JP2010045318A - 固体撮像装置及び電子機器 - Google Patents

固体撮像装置及び電子機器 Download PDF

Info

Publication number
JP2010045318A
JP2010045318A JP2008210173A JP2008210173A JP2010045318A JP 2010045318 A JP2010045318 A JP 2010045318A JP 2008210173 A JP2008210173 A JP 2008210173A JP 2008210173 A JP2008210173 A JP 2008210173A JP 2010045318 A JP2010045318 A JP 2010045318A
Authority
JP
Japan
Prior art keywords
semiconductor region
solid
imaging device
type semiconductor
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2008210173A
Other languages
English (en)
Inventor
Soichiro Itonaga
総一郎 糸長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008210173A priority Critical patent/JP2010045318A/ja
Publication of JP2010045318A publication Critical patent/JP2010045318A/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】固体撮像装置において、画素が微細化されても感度の向上を図る。
【解決手段】固体撮像装置は、光L1を受けたときに、第1導電型の半導体領域2の絶縁膜3側の表面のピニング状態が変調し、前記半導体領域2の表面から発生した電荷e2を信号電荷とする受光部1を有する画素を備えている。
【選択図】図1

Description

本発明は、CMOSイメージセンサあるいはCCDイメージセンサ等の固体撮像装置、及びこの固体撮像装置を備えたカメラ等の電子機器に関する。
固体撮像装置は、CMOSイメージセンサに代表される増幅型固体撮像装置と、CCDイメージセンサに代表される電荷転送型固体撮像装置とに大別される。CMOSイメージセンサとCCDイメージセンサとを比較した場合、CCDイメージセンサでは信号電荷の転送に高い駆動電圧を必要とするため、CMOSイメージセンサに比べて電源電圧が高くなる。従って、カメラ付き携帯電話やPDA(Personal Digital Assistant)などのモバイル機器に搭載される固体撮像装置としては、CCDイメージセンサに比べて電源電圧が低く、消費電力の観点などから、CMOSイメージセンサが多く用いられている。
特許文献1には、少なくとも一部の画素において、光電変換部の表面付近に波長変換層を形成し、感度を向上するようにした固体撮像装置が示されている。
特許文献2には、受光部の受光面上に負の固定電荷を有する膜を形成し、この膜によって正孔を誘起して受光部の表面を正孔蓄積状態として、界面準位に起因した暗電流の発生を抑制した固体撮像装置が示されている。
特開2006−245535号公報 特開2007−258684号公報
ところで、近年、固体撮像装置の画素の微細化が進むにつれて、単位画素当たりの面積が小さくなり、それに伴って受光面積が小さくなってきて、感度の低下が避けられない。CMOSイメージセンサ、CCDイメージセンサでは、光電変換した電子・正孔対のうち、いずれか一方、通常は電子を信号電荷として利用している。従って、受光面積の縮小に伴い一定の光照射量で得られる電子量が低減し、感度が低下する。このため、画素が微細化されても高感度の得られる固体撮像装置の開発が望まれている。
本発明は、上述の点に鑑み、画素が微細化されても感度を向上した固体撮像装置を提供するものである。
また、本発明は、このような感度を向上した固体撮像装置を備えた電子機器を提供するものである。
本発明に係る固体撮像装置は、光を受けたときに、第1導電型の半導体領域の絶縁膜側の表面のピニング状態が変調し、半導体領域の表面から発生する電荷を信号電荷とする受光部を有する画素を備えている。
本発明の好ましい形態としては、受光部は、第1導電型の半導体領域と、第1導電型の半導体領域上に絶縁膜を介して形成された材料層とを有する。この材料層は、第1導電型の半導体領域の表面に信号電荷と逆極性の電荷を誘起し、光を受けたときに前記第1導電型の半導体領域の表面のポテンシャルを変調させる材料層である。
本発明の固体撮像装置では、受光部において、光を受けたときに第1導電型の半導体領域の絶縁膜側の表面から発生する電荷を信号電荷としている。この信号電荷となる電荷は、従来のいわゆる暗時白点となる電荷を利用している。これによって、光子1個当たりの信号電荷の変換効率が増倍する。
本発明の好ましい形態では、受光部おいて、材料層により第1導電型の半導体領域の表面に信号電荷と逆極性の電荷が誘起されて、半導体領域表面からの電荷発生が抑制される。光を受けると材料層で光電変換が起こり、半導体領域表面のポテンシャルが変調する。すなわち、電荷発生の抑制が低減しもしくは外れ、半導体領域の表面から信号電荷となる電荷が発生する。
本発明に係る電子機器は、固体撮像装置と、固体撮像装置の光電変換素子に入射光を導く光学系と、固体撮像装置の出力信号を処理する信号処理回路とを備える。この固体撮像装置は、光を受けたときに、第1導電型の半導体領域の絶縁膜側の表面のピニング状態が変調し、半導体領域の表面から発生する電荷を信号電荷とする受光部を有する画素を備えている。
本発明の電子機器では、固体撮像装置において、光を受けたときに受光部を構成する第1導電型の半導体領域の絶縁膜側の表面から、信号電荷となる電荷が発生する。この信号電荷となる電荷は、従来のいわゆる暗時白点となる電荷を利用しているので、光子1個当たりの信号電荷の変換効率が増倍する。
本発明に係る固体撮像装置によれば、受光部における信号電荷の変換効率が増倍するので、画素が微細化されても感度を向上することができる。
本発明に係る電子機器によれば、上記固体撮像装置を備えることにより、画素が微細化されても高感度化を図ることができる。
以下、図面を参照して本発明の実施の形態を説明する。
通常の固体撮像装置では、光電変換により生成した電子・正孔対のうち一方の電荷、例えば電子または正孔のみを信号電荷として扱う構成が採られている。一方、光電変換部における電荷蓄積領域となる第1導電型の半導体領域と絶縁膜との界面のダングリングボンドやダメージ(例えば結晶欠陥)から、暗電流となる電荷(例えば暗電子)が発生する。この電荷発生を抑制するために、第1導電型の半導体領域の表面に第2導電型の半導体層(例えば、ホールアキュミュレーション層)を形成したり、あるいは半導体領域表面に暗電流となる電荷と逆極性の電荷を誘起させる構成が採られている。
本発明は、白点の原因となる上記暗電流の電荷を信号電荷として利用し、受光部での信号電荷の増倍を図るようにしたものである。
本発明の実施の形態に係る固体撮像装置は、CMOS固体撮像装置、CCD固体撮像装置のいずれにも適用することができる。
本実施の形態に適用されるCMOS固体撮像装置の概略構成について説明する。このCMOS固体撮像装置は、図示しないが、半導体基板例えばシリコン基板に複数の画素が規則的に2次元的に配列された撮像領域と、周辺回路部とを有して構成される。画素は、光を受けて信号電荷を生成する受光部と、複数の画素トランジスタ(いわゆるMOSトランジスタ)から構成される。複数の画素トランジスタは、例えば転送トランジスタ、リセットトランジスタ、増幅トランジスタ及び選択トランジスタの4つのトランジスタで構成することができる。その他、複数の画素トランジスタは、選択トランジスタを省略して、転送トランジスタ、リセットトランジスタ及び増幅トランジスタの3つのトランジスタで構成することもできる。複数の画素トランジスタはその他の構成も採り得る。
周辺回路部は、例えば垂直駆動回路と、カラム信号処理回路と、水平駆動回路と、出力回路と、制御回路などを有して構成される。
制御回路は、垂直同期信号、水平同期信号及びマスタクロックに基いて、垂直駆動回路、カラム信号処理回路及び水平駆動回路などの動作の基準となるクロック信号や制御信号を生成し、これらの信号を垂直駆動回路、カラム信号処理回路及び水平駆動回路等に入力する。
垂直駆動回路は、例えばシフトレジスタによって構成される。この垂直駆動回路は、撮像領域の各画素を行単位で順次垂直方向に選択走査し、垂直信号線を通して各画素の受光部において受光量に応じて生成した信号電荷に基く画素信号をカラム信号処理回路に供給する。
カラム信号処理回路は、画素の例えば列毎に配置される。このカラム信号処理回路は、1行分の画素から出力される信号を画素列ごとに黒基準画素(有効画素領域の周囲に形成される画素)からの信号によって、ノイズ除去や信号増幅等の信号処理を行う。カラム信号処理回路の出力段には水平選択スイッチが水平信号線との間に接続されて設けられる。
水平駆動回路は、例えばシフトレジスタによって構成される。この水平駆動回路は、水平走査パルスを順次出力することによって、カラム信号処理回路の各々を順番に選択し、カラム信号処理回路の各々から画素信号を水平信号線に出力させる。
出力回路は、カラム信号処理回路の各々から水平信号線を通して順次に供給される信号に対し、信号処理を行って出力する。
表面照射型のCMOS固体撮像装置では、画素が形成された基板の上方に、層間絶縁膜を介して多層配線が形成された多層配線層が形成され、その上に平坦化膜を介してオンチップカラーフルタ、さらにその上にオンチップマイクロレンズが形成される。撮像領域の画素部以外の領域、より詳しくは、周辺回路部と、撮像領域の受光部を除く領域とに遮光膜が形成される。この遮光膜は、例えば多層配線層の最上層の配線で形成することができる。
次に、本実施の形態に適用されるCCD固体撮像装置の概略構成を説明する。このCCD固体撮像装置は、図示しないが、半導体基板に形成された画素となる複数の受光部と、各受光部列に対応したCCD構造の垂直転送レジスタと、CCD構造の水平転送レジスタと、出力部とを有する。半導体基板は、無機材料、例えばシリコンによる基板が用いられる。CCD固体撮像装置は、さらに信号処理回路を構成する周辺回路部を有する。画素は、光を受けて信号電荷を生成する受光部と、この受光部に対応する部分の垂直転送レジスタとで構成され、規則的に2次元的に配置される。
垂直転送レジスタは、拡散層による転送チャネル領域上にゲート絶縁膜を介して転送電極を形成して構成される。水平転送レジスタは、垂直転送レジスタの端部に配置され、同様に拡散層による転送チャネル領域上にゲート絶縁膜を介して転送電極を形成して構成される。出力部は、水平転送レジスタの最終段のフローティングディフージョン部に接続される。撮像領域の画素部以外の領域、より詳しくは、周辺回路部と、撮像領域の受光部を除く領域と、水平転送レジスタと出力部とに遮光膜が形成される。さらに、受光部の上方に平坦化膜を介してオンチップカラーフィルタ、その上にオンチップマイクロレンズが形成される。
CCD固体撮像装置では、受光部で生成された信号電荷を垂直転送レジスタに読み出して、垂直方向に転送し、1ライン毎の信号電荷を水平転送レジスタに転送する。水平転送レジスタでは、信号電荷を水平方向に転送し、最終段のフローティングディフージョン部へ転送する。フローティングディフージョン部に転送された信号電荷は、出力部を介して画素信号に変換されて出力される。なお、上例のCCD固体撮像装置は、インターライン転送(IT)方式の固体撮像装置である。本実施の形態に適用されるCCD固体撮像装置は、その他、撮像領域と水平転送レジスタとの間に垂直転送レジスタのみで形成された蓄積領域を備えたフレームインターライン転送(FIT)方式の固体撮像装置にも適用される。
そして、本実施の形態に係る固体撮像装置、特に、その受光部の構成は、上述のCMOS固体撮像装置及びCCD固体撮像装置のいずれにも適用されるものである。また、本実施の形態の受光部の構成は、表面照射型の固体撮像装置、裏面照射型の固体撮像装置のいずれにも適用されるものである。
本発明の実施の形態に係る固体撮像装置、特にその受光部は、光を受けたときに、第1導電型の半導体領域の絶縁膜側の表面のピニング状態が変調し、半導体領域表面から発生する電荷が信号電荷となるように構成される。受光部は、基本構造として、第1導電型の半導体領域の表面に絶縁膜を介して有機または無機による材料層を有して成る。材料層は、待機状態では、第1導電型の半導体領域の表面に信号電荷と逆極性の電荷を誘起させる負または正の帯電を持っている。つまり、この材料層は、半導体領域表面を、半導体領域表面から発生する白点の原因となる電荷を抑制するピニング状態とする機能を有する。そして、材料層は、受光状態では、材料層中で光電変換が起こり、負または正の帯電が減少して半導体領域表面のポテンシャルを変調させる機能を有する。すなわち、ピニング状態が低減し、または外れて半導体領域表面(つまり半導体領域と絶縁膜との界面、または界面近傍)で発生した電荷が信号電荷として半導体領域に取り込まれる。
[第1実施の形態]
図1に、本発明の第1実施の形態に係る固体撮像装置、特にその受光部を示す。この第1実施の形態に係る受光部1は、第1導電型、本例ではドナーを有するn型の半導体領域2と、このn型半導体領域2上に絶縁膜3、例えばシリコン酸化膜を介して形成したアクセプタを有する有機材料層4を有して構成される。半導体領域2は、無機材料で形成され、例えばシリコンで形成される(以下の実施の形態でも同様である)。有機材料層4は、いわゆる有機光電変換膜である。
アクセプタを有する有機光電変換膜としては、例えば亜鉛タフロシアニン(ZnPc)などの材料膜を用いることができる。
この有機光電変換膜で構成される有機材料層4は、待機状態で負に帯電している。負に帯電している有機材料層4により、n型半導体領域2の表面は、正孔(ホール)h2が誘起されてホールピニング状態になる(図1A参照)。ホールピニング状態により、n型半導体領域2の絶縁膜3との界面にダングリングボンドやダメージ(例えば結晶欠陥)5から発生する電子e2は抑制される。この電子e2は、従来のフォトダイオードでの暗時白点の原因となる暗電子に相当する。
電荷蓄積期間において、受光部1の有機材料層4に光L1が照射されると、有機材料層4で光電変換が起こり、電子・正孔対が生成する。この電子・正孔対のうちの正孔h1により、有機材料層4における負の帯電が低減し、n型半導体領域2の表面のポテンシャルが変調する。光電変換により生成された電子・正孔対のうちの電子e1は、例えば透明電極などを通じて有機材料層4から排出される。
すなわち、光L1の入射によって有機材料層4に生成した正孔h1よって、n型半導体領域表面の正孔h2によるピニング状態が低減しあるいは外れる。これにより、n型半導体領域2の絶縁膜3側の表面、すなわち界面あるいは界面近傍のダングリングボンドあるいはダメージ(例えば結晶欠陥)5から発生した電子e2がn型半導体領域2内に注入される。この電子e2が信号電荷としてn型半導体領域2に蓄積される(図1B参照)。
電子e2の発生量は、例えば、n型半導体領域2の表面のダメージ(例えば結晶欠陥)量、金属ドーピング量などにより、コントロールすることができる。
信号電荷e2を読み出した後、次の電荷蓄積期間では、先ず、有機材料層4に蓄積されている正孔h1を除去し、有機材料層4をリセットする。正孔h1は、有機材料層4に「形成した電極、例えば透明電極などを通じて排出することができる。このリセットにより、再びn型半導体領域2の表面はホールピニング状態とされ、有機材料層4の受光量に応じてピニング状態が低減しあるいは外れ、n型半導体領域2の表面から信号電荷となる電子e2が注入され、n型半導体領域2に蓄積される。
正孔h1のリセットに際しては、例えば有機材料層4の表面に形成した透明電極に0V、あるいは少しマイナスとした負バイアスを印加して行うことができる。
第1実施の形態に係る固体撮像装置の受光部1によれば、n型半導体領域2の表面から発生する電子e2を信号電荷とすることにより、光子1個に対する信号電荷となる電子e2の量が増倍される。すなわち、信号電荷の変換効率が増倍される。これにより、固体撮像装置における画素が微細化されても感度を向上することができる。
[第2実施の形態]
図2に、本発明の第2実施の形態に係る固体撮像装置、特にその受光部を示す。第2実施の形態に係る受光部7は、前述と同様に、第1導電型、本例ではドナーを有するn型の半導体領域2と、このn型半導体領域2上に絶縁膜3、例えばシリコン酸化膜を介して形成したアクセプタを有する有機材料層4を有して構成される。この有機材料層4は、いわゆる有機光電変換膜である。
そして、本実施の形態では、ホールピニング状態を所要領域に集中させるために、n型半導体領域2の表面にホールピニング領域8を除いて、不純物濃度が比較的高いp型半導体領域9が形成される。さらに、ホールピニング領域8では、待機時の電界を集中させてピニング状態を良好にすることが望まれる。また、受光時の有機材料層4での光電変換によりポテンシャル変調をし易くする。すなわちホールピニング状態を低減あるいは外し易くすることが望まれる。このホールピニング領域に電界を集中させるために、絶縁膜3の容量(いわゆる絶縁膜容量)を変化させる構成とする。この絶縁膜容量を変化させる一例として、絶縁膜の膜厚を異ならす構成とすることができる。図2では、絶縁膜3を、そのホールピニング領域8に対応した部分3Aの膜厚t1が、他部3Bの膜厚t2より薄くなるように形成される。そして、有機材料層10は、受光時に有機材料層10中に発生する一方の電荷を排出できるように構成される。すなわち、有機材料層10は、n型半導体領域2に発生する信号電荷と同じ極性の電荷、本例では電子、を排出できるように構成される。このため、この電荷を排出するためのポテンシャル勾配を付けることを目的として、有機材料層4の上面に所要のバイアス電圧を印加する電極が形成される。例えば、有機材料層4上には透明電極10が形成される。その他の構成は、図1で説明したと同様であるので、対応する部分には同一符号を付して重複説明を省略する。
透明電極10は、上述したように、有機材料層4で光電変換され生成された電子・正孔対のうち、電子e1を排出したり、リセット時の正孔h1を排出するときに用いられる。
第2実施の形態に係る固体撮像装置の受光部7によれば、ホールピニング領域8以外のn型半導体領域2の表面には、p型半導体領域9が形成されているので、この領域9では電子の発生が抑制され、領域8にのみホールピニング状態を集中させることができる。また、ホールピニング領域8では、絶縁膜3Aが他の絶縁膜3Bより薄く形成されているので、領域8における電界が集中し、ピニング状態を十分にすることができ、同時に領域8でのポテンシャル変調がし易くなる。なお、p型半導体領域9は、このよう域での電子の発生(湧き出し)を抑制するためのピニング層の機能を有する。従って、より受光部7の動作がし易くなり、信号電荷のコントロールもし易くなる。その他、本実施の形態では、第1実施の形態で説明したと同様の作用、効果を奏する。
[第3実施の形態]
図3に、本発明の第3実施の形態に係る固体撮像装置、特にその受光部を示す。第3実施の形態に係る受光部11は、前述の図1と同様に、第1導電型、本例ではドナーを有するn型の半導体領域2と、n型半導体領域2上に絶縁膜3を介して形成したアクセプタを有する有機材料層4とを有して構成される。絶縁膜3は、例えばシリコン酸化膜で形成される。有機材料層4は、有機光電変換膜で形成される。
第3実施の形態の受光部11では、第1実施の形態で説明したと同様に、待機状態では有機材料層4が負に帯電しているので、n型半導体領域2の表面がホールピニング状態である。電荷蓄積期間において、有機材料層4に光L1が照射されると、有機材料層4内で光電変換が起こり、その生成した正孔h1によりn型半導体領域2表面のホールピニング状態が低減しあるいは外れる。これにより、n型半導体領域2の表面近傍のダングリングボンドあるいはダメージ(例えば結晶欠陥)5から発生した電子e2がn型半導体領域2に蓄積される。
一方、有機材料層4で吸収しきれないで、有機材料層4及び絶縁膜3を透過した光L2は、n型半導体領域2内で吸収され、電子・正孔対(e3、h3)を生成する。この電子・正孔対のうち、電子e3をも信号電荷として利用する。正孔h3は適当な手段を用いて排出する。信号電荷(e2+e3)を読み出した後の電荷蓄積期間では、先にn型半導体領域2内の信号電荷e3を除去してリセットし、また有機材料層4内の正孔h1を除去してリセットする。その後、前述した動作が繰り返される。
第3実施の形態に係る固体撮像装置の受光部11によれば、光L1により有機材料層4内で光電変換が起こり、その生成した正孔h1に基いて得られる電子e2と、n型半導体領域2へ透過した光L2により光電変換して得られた電子e3とが加算され信号電荷となる。このため、さらに信号電荷が増倍され、感度を向上させることができる。
第3実施の形態に係る受光部11は、図3では単純構造で示したが、前述の図2に示す構成とすることもできる。
[第4実施の形態]
図4に、本発明を表面照射型のCMOS固体撮像装置に適用した第4実施の形態を示す。図4は、受光部と転送トランジスタの要部の概略構成のみを示す。本実施の形態に係る固体撮像装置21は、第1導電型の例えばn型半導体基板22に、第2導電型の例えばp型半導体ウェル領域23が形成される。このp型半導体ウェル領域23に各画素を構成する受光部24及び画素トランジスタが形成される。受光部24において、図2と対応する部分には同一符号を付して重複説明を省略する。図4では画素トランジスタのうち、転送トランジスタTr1を示している。
受光部24は、第2実施の形態で説明した受光部7、あるいは第3実施の形態で説明したn型半導体領域内へ透過した光により生成した電子e3までも利用するようにした受光部で構成することができる。転送トランジスタTr1は、受光部24のn型半導体領域2をソースとし、n型のフローティングディフージョン部25をドレインとし、ゲート絶縁膜26を介して転送ゲート電極27を形成して構成される。
図示しないが、受光部24及び転送トランジスタTr1を含む画素トランジスタからなる画素上には、多層配線層、オンチップカラーフィルタ及びオンチップマイクロレンズ等が形成される。
このCMOS固体撮像装置21では、光Lが基板表面側から照射され、前述したメカニズムにより受光部24のn型半導体領域2に信号電荷(本例では電子)が蓄積される。蓄積された信号電荷は、転送トランジスタのゲート電極27に印加される転送パルスによりフローティングディフージョン部25へ読み出される。
第4実施の形態に係る固体撮像装置21によれば、受光部24において、n型半導体領域2表面のダングリングボンドあるいはダメージ(例えば結晶欠陥)5から発生する電子e1を信号電荷として利用することにより、信号電荷を増倍させることがき、微細画素であっても感度を向上することができる。
[第5実施の形態]
図5に、本発明を裏面照射型のCMOS固体撮像装置に適用した第5実施の形態を示す。図5は、受光部と転送トランジスタの要部の概略構成のみを示す。本実施の形態に係る固体撮像装置31は、半導体基板32の裏面側に臨むように形成した受光部34と、第2導電型の例えばp型の半導体ウェル領域35の基板32の表面側に形成した画素トランジスタからなる画素を有して成る。受光部34において、図2と対応する部分には同一符号を付して重複説明を省略する。図4では画素トランジスタのうち、転送トランジスタTr1を示している。
受光部34は、第2実施の形態で説明した受光部7、あるいは第3実施の形態で説明したn型半導体領域内へ透過した光により生成した電子e3までも利用するようにした受光部で構成することができる。転送トランジスタTr1は、受光部34のn型半導体領域2をソースとし、n型のフローティングディフージョン部36をドレインとし、ゲート絶縁膜37を介して転送ゲート電極38を形成して構成される。図5において、符号33はp型拡散層による素子分離領域を示す。
図示しないが、半導体基板32の表面側には、層間絶縁膜39を介して多層配線層が形成される。また、半導体基板32の裏面側の受光部34及び転送トランジスタTr1を含む画素トランジスタからなる画素上には、オンチップカラーフィルタ及びオンチップマイクロレンズ等が形成される。
このCMOS固体撮像装置31では、光Lが基板裏面側から照射され、前述したメカニズムにより受光部34のn型半導体領域2に信号電荷(本例では電子)が蓄積される。蓄積された信号電荷は、転送トランジスタTr1のゲート電極38に印加される転送パルスによりフローティングディフージョン部36へ読み出される。
第5実施の形態に係るCMOS固体撮像装置31によれば、受光部34において、n型半導体領域2表面のダングリングボンドあるいはダメージ(例えば結晶欠陥)5から発生する電子e1を信号電荷として利用するので、信号電荷を増倍させることができる。従って、本CMOS固体撮像装置31は、微細画素であっても感度を向上することができる。また、裏面照射型であるので、表面照射型よりさらに受光部34の面積を広げることができ、さらなる感度向上が可能になる。
図6〜図10に、本発明に係るCMOS固体撮像装置に適用した他の実施の形態を示す。図示の例では表面照射型のCMOS固体撮像装置に適用したが、裏面照射型のCMOS固体撮像装置にも適用できること勿論である。
[第6実施の形態]
図6に示す本発明の第6実施の形態に係る固体撮像装置51は、受光部24において、n型半導体領域2上に段差を有する絶縁膜3を介してアクセプタを有する有機材料層4が形成され、有機材料層4上に透明電極10が形成される。そして、本実施の形態では、n型半導体領域2の膜厚の大きい絶縁膜3Bとの界面に前述したp型半導体領域9を形成しない構成とされる。その他の構成は、図4で説明したと同様であるので、図4と対応する部分には同一符号を付して重複説明を省略する。
第6実施の形態に係る固体撮像装置51によれば、待機状態では有機材料層4により、膜厚の小さい絶縁膜3A直下のn型半導体領域2表面が集中的にホールピニング状態になる。受光時には、前述したように、有機材料層4中での光電変換に基づきホールピニング状態が低減しあるいは外れることにより、n型半導体領域2表面近傍のダングリングボンドあるいはダメージ5から発生した電子が信号電荷としてn型半導体領域2に蓄積される。従って、倍増した信号電荷が得られ、微細画素であっても感度を向上させることができる。
この場合、絶縁膜3A、3Bは負の固定チャージを持つ膜(HfSiOx、SiN等)であり、たとえば、固定チャージ密度が一定の場合、膜厚によって固定チャージ量が変化し、膜厚が薄くなると固定チャージ量が減少する。
負の固定チャージ量が多い領域(3B)と少ない領域(3A)の少なくとも2種類の材料を有しても良い。
また、絶縁膜3Bや3Aの固定チャージが変化する領域を1つの受光部のn型半導体領域2で複数領域有しても良い。
[第7実施の形態]
図7に示す本発明の第7実施の形態に係る固体撮像装置52は、受光部24において、n型半導体領域2上に全面均一で膜厚の小さい絶縁膜3Aを介してアクセプタを有する有機材料層4を形成し、有機材料層4上に透明電極10を形成して構成される。その他の構成は、図4で説明したと同様であるので、図4と対応する部分には同一符号を付して重複説明を省略する。
第7実施の形態に係る固体撮像装置52によれば、待機状態では有機材料層4により、膜厚の小さい絶縁膜3A直下のn型半導体領域2表面全面がホールピニング状態になる。受光時には、前述したように、有機材料層4中での光電変換に基づきホールピニング状態が低減しあるいは外れることにより、n型半導体領域2表面全面近傍のダングリングボンドあるいはダメージ5から発生した電子が信号電荷としてn型半導体領域2に蓄積される。従って、より倍増した信号電荷が得られ、微細画素であっても感度を向上させることができる。
上述した絶縁膜容量を変化させる構成の他の例としては、絶縁膜の材料を変更させた構成とすることができる。すなわち、ホールピニング領域では誘電率の高い材料からなる絶縁膜を用い、その他領域では誘電率の低い材料からなる絶縁膜を用いるようになす。この構成は、本発明の各実施の形態に適用することができる。図8、図9はその例を示す。
[第8実施の形態]
図8に示す本発明の第8実施の形態に係る固体撮像装置53は、n型半導体領域2上に段差を有る絶縁膜を形成するも、ホールピニング領域に対応する領域では膜厚が小さく、かつ誘電率の高い材料による絶縁膜54Aを形成して構成される。それ以外の領域では膜厚が大きく、かつ絶縁膜54Aより誘電率の低い材料による絶縁膜54Bが形成される。誘電率が高い絶縁膜54Aとしては、例えばシリコン窒化膜あるいはハフニウム酸化膜などを用いることができる。誘電率が低い絶縁膜54Bとしては、例えばシリコン酸化膜を用いることができる。そして、この絶縁膜54A及び54B上に、アクセプタを有する有機材料層4が形成され、有機材料層4上に透明電極10が形成される。本実施の形態では、絶縁膜54B直下のn型半導体領域2表面に前述のp型半導体領域9を形成した構成、あるいはp型半導体領域9を形成しない構成とすることができる。その他の構成は、図4で説明したと同様であるので、図4と対応する部分には同一符号を付して重複説明を省略する。
第8実施の形態に係る固体撮像装置53によれば、待機状態では、ホールピニング領域となる誘電率の高い絶縁膜54A直下の領域に電界が集中し、この領域がホールピニング状態となる。受光時には、前述したように、有機材料層4中での光電変換に基づきホールピニング状態が低減しあるいは外れることにより、n型半導体領域2表面近傍のダングリングボンドあるいはダメージ5から発生した電子が信号電荷としてn型半導体領域2に蓄積される。従って、倍増した信号電荷が得られ、微細画素であっても感度を向上させることができる。
[第9実施の形態]
図9に示す本発明の第9実施の形態に係る固体撮像装置56は、n型半導体領域2上に均一で膜厚の小さい絶縁膜を形成するも、ホールピニング領域では誘電率の高い絶縁膜55Aを形成し、その他の領域ではこれより誘電率の低い絶縁膜55Bを形成して構成される。誘電率が高い絶縁膜55Aとしては、例えばシリコン窒化膜あるいはハフニウム酸化膜などを用いることができる。誘電率が低い絶縁膜55Bとしては、例えばシリコン酸化膜を用いることができる。そして、この絶縁膜55A及び55B上に、アクセプタを有する有機材料層4が形成され、有機材料層4上に透明電極10が形成される。本実施の形態では、絶縁膜55B直下のn型半導体領域2表面に前述のp型半導体領域9を形成した構成、あるいはp型半導体領域9を形成しない構成とすることができる。その他の構成は、図4で説明したと同様であるので、図4と対応する部分には同一符号を付して重複説明を省略する。
第9実施の形態に係る固体撮像装置56によれば、待機状態では、ホールピニング領域となる誘電率の高い絶縁膜55A直下の領域に電界が集中し、この領域がホールピニング状態となる。受光時には、前述したように、有機材料層4中での光電変換に基づきホールピニング状態が低減しあるいは外れることにより、n型半導体領域2表面近傍のダングリングボンドあるいはダメージ5から発生した電子が信号電荷としてn型半導体領域2に蓄積される。従って、倍増した信号電荷が得られ、微細画素であっても感度を向上させることができる。
なお、図示しないが、図9の構成において、n型半導体領域2表面の全面に誘電率の高い絶縁膜55Aを形成した構成とすることができる。この構成によれば、さらに信号電荷の増倍が図られ、より感度を向上することができる。
[第10実施の形態]
図10に示す本発明の第10実施の形態に係る固体撮像装置57は、n型半導体領域2上に段差を有する絶縁膜3を形成するも、膜厚の小さい絶縁膜3Aの領域を複数箇所有して構成される。
そして、この絶縁膜3上に、アクセプタを有する有機材料層4が形成され、有機材料層4上に透明電極10が形成される。本実施の形態では、絶縁膜3B直下のn型半導体領域2表面に前述のp型半導体領域9を形成した構成、あるいはp型半導体領域9を形成しない構成とすることができる。その他の構成は、図4で説明したと同様であるので、図4と対応する部分には同一符号を付して重複説明を省略する。
第10実施の形態に係る固体撮像装置57によれば、待機状態では、有機材料層4により、膜厚の小さい複数箇所の絶縁膜3A直下の領域に電界が集中し、ホールピニング状態となる。受光時には、前述したように、有機材料層4中での光電変換に基づきホールピニング状態が低減しあるいは外れることにより、n型半導体領域2表面近傍のダングリングボンドあるいはダメージ5から発生した電子が信号電荷としてn型半導体領域2に蓄積される。従って、倍増した信号電荷が得られ、微細画素であっても感度を向上させることができる。この構成では、ホールピニング領域の面積が増えることにより、より信号電荷の増倍が得られ、感度を向上することができる。
図10の構成において、絶縁膜3を図8及び図9で説明したと同様に、誘電率を異にした絶縁膜に置き換えて構成することもできる。
[第11実施の形態]
図11に、本発明を表面照射型のCMOS固体撮像装置に適用した第11実施の形態を示す。本実施の形態に係る固体撮像装置58は、n型半導体領域2上に段差を有する絶縁膜3を介して光電変換膜である、アクセプタを有する有機材料層4とドナーを有する有機材料層59を積層し、その有機材料層59上に透明電極10を形成して構成される。その他の構成は、図4で説明したと同様であるので、図4と対応する部分には同一符号を付して重複説明を省略する。
第11実施の形態に係る固体撮像装置58によれば、待機状態では、有機材料層4により、膜厚の小さい絶縁膜3A直下の領域に電界が集中し、ホールピニング状態となる。受光時には、ドナーを有する有機材料層59及びアクセプタを有する有機材料層4に光が入射されて、それぞれ電子・正孔対が発生し、正孔はアクセプタを有する有機材料層4中に移行し、電子はドナーを有する有機材料層59中に移行する。電子はこの有機材料層59から透明電極10を通して排出さる。そして、アクセプタを有する有機材料層4中の正孔により、膜厚の小さい絶縁膜3A直下のホールピニング状態が低減しあるいは外れる。このことにより、n型半導体領域2表面近傍のダングリングボンドあるいはダメージ5から発生した電子が信号電荷としてn型半導体領域2に蓄積される。従って、増倍した信号電荷が得られ、微細画素であっても感度を向上させることができる。
[第12実施の形態]
図12に、本発明を裏面照射型のCMOS固体撮像装置に適用した第12実施の形態を示す。本実施の形態に係る固体撮像装置60は、半導体基板32の裏面に臨む受光部34において、その裏面側のn型半導体領域2上に段差を有する絶縁膜3を介して図11でしめした2層の有機材料層4及び59を形成して構成される。すなわち、絶縁膜3上に光電変換膜である、アクセプタを有する有機材料層4とドナーを有する有機材料層59を積層し、その有機材料層59上に透明電極10を形成して構成される。ドナーを有する有機材料膜59、すなわち、ドナーを有する有機光電変換膜としては、例えばフラーレン(C60)などの材料膜を用いることができる。その他の構成は、図5で説明したと同様であるので、図5と対応する部分には同一符号を付して重複説明を省略する。
第12実施の形態に係る固体撮像装置60によれば、第11実施の形態で説明したと同様に、待機状態では、有機材料層4により、膜厚の小さい絶縁膜3A直下の領域に電界が集中し、ホールピニング状態となる。受光時には、ドナーを有する有機材料層59及びアクセプタを有する有機材料層4に光が入射されて、それぞれ電子・正孔対が発生し、正孔はアクセプタを有する有機材料層4中に移行し、電子はドナーを有する有機材料層59中に移行する。電子はこの有機材料層59から透明電極10を通して排出さる。そして、アクセプタを有する有機材料層4中の正孔により、膜厚の小さい絶縁膜3A直下のホールピニング状態が低減しあるいは外れることにより、n型半導体領域2表面近傍のダングリングボンドあるいはダメージ5から発生した電子が信号電荷としてn型半導体領域2に蓄積される。従って、倍増した信号電荷が得られ、微細画素であっても感度を向上させることができる。この構成では、ホールピニング領域の面積が増えることにより、より信号電荷の増倍が得られ、感度を向上することができる。
[第13実施の形態]
図13に、本発明をCCD固体撮像装置に適用した第13実施の形態を示す。図13は受光部と転送レジスタの要部の概略構成のみを示す。本実施の形態に係る固体撮像装置41は、第1導電型の半導体基板42に第2導電型の半導体ウェル領域44が形成され、この半導体ウェル領域43に画素となる受光部45と垂直転送レジスタ46が形成されて成る。本例では、第1導電型半導体基板42がn型半導体基板で形成され、第2導電型半導体ウェル領域43がp型半導体ウェル領域で形成される。
受光部45は、第2実施の形態で説明した受光部7、あるいは第3実施の形態で説明したn型半導体領域内へ透過した光により生成した電子e3までも利用するようにした受光部で構成することができる。すなわち、受光部45は、p型半導体ウェル領域44に形成したn型半導体領域2と、絶縁膜3を介してアクセプタを有する有機材料層4と、さらに有機材料層4上に形成した透明電極10とを有して構成される。
垂直転送レジスタ46は、p型半導体ウェル領域44に形成したn型の埋め込みチャネル領域47と、n型埋め込みチャネル領域47上にゲート絶縁膜48を介して形成した転送電極49とを有して構成される。ゲート絶縁膜48は、例えばシリコン酸化膜などの絶縁膜により形成される。転送電極49は、例えばポリシリコン膜で形成され、電荷読み出し部51上、及びp型のチャネルストップ領域52上に跨って形成される。なお、n型埋め込みチャネル領域47下にさらにp型半導体ウェル領域53を形成することが望ましい。
図示しないが、受光部45の上方に受光部45を除く遮光膜、平坦化膜が形成され、さらにオンチップカラーフィルタ及びオンチップマイクロレンズが形成される。
このCCD固体撮像装置41では、光Lが基板表面側から照射され、前述したメカニズムにより受光部45のn型半導体領域2に信号電荷(本例では電子)が蓄積される。蓄積された信号電荷は、垂直転送レジスタ46の転送電極49に読み出しパルスが印加されることにより、読み出し部51を通って垂直転送レジスタ46に読み出される。その後、垂直転送レジスタ46内を転送し、1ライン毎に水平転送レジスタに転送され、出力部から画素信号として出力される。
第13実施の形態に係るCCD固体撮像装置41によれば、受光部45において、n型半導体領域2表面のダングリングボンドあるいはダメージ(例えば結晶欠陥)5から発生する電子e1を信号電荷として利用するので、信号電荷を増倍させることができる。従って、本CCD固体撮像装置41は、微細画素であっても感度を向上することができる。
[第14実施の形態]
図14に、本発明の第14実施の形態に係る固体撮像装置、特にその受光部を示す。図14は模式的構成図である。第14実施の形態に係る固体撮像装置61は、赤(R)、緑(G)及び青(B)に対応する受光部62R,62G,及び62Bが形成される。この受光部62R,62G,62B上に、層間絶縁膜63を介して赤(R)フィルタ成分64R、緑(G)フィルタ成分64G及び青(B)フィルタ成分64Bからなるオンチップカラーフィルタ64が形成される。符号65は、素子分離領域を示す。
これら受光部62R,62G,62Bは、例えば第2実施の形態で説明した受光部7、あるいは第3実施の形態で説明したn型半導体領域2内へ透過した光により生成した電子e3までも利用するようにした受光部で構成することができる。各受光部62R,62G及び62Bの有機材料層4は、共に同じ有機光電変換膜で形成することができる。
第14実施の形態に係る固体撮像装置61によれば、各対応する受光部62R,62G及び62B上に、それぞれ赤フィルタ成分64R、緑フィルタ成分64G及び青フィルタ成分64Bが形成されるので、良好な色分離が得られる。その他、前述したと同様に信号電荷が増倍し、感度の向上を図ることができる。
[第15実施の形態]
図15に、本発明の第15実施の形態に係る固体撮像装置、特にその受光部を示す。図15は模式的構成図である。第15実施の形態に係る固体撮像装置67は、赤(R)、緑(G)及び青(B)に対応する受光部68R,68G,及び68Bが形成される。これら受光部68R,68G,68Bは、例えば第2実施の形態で説明した受光部7、あるいは第3実施の形態で説明したn型半導体領域2内へ透過した光により生成した電子e3までも利用するようにした受光部で構成することができる。
そして、本実施の形態では、特に、受光部68R、68G及び68Bの有機材料層4R、4G及び4Bを夫々、赤波長光の吸収率が高い有機光電変換膜、緑波長光の吸収率が高い有機光電変換膜、及び青波長光の吸収率が高い有機光電変換膜で形成して構成される。
第15実施の形態に係る固体撮像装置67によれば、有機材料層4R、4G及び4Bで色分離が可能になるので、オンチップカラーフィルタを省略することができる。その他、前述したと同様に信号電荷が増倍し、感度の向上を図ることができる。
[第16実施の形態]
図16に、本発明の第16実施の形態に係る固体撮像装置、特にその受光部を示す。第16実施の形態に係る受光部71は、第1導電型、本例ではドナーを有するn型の半導体領域(例えばシリコン半導体領域)72と、このn型半導体領域72上に絶縁膜73、例えばシリコン酸化膜を介して形成したアクセプタを有する無機材料層74を有して構成される。このアクセプタを有する無機材料層74としては、例えば、p型のポリシリコン膜あるいはp型のアモルファスシリコン膜を用いることができる。
このp型ポリシリコン膜あるいはp型アモルファスシリコン膜で構成される無機材料層(以下、p型ポリシリコン膜を例にする)74は、待機状態で負に帯電している。負に帯電しているp型ポリシリコン膜74により、前述と同様に、n型半導体領域72の表面は、正孔(ホール)h2が誘起されてホールピニング状態になる。ホールピニング状態により、n型半導体領域72の絶縁膜73との界面にダングリングボンドやダメージ(例えば結晶欠陥)5から発生する電子e2は抑制される。
電荷蓄積期間において、受光部71のp型ポリシリコン膜74に光が照射されると、p型ポリシリコン膜74で光電変換が起こり、電子・正孔対が生成する。この電子・正孔対のうちの正孔h1により、p型ポリシリコン膜74における負の帯電が低減し、n型半導体領域2の表面のポテンシャルが変調する。光電変換により生成された電子・正孔対のうちの電子e1は、例えば透明電極などを通じてp型ポリシリコン膜74から排出される。
すなわち、光の入射によってp型ポリシリコン膜74に生成した正孔h1よって、n型半導体領域72表面の正孔h2によるピニング状態が低減しあるいは外れる。これにより、n型半導体領域72の絶縁膜73側の表面、すなわち界面あるいは界面近傍のダングリングボンドあるいはダメージ(例えば結晶欠陥)5から発生した電子e2がn型半導体領域72内に注入される。この電子e2が信号電荷としてn型半導体領域72に蓄積される。
信号電荷e2を読み出した後、次の電荷蓄積期間では、先ず、p型ポリシリコン膜74に蓄積されている正孔h1を除去し、p型ポリシリコン膜74をリセットする。正孔h1は、例えば透明電極などを通じて排出することができる。このリセットにより、再びn型半導体領域72の表面はホールピニング状態とされ、p型ポリシリコン膜74の受光量に応じてピニング状態が低減しあるいは外れ、n型半導体領域72の表面から信号電荷となる電子e2が注入され、n型半導体領域72に蓄積される。
第16実施の形態に係る固体撮像装置の受光部71においても、前述したと同様に、信号電荷が増倍し、微細画素でも感度を向上することができる。この第9実施の形態においても、図3で説明したと同様に、p型ポリシリコン膜74を透過してn型半導体領域72に到達した光により、n型半導体領域72で光電変換により生成された電子をも信号電荷として利用する構成とすることもできる。
[第17実施の形態]
図17に、本発明の第17実施の形態に係る固体撮像装置、特にその受光部を示す。第17実施の形態に係る受光部76は、第1導電型、本例ではドナーを有するn型の半導体領域(例えばシリコン半導体領域)72に、凹部77が形成され、この凹部77内に絶縁膜78を介してアクセプタを有する材料層79が埋め込まれる。さらに、半導体領域72の上部表面には、第2導電型であるp型の半導体層81が形成される。このp型半導体領域81は、界面もしくは界面近傍からの電子の発生(湧き出し)を抑制するピニング層となる。アクセプタを有する材料層79は、有機材料、無機材料による光電変換膜で形成することができる。有機光電変換膜としては、前述した材料などによる有機光電変換膜を用いることができる。無機光電変換膜としては、例えばp型シリコン膜、あるいはp型アモルファスシリコン膜等を用いることができる。n型半導体領域72の上部表面に形成したp型半導体層81は、暗電流を抑制するための、いわゆるアキュミュレーション層となり、ピニング層として機能する。材料層79上には、半導体領域72に発生する信号電荷と同じ極性の電荷を捨てるための電極膜82、例えば透明電極が被着形成される。
本実施の形態の受光部76では、ドナーを有するn型半導体領域72の凹部77内に絶縁膜78を介してアクセプタを有する材料層79が埋め込まれる。この構成により、待機時に材料層79により、凹部77の底面及び周側面と絶縁膜78との界面あるいは界面近傍がホールピニング状態となる。光が照射される電荷蓄積期間においては、材料層79に生成した正孔により、上記底面及び周側面のホールピニング状態が低減しあるいは外れ、上記界面あるいは界面近傍のダングリングボンドやダメージ(例えば結晶欠陥)5から発生した電子が信号電荷として蓄積される。すなわち、本実施の形態では、信号電荷が発生する(湧き出す)表面積が広がる。
一方、n型半導体領域72の上部表面に形成されたp型半導体層81の正孔により、上部表面と絶縁膜(図示せず)との界面、あるいは界面近傍がピニング状態となる。従って、上記界面あるいは界面近傍のダングリングボンドやダメージ5から発生する電子が抑制され、暗電流の発生を抑制する。
第17実施の形態に係る固体撮像装置の受光部76によれば、n型半導体領域72と材料層79とが対向する面積、すなわち信号電荷を発生する(湧き出す)表面積が大きくなることにより、信号電荷がより増倍し、微細画素でも感度を向上することができる。
[第18実施の形態]
図18に、本発明の第18実施の形態に係る固体撮像装置、特にその受光部を示す。第18実施の形態に係る受光部84は、ドナーを有するn型半導体領域72と、n型半導体領域72上に形成され、層間絶縁膜85を介して複数層の配線86を配置した多層配線層87と、アクセプタを有する材料層79とを有して構成される。多層配線層87は材料層79が形成される領域に開口87aが形成され、n型半導体領域72の材料層79が形成される領域に凹部77が形成される。凹部77の内面には絶縁膜78が形成される。材料層79は、n型半導体領域72の凹部77内に絶縁膜77を介して埋め込まれるように、多層配線層87の開口87aを貫通し、n型半導体領域72の凹部77内にわたり形成される。材料層79の上部は多層配線層87の上面に跨るように幅広に形成される。n型半導体領域72及び材料層79は、図17で説明したと同様の材料が用いられる。
n型半導体領域72の、多層配線層87の層間絶縁膜85と接する上面には、p型半導体領域81が形成される。このp型半導体領域81は、アキュミュレーション層となり、ピニング層として機能する。材料層79上には、半導体領域72に発生する信号電荷と同じ極性の電荷を捨てるための電極膜82、例えば透明電極が被着形成される。
第18実施の形態の受光部84は、表面照射型の固体撮像装置の受光部に適する。本実施の形態の受光部84は、図17と同様に、待機時に材料層79により、凹部77の底面及び周側面と絶縁膜78との界面あるいは界面近傍がホールピニング状態となる。また、電荷蓄積期間では、材料層79に生成した正孔により、上記底面及び周側面のホールピニング状態が低減しあるいは外れ、ダングリングボンドやダメージ(例えば結晶欠陥)5から発生した電子が信号電荷として蓄積される。本実施の形態においても、図17と同様に、信号電荷が発生する(湧き出す)表面積が広がる。
一方、n型半導体領域72の上部表面では、p型半導体領域81が形成されていることにより、このp型半導体層領域81の正孔により、上部表面と絶縁膜(図示せず)との界面、あるいは界面近傍がピニング状態となる。従って、上記界面あるいは界面近傍のダングリングボンドやダメージ5から発生する電子が抑制され、暗電流の発生を抑制する。
第17実施の形態に係る固体撮像装置の受光部76によれば、n型半導体領域72と材料層79とが対向する面積、すなわち信号電荷を発生する(湧き出す)表面積が大きくなることにより、信号電荷がより増倍し、微細画素でも感度を向上することができる。
[第19実施の形態]
図19に、本発明の第19実施の形態に係る固体撮像装置、特にその受光部を示す。本実施の形態に係る受光部89は、第1導電型、本例ではドナーを有するn型の半導体領域72に凹部77が形成され、この凹部77内に埋め込まれ、一部がn型半導体領域72の上面に跨るアクセプタを有する材料層79が絶縁膜78を介して形成される。n型半導体領域72及び材料層79は、図17で説明したと同様の材料が用いられる。材料層78上には、半導体領域72に発生する信号電荷と同じ極性の電荷を捨てるための電極膜82、例えば透明電極が被着形成される。
本実施の形態に係る受光部89において、材料層79に基く信号電荷の発生は、図17及び図18で説明したと同様であるので、重複説明を省略する。
第19実施の形態に係る固体撮像装置の受光部89によれば、絶縁膜78を介して材料層79と接するn型半導体領域72の界面あるいは界面近傍がピニング状態となる。すなわち、このピニング状態は、凹部77の底面及び周側面と、n型半導体領域72の上面の広い領域で行われる。従って、信号電荷を発生する(湧き出す)表面積がさらに大きくなり、信号電荷がより増倍し、微細画素でも感度を向上することができる。第19実施の形態の受光部91は、表面照射型及び裏面照射型の固体撮像装置の受光部に用いることができるも、裏面照射型の固体撮像装置の受光部に適用し易い。
図20〜図23に、さらに本発明の他の実施の形態に係る固体撮像装置、特にその受光部を示す。
[第20実施の形態]
図20に示す第20実施の形態に係る受光部91は、例えばシリコン等によるn型半導体領域92上に絶縁膜93を介して第1の有機材料層94を形成し、さらにその上に分離層、例えば絶縁膜95を介して第2の有機材料層96を形成して構成される。第1の有機材料層94及び第2の有機材料層96は、有機光電変換膜で形成される。絶縁膜93,95としては、例えばシリコン酸化膜等で形成される。そして、光Lの入射側から見て浅い位置の第2の有機材料層96は、青(B)の信号電荷を取り出す青受光部91Bとなる。光Lの入射側から見て深い位置の第1の有機材料層94は、緑(G)の信号電荷を取り出す緑受光部91Gとなる。n型半導体領域92は、第1の有機材料層94との協働で信号電荷が増倍する、実質的に赤(R)の信号電荷を取り出す赤受光部91Rとなる。本実施の形態の受光部91は、実質的に赤(R)、緑(G)及び青(B)の各受光部91R、91G及び91Bが積層された構成を有する。
第20実施の形態に係る受光部91では、光Lが入射されると、第2の有機材料層96で青の波長光を吸収し光電変換で生成した電子・正孔対のうち、電子または正孔を信号電荷として、ここに青(B)の信号電荷が蓄積される。第1の有機材料層94では、緑の波長光を吸収し光電変換で生成した電子・正孔対のうち、正孔を信号電荷として、ここに緑(G)の信号電荷が蓄積される。n型半導体領域92では、待機状態において、前述したように第1の有機材料層94の負の帯電によりn型半導体領域92表面がホールピニング状態とされる。光Lの入射で第1の有機材料層94内で生成された正孔によりホールピニング状態が低減しもしくは外れ、n型半導体領域92の界面から発生した電子が信号電荷としてn型半導体領域92に蓄積される。同時にn型半導体領域92では、有機材料層96及び95を透過した赤の波長光を吸収し光電変換で生成した電子・正孔対のうち、電子を信号電荷として、この信号電荷と上記界面からの電子とが加算された赤(R)の信号電荷が蓄積される。このとき、第1の有機材料層94内で発生した緑(G)信号となる正孔の影響によりn型半導体領域92の信号電荷となる電子が増倍するので、n型半導体領域92に蓄積された信号電荷は、一部緑(G)のノイズ成分を含む増倍された赤(R)の信号となる。信号電荷の読み出し時には、第2の有機材料層96から青(B)の信号電荷が読み出され、第1の有機材料層94から緑(G)の信号電荷が読み出され、n型半導体領域92から緑(G)のノイズ成分を含む赤(R)の信号電荷が読み出される。緑(G)のノイズ成分は後段の演算回路を通じて除去するようになす。
第20実施の形態に係る受光部91によれば、赤(R)、緑(G)及び青(B)の受光部91R、91G、91Bが積層された構成であるので、画素の単位面積当りの各受光部91R〜91Bの受光面積を拡大することができる。そして、赤(R)の信号電荷は増倍して得られる。これにより、微細画素であっても感度を向上することができる。
[第21実施の形態]
図21に示す第21実施の形態に係る受光部98は、例えばシリコン等の半導体領域99上に絶縁膜101を介して有機材料層102を形成して構成される。半導体領域99では、p型半導体領域103で分離されるように、深さ方向に第1のn型半導体領域104と第2のn型半導体領域105が形成される。第1のn型半導体領域104は、表面が絶縁膜101と接するように形成される。有機材料層102は、有機光電変換膜で形成される。絶縁膜101は、例えばシリコン酸化膜等で形成される。そして、光Lの入射側から見て浅い位置の有機材料層102は、青(B)の信号電荷を取り出す青受光部98Bとなる。光Lの入射側から見て浅い位置の第1のn型半導体領域104は、有機材料層102との協働で増倍する、実質的に緑(G)の信号電荷を取り出す緑受光部98Gとなる。光Lの入射側から見て深い位置の第2のn型半導体領域105は、赤(G)の信号電荷を取り出す赤受光部98Rとなる。本実施の形態の受光部98は、実質的に赤(R)、緑(G)及び青(B)の各受光部98R、98G及び98Bが積層された構成を有する。
第21実施の形態に係る受光部98では、光Lが入射されると、有機材料層102で青の波長光を吸収し光電変換で生成した電子・正孔対のうち、正孔を信号電荷として、ここに青(B)の信号電荷が蓄積される。第1のn型半導体領域104では、待機状態において、前述したように有機材料層102の負の帯電により第1のn型半導体領域104表面がホールピニング状態とされる。光Lの入射で、有機材料層102内で生成された正孔によりホールピニング状態が低減しあるいは外れ、第1のn型半導体領域104の界面から発生した電子が信号電荷としてn型半導体領域104に蓄積される。同時にn型半導体領域104では、有機材料層102を透過した緑の波長光を吸収し光電変換で生成した電子・正孔対のうち、電子を信号電荷として、この信号電荷と上記界面からの電子とが加算された緑(G)の信号電荷が蓄積される。このとき、有機材料層102内で発生した青(B)信号となる正孔の影響により、n型半導体領域104の信号電荷となる電子が増倍するので、第1のn型半導体領域104に蓄積された信号電荷は、一部青(B)のノイズ成分を含む増倍された緑(G)の信号となる。第2のn型半導体領域105では、赤の波長光を吸収し光電変換で生成した電子・正孔対のうち、電子を信号電荷として、ここに赤(R)の信号電荷が蓄積される。
信号読み出し時には、有機材料層102から青(B)の信号電荷が読み出され、第1のn型半導体領域104から青(B)のノイズ成分を含む緑(G)の信号電荷が読み出され、第2のn型半導体領域105から赤(R)の信号電荷が読み出される。青(B)のノイズ成分は後段の演算回路を通じて除去するようになす。
第21実施の形態に係る受光部98によれば、赤(R)、緑(G)及び青(B)の受光部98R、98G、98Bが積層された構成であるので、画素の単位面積当たりの各受光部98R〜98Bの受光面積を拡大することができる。そして、緑(G)の信号電荷は増倍して得られる。これにより、微細画素であっても感度を向上することができる。
[第22実施の形態]
図22に示す第22実施の形態に係る受光部107は、例えばシリコン等の半導体領域108上に絶縁膜109を介して有機材料層111を形成して構成される。半導体領域108では、p型半導体領域112で分離されるように、左右方向に第1のn型半導体領域113と第2のn型半導体領域114が形成される。第1のn型半導体領域113は、図の右側にあって半導体領域108の浅い位置に形成され、このn型半導体領域113の表面が絶縁膜109に接するように形成される。第2のn型半導体領域114は、図の左側にあって半導体領域108の深い位置に形成される。すなわち、第2のn型半導体領域114は、第1のn型半導体領域113より深い位置に形成される。有機材料層111は、有機光電変換膜で形成される。絶縁膜109は、例えばシリコン酸化膜等で形成される。
そして、有機材料層111は、緑(G)の信号電荷を取り出す緑受光部107Gとなる。浅い位置に形成された第1のn型半導体領域113は、有機材料層111との協働で増倍する、実質的に青(B)の信号を取り出す青受光部107Bとなる。深い位置に形成された第2のn型半導体領域114は、赤(R)の信号電荷を取り出す赤受光部107Rとなる。本実施の形態の受光部107は、実質的に赤(R)の受光部107R、青(B)の受光部107Bに対して緑(G)の受光部107Gが積層された構成を有する。
第22実施の形態に係る受光部107では、光Lが入射されると、有機材料層111で緑の波長光を吸収し光電変換で生成した電子・正孔対のうち、正孔を信号電荷として、ここに緑(G)の信号電荷が蓄積される。第1のn型半導体領域113では、待機状態において、前述したように有機材料層111の負の帯電により第1のn型半導体領域113の表面がホールピニング状態とされる。光Lの入射で有機材料層111内で生成された正孔によりホールピニング状態が低減しあるいは外れ、第1のn型半導体領域113の界面から発生した電子が信号電荷としてn型半導体領域113に蓄積される。同時にn型半導体領域113では、有機材料層111を透過した光を吸収し光電変換で生成した電子・正孔対のうち、電子を信号電荷として、この信号電荷と上記界面からの電子とが加算された青(B)の信号電荷が蓄積される。このとき、有機材料層111内で発生した緑(G)信号となる正孔の影響により、n型半導体領域113の信号電荷となる電子が増倍するので、第1のn型半導体領域113に蓄積された信号電荷は、一部緑(G)のノイズ成分が含む増倍された青(B)の信号となる。第2のn半導体領域114では、赤の波長光が吸収し光電変換で生成した電子・正孔対のうち、電子を信号電荷として、ここに赤(R)の信号電荷としてn型半導体領域114に蓄積される。
信号読み出し時には、有機材料層111から緑(G)の信号電荷が読み出され、第1のn型半導体領域113から緑(G)のノイズ成分を含む青(B)の信号電荷が読み出され、第2のn型半導体領域114から赤(R)の信号電荷が読み出される。緑(G)のノイズ成分は後段の演算回路を通じて除去するようになす。
第22実施の形態に係る受光部107によれば、赤(R)、緑(G)及び青(B)の受光部107R、107G、107Bが積層された構成であるので、画素の単位面積当たりの各受光部107R〜107Bの受光面積を拡大することができる。そして、青(B)の信号電荷は増倍して得られる。これにより、微細画素であっても感度を向上することができる。
[第23実施の形態]
図23に示す第23実施の形態に係る受光部116は、n型半導体領域117上に絶縁膜118を介して第1の有機材料層119を形成し、この上に分離層、例えば絶縁膜121を介して第2及び第3の有機材料層122及び有機材料層123を形成して構成される。
n型半導体領域117は、例えばシリコン等で形成される。絶縁膜118、121は、例えばシリコン酸化膜等で形成される。第1、第2及び第3の有機材料層119、122及び123は、有機光電変換膜で形成される。そして、光Lの入射側から見て最も深い位置の第3の有機材料層123は、赤(R)の信号電荷を取り出す赤受光部116Rとなる。次に深い位置の第2の有機材料層122は、緑(G)の信号電荷を取り出す緑受光部116Gとなる。光Lの入射側見て最も浅い位置のn型半導体領域117は、第1の有機材料層119との協働で増倍する青(B)の信号電荷を取り出す青受光部116Bとなる。本実施の形態の受光部116は、赤(R)、緑(G)及び青(B)の受光部116R、116G及び116Bが順次に積層された構成を有する。
第23実施の形態に係る受光部116では、光Lが入射されると、第3の有機材料層123で赤の波長光を吸収し光電変換で生成した電子・正孔対のうち、電子または正孔を信号電荷として、ここに赤(R)の信号電荷が蓄積される。第2の有機材料層122では、緑の波長光を吸収し光電変換で生成した電子・正孔対のうち、電子または正孔を信号電荷として、ここに緑(G)の信号電荷が蓄積される。n型半導体領域117では、待機状態において、前述したように第1の有機材料層119の負の帯電によりn型半導体領域117表面がホールピニング状態とされる。青の波長光の入射で第1の有機材料層119内で光電変換し生成した電子・正孔対のうち、正孔によりピニング状態が低減しもしくは外れ、n型半導体領域117の界面から発生した電子が信号電荷としてn型半導体領域117に蓄積される。同時にn型半導体領域117では、青の波長光で光電変換し生成した電子・正孔対のうち電子を信号電荷として、ここに上記界面からの電子と加算された青(B)の信号電荷が蓄積される。
信号電荷の読み出し時には、第3の有機材料層123から赤(R)の信号電荷が読み出され、第2の有機材料層122から緑(G)の信号電荷が読み出され、n型半導体領域117から青(B)の信号電荷が読み出される。
第23実施の形態に係る受光部116によれば、赤(R)、緑(G)及び青(B)の受光部116R、116G、116Bが積層された構成であるので、画素の単位面積当たりの各受光部116R〜116Bの受光面積を拡大することができる。そして、青(B)の信号電荷は増倍して得られる。青の感度は得られ難いが、本実施の形態では青の信号電荷が増倍するので、青の感度が上がる。これにより、微細画素であっても感度を向上することができる。
上例の有機材料層は有機光電変換膜を用いた。その他、本発明に適用される有機材料層としては、光電変換しないが、光が当たると有機材料層の直下のn型半導体領域表面に対してホールを誘起する材料、つまりホール誘起率が高い有機材料層で形成することもできる。このような有機材料層としては、例えば亜鉛フタロシアニン(ZnPc)などの材料膜を用いることができる。
なお、上述した実施の形態では、信号電荷を電子として構成したが、信号電荷を正孔(ホール)として構成することもできる。この場合、有機材料層及び無機材料層はドナーを有するものが使用され、各半導体領域の導電型は上例とは逆の導電型で構成される。ドナーを有する無機材料層としては、例えばn型ポリシリコン膜を用いることができる。
ドナーを有する有機光電変換膜としては、前述した例えばフラーレン(C60)などの材料膜を用いることができる。
本発明の固体撮像装置は、上述した有機または無機の光電変換膜を用いた受光部を有する画素と、上記有機または無機の光電変換膜を用いない受光部を有する画素とを備えたハイブリッド構造の固体撮像装置とすることもできる。
本発明の固体撮像装置は、画素が行列上に2次元配列されたエリアイメージセンサへの適用に限られるものではなく、画素が直線上に1次元配列されたリニアイメージセンサにも同様に適用可能である。
[電子機器の実施の形態]
本発明に係る固体撮像装置は、固体撮像装置を備えたカメラ、カメラ付き携帯機器、固体撮像装置を備えたその他の機器、等の電子機器に適用することができる。
図24に、本発明の電子機器の一例としてカメラに適用した実施の形態を示す。本実施の形態に係るカメラ130は、光学系(光学レンズ)131と、固体撮像装置132と、信号処理回路133とを備えてなる。固体撮像装置132は、上述した各実施の形態のいずれか1つの固体撮像装置が適用される。光学系131は、被写体からの像光(入射光)を固体撮像装置132の撮像面上に結像させる。これにより、固体撮像装置132の光電変換素子において一定期間信号電荷が蓄積される。信号処理回路133は、固体撮像装置132の出力信号に対して種々の信号処理を施して出力する。本実施の形態のカメラ130は、光学系131、固体撮像装置132、信号処理回路133がモジュール化したカメラモジュールの形態を含む。
本発明は、図24のカメラ、あるいはカメラモジュールを備えた例えば携帯電話に代表されるカメラ付き携帯機器などを構成することができる。
さらに、図24の構成は、光学系131、固体撮像装置132、信号処理回路133がモジュール化した撮像機能を有するモジュール、いわゆる撮像機能モジュ−ルとして構成することができる。本発明は、このような撮像機能モジュールを備えた電子機器を構成することができる。
本実施の形態に係る電子機器によれば、固体撮像装置の画素を微細化しても感度を向上することができ、高感度の電子機器を提供することができる。
A,B 本発明の第1実施の形態に係る固体撮像装置、特にその受光部の構成を示す構成図及び動作説明図である。 本発明の第2実施の形態に係る固体撮像装置、特にその受光部の構成を示す構成である。 本発明の第3実施の形態に係る固体撮像装置、特にその受光部の構成を示す構成である。 本発明を表面照射型のCMOS固体撮像装置に適用した第4実施の形態に係る固体撮像装置、特にその受光部を含む要部を示す構成である。 本発明を裏面照射型のCMOS固体撮像装置に適用した第5実施の形態に係る固体撮像装置、特にその受光部を含む要部を示す構成である。 本発明を表面照射型のCMOS固体撮像装置に適用した第6実施の形態に係る固体撮像装置、特にその受光部を含む要部を示す構成である。 本発明を表面照射型のCMOS固体撮像装置に適用した第7実施の形態に係る固体撮像装置、特にその受光部を含む要部を示す構成である。 本発明を表面照射型のCMOS固体撮像装置に適用した第8実施の形態に係る固体撮像装置、特にその受光部を含む要部を示す構成である。 本発明を表面照射型のCMOS固体撮像装置に適用した第9実施の形態に係る固体撮像装置、特にその受光部を含む要部を示す構成である。 本発明を表面照射型のCMOS固体撮像装置に適用した第10実施の形態に係る固体撮像装置、特にその受光部を含む要部を示す構成である。 本発明を表面照射型のCMOS固体撮像装置に適用した第11実施の形態に係る固体撮像装置、特にその受光部を含む要部を示す構成である。 本発明を裏面照射型のCMOS固体撮像装置に適用した第12実施の形態に係る固体撮像装置、特にその受光部を含む要部を示す構成である。 本発明をCCD固体撮像装置に適用した第13実施の形態に係る固体撮像装置、特にその受光部を含む要部を示す構成である。 本発明の第14実施の形態に係る固体撮像装置、特にその受光部の構成を示す構成である。 本発明の第15実施の形態に係る固体撮像装置、特にその受光部の構成を示す構成である。 本発明の第16実施の形態に係る固体撮像装置、特にその受光部の構成を示す構成である。 本発明の第17実施の形態に係る固体撮像装置、特にその受光部の構成を示す構成である。 本発明の第18実施の形態に係る固体撮像装置、特にその受光部の構成を示す構成である。 本発明の第19実施の形態に係る固体撮像装置、特にその受光部の構成を示す構成である。 本発明の第20実施の形態に係る固体撮像装置、特にその受光部の構成を示す構成である。 本発明の第21実施の形態に係る固体撮像装置、特にその受光部の構成を示す構成である。 本発明の第22実施の形態に係る固体撮像装置、特にその受光部の構成を示す構成である。 本発明の第23実施の形態に係る固体撮像装置、特にその受光部の構成を示す構成である。 本発明に係る電子機器をカメラに適用した実施の形態を示す概略構成図である。
符号の説明
1、7,11・・受光部、2・・n型半導体領域、3・・絶縁膜、4・・アクセプタを有する有機材料層(有機光電変換膜)、5・・ダングリングボンドやダメージ(例えば結晶欠陥)、8・・ホールピニング領域、9・・p型半導体領域、21・・表面照射型のCMOS固体撮像装置、31、裏面照射型のCMOS固体撮像装置、41・・CCD固体撮像装置、59・・ドナーを有する有機材料層(有機光電変換膜)、130・・カメラ

Claims (15)

  1. 光を受けたときに、第1導電型の半導体領域の絶縁膜側の表面のピニング状態が変調し、前記半導体領域の表面から発生した電荷を信号電荷とする受光部を有する画素を備えている
    固体撮像装置。
  2. 前記受光部は、
    前記第1導電型の半導体領域と、
    前記第1導電型の半導体領域上に絶縁膜を介して、前記第1導電型の半導体領域の表面に信号電荷と逆極性の電荷を誘起し、光を受けたときに前記第1導電型の半導体領域の表面のポテンシャルを変調させる材料層と
    を有する
    請求項1記載の固体撮像装置。
  3. 前記材料層は、該材料層から前記半導体領域に発生する信号電荷と同じ極性の電荷を排出する構成を有する
    請求項2記載の固体撮像装置。
  4. 前記材料層は、バイアス電圧が印加される電極を有する
    請求項3記載の固体撮像装置。
  5. 前記材料層は、バイアス電圧が印加される透明電極を有する
    請求項3記載の固体撮像装置。
  6. 前記第1導電型の半導体領域の一部に第2導電型のピニング層を有する
    請求項2記載の固体撮像装置。
  7. 前記材料層を有する受光部と、
    前記材料層を有しない受光部とを有する
    請求項2記載の固体撮像装置。
  8. 前記第1導電型の半導体領域が無機材料で形成され、
    前記材料層が有機材料層で形成される
    請求項2記載の固体撮像装置。
  9. 前記第1導電型の半導体領域が無機材料で形成され、
    前記材料層が無機材料層で形成される
    請求項2載の固体撮像装置。
  10. 前記第1導電型の半導体領域がn型半導体で形成され、
    前記材料層がアクセプタを有する有機光電変換膜で形成される
    請求項2記載の固体撮像装置。
  11. 前記第1導電型の半導体領域がn型半導体で形成され、
    前記材料層がp型ポリシリコン膜もしくはp型アモルファルシリコン膜で形成される
    請求項2記載の固体撮像装置。
  12. 前記逆極性の電荷が誘起される領域の前記絶縁膜の膜厚が、該絶縁膜の他部より薄い
    請求項2記載の固体撮像装置。
  13. 前記逆極性の電荷が誘起される領域を除く前記第1導電型の半導体領域の表面に第2導電型の半導体領域を有する
    請求項12記載の固体撮像装置。
  14. 固体撮像装置と、
    前記固体撮像装置の光電変換素子に入射光を導く光学系と、
    前記固体撮像装置の出力信号を処理する信号処理回路とを備え、
    前記固体撮像装置は、
    光を受けたときに、第1導電型の半導体領域の絶縁膜側の表面のピニング状態が変調し、前記半導体領域の表面から発生する電荷を信号電荷とする受光部を有する画素を備えている
    電子機器。
  15. 前記固体撮像装置における受光部は、
    前記第1導電型の半導体領域と、
    前記第1導電型の半導体領域上に絶縁膜を介して、前記第1導電型の半導体領域の表面に信号電荷と逆極性の電荷を誘起し、光を受けたときに前記第1導電型の半導体領域の表面のポテンシャルを変調させる材料層と
    を有する請求項14記載の電子機器。
JP2008210173A 2008-08-18 2008-08-18 固体撮像装置及び電子機器 Abandoned JP2010045318A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008210173A JP2010045318A (ja) 2008-08-18 2008-08-18 固体撮像装置及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008210173A JP2010045318A (ja) 2008-08-18 2008-08-18 固体撮像装置及び電子機器

Publications (1)

Publication Number Publication Date
JP2010045318A true JP2010045318A (ja) 2010-02-25

Family

ID=42016434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008210173A Abandoned JP2010045318A (ja) 2008-08-18 2008-08-18 固体撮像装置及び電子機器

Country Status (1)

Country Link
JP (1) JP2010045318A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9721994B2 (en) 2015-03-10 2017-08-01 Kabushiki Kaisha Toshiba Semiconductor device and imaging device for reading charge
JP2019009427A (ja) * 2017-06-23 2019-01-17 パナソニックIpマネジメント株式会社 光検出素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9721994B2 (en) 2015-03-10 2017-08-01 Kabushiki Kaisha Toshiba Semiconductor device and imaging device for reading charge
JP2019009427A (ja) * 2017-06-23 2019-01-17 パナソニックIpマネジメント株式会社 光検出素子

Similar Documents

Publication Publication Date Title
US12068352B2 (en) Solid-state imaging device, with transfer transistor gate electrode having trench gate sections
US10672825B2 (en) Imaging element and method of manufacturing the same
JP5023808B2 (ja) 固体撮像装置およびカメラ
KR101466845B1 (ko) 고체 촬상 장치 및 카메라
US9466645B2 (en) Solid-state imaging device and imaging apparatus
US8692303B2 (en) Solid-state imaging device, electronic device, and manufacturing method for solid-state imaging device
TWI534994B (zh) 固態成像裝置,其驅動方法及電子設備
JP5651976B2 (ja) 固体撮像素子およびその製造方法、並びに電子機器
JP4208559B2 (ja) 光電変換装置
US20120012965A1 (en) Backside illumination solid-state imaging device
WO2012004923A1 (ja) 固体撮像装置および固体撮像装置の駆動方法
WO2011145153A1 (ja) 固体撮像装置
KR20120042815A (ko) 고체 촬상 소자 및 그 구동 방법, 고체 촬상 소자의 제조 방법, 및 전자 정보 디바이스
JP2013012551A (ja) 固体撮像装置、固体撮像装置の製造方法、及び電子機器
US20210066384A1 (en) Image sensor and electronic device
JP5167693B2 (ja) 固体撮像装置およびカメラ
JP2010045318A (ja) 固体撮像装置及び電子機器
JP5083380B2 (ja) 固体撮像装置及び電子機器
JP2006210680A (ja) 固体撮像素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20130214