンジンの始動直後から触媒の温度Tc1を所定の温度(例えば、200℃)まで昇温させるのに必要な時間は約半分となり、触媒が活性化するまでの排気ガスG中の有害成分の排出量を減らすことが可能となる。
筒状の仕切り壁13は、図4に示すように、波板13aを間に挟んだ二枚の板13b、13cで形成された二重壁構造を折り曲げてリング状に形成し、長さ方向の両端部を排気ガスGが流入及び流出ができないように閉塞して構成する。このリング状の波板13aによって、二枚の板13b、13cとの接触面積を減少して熱伝導による熱の移動を減少すると共に、波板13aと二重壁13b、13cとの間に形成した空間部13dに空気を充填し、この熱伝導率の低い空気により遮熱性を増加する。
For example, the cross-sectional area of the part supporting the catalyst is made the same, and the volume of the central cylindrical part 12 and the volume of the outer peripheral part 11 are formed to be equal, and the catalyst is supported without changing the amount of heat necessary for heating the catalyst. If the exhaust gas G is allowed to flow only through the central cylinder portion 12 so that the heat capacity of the portion is halved, in this case, the catalyst temperature Tc1 is set to a predetermined temperature (for example, 200 ° C.) immediately after the engine is started. The time required to raise the temperature to about 50% is reduced to about half, and the emission of harmful components in the exhaust gas G until the catalyst is activated can be reduced.
As shown in FIG. 4, the cylindrical partition wall 13 is formed in a ring shape by bending a double wall structure formed by two plates 13 b and 13 c sandwiching a corrugated plate 13 a therebetween. The both ends of the gas tank are closed so that the exhaust gas G cannot flow in and out. The ring-shaped corrugated plate 13a reduces the contact area between the two plates 13b and 13c to reduce heat transfer due to heat conduction, and is formed between the corrugated plate 13a and the double walls 13b and 13c. The space portion 13d is filled with air, and the heat shielding property is increased by the air having low thermal conductivity.

更に、エンジンの排気通路2と外周部11との間の第1通路15に第1バルブ16を、排気通路2と中央筒部12との間の第2通路17に第2バルブ18を設ける。この第1バルブ16を開くことにより排気ガスGを外周部11に流し、第2バルブ18を開くことにより排気ガスGを中央筒部12に流すように構成する。   Further, a first valve 16 is provided in the first passage 15 between the exhaust passage 2 and the outer peripheral portion 11 of the engine, and a second valve 18 is provided in the second passage 17 between the exhaust passage 2 and the central cylinder portion 12. By opening the first valve 16, the exhaust gas G flows through the outer peripheral portion 11, and by opening the second valve 18, the exhaust gas G flows through the central cylinder portion 12.

この構成によれば、触媒を担持した部分11、12を遮熱構造の筒状の仕切り壁13により二つに分けて、各部分11、12の熱容量を減少したので、暖機運転の場合等、触媒の温度Tc1を速やかに活性化温度以上に上げる必要がある場合には、触媒を担持した部分の熱容量が全体に比べて減少した中央筒部12側のみに排気ガスGを流すことにより、速やかに触媒の温度Tc1が上昇して触媒を活性化できる。その結果、活性化までの時間が短縮され、その分、排気ガスG中の有害成分の大気中への放出量を減少することができる。 According to this configuration, the parts 11 and 12 carrying the catalyst are divided into two parts by the cylindrical partition wall 13 having a heat shielding structure, and the heat capacity of each part 11 and 12 is reduced. When the temperature Tc1 of the catalyst needs to be quickly raised to the activation temperature or higher, the exhaust gas G is allowed to flow only on the side of the central cylindrical portion 12 where the heat capacity of the portion carrying the catalyst is reduced compared to the whole, The catalyst temperature Tc1 can be quickly raised to activate the catalyst. As a result, the time until activation is shortened, and the release amount of harmful components in the exhaust gas G into the atmosphere can be reduced accordingly.

このときに、外周部11と中央筒部12との間に設けた筒状の仕切り壁13を遮熱構造に形成して、熱の移動を抑制して中央筒部12から外周部11へ移動する熱量を減少しているので、排気ガスGの熱を中央筒部12の昇温に効率よく利用でき、その分中央筒部12の触媒の温度Tc1を迅速に昇温できる。また、保温構造14も中央筒部12の昇温に間接的に寄与する。 At this time, a cylindrical partition wall 13 provided between the outer peripheral portion 11 and the central cylindrical portion 12 is formed in a heat shield structure, and the movement of heat is suppressed to move from the central cylindrical portion 12 to the outer peripheral portion 11. Since the amount of heat to be reduced is reduced, the heat of the exhaust gas G can be efficiently used to raise the temperature of the central tube portion 12, and the temperature Tc1 of the catalyst in the central tube portion 12 can be quickly raised accordingly. Further, the heat retaining structure 14 also indirectly contributes to the temperature rise of the central cylinder portion 12.

また、排気ガスGの温度Tgが上がり排気ガスGの容積流量が大きくなった場合には、中央筒部12に排気ガスGを流しつつ、外周部11側にも排気ガスGを流すことにより、排気ガスGが通過する触媒を担持した部分の容積を増やして、排気ガスGに対する空間速度を下げて、排気ガスGが触媒に接する時間を長くして触媒反応を促進することができる。これにより、排気ガスGの有害成分に対して十分な浄化を行う。 Further, when the temperature Tg of the exhaust gas G increases and the volumetric flow rate of the exhaust gas G increases, the exhaust gas G is allowed to flow to the outer peripheral portion 11 side while flowing the exhaust gas G to the central cylinder portion 12. By increasing the volume of the portion carrying the catalyst through which the exhaust gas G passes, the space velocity with respect to the exhaust gas G can be lowered, and the time for the exhaust gas G to contact the catalyst can be lengthened to promote the catalytic reaction. Thereby, sufficient purification is performed against harmful components of the exhaust gas G.

また、中央筒部12の触媒の温度Tc1を測定するために、温度センサである熱電対19を中央筒部12の下流側の外周部位に配置すると共に、外周部11の触媒の温度Tc2を測定するために、熱電対20を外周部11の下流側の外周部位に配置する。更に、排気ガス浄化装置10に流入する排気ガスGの温度Tgを測定するために、熱電対21を排気ガス浄化装置10の上流側の排気通路2に配置する。   Further, in order to measure the temperature Tc1 of the catalyst in the central cylindrical portion 12, a thermocouple 19 as a temperature sensor is disposed at the outer peripheral portion on the downstream side of the central cylindrical portion 12, and the temperature Tc2 of the catalyst in the outer peripheral portion 11 is measured. In order to do this, the thermocouple 20 is arranged at the outer peripheral portion on the downstream side of the outer peripheral portion 11. Further, in order to measure the temperature Tg of the exhaust gas G flowing into the exhaust gas purification device 10, a thermocouple 21 is disposed in the exhaust passage 2 upstream of the exhaust gas purification device 10.

これらの熱電対19、20、21の計測値Tc1、Tc2、Tgは、エンジンの運転を制御するエンジン制御装置(ECU)3に入力され、これらの計測値Tc1、Tc2、Tgに基づいて、第1バルブ16と第2バルブ18の開閉操作が行われる。なお、外周部11の温度を検出する熱電対20の代わりに、次に述べるようなネット状ヒータ31の通電電流を用いる場合には、この熱電対20は不要となる。 The measured values Tc1, Tc2, and Tg of these thermocouples 19, 20, and 21 are input to an engine control unit (ECU) 3 that controls the operation of the engine. Based on these measured values Tc1, Tc2, and Tg, The opening and closing operation of the first valve 16 and the second valve 18 is performed. In addition, when the energization current of the net heater 31 as described below is used instead of the thermocouple 20 that detects the temperature of the outer peripheral portion 11, the thermocouple 20 is not necessary.

本発明においては、図5に示すように、保温構造14の内側となる外周部11の全体に亘って、小径ワイヤをネット状に編み込んで形成したネット状ヒータ(ヒータ)31で包み込み、更に、その周囲を電気的な絶縁性と気密性を有する絶縁シールマット32で包み込む。それと共に、このネット状ヒータ31に流す電流が周方向に流れるように、このネット状ヒータ31の通電部分を、排気ガス浄化装置10の長手方向(排気ガスGの通過方向)に分割して構成する。このネット状ヒータ31としては、例えば、数kwの電力で温度差が400度程度になるような加熱が可能なように、ヒータ線径を例えば0.5mm程度とし、数mm間隔となるように編み込んで、この編み込んだネット状ヒータ31を長手方向に数個並べて、外周部11に巻き付けて構成する。この分割された数個のネット状ヒータ31は通電電極31aに電気的に並列にそれぞれ接続される。この2本の通電電極31aはネット状ヒータ31及び絶縁シールマット32のそれぞれの合わせ部に設けられた電極装着溝11aに、絶縁体11bを挟んで挿入し固定する。 In the present invention, as shown in FIG. 5, the entire outer peripheral portion 11 that is the inside of the heat retaining structure 14 is wrapped with a net-like heater (heater) 31 formed by braiding a small-diameter wire into a net shape, The periphery is wrapped with an insulating seal mat 32 having electrical insulation and airtightness. At the same time, the energized portion of the net heater 31 is divided into the longitudinal direction of the exhaust gas purification device 10 (passage direction of the exhaust gas G) so that the current flowing through the net heater 31 flows in the circumferential direction. To do. The net heater 31 has, for example, a heater wire diameter of, for example, about 0.5 mm and an interval of several mm so that heating with a power of several kilowatts can achieve a temperature difference of about 400 degrees is possible. A plurality of knitted net-like heaters 31 are arranged in the longitudinal direction and wound around the outer peripheral portion 11. The divided net heaters 31 are electrically connected to the energizing electrodes 31a in parallel. The two energizing electrodes 31a are inserted and fixed in the electrode mounting grooves 11a provided at the mating portions of the net heater 31 and the insulating seal mat 32 with the insulator 11b interposed therebetween.

この通電電極31aは排気ガス浄化装置10の容器の外側に引き出すために、図6及び図7に示すように、セラミックス製の絶縁管31b、セラミックス製の絶縁シールプレート31c等を挟み、電気的絶縁性と排気ガスGに対するシール性の両方を確保しながら保温構造14に固定し、通電電極31aの取り出し部から、図8に示すようにリード線33により印加電圧を調整する電圧調整及び制御ユニット34に接続され、この電圧調整及び制御ユニット34は、リード線35により、電源となるバッテリ36に接続される。そして、この電圧調整及び制御ユニット34により、ネット状ヒータ31への印加電圧を制御することにより、通電電流量を調整し、外周部11を昇温させるように構成する。この印加電圧の制御は、エンジン制御装置3から出力される制御信号により行われる。 To draw the outside of the container of the powered electrode 31a is an exhaust gas purifying device 10, as shown in FIGS. 6 and 7, scissors ceramic insulating tube 31b, the ceramic insulating seal plate 31c, etc., electrical insulating fixed to the thermal insulation structure 14 while ensuring both sealability against sexual and exhaust gas G, the take-out portion of the conducting electrode 31a, a voltage adjustment and control unit for adjusting the applied voltage by a lead wire 33 as shown in FIG. 8 The voltage adjustment and control unit 34 is connected to a battery 36 serving as a power source by a lead wire 35. The voltage adjustment and control unit 34 is configured to control the voltage applied to the net heater 31 to adjust the amount of energization current and raise the temperature of the outer peripheral portion 11. The control of the applied voltage is performed by a control signal output from the engine control device 3.

このネット状ヒータ31は、図9に示すような単一のネット状ヒータ(抵抗R)31Xで形成せずに、図10に示すように、長手方向に分割されたn本のネット状ヒータ(抵抗r=R×n)31で形成され、電流を周方向に並列的に流すことで、長手方向毎の加熱を可能とする。 This net heater 31 is not formed by a single net heater (resistor R) 31X as shown in FIG. 9, but as shown in FIG. Resistance r = R × n ) 31 is formed, and heating in each longitudinal direction is enabled by flowing current in parallel in the circumferential direction.

この図10の例では、長手方向に5分割されており、一箇所の抵抗の温度が上昇しても全体の抵抗への影響は5分の1に過ぎず、全体としての抵抗値が大きくなるのは、外周部11の全体の温度が昇温して、多くの各部の抵抗の値が大きくなる場合に限られる。   In the example of FIG. 10, it is divided into five in the longitudinal direction, and even if the temperature of the resistance at one location rises, the influence on the overall resistance is only one fifth, and the resistance value as a whole increases. This is limited to the case where the overall temperature of the outer peripheral portion 11 rises and the resistance values of many parts increase.

更に、ネット状ヒータ31の構成では、一本の抵抗でその部分全体の抵抗とするよりは、複数の抵抗となる線を編み込んで、通電抵抗を発生する部分を分散させて外周部11の該当部位を覆うような構成になる。従って、排気ガス浄化装置10のように、比較的大きな場合でも、全体を覆った抵抗の温度変化による抵抗変化を通電の電流量の変化によって全体的に検出することが可能となる。従って、これらのネット状ヒータ31の抵抗値への印加電圧を定電圧とした状態で通電電流値を検出すれば、外周部11の外周全域の平均的温度に近い値を推定することができる。 Further, in the configuration of the net-like heater 31, rather than making the resistance of the entire portion with a single resistor, a plurality of resistance lines are knitted to disperse the portions where the energization resistance is generated, so It becomes the composition which covers the part. Therefore, even when the exhaust gas purification device 10 is relatively large, it is possible to detect the resistance change due to the temperature change of the resistance covering the whole by the change in the current amount of energization. Therefore, if an energization current value is detected in a state where the applied voltage to the resistance value of the net heater 31 is a constant voltage, a value close to the average temperature of the entire outer periphery of the outer peripheral portion 11 can be estimated.

この構成によれば、長手方向に分割したネット状ヒータ31に対して、並列に電流を流すことにより、触媒温度や触媒を担持した部分の外周表面に密接な関係を持つネット状ヒータ31の温度を、目標温度に対して温度が低い状態から短時間で一様に加熱することができる。   According to this configuration, by passing a current in parallel to the net-like heater 31 divided in the longitudinal direction, the catalyst temperature and the temperature of the net-like heater 31 having a close relationship with the outer peripheral surface of the portion carrying the catalyst. Can be uniformly heated in a short time from a state where the temperature is lower than the target temperature.

つまり、温度が上昇すると通電抵抗増加する一般的なヒータの材料を使用すると、通常は、排気ガス浄化装置10の加熱過程では下流側の触媒を担持している部分の昇温が速くなるが、この構成では、下流側の温度が上昇してその部分のネット状ヒータ31の温度が他の部位に配置したネット状ヒータ31の温度よりも高くなると、その部位の通電抵抗が他の部位の通電抵抗よりも大きくなるので、一定電圧で並列に通電するだけでも、通電抵抗が大きくなった分だけ通電電流が小さくなり発熱量が減少するので、温度が均一化する。 That is, when a general heater material whose energization resistance increases as the temperature rises is used, the temperature of the portion carrying the downstream catalyst is usually increased in the heating process of the exhaust gas purification device 10. In this configuration, when the temperature on the downstream side rises and the temperature of the net-like heater 31 in that part becomes higher than the temperature of the net-like heater 31 arranged in the other part, the energization resistance in that part becomes lower in the other part. Since it becomes larger than the energization resistance , even if energization is performed in parallel at a constant voltage, the energization current becomes smaller and the amount of heat generation is reduced by the increase in the energization resistance, so that the temperature becomes uniform.

例えば、NOx吸蔵還元型触媒では、NOからNO2への酸化反応に温度範囲があり、NO2をNO3の形で吸着するためには、500℃以下(触媒の種類によってこの温度値は多少変わる)であることが望ましい。従って、触媒温度を活性化温度以上に維持する場合には、排気ガスGの入口側を加熱して、触媒反応熱により温度が上昇し易い出口側は加熱しない方が望ましいことになるが、ネット状ヒータ31に流す電流が周方向に流れるように、ネット状ヒータ31の通電部分を長手方向に分割して設けることにより、排気ガス浄化装置10の全体の触媒の温度を活性化温度以上で、かつ、500℃以下に維持することができるようになる。 For example, a NOx occlusion reduction type catalyst has a temperature range in the oxidation reaction from NO to NO 2, and in order to adsorb NO 2 in the form of NO 3 , it is 500 ° C. or less (this temperature value is somewhat different depending on the type of catalyst). Change). Therefore, when maintaining the catalyst temperature above the activation temperature, the exhaust gas to heat the inlet side of the G, but easily outlet temperature increases by catalytic reaction heat will be preferable not to heat the net By dividing the energized portion of the net heater 31 in the longitudinal direction so that the current flowing through the heater 31 flows in the circumferential direction, the temperature of the entire catalyst of the exhaust gas purification device 10 is equal to or higher than the activation temperature. And it becomes possible to maintain below 500 degreeC.

次に、ネット状ヒータ31に関して、ヒータ材製造メーカの資料から投入電力を求めて、ヒータの線径を求めた場合について説明する。円筒形状のヒータの内部に触媒を担持した部分を装着するとして、その外周面から加熱するとした場合には、加熱面積Sは、触媒を担持した部分の外径が190.5mm(7.5インチ)で、長さが177.8mm(7.0インチ)から、S=π×0.1905×0.1778=0.106m2 となる。 Next, regarding the net heater 31, a case where the input power is obtained from the data of the heater material manufacturer and the heater wire diameter is obtained will be described. When a portion carrying a catalyst is mounted inside a cylindrical heater and heating is performed from the outer peripheral surface, the heating area S has an outer diameter of 190.5 mm (7.5 inches) of the portion carrying the catalyst. ) From 177.8 mm (7.0 inches) to S = π × 0.1905 × 0.1778 = 0.106 m 2 .

ここで、外周への放熱も考慮に入れた実用炉の設計実績から、800℃の上昇まで6分間で加熱するためには、約14kwが必要となる。   Here, from the design results of a practical furnace that takes heat dissipation into the outer periphery into consideration, about 14 kW is required to heat in 6 minutes until the temperature rises to 800 ° C.

これを基に必要な抵抗R2は、28V印加電圧として、R2=28×28/14,000=0.056Ωとなり、ヒータの長さを0.6mで本数をnとすると、r2=0.056×nとなる。ここでn=50とすると、r2=0.056×50=2.8Ωとなり、この値に近いヒータ材の線径は、0.63mmφとなる。なお、このヒータ材の抵抗は4.154Ω/mとなり、0.6mでは、2.49Ωとなる。   Based on this, the necessary resistance R2 is R2 = 28 × 28 / 14,000 = 0.056Ω as 28 V applied voltage, and assuming that the length of the heater is 0.6 m and the number is n, r2 = 0.56 Xn. Assuming that n = 50, r2 = 0.056 × 50 = 2.8Ω, and the wire diameter of the heater material close to this value is 0.63 mmφ. The resistance of the heater material is 4.154 Ω / m, and at 0.6 m, the resistance is 2.49 Ω.

なお、6分間での800℃の昇温ではなく、6分間での400℃の昇温とした場合には、放熱量などを考慮すると電力が約4kwとなり、抵抗R3=28×28/4,000=0.196Ωとなり、n=50では、r3=50×0.196=9.8Ωとなり、この値に近いヒータ材の線径は0.315mmφとなる。なお、このヒータ材の抵抗は16.62Ω/mとなり、0.6mでは10Ωとなる。   In addition, when the temperature rise is 400 ° C. for 6 minutes instead of the temperature rise of 800 ° C. for 6 minutes, the power becomes about 4 kW in consideration of the heat radiation amount, and the resistance R3 = 28 × 28/4. 000 = 0.196Ω, and when n = 50, r3 = 50 × 0.196 = 9.8Ω, and the wire diameter of the heater material close to this value is 0.315 mmφ. The resistance of the heater material is 16.62 Ω / m, and 10 Ω at 0.6 m.

また、ネット状ヒータ31に通電する電流量により触媒を担持した部分の外周部位の温度を推定し、この推定値に基づいて、ネット状ヒータ31への通電量を制御して、触媒を担持した部分の温度制御を行うように構成する。   Further, the temperature of the outer peripheral portion of the portion carrying the catalyst is estimated from the amount of current flowing through the net heater 31, and the amount of current supplied to the net heater 31 is controlled based on this estimated value to carry the catalyst. It is configured to perform temperature control of the part.

つまり、ネット状ヒータ31の抵抗はその配置した場所の温度によって変化し、その抵抗に応じて、一定電圧で通電する電流量は変化するので、電流量を温度センサの信号として使用できる。従って、この電流量から外周部位の温度を推定しながら、印加電圧の制御を行う。これにより、より適切な温度分布にすることが比較的容易にできる。   That is, the resistance of the net-like heater 31 changes depending on the temperature at the place where it is arranged, and the amount of current that is energized at a constant voltage changes according to the resistance, so that the amount of current can be used as a signal for the temperature sensor. Therefore, the applied voltage is controlled while estimating the temperature of the outer peripheral portion from this amount of current. As a result, a more appropriate temperature distribution can be achieved relatively easily.

なお、通電時以外においても、加熱には至らない程度の低電圧をネット状ヒータ31に印加すれば微弱電流が流れるので、この微弱電流を検知することでこの微弱電流からネット状ヒータ31の部位の温度を求め、触媒を担持した部分の外周温度を推定し、その値に応じて通電電圧のオンオフと通電量を制御して触媒を担持した部分の外周部位の温度制御を行う。   Note that, even when the current is not energized, a weak current flows if a low voltage that does not reach heating is applied to the net-like heater 31. Therefore, by detecting this weak current, the portion of the net-like heater 31 is detected from this weak current. The temperature of the outer periphery of the portion carrying the catalyst is estimated, and the temperature of the outer peripheral portion of the portion carrying the catalyst is controlled by controlling the ON / OFF of the energization voltage and the energization amount according to the estimated value.

更に、ネット状ヒータ31の通電電流を計測することで、触媒の活性化温度を推定し、この活性化温度から触媒の劣化度合いを推定する。   Furthermore, the activation temperature of the catalyst is estimated by measuring the energization current of the net heater 31, and the degree of catalyst degradation is estimated from this activation temperature.

つまり、触媒は劣化により触媒反応の開始温度である活性化温度が次第に高温側にシフトする特性を有しており、その一方で、触媒が活性化して触媒反応が発生するようになると、反応熱が発生して温度が上昇し始め、ネット状ヒータ31の電気抵抗が増加し始めるので、この温度上昇の開始時のネット状ヒータ31への通電電流を計測することで、触媒の活性化温度の上昇の程度を推定することができる。従って、触媒温度に密接な関係を持つネット状ヒータ31の電流値の温度上昇開始時の通電電流の変化から触媒の劣化度合いを把握することができる。なお、排気ガスGの流れ方向(排気ガス浄化装置10の長手方向)にネット状ヒータ31を分割して配置することで、触媒の劣化状況を更に細かく把握することも可能となる。   In other words, the catalyst has a characteristic that the activation temperature, which is the starting temperature of the catalytic reaction, gradually shifts to a high temperature side due to deterioration. On the other hand, when the catalyst is activated and the catalytic reaction occurs, the reaction heat Since the temperature starts to rise and the electric resistance of the net heater 31 starts to increase, the activation current of the catalyst is measured by measuring the current flowing to the net heater 31 at the start of this temperature rise. The extent of the rise can be estimated. Therefore, the degree of catalyst deterioration can be grasped from the change in energization current at the start of temperature increase of the current value of the net heater 31 having a close relationship with the catalyst temperature. Note that, by arranging the net heater 31 in the flow direction of the exhaust gas G (longitudinal direction of the exhaust gas purification device 10), it becomes possible to grasp the deterioration state of the catalyst in more detail.

また、排気ガス浄化装置10をNOx浄化触媒装置で構成し、触媒としてNOx吸蔵還元型触媒を使用する場合には、中央筒部12には、NOx吸蔵材としてカリウムを担持させ、外周部11には、NOx吸蔵材としてバリウムを担持させて構成することが好ましい。この構成によれば、高温用(450℃〜550℃)のカリウムを高温の排気ガスの通過が多く、NOx浄化処理中に全体としての平均温度が高い中央筒部12に設け、低温用(250℃〜450℃)のバリウムを、低温の排気ガスの通過が多く、NOx浄化処理中に全体としての平均温度が低い外周部11に設けているので、異なった触媒成分でより効率よくNOx吸蔵性能を発揮することができるようになる。   Further, when the exhaust gas purification device 10 is constituted by a NOx purification catalyst device and a NOx occlusion reduction type catalyst is used as the catalyst, the central cylinder portion 12 carries potassium as a NOx occlusion material, and the outer peripheral portion 11 is supported. Is preferably configured to support barium as the NOx storage material. According to this configuration, high-temperature (450 ° C. to 550 ° C.) potassium is often passed through the high-temperature exhaust gas, and is provided in the central cylinder portion 12 having a high average temperature during the NOx purification treatment. Since the low temperature exhaust gas passes through the outer peripheral portion 11 where the average temperature is low during the NOx purification treatment, the NOx occlusion performance is more efficiently achieved with different catalyst components. Can be demonstrated.

次に、上記の構成の排気ガス浄化システム1における排気ガス浄化方法について説明する。通常の運転状態では、第1バルブ16と第2バルブ18の両方を開いて、排気ガスGを外周部11と中央筒部12の両方に流して、排気ガスG中の有害成分を触媒作用により浄化する。また、暖機運転や低負荷運転等の排気ガスGが低温であり、触媒を迅速に活性化させる必要がある場合と、触媒を硫黄被毒から回復させる脱硫処理で、触媒を高温にする必要がある場合は、第1バルブ16と第2バルブ18はそれぞれの場合に応じて次のように制御される。   Next, an exhaust gas purification method in the exhaust gas purification system 1 having the above configuration will be described. In a normal operation state, both the first valve 16 and the second valve 18 are opened, the exhaust gas G is caused to flow through both the outer peripheral portion 11 and the central cylinder portion 12, and harmful components in the exhaust gas G are catalyzed. Purify. In addition, the exhaust gas G for warm-up operation, low-load operation, etc. is low temperature, and it is necessary to activate the catalyst quickly, and desulfurization treatment to recover the catalyst from sulfur poisoning requires the catalyst to be at a high temperature. If there is, the first valve 16 and the second valve 18 are controlled as follows according to each case.

最初に、暖機運転や低負荷運転の場合について、図11の制御フローを参照しながら説明する。エンジンが始動されて、図11の制御フローが上級の制御フローから呼ばれてスタートすると、ステップS11で、排気ガスGの温度(第1指標温度)Tgと予め設定した第1判定温度T1が入力される。ステップS12で、排気ガスGの温度Tgが第1判定温度T1以下であるか否かが判定される。この図11の制御フローでは、中央筒部12の触媒の温度を指標する第1指標温度として、中央筒部12に流入する排気ガスGの温度Tgを用いている。なお、熱電対19で計測される温度Tc1を用いることもできる。 First, the warm-up operation and the low load operation will be described with reference to the control flow of FIG. When the engine is started and the control flow shown in FIG. 11 is called from the advanced control flow, the temperature (first index temperature) Tg of the exhaust gas G and the preset first determination temperature T1 are input in step S11. Is done. In step S12, it is determined whether or not the temperature Tg of the exhaust gas G is equal to or lower than the first determination temperature T1. In the control flow of FIG. 11, the temperature Tg of the exhaust gas G flowing into the central cylindrical portion 12 is used as the first index temperature that indicates the temperature of the catalyst in the central cylindrical portion 12 . Note that the temperature Tc1 measured by the thermocouple 19 can also be used.

このステップS12の判定で、排気ガスGの温度Tgが第1判定温度T1以下であれば(YES)、ステップS13に行き、第1バルブ16を閉じて第2バルブ18を開く。これにより排気ガスGを中央筒部12のみに流す。この制御をした後、予め設定した時間(排気ガスの温度Tgのチェックのインターバルに関係する時間)を経過した後に、ステップS11に戻る。   If it is determined in step S12 that the temperature Tg of the exhaust gas G is equal to or lower than the first determination temperature T1 (YES), the process goes to step S13, the first valve 16 is closed, and the second valve 18 is opened. As a result, the exhaust gas G is allowed to flow only through the central cylinder portion 12. After this control, after a preset time (time related to the interval of checking the exhaust gas temperature Tg) has elapsed, the process returns to step S11.

ステップS12の判定で、排気ガスGの温度Tgが第1判定温度T1を超えたときには(NO)、ステップS14に行き、第1バルブ16を開いて第2バルブ18を開く、即ち、第2バルブ18を開いたまま、第1バルブ16を開く。これにより、排気ガスGを中央筒部12と外周部11の両方に流す。この制御をした後、予め設定した時間(排気ガスの温度Tgのチェックのインターバルに関係する時間)を経過した後に、ステップS11に戻る。 If it is determined in step S12 that the temperature Tg of the exhaust gas G exceeds the first determination temperature T1 (NO), the process goes to step S14 to open the first valve 16 and open the second valve 18, that is, the second valve. The first valve 16 is opened while 18 is open. As a result, the exhaust gas G flows through both the central cylinder portion 12 and the outer peripheral portion 11. After this control, after a preset time (time related to the interval of checking the exhaust gas temperature Tg) has elapsed, the process returns to step S11.

このステップS11〜ステップS13又はステップS11〜ステップS14を繰り返し実行し、エンジンが停止された場合には、割り込みが発生し、ステップS15の終了処理を行って、上級の制御フローに戻り、上級の制御フローの終了と共に、図11の制御フローも終了する。   If this step S11 to step S13 or step S11 to step S14 is repeatedly executed and the engine is stopped, an interrupt is generated, the end process of step S15 is performed, and the control flow returns to the advanced control flow. With the end of the flow, the control flow of FIG. 11 is also ended.

本発明においては、このステップS14で第1バルブを開いて排気ガスGを外周部11に流し始める時に、ネット状ヒータ31に通電して外周部11を外側から加熱し、外周部11の触媒を昇温して迅速に活性化温度以上にし、活性化温度に到達した後は活性化温度域内に維持する。   In the present invention, when the first valve is opened in step S14 and the exhaust gas G starts to flow through the outer peripheral portion 11, the net heater 31 is energized to heat the outer peripheral portion 11 from the outside, and the catalyst in the outer peripheral portion 11 is The temperature is raised to quickly reach the activation temperature or higher, and after reaching the activation temperature, the temperature is maintained within the activation temperature range.

上記の制御により、中央筒部12の触媒の温度を指標する第1指標温度Tc1が予め設定した第1判定温度T1以下では、第1バルブ16を閉じると共に第2バルブ18を開いて排気ガスGを中央筒部12のみに流し、第1指標温度Tc1が第1判定温度T1を越えたときには、第2バルブ18を開いたまま第1バルブ16を開いて排気ガスGを中央筒部12と外周部11の両方に流すと共にネット状ヒータ31に通電して加熱しながら通電量を調整して外周部11の温度を調整する。 With the above control, when the first index temperature Tc1 indicating the temperature of the catalyst in the central cylinder portion 12 is equal to or lower than the first determination temperature T1 set in advance, the first valve 16 is closed and the second valve 18 is opened, and the exhaust gas G When the first index temperature Tc1 exceeds the first determination temperature T1, the first valve 16 is opened with the second valve 18 open, and the exhaust gas G is discharged from the outer periphery to the central cylinder portion 12. The temperature of the outer peripheral part 11 is adjusted by flowing the current through both the parts 11 and adjusting the energization amount while energizing and heating the net heater 31.

この構成によれば、エンジン始動直後の暖機運転や低負荷運転のときには、排気ガスGの温度Tgが低く、排気ガスGの容積流量も小さいので保温性が良い中央筒部12に排気ガスGを流して、中央筒部12の触媒を迅速に昇温することができる。また、排気ガスGの温度Tgが高く排気ガスGの容積流量が大きいときには、中央筒部12と外周部11の両方に排気ガスGを流して、排気ガスGが通過する部分の容積を増やして、排気ガスGに対する空間速度を下げて、排気ガスGが触媒に接触する時間を長くして触媒反応を促進することができる。それと共に、外周部11の外周に配置したネット状ヒータ31により外周部11を加熱して外周部11の触媒を迅速に昇温し、活性化温度域内に維持することができる。従って、触媒が活性化するまでの時間を短縮でき、触媒が活性化するまでに大気中に放出される排気ガスG中の有害成分の量を減少できる。   According to this configuration, at the time of warm-up operation or low load operation immediately after engine startup, the temperature Tg of the exhaust gas G is low and the volumetric flow rate of the exhaust gas G is small, so that the exhaust gas G is added to the central cylinder portion 12 with good heat retention. And the temperature of the catalyst in the central cylinder portion 12 can be quickly raised. Further, when the temperature Tg of the exhaust gas G is high and the volumetric flow rate of the exhaust gas G is large, the exhaust gas G is allowed to flow through both the central cylindrical portion 12 and the outer peripheral portion 11 to increase the volume of the portion through which the exhaust gas G passes. By reducing the space velocity with respect to the exhaust gas G, the time during which the exhaust gas G contacts the catalyst can be lengthened to promote the catalytic reaction. At the same time, the outer peripheral portion 11 is heated by the net heater 31 disposed on the outer periphery of the outer peripheral portion 11 so that the temperature of the catalyst in the outer peripheral portion 11 can be quickly raised and maintained within the activation temperature range. Accordingly, the time until the catalyst is activated can be shortened, and the amount of harmful components in the exhaust gas G released into the atmosphere before the catalyst is activated can be reduced.

この第1判定温度T1は触媒の活性化温度以上の温度であり、触媒の種類にもよるが、200℃〜300℃の範囲内の温度であり、例えば250℃に設定される。   The first determination temperature T1 is a temperature equal to or higher than the activation temperature of the catalyst, and is a temperature within a range of 200 ° C. to 300 ° C., depending on the type of the catalyst, and is set to 250 ° C., for example.

なお、エンジンの始動時や低負荷運転の場合には、この図11の制御フローが有効になるが、低負荷運転から高負荷運転に移って排気ガスGの温度Tgが上昇したときは、ステップS14の第1バルブ16と第2バルブ18を共に開いた状態になるので、必ずしも、図11の制御フローを停止する必要はない。 Note that the control flow of FIG. 11 is effective when the engine is started or in a low load operation . However, when the temperature Tg of the exhaust gas G rises from the low load operation to the high load operation, a step is performed. Since both the first valve 16 and the second valve 18 of S14 are opened, it is not always necessary to stop the control flow of FIG.

次に、触媒の温度を高い温度にする必要がある脱硫処理の場合について、図12及び図13の制御フローを参照しながら説明する。図12の制御フローと図13の制御フローとは、図12の下端のAと図13の上端のAとにより接続している一つの制御フローである。   Next, the case of desulfurization treatment in which the temperature of the catalyst needs to be increased will be described with reference to the control flow of FIGS. The control flow in FIG. 12 and the control flow in FIG. 13 are one control flow connected by A at the lower end of FIG. 12 and A at the upper end of FIG.

この排気ガス浄化システム1において、脱硫処理を行う場合には、上級の制御フローによって、図11の制御フローから、図12及び図13の制御フローに切替られる。ここでは、第1指標温度として、熱電対19の計測温度Tc1を用い、第2指標温度として熱電対20の計測温度Tc2を用いているが、第1指標温度かつ第2指標温度として排気ガスGの温度Tgを用いるようにしてもよい。 In the exhaust gas purification system 1, when performing the desulfurization process, the control flow of FIG. 11 is switched to the control flow of FIGS. Here, the measured temperature Tc1 of the thermocouple 19 is used as the first index temperature, and the measured temperature Tc2 of the thermocouple 20 is used as the second index temperature, but the exhaust gas G is used as the first index temperature and the second index temperature. The temperature Tg may be used.

図12及び図13の制御フローは、脱硫処理を行う場合の制御であり、スタートすると、図12のステップS21で、中央筒部12の触媒の温度を指標する第1指標温度Tc1と予め設定した第2判定温度T2と予め設定された第1判定時間t1を入力する。次に、ステップS22で、第1指標温度Tc1が第2判定温度T2以下であるか否かを判定する。   The control flow in FIG. 12 and FIG. 13 is a control in the case of performing the desulfurization process. When started, in step S21 in FIG. 12, a first index temperature Tc1 that indexes the temperature of the catalyst in the central cylinder portion 12 is preset. A second determination temperature T2 and a preset first determination time t1 are input. Next, in step S22, it is determined whether or not the first index temperature Tc1 is equal to or lower than the second determination temperature T2.

ステップS22の判定で、第1指標温度Tc1が第2判定温度T2以下である場合(YES)には、ステップS23に行き、第1バルブ16を閉じると共に第2バルブ18を開く。これにより、排気ガスGを中央筒部12のみに流す。この制御をした後、予め設定した時間(第1指標温度Tc1のチェックのインターバルに関係する時間)を経過した後に、ステップS21に戻る。 If it is determined in step S22 that the first index temperature Tc1 is equal to or lower than the second determination temperature T2 (YES), the process proceeds to step S23, where the first valve 16 is closed and the second valve 18 is opened. As a result, the exhaust gas G is allowed to flow only through the central cylinder portion 12. After performing this control, after a preset time ( time related to the check interval of the first index temperature Tc1 ) has elapsed, the process returns to step S21.

ステップS22の判定で、第1指標温度Tc1が第2判定温度T2を超えた場合には(NO)、ステップS24で、第1指標温度Tc1が第2判定温度T2を超えた時間の総和である第1脱硫処理時間td1をカウントする。次のステップS25で、この第1脱硫処理時間td1が予め設定された第1判定時間t1を経過したか否かを判定する。このステップS25の判定で、この第1脱硫処理時間td1が第1判定時間t1を経過していない場合には(NO)、そのままの状態で、予め設定した時間(第1脱硫処理時間td1のチェックのインターバルに関係する時間)を経過した後に、ステップS21に戻る。   If the first index temperature Tc1 exceeds the second determination temperature T2 in the determination in step S22 (NO), it is the sum of the times when the first index temperature Tc1 exceeds the second determination temperature T2 in step S24. The first desulfurization treatment time td1 is counted. In the next step S25, it is determined whether or not the first desulfurization treatment time td1 has passed a preset first determination time t1. If it is determined in step S25 that the first desulfurization treatment time td1 has not passed the first determination time t1 (NO), the preset time (the first desulfurization treatment time td1 is checked as it is). After a lapse of (time related to the interval), the process returns to step S21.

ステップS25の判定で、第1脱硫処理時間td1が第1判定時間t1を経過した場合には(YES)、A経由で、図13のステップS26に行き、第1バルブ16を開いて第2バルブ18を閉じて排気ガスGを外周部11のみに流す。   If it is determined in step S25 that the first desulfurization treatment time td1 has passed the first determination time t1 (YES), the process proceeds to step S26 in FIG. 13 via A, and the first valve 16 is opened and the second valve is opened. 18 is closed and the exhaust gas G is allowed to flow only to the outer peripheral portion 11.

次のステップS27で、外周部11の触媒の温度を指標する第2指標温度Tc2と予め設定した第3判定温度T3と予め設定した第2判定時間t2を入力する。次のステップS28で、第2指標温度Tc2が第3判定温度T3以下か否かを判定する。ステップS28の判定で、第2指標温度Tc2が第3判定温度T3以下で、第3判定温度T3を超えていない場合には(YES)、予め設定した時間(第2指標温度Tc2のチェックのインターバルに関係する時間)を経過した後に、ステップS27に戻る。   In the next step S27, a second index temperature Tc2 that indicates the temperature of the catalyst on the outer peripheral portion 11, a preset third determination temperature T3, and a preset second determination time t2 are input. In the next step S28, it is determined whether or not the second index temperature Tc2 is equal to or lower than the third determination temperature T3. If it is determined in step S28 that the second index temperature Tc2 is equal to or lower than the third determination temperature T3 and does not exceed the third determination temperature T3 (YES), a preset time (interval for checking the second index temperature Tc2) After a lapse of (time related to), the process returns to step S27.

ステップS28の判定で、第2指標温度Tc2が第3判定温度T3を超えた場合には(NO)、次のステップS29で、第2指標温度Tc2が第3判定温度T3を超えた時間の総和である第2脱硫処理時間td2をカウントする。次のステップS30で、この第2脱硫処理時間td2が予め設定された第2判定時間t2を経過したか否かを判定する。このステップS30の判定で、この第2脱硫処理時間td2が第2判定時間t2を経過していない場合には(NO)、そのままの状態で、予め設定した時間(第2脱硫処理時間td2のチェックのインターバルに関係する時間)を経過した後に、ステップS27に戻る。   If it is determined in step S28 that the second index temperature Tc2 exceeds the third determination temperature T3 (NO), in the next step S29, the total time for which the second index temperature Tc2 exceeds the third determination temperature T3. The second desulfurization treatment time td2 is counted. In the next step S30, it is determined whether or not the second desulfurization treatment time td2 has passed a preset second determination time t2. If it is determined in step S30 that the second desulfurization treatment time td2 has not passed the second determination time t2 (NO), the preset time (check of the second desulfurization treatment time td2) is left as it is. After the elapse of the time related to the interval, the process returns to step S27.

ステップS30の判定で、この第2脱硫処理時間td2が第2判定時間t2を経過した場合には(YES)、ステップS31に行き、第1脱硫処理時間td1と第2脱硫処理時間td2のリセット等の脱硫処理の終了の処理を行ってから、上級の制御フローにリターンする。 If it is determined in step S30 that the second desulfurization processing time td2 has passed the second determination time t2 (YES), the process goes to step S31 to reset the first desulfurization processing time td1 and the second desulfurization processing time td2, etc. After completion of the desulfurization process , return to the advanced control flow .

なお、通常は、第3判定温度T3は第2判定温度T2よりも低く、第2判定時間t2は第1判定時間t1よりも短く設定される。これは、低温用のNOx吸蔵還元型触媒で使用するバリウムの方が高温用のNOx吸蔵還元型触媒で使用するカリウムよりも脱離し易いからである。そして、触媒の種類や排気ガス浄化装置10にもよるが、例えば、第2判定温度T2は700℃〜750℃程度に、第3判定温度T3は650℃〜700℃程度に設定され、第1判定時間t1は480s〜600s程度に、第2判定時間t2は180s〜300s程度に設定される。 Normally, the third determination temperature T3 is set lower than the second determination temperature T2 , and the second determination time t2 is set shorter than the first determination time t1 . This is because barium used in the low-temperature NOx storage reduction catalyst is more easily desorbed than potassium used in the high-temperature NOx storage reduction catalyst. Depending on the type of catalyst and the exhaust gas purification device 10, for example, the second determination temperature T2 is set to about 700 ° C. to 750 ° C., and the third determination temperature T3 is set to about 650 ° C. to 700 ° C. The determination time t1 is set to about 480 s to 600 s, and the second determination time t2 is set to about 180 s to 300 s.

本発明においては、このステップS26で第1バルブ16を開いて排気ガスGを外周部11に流し始める時に、ネット状ヒータ31に通電して外周部11を外側から加熱し、外周部11の触媒を昇温して迅速に第3判定温度T3以上にする。 In the present invention, when the first valve 16 is opened in this step S26 and the exhaust gas G starts to flow through the outer peripheral portion 11, the net heater 31 is energized to heat the outer peripheral portion 11 from the outside, and the catalyst in the outer peripheral portion 11 is heated. Is quickly raised to the third determination temperature T3 or higher.

なお、熱電対20で測定される外周部11の触媒の温度を指標する第2指標温度Tc2の代わりに、ネット状ヒータ31の通電電流Iを用いる場合には、図13の第2指標温度Tc2の代わりに通電電流Iを用い、第3判定温度T3の代わりに判定電流値Icを用いる。この場合は、図13の制御フローは、ステップS27と28が、図14の制御フローのステップS27Aと28Aとなる。 In addition, when the current I of the net heater 31 is used instead of the second index temperature Tc2 that indicates the temperature of the catalyst on the outer peripheral portion 11 measured by the thermocouple 20, the second index temperature Tc2 in FIG. Instead of, the energization current I is used, and the determination current value Ic is used instead of the third determination temperature T3. In this case, in the control flow of FIG. 13, steps S27 and 28 become steps S27A and 28A of the control flow of FIG.

この場合に、局所的に温度が上昇して一箇所の抵抗が大きくなっても、全体の抵抗への影響は小さく、全体としての抵抗値が大きくなるのは、触媒を担持している外周部11の全体の温度が上がり多くの抵抗の値が大きくなる場合に限られる。ネット状ヒータ31では抵抗が分散しており、排気ガス浄化装置10のように、温度を検出するための対象物が大きい場合には、ネット状ヒータ31の抵抗値の変化を定電圧のもとで、全体の電流値としての通電電流Iを検出することで、全体の平均温度に近い値を使った制御が可能となる。 In this case, even if the temperature rises locally and the resistance at one location increases, the influence on the overall resistance is small, and the overall resistance value is large because the outer peripheral portion carrying the catalyst. This is limited to the case where the overall temperature of 11 increases and the value of many resistances increases. The net-like heater 31 is resistance is dispersed, as in the exhaust gas purifying device 10, when the object for detecting the temperature is high, even for a constant voltage changes in the resistance value of the net-like heater 31 Thus, by detecting the energization current I as the overall current value, control using a value close to the overall average temperature becomes possible.

この制御により、脱硫処理を行っている場合に、中央筒部12の触媒の温度を指標する第1指標温度Tc1が予め設定した第2判定温度T2以下では、第1バルブ16を閉じると共に第2バルブ18を開いて排気ガスGを中央筒部12のみに流し、第1指標温度Tc1が第2判定温度T2を超えてから、第1指標温度Tc1が第2判定温度T2を超えた時間の総和である第1脱硫処理時間td1が予め設定された第1判定時間t1を経過するまでは、第1バルブ16と第2バルブ18の開閉状態をそのまま継続し、第1脱硫処理時間td1が第1判定時間t1を経過したときに、第1バルブ16を開いて第2バルブ18を閉じて排気ガスGを外周部11のみに流すと共にネット状ヒータ31に通電して加熱しながら通電量を調整して外周部11の温度を調整し、更に、外周部11の触媒の温度を指標する第2指標温度Tc2が予め設定した第3判定温度T3を超えると、第2指標温度Tc2が第3判定温度T3を超えた時間の総和である第2脱硫処理時間td2が予め設定した第2判定時間t2を経過するまでは、第1バルブ16と第2バルブ18の開閉状態とネット状ヒータ31による温度調整をそのまま継続し、第2脱硫処理時間td2が第2判定時間t2を経過すると、脱硫処理を終了する。 With this control, when the desulfurization process is performed, when the first index temperature Tc1 indicating the temperature of the catalyst in the central cylinder portion 12 is equal to or lower than the preset second determination temperature T2, the first valve 16 is closed and the second The sum of the time when the first index temperature Tc1 exceeds the second determination temperature T2 after the first index temperature Tc1 exceeds the second determination temperature T2 after the valve 18 is opened and the exhaust gas G is allowed to flow only through the central cylinder portion 12. The first valve 16 and the second valve 18 are kept open and closed until the first desulfurization treatment time td1 that is set in advance passes a first determination time t1, and the first desulfurization treatment time td1 is the first desulfurization treatment time td1. When the determination time t1 has elapsed, the first valve 16 is opened, the second valve 18 is closed, the exhaust gas G is allowed to flow only to the outer peripheral portion 11, and the net heater 31 is energized to adjust the energization amount while heating. The outer periphery 1 The second index temperature Tc2 exceeds the third determination temperature T3 when the second index temperature Tc2 indicating the temperature of the catalyst of the outer peripheral portion 11 exceeds the preset third determination temperature T3. Until the second desulfurization treatment time td2, which is the sum of the times, passes the preset second determination time t2, the open / close state of the first valve 16 and the second valve 18 and the temperature adjustment by the net heater 31 are continued as they are. When the second desulfurization treatment time td2 has passed the second determination time t2, the desulfurization treatment is terminated.

この脱硫処理の場合の排気ガス浄化方法によれば、触媒を高温にする必要がある脱硫処理において、第1指標温度Tc1が第2判定温度T2を超えてから第1判定時間t2を超えるまでは、筒状の仕切り壁13の遮熱構造により保温性がよく昇温が早い中央筒部12に排気ガスGを全量流して、この中央筒部12の脱硫処理を完了するまで行い、その後、保温構造により保温性がよいが中央筒部12に比べて触媒の昇温が遅れ易い外周部11に排気ガスGを全量流すと共に、ネット状ヒータ31に通電して外周部11を加熱して外周部11の脱硫処理を集中的に行うことができる。 According to the exhaust gas purification method in the case of this desulfurization process, in the desulfurization process that requires the catalyst to be at a high temperature, from when the first index temperature Tc1 exceeds the second determination temperature T2 until it exceeds the first determination time t2. The exhaust gas G is completely flowed through the central cylindrical portion 12 having a high heat retention and a fast temperature rise due to the heat insulating structure of the cylindrical partition wall 13 until the desulfurization treatment of the central cylindrical portion 12 is completed. Although the heat retaining property is good depending on the structure, the exhaust gas G is entirely supplied to the outer peripheral portion 11 where the temperature rise of the catalyst is likely to be delayed as compared with the central cylindrical portion 12, and the outer peripheral portion 11 is heated by energizing the net heater 31. 11 desulfurization treatment can be performed intensively.

そのため、中央筒部12の脱硫処理に際しては、中央筒部12からの熱移動を仕切り壁13で抑制しているので、中央筒部12の加熱処理時間を減らすことができ、また、外周部11の脱硫処理に際しては、仕切り壁13と保温構造14とで外周部11からの熱移動を抑制し、更に、ネット状ヒータ31によって加熱しているので、外周部11の加熱処理時間を著しく減らすことができる。従って、各部分の昇温を迅速に行うことができ、触媒全体の脱硫処理を効率よく行うことができ、脱硫処理のために必要となる時間と燃料消費量を減少できる。   Therefore, in the desulfurization process of the central cylinder part 12, since the heat transfer from the central cylinder part 12 is suppressed by the partition wall 13, the heat treatment time of the central cylinder part 12 can be reduced, and the outer peripheral part 11 In the desulfurization process, the heat transfer from the outer peripheral part 11 is suppressed by the partition wall 13 and the heat retaining structure 14, and further, the heating is performed by the net heater 31, so that the heat treatment time of the outer peripheral part 11 is remarkably reduced. Can do. Therefore, the temperature of each part can be quickly raised, the entire catalyst can be efficiently desulfurized, and the time and fuel consumption required for the desulfurization process can be reduced.

その上、脱硫処理の前半で、中央筒部12だけを脱硫処理し、脱硫処理の後半で外周部11だけをネット状ヒータ31で加熱しながら脱硫処理して、排気ガスGが通過し難く温度も上がり難い触媒の外周部11を、執拗に脱硫処理することで、触媒の全体に亘って十分な脱硫を行うことができる。そのため、浄化能力を良好な状態に維持できる。   In addition, in the first half of the desulfurization treatment, only the central cylinder portion 12 is desulfurized, and in the second half of the desulfurization treatment, only the outer peripheral portion 11 is desulfurized while being heated by the net heater 31, so By sufficiently desulfurizing the outer peripheral portion 11 of the catalyst that is difficult to rise, sufficient desulfurization can be performed over the entire catalyst. Therefore, the purification ability can be maintained in a good state.

その結果、触媒の浄化性能の維持に必要な還元処理、言い換えれば、触媒の浄化能力を回復する再生処理のための時間や回数を減少できるので、この再生処理で必要な燃料消費量を低減できる。従って、車両に搭載する触媒の容量を減少して、搭載性を確保すると共にコストを低減することができる。また、脱硫処理において、冷え易い触媒の外周部11のみを高温に加熱することで中央筒部12が過剰な高温に晒されて触媒が劣化することを抑制することができる。   As a result, it is possible to reduce the time and number of reduction processes necessary for maintaining the purification performance of the catalyst, in other words, the regeneration process for recovering the purification capacity of the catalyst, thereby reducing the fuel consumption required for the regeneration process. . Therefore, the capacity of the catalyst mounted on the vehicle can be reduced to ensure the mountability and reduce the cost. Further, in the desulfurization treatment, it is possible to suppress the deterioration of the catalyst due to the central cylinder portion 12 being exposed to an excessively high temperature by heating only the outer peripheral portion 11 of the catalyst that is easily cooled to a high temperature.

なお、上記の図12及び図13(又は図14)の制御フローでは、脱硫処理の回数は、中央筒部12と外周部11とで同じ回数となるが、更に、脱硫処理を外周部11と中央筒部12とに分けて行うように構成すれば、比較的硫黄の吸着し難い外周部11の処理回数を減らすことができるので、より燃料消費量を低減することができるようになる。 In the control flow of FIG. 12 and FIG. 13 (or FIG. 14) described above, the number of desulfurization treatments is the same for the central cylindrical portion 12 and the outer peripheral portion 11, but the desulfurization treatment is further performed for the outer peripheral portion 11. If it is configured so as to be performed separately from the central cylindrical portion 12, the number of treatments of the outer peripheral portion 11 which is relatively difficult to adsorb sulfur can be reduced, so that the fuel consumption can be further reduced.

上記の構成の排気ガス浄化システム1によれば、NOx浄化触媒装置、酸化触媒装置、触媒付きフィルタ装置等の触媒を用いた排気ガス浄化装置10において、触媒の浄化性能の温度依存性を考慮して、触媒の浄化性能を速やかに且つ効率よく利用できる。   According to the exhaust gas purification system 1 having the above-described configuration, the exhaust gas purification device 10 using a catalyst such as a NOx purification catalyst device, an oxidation catalyst device, or a filter device with a catalyst takes into account the temperature dependence of the purification performance of the catalyst. Thus, the purification performance of the catalyst can be utilized quickly and efficiently.

この構成によれば、排気ガス浄化装置10から放熱する熱量を、ネット状ヒータ31による加熱で補うことができ、触媒を担持した部分の温度低下を抑制することができる。また、触媒を担持した部分の外周部11の温度を、排気ガスGの熱量に依存することなく、ネット状ヒータ31による加熱で昇温させて活性化温度域に維持できるので、活性化温度に昇温な時間を殆ど無くすことができる。従って、触媒が活性化温度域までの昇温するまでの間に放出される有害成分の排出を著しく減少することができる。   According to this configuration, the amount of heat dissipated from the exhaust gas purification device 10 can be supplemented by the heating by the net heater 31, and the temperature drop of the portion supporting the catalyst can be suppressed. Further, the temperature of the outer peripheral portion 11 of the portion carrying the catalyst can be raised by heating by the net heater 31 and maintained in the activation temperature range without depending on the heat quantity of the exhaust gas G. Almost no heating time can be eliminated. Therefore, it is possible to significantly reduce the emission of harmful components that are released before the catalyst is heated to the activation temperature range.

また、長手方向に分割したネット状ヒータ31に対して、電流を周方向に並列的に流すことで、長手方向毎に異なった加熱ができ、温度が低い部分の加熱と、温度が高い部分の加熱の抑制を簡単に行うことができるので、触媒の温度を短時間で昇温して全体的に均一に維持することが比較的容易にできるようになる。   In addition, the net-like heater 31 divided in the longitudinal direction can be heated differently for each longitudinal direction by flowing an electric current in parallel in the circumferential direction. Since the suppression of heating can be easily performed, the temperature of the catalyst can be raised in a short time and maintained relatively uniformly as a whole.

また、上記の排気ガス浄化方法によれば、NOx浄化触媒装置、酸化触媒装置、触媒付きフィルタ装置等の触媒を用いた排気ガス浄化装置10において、エンジン始動直後の暖機運転や低負荷運転のときには、保温性が良い中央筒部12に排気ガスGを流して、中央筒部12の触媒を迅速に昇温して、活性化までの時間を短縮することができる。   Further, according to the exhaust gas purification method described above, in the exhaust gas purification device 10 using a catalyst such as a NOx purification catalyst device, an oxidation catalyst device, a filter device with a catalyst, etc., warm-up operation or low load operation immediately after engine startup is performed. In some cases, exhaust gas G is allowed to flow through the central cylindrical portion 12 with good heat retention, and the catalyst in the central cylindrical portion 12 can be quickly heated to shorten the time until activation.

また、排気ガスGの容積流量が大きいときには、中央筒部12と外周部11の両方に排気ガスGを流して、排気ガスGが通過する部分の容積を増やして、排気ガスGに対する空間速度を下げて、排気ガスGが触媒に接触する時間を長くして触媒反応を促進することができる。この外周部11に排気ガスGを流す場合に、ネット状ヒータ31に通電して加熱しながら通電量を調整して外周部11の温度を調整するので、外周部11を外周側から加熱して速やかに活性化温度に昇温させることができ、昇温後は通電量を調整して外周部11の触媒の温度Tc2を活性化温度域内に維持することができる。 When the volumetric flow rate of the exhaust gas G is large, the exhaust gas G is allowed to flow through both the central cylindrical portion 12 and the outer peripheral portion 11 to increase the volume of the portion through which the exhaust gas G passes, so that the space velocity relative to the exhaust gas G is increased. The catalytic reaction can be promoted by increasing the time during which the exhaust gas G contacts the catalyst. When exhaust gas G is allowed to flow through the outer peripheral portion 11, the energizing amount is adjusted while the net heater 31 is energized and heated to adjust the temperature of the outer peripheral portion 11, so the outer peripheral portion 11 is heated from the outer peripheral side. The temperature can be quickly raised to the activation temperature, and after the temperature rise, the amount of energization can be adjusted to maintain the catalyst temperature Tc2 in the outer peripheral portion 11 within the activation temperature range.

本発明の実施の形態の排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust-gas purification system of embodiment of this invention. 排気ガス浄化装置の排気ガスの入口の構成を示す図である。It is a figure which shows the structure of the inlet_port | entrance of the exhaust gas of an exhaust gas purification apparatus. 排気ガス浄化装置の横断面を示す図である。It is a figure which shows the cross section of an exhaust-gas purification apparatus. 排気ガス浄化装置の筒状の仕切り壁の構成を示す図3のHで示す楕円部分の拡大図である。It is an enlarged view of the ellipse part shown by H of FIG. 3 which shows the structure of the cylindrical partition wall of an exhaust-gas purification apparatus. 排気ガス浄化装置のネット状ヒータの構成を示す図である。It is a figure which shows the structure of the net-shaped heater of an exhaust-gas purification apparatus. 排気ガス浄化装置のネット状ヒータの通電電極の引き出し部構成を示す図である。It is a figure which shows the drawer | drawing-out part structure of the electricity supply electrode of the net-shaped heater of an exhaust-gas purification apparatus. 排気ガス浄化装置のネット状ヒータの通電電極の引き出し部構成を示す図6のJで示す楕円部分の拡大図である。It is an enlarged view of the ellipse part shown by J of FIG. 6 which shows the drawer | drawing-out part structure of the electricity supply electrode of the net-shaped heater of an exhaust-gas purification apparatus. 排気ガス浄化装置のネット状ヒータの通電の構成を示す図である。It is a figure which shows the structure of electricity supply of the net-shaped heater of an exhaust-gas purification apparatus. 単一のネット状ヒータの通電の状態を模式的に示す図である。It is a figure which shows typically the state of electricity supply of a single net-shaped heater. 複数のネット状ヒータの並列通電の状態を模式的に示す図である。It is a figure which shows typically the state of the parallel electricity supply of a some net-shaped heater. 本発明に係る排気ガス浄化方法の暖機運転及び低負荷運転の場合の制御フローの一例を示す図である。It is a figure which shows an example of the control flow in the case of warm-up operation and low load operation of the exhaust gas purification method according to the present invention. 本発明に係る排気ガス浄化方法の脱硫処理に場合の制御フローの一例の前半を示す図である。It is a figure which shows the first half of an example of the control flow in the case of the desulfurization process of the exhaust gas purification method which concerns on this invention. 図12の制御フローの後半を示す図である。It is a figure which shows the second half of the control flow of FIG. ヒータの通電電流を用いた場合の図12の制御フローの後半を示す図である。It is a figure which shows the second half of the control flow of FIG. 12 at the time of using the energization current of a heater.

符号の説明Explanation of symbols

1 排気ガス浄化システム
2 エンジンの排気通路
3 エンジン制御装置(ECU)
10 排気ガス浄化装置
11 外周部
12 中央筒部
13 仕切り壁
14 保温構造
15 第1通路
16 第1バルブ
17 第2通路
18 第2バルブ
19、20、21 熱電対
31 ネット状ヒータ(ヒータ)
32 絶縁シールマット
33、35 リード線
34 電圧調整及び制御ユニット
36 バッテリ(電源)
G 排気ガス
I 通電電流
Ic 判定電流値
T1 第1判定温度
T2 第2判定温度
T3 第3判定温度
Tc1 第1指標温度
Tc2 第2指標温度
Tg 排気ガスの温度
t1 第1判定時間
t2 第2判定時間
td1 第1脱硫処理時間
td2 第2脱硫処理時間
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification system 2 Engine exhaust passage 3 Engine control apparatus (ECU)
DESCRIPTION OF SYMBOLS 10 Exhaust gas purification apparatus 11 Outer peripheral part 12 Central cylinder part 13 Partition wall 14 Thermal insulation structure 15 1st channel | path 16 1st valve | bulb 17 2nd channel | path 18 2nd valve | bulb 19, 20, 21 Thermocouple 31 Net-like heater (heater)
32 Insulating seal mat 33, 35 Lead wire 34 Voltage adjustment and control unit 36 Battery (power supply)
G exhaust gas I energizing current Ic determination current value T1 first determination temperature T2 second determination temperature T3 third determination temperature Tc1 first index temperature Tc2 second index temperature Tg exhaust gas temperature t1 first determination time t2 second determination time td1 first desulfurization treatment time td2 second desulfurization treatment time

Claims (4)

排気ガス中の有害成分を浄化する触媒を担持した排気ガス浄化装置を備えた排気ガス浄化システムにおいて、前記排気ガス浄化装置の触媒を担持した部分の外周を温度が上昇すると通電抵抗が増加する材料を使用したヒータで包み、該ヒータに流す電流が周方向に流れるように、該ヒータの通電部分を長手方向に分割して設けると共に、分割されたそれぞれの前記ヒータが通電電極に電気的に並列に接続されており、前記排気ガス浄化装置の触媒を担持した部分を遮熱構造の筒状の仕切り壁により外周部と中央筒部の二つに分けて、
内燃機関の排気通路と前記外周部との間に第1バルブを、前記排気通路と前記中央筒部との間に第2バルブを設け、
前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第1判定温度以下では、前記第1バルブを閉じると共に前記第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第1判定温度を超えたときには、前記第2バルブを開いたまま前記第1バルブを開いて排気ガスを前記中央筒部と前記外周部の両方に流すと共に前記ヒータに通電して加熱しながら通電量を調整して外周部の温度を調整し、脱硫処理を行っている場合に、前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第2判定温度以下では、前記第1バルブを閉じると共に前記第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第2判定温度を超えてから、前記第1指標温度が前記第2判定温度を超えた時間の総和である第1脱硫処理時間が予め設定された第1判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態をそのまま継続し、前記第1脱硫処理時間が前記第1判定時間を経過したときに、前記第1バルブを開いて前記第2バルブを閉じて排気ガスを前記外周部のみに流すと共に前記ヒータに通電して加熱しながら通電量を調整して外周部の温度を調整し、更に、前記外周部を昇温する前記ヒータへの通電電流が予め設定した判定電流値を超えると、前記通電電流が前記判定電流値を超えた時間の総和である第2脱硫処理時間が予め設定した第2判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態と前記ヒータによる温度調整をそのまま継続し、前記第2脱硫処理時間が前記第2判定時間を経過すると、脱硫処理を終了するように、前記第1バルブを開くことにより排気ガスを前記外周部に流し、前記第2バルブを開くことにより排気ガスを前記中央筒部に流すように構成したことを特徴とする排気ガス浄化システム。
In an exhaust gas purification system having an exhaust gas purification device carrying a catalyst for purifying a harmful component in exhaust gas, a material whose energization resistance increases when the temperature of the outer periphery of the portion carrying the catalyst of the exhaust gas purification device rises The heater energized portion is divided in the longitudinal direction so that the current flowing through the heater flows in the circumferential direction, and each of the divided heaters is electrically parallel to the energized electrode. The part carrying the catalyst of the exhaust gas purification device is divided into two parts, an outer peripheral part and a central cylindrical part, by a cylindrical partition wall of a heat shielding structure,
A first valve is provided between the exhaust passage of the internal combustion engine and the outer peripheral portion, and a second valve is provided between the exhaust passage and the central cylinder portion,
When the first index temperature indicating the temperature of the catalyst in the central cylinder portion is equal to or lower than the first determination temperature set in advance, the first valve is closed and the second valve is opened to allow the exhaust gas to flow only in the central cylinder portion. When the first index temperature exceeds the first determination temperature, the first valve is opened while the second valve is open, and exhaust gas is allowed to flow through both the central tube portion and the outer peripheral portion, and the heater. When the desulfurization treatment is performed by adjusting the energization amount while energizing and heating to adjust the temperature of the outer peripheral portion, a first index temperature indicating the temperature of the catalyst in the central cylinder portion is set in advance. 2 or less, the first valve is closed and the second valve is opened to allow the exhaust gas to flow only through the central cylinder, and after the first index temperature exceeds the second determination temperature, The index temperature is the second judgment temperature The first valve and the second valve are kept in the open / closed state until the first determination time set in advance, which is the sum of the obtained time, passes, and the first desulfurization time When the first determination time has elapsed, the first valve is opened, the second valve is closed, exhaust gas is allowed to flow only to the outer periphery, and the heater is energized to adjust the energization amount while heating. When the energizing current to the heater for adjusting the temperature of the outer peripheral portion and raising the temperature of the outer peripheral portion exceeds a preset judgment current value, the sum of the times when the energizing current exceeds the judgment current value Until the second determination time set in advance has elapsed, the open / closed state of the first valve and the second valve and the temperature adjustment by the heater are continued as they are, and the second desulfurization processing time is Second judgment time When the time has elapsed, the exhaust gas is caused to flow to the outer peripheral portion by opening the first valve, and the exhaust gas is caused to flow to the central cylinder portion by opening the second valve so as to end the desulfurization process. Exhaust gas purification system.
前記ヒータに通電する電流量により前記触媒を担持した部分の外周部位の温度を推定し、この推定値に基づいて、前記ヒータへの通電量を制御して、前記触媒を担持した部分の温度制御を行うことを特徴とする請求項1記載の排気ガス浄化システム。The temperature of the outer peripheral portion of the portion carrying the catalyst is estimated based on the amount of current flowing to the heater, and the temperature control of the portion carrying the catalyst is controlled based on this estimated value by controlling the amount of current supplied to the heater. The exhaust gas purification system according to claim 1, wherein: 前記ヒータの通電電流を計測することで、触媒の活性化温度を推定し、この活性化温度から触媒の劣化度合いを推定することを特徴とする請求項1又は2記載の排気ガス浄化システム。The exhaust gas purification system according to claim 1 or 2, wherein an activation temperature of the catalyst is estimated by measuring an energization current of the heater, and a degree of deterioration of the catalyst is estimated from the activation temperature. 排気ガス浄化装置の触媒を担持した部分を遮熱構造の筒状の仕切り壁により外周部と中央筒部の二つに分けて、内燃機関の排気通路と前記外周部との間に第1バルブを、前記排気通路と前記中央筒部との間に第2バルブを設け、前記第1バルブを開くことにより排気ガスを前記外周部に流し、前記第2バルブを開くことにより排気ガスを前記中央筒部に流すように構成すると共に、前記外周部の外周を温度が上昇すると通電抵抗が増加する材料を使用したヒータで包み、該ヒータに流す電流が周方向に流れるように、該ヒータの通電部分を長手方向に分割して設けると共に、分割されたそれぞれの前記ヒータが通電電極に電気的に並列に接続されている排気ガス浄化システムの排気ガス浄化方法であって、A portion of the exhaust gas purifying device carrying the catalyst is divided into an outer peripheral portion and a central cylindrical portion by a cylindrical partition wall having a heat shielding structure, and a first valve is provided between the exhaust passage of the internal combustion engine and the outer peripheral portion. A second valve is provided between the exhaust passage and the central tube portion, the exhaust gas is caused to flow to the outer peripheral portion by opening the first valve, and the exhaust gas is passed to the center by opening the second valve. It is configured to flow through the cylinder, and the outer periphery of the outer periphery is encased in a heater that uses a material whose energization resistance increases as the temperature rises, and the heater is energized so that the current flowing through the heater flows in the circumferential direction. An exhaust gas purification method for an exhaust gas purification system in which a portion is provided in the longitudinal direction and each of the divided heaters is electrically connected to the energizing electrode in parallel.
前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第1判定温度以下では、前記第1バルブを閉じると共に前記第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第1判定温度を超えたときには、前記第2バルブを開いたまま前記第1バルブを開いて排気ガスを前記中央筒部と前記外周部の両方に流すと共に前記ヒータに通電して加熱しながら通電量を調整して外周部の温度を調整し、When the first index temperature indicating the temperature of the catalyst in the central cylinder portion is equal to or lower than the first determination temperature set in advance, the first valve is closed and the second valve is opened to allow the exhaust gas to flow only in the central cylinder portion. When the first index temperature exceeds the first determination temperature, the first valve is opened while the second valve is open, and exhaust gas is allowed to flow through both the central tube portion and the outer peripheral portion, and the heater. The temperature of the outer peripheral part is adjusted by adjusting the energizing amount while energizing and heating,
脱硫処理を行っている場合に、前記中央筒部の触媒の温度を指標する第1指標温度が予め設定した第2判定温度以下では、前記第1バルブを閉じると共に前記第2バルブを開いて排気ガスを前記中央筒部のみに流し、前記第1指標温度が前記第2判定温度を超えてから、前記第1指標温度が前記第2判定温度を超えた時間の総和である第1脱硫処理時間が予め設定された第1判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態をそのまま継続し、前記第1脱硫処理時間が前記第1判定時間を経過したときに、前記第1バルブを開いて前記第2バルブを閉じて排気ガスを前記外周部のみに流すと共に前記ヒータに通電して加熱しながら通電量を調整して外周部の温度を調整し、更に、前記外周部を昇温する前記ヒータへの通電電流が予め設定した判定電流値を超えると、前記通電電流が前記判定電流値を超えた時間の総和である第2脱硫処理時間が予め設定した第2判定時間を経過するまでは、前記第1バルブと前記第2バルブの開閉状態と前記ヒータによる温度調整をそのまま継続し、前記第2脱硫処理時間が前記第2判定時間を経過すると、脱硫処理を終了することを特徴とする排気ガス浄化方法。When the desulfurization treatment is being performed, if the first index temperature indicating the temperature of the catalyst in the central cylinder portion is equal to or lower than the second determination temperature set in advance, the first valve is closed and the second valve is opened to exhaust the exhaust gas. A first desulfurization treatment time that is the sum of the time when the first index temperature exceeds the second determination temperature after the gas is allowed to flow only through the central cylinder portion and the first index temperature exceeds the second determination temperature. Until the first determination time set in advance has elapsed, the open and closed states of the first valve and the second valve are continued as they are, and when the first desulfurization processing time has passed the first determination time, The first valve is opened and the second valve is closed to allow exhaust gas to flow only to the outer peripheral portion, and the heater is energized to adjust the energization amount while heating to adjust the temperature of the outer peripheral portion. To the heater to heat up the outer periphery When the electric current exceeds a preset determination current value, the second desulfurization treatment time, which is the sum of the time when the energization current exceeds the determination current value, passes until the second determination time set in advance passes. The exhaust gas purification is characterized in that the open / closed state of the one valve and the second valve and the temperature adjustment by the heater are continued as they are, and the desulfurization process is terminated when the second determination time has passed the second determination time. Method.
JP2008211125A 2008-08-19 2008-08-19 Exhaust gas purification system and exhaust gas purification method Expired - Fee Related JP5347372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211125A JP5347372B2 (en) 2008-08-19 2008-08-19 Exhaust gas purification system and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211125A JP5347372B2 (en) 2008-08-19 2008-08-19 Exhaust gas purification system and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2010048112A JP2010048112A (en) 2010-03-04
JP5347372B2 true JP5347372B2 (en) 2013-11-20

Family

ID=42065393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211125A Expired - Fee Related JP5347372B2 (en) 2008-08-19 2008-08-19 Exhaust gas purification system and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP5347372B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6019913B2 (en) * 2012-08-13 2016-11-02 株式会社豊田中央研究所 Catalytic reaction apparatus and vehicle
JP6703872B2 (en) * 2016-03-28 2020-06-03 日本碍子株式会社 Heater and honeycomb structure including the heater
CN114483269B (en) * 2022-01-26 2023-01-31 宁波吉利罗佑发动机零部件有限公司 Exhaust treatment device for cold start of automobile engine and control method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125924A (en) * 1991-11-02 1993-05-21 Toyota Motor Corp Exhaust purifying device of diesel engine
JPH0561418U (en) * 1992-01-24 1993-08-13 三菱自動車工業株式会社 Exhaust gas treatment device
JPH05269387A (en) * 1992-03-26 1993-10-19 Nissan Motor Co Ltd Exhaust gas purifying catalystic converter
JPH06229225A (en) * 1993-02-03 1994-08-16 Isuzu Ceramics Kenkyusho:Kk Diesel particulate filter
JP2585855Y2 (en) * 1993-06-11 1998-11-25 日産ディーゼル工業株式会社 Particulate trap device
JPH08312328A (en) * 1995-05-12 1996-11-26 Isuzu Ceramics Kenkyusho:Kk Diesel particulate filter
JP3158988B2 (en) * 1995-09-13 2001-04-23 トヨタ自動車株式会社 Control device for electrically heated catalyst
JP4259650B2 (en) * 1998-08-20 2009-04-30 イビデン株式会社 Heater drive circuit
JP2006077738A (en) * 2004-09-13 2006-03-23 Toyota Motor Corp Catalyst deterioration detection device for internal combustion engine
JP2006226231A (en) * 2005-02-18 2006-08-31 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Also Published As

Publication number Publication date
JP2010048112A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP5256881B2 (en) Exhaust gas purification device
US10690031B2 (en) Aftertreatment architecture for internal combustion engine
US7010910B2 (en) Exhaust gas purification apparatus
US8978370B2 (en) Engine off particulate filter (“PF”) regeneration using a single secondary energy storage device
JP2006274838A (en) Exhaust gas purifying system of internal combustion engine
JP5233499B2 (en) Exhaust gas purification system and exhaust gas purification method
JP2005299631A (en) Automobile exhaust emission control system
JP6185570B2 (en) Method for the operation of an exhaust gas system
US8720192B2 (en) Engine off particulate filter (“PF”) regeneration using a plurality of secondary energy storage devices
JP6586377B2 (en) Exhaust purification device
JP5347372B2 (en) Exhaust gas purification system and exhaust gas purification method
JP3761335B2 (en) Catalyst degradation detector
JP5141479B2 (en) Exhaust gas purification system and exhaust gas purification method
JP6387976B2 (en) Electric heating type catalyst
JP5282568B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2006207549A (en) Temperature raising method for exhaust emission control device and exhaust emission controlling system
US20130086886A1 (en) Electrically heated oxidation catalyst particulate matter protection
JP6091429B2 (en) How to operate an exhaust system
JP6007859B2 (en) Chemical heat storage device
JP6472991B2 (en) Heat storage body disposed in exhaust pipe of internal combustion engine and exhaust gas purification system
JP2021183829A (en) Exhaust emission control system and exhaust emission control device
EP1625287B1 (en) Method of operating a catalyst which includes components for storing hydrocarbons
JP2015081519A (en) Exhaust gas purification system
JP2006226231A (en) Exhaust emission control device of internal combustion engine
JP3217130B2 (en) Engine exhaust purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees