JP2010045213A - 基板処理装置及び基板処理方法 - Google Patents

基板処理装置及び基板処理方法 Download PDF

Info

Publication number
JP2010045213A
JP2010045213A JP2008208520A JP2008208520A JP2010045213A JP 2010045213 A JP2010045213 A JP 2010045213A JP 2008208520 A JP2008208520 A JP 2008208520A JP 2008208520 A JP2008208520 A JP 2008208520A JP 2010045213 A JP2010045213 A JP 2010045213A
Authority
JP
Japan
Prior art keywords
substrate
substrate processing
processing apparatus
bake plate
resist pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008208520A
Other languages
English (en)
Inventor
Fumitoshi Sugimoto
文利 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2008208520A priority Critical patent/JP2010045213A/ja
Publication of JP2010045213A publication Critical patent/JP2010045213A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】フォトレジストの露光後ベークを行う基板処理装置に関し、レジストパターン倒れを容易且つ簡便に防止しうる基板処理装置、及びその装置を用いた基板処理方法を提供する。
【解決手段】基板20を載置し加熱処理するためのベークプレート10を有する。ベークプレート10は、基板20を載置したときに基板20の周縁部が位置する部分に、他の部分12よりも熱伝導率の低い部材14を有している。
【選択図】図1

Description

本発明は、基板処理装置及び基板処理方法に係り、特に、フォトレジストの露光後ベークを行う基板処理装置、並びにこの基板処理装置を用いた基板処理方法に関する。
半導体デバイスの高速化・高密度化の要求に応えるべく、半導体基板上には非常に小さいサイズのデバイスパターンを形成することが求められている。このデバイスパターンは、光リソグラフィを用いて半導体基板上に形成されるレジストパターンを元に、エッチング加工や成膜加工を行って形成される。
半導体デバイスの微細化は、光リソグラフィに用いられる露光装置の光源波長を短波長化することにより実現されている。現在では、半導体デバイスのルールは90nm以下のレベルにまで達している。この値は、光リソグラフィの際のマスクパターン転写に必要な露光装置の光源波長よりも短い。例えば、光源として使用されるフッ化アルゴン(ArF)エキシマレーザの波長は、193nmである。
光源波長よりも小さいデバイスパターンの形成は、露光装置のレンズ性能の向上(例えば外径を大きくする)や、解像度向上技術(RET:Resolution Enhanced Technology)(例えばダブルパターニング技術)を駆使することにより達成されている。
半導体基板上へのレジストパターンの形成は、以下の順により行われる。まず、半導体基板上に、フォトレジストと称される感光剤を塗布し、露光装置にてマスクパターンを露光する。フォトレジストの塗布膜厚は、250nm程度である。次いで、ベーク処理(PEB:Post Exposure Bake)を行った後、現像処理し、レジストパターンを形成する。
特開平08−064494号公報 特開2000−349018号公報 特開2003−209050号公報
レジストパターンの寸法の縮小は、露光装置の性能向上やRET技術を使用することで達成できる。一方、フォトレジストの塗布膜厚は、十分なエッチング耐性を確保するために薄膜化が困難である。
しかしながら、フォトレジストの塗布膜厚を薄くしなければ、パターニング後のレジスト断面の縦横比(レジストパターン寸法とフォトレジスト塗布膜厚の比、すなわちアスペクト比)が大きくなり、現像の際にレジストパターン倒れが発生する虞がある。
一般的に、アスペクト比が3以下であれば、レジストパターン倒れは発生しないといわれている。しかしながら、近年では露光装置の解像限界を超えたレジストパターンを形成していることから、回折等による光近接効果の影響によってレジストパターンの形状劣化が生じている。これにより、レジストパターン倒れはますます発生しやすくなっている。
現像時にレジストパターン倒れが発生すると、デバイスパターンの未形成や倒れたレジストがパーティクル状のゴミとなるといった問題が生じ、半導体デバイス特性が著しく劣化することになる。
本発明の目的は、レジストパターン倒れを防止しうる基板処理方法、並びにその処理を容易且つ簡便に実現するための基板処理装置を提供することにある。
実施形態の一観点によれば、基板を載置し加熱処理するためのベークプレートを有し、前記ベークプレートは、前記基板を載置したときに前記基板の周縁部が位置する部分に、他の部分よりも熱伝導率の低い部材を有する基板処理装置が提供される。
また、実施形態の他の観点によれば、基板を載置し加熱処理するためのベークプレートを有し、前記ベークプレートは、前記基板を載置したときに前記基板の周縁部に接する部分における単位領域あたりの接触面積が、他の部分における単位領域あたりの接触面積よりも小さい基板処理装置が提供される。
また、実施形態の更に他の観点によれば、基板を載置し加熱処理するためのベークプレートを有し、前記ベークプレートは、前記ベークプレートを加温するための加熱ヒータを内蔵し、前記加熱ヒータが設けられた領域は、前記基板が載置される領域よりも狭くなっている基板処理装置が提供される。
また、実施形態の更に他の観点によれば、基板上にフォトレジスト膜を形成する工程と、前記フォトレジスト膜に所定のパターンを露光する工程と、前記パターンを露光した前記フォトレジスト膜をベークする工程と、ベークした前記フォトレジスト膜を現像する工程とを有し、前記フォトレジスト膜をベークする工程では、周縁部の温度が他の部分の温度よりも低くなるように、前記基板を加熱する基板処理方法が提供される。
開示の基板処理装置及び基板処理方法によれば、容易且つ簡便な手法によりレジストパターン倒れを効果的に防止することができる。これにより、デバイスパターンの未形成やパーティクルの発生を防止することができ、ひいては半導体デバイスの特性や製造歩留まりを向上することができる。
[第1実施形態]
第1実施形態による基板処理装置及び基板処理方法について図1乃至5を用いて説明する。
図1は本実施形態による基板処理装置の構造を示す概略断面図、図2は本実施形態による基板処理方法を示す工程断面図、図3はレジストパターン寸法とPEB温度との関係を測定した結果を示すグラフ、図4は半導体基板端部におけるレジストパターン寸法と周辺部材の配置領域の幅との関係を示すグラフ、図5は半導体基板上におけるフォトレジスト膜の膜厚の分布を示すグラフである。
はじめに、本実施形態による基板処理装置の構造について図1を用いて説明する。
本実施形態による基板処理装置は、基板20を載置し加熱処理するためのベークプレート10を有している。ベークプレート10は、主部材12と、少なくとも基板20を載置する表面の周縁部に設けられた周縁部材14とを有している。ベークプレート10の内部には、加熱ヒータ16が設けられている。
主部材12は、加熱ヒータ16により発せられた熱を基板に伝搬するものであり、熱伝導性に優れた材料により形成される。主部材12は、特に限定されるものではないが、例えば、基板を載置する表面が酸化されたアルミニウムにより形成することができる。
主部材12に適用可能な材料としては、アルミニウム(熱伝導率:236W/m・℃)のほか、銅(熱伝導率:390W/m・℃)、金(熱伝導率:220W/m・℃)、鉄(熱伝導率:84W/m・℃)等が挙げられる。金属材料を用いる場合、基板20の金属汚染等を防止する観点から、表面が汚染防止用の保護膜(アルミナ膜など)で覆われていることが望ましい。これら金属材料のほか、アルミナ系又はシリカ系のセラミック材料(熱伝導率:160〜250W/m・℃)を用いることもできる。
周縁部材14は、主部材12よりも熱伝導性に劣る材料(熱伝導率の小さい材料)により形成されている。周縁部材14は、特に限定されるものではないが、例えば、石英により形成することができる。周縁部材14は、基板の周縁部が周縁部材14上に位置するように、配置されている。
周辺部材14に適用可能な材料としては、石英(熱伝導率:1W/m・℃)のほか、ポリスチレン(熱伝導率:0.03W/m・℃)、エポキシ樹脂(熱伝導率:0.21W/m・℃)、シリコーンゴム(熱伝導率:0.16W/m・℃)等が挙げられる。
ベークプレート10の周縁部に、主部材12よりも熱伝導性の劣る材料の周縁部材14を設けることにより、加熱ヒータ16から発せられた熱は、ベークプレート10の周縁部では中心部と比較して伝わりにくくなる。これにより、ベークプレート10の周縁部の温度は、中心部の温度よりも低くなる。
ベークプレート10の周縁部材14は、ベークプレート10上に基板20を載置した際に、少なくとも基板の端部から数mm〜十数mmの周縁部が周縁部材14上に位置するように、配置されている。
次に、本実施形態による基板処理方法について図2を用いて説明する。
まず、半導体基板20上に、例えばスピンコート法により、例えば膜厚250nmのポジ型の化学増幅型のフォトレジスト材料を塗布し、フォトレジスト膜22を形成する(図2(a))。
次いで、露光装置により、フォトレジスト膜22に、所定のパターンを露光する。
次いで、露光したフォトレジスト膜22が形成された半導体基板20を、例えば120℃の温度でベーク(PEB:Post Exposure Bake)する。このベーク処理により、光反応によって生じた酸を触媒としてフォトレジスト膜12の基材樹脂が反応し、露光された領域が現像液に可溶となる(図1(b))。なお、図1(b)は、露光したパターンの潜像がフォトレジスト膜12内に形成された状態をイメージしたものである。
ベーク処理には、図1に示す本実施形態による基板処理装置を用いる。本実施形態による基板処理装置は、前述のように、ベークプレート10の周縁部に主部材12よりも熱伝導性の劣る材料の周縁部材14が設けられており、加熱ヒータ16から発せられた熱は、ベークプレート10の周縁部では中心部と比較して伝わりにくくなる。これにより、ベークプレート10の周縁部の温度は、中心部の温度よりも低くなる。
一例として、表面が酸化されたアルミニウムの主部材12と、幅25mm、厚さ14mmの石英の周縁部材14とを有する直径約300mmのベークプレート10上に直径300mmの半導体基板20を載置したときの温度分布を調べた。その結果、半導体基板20の中心部の温度が120℃のとき、半導体基板20の端部の温度は118℃であった。
図3は、レジストパターン寸法(残し幅)とPEB温度との関係を測定した結果を示すグラフである。図3に示すように、レジストパターン寸法は、PEB温度が高いほど小さくなる。例えば、PEB温度が120℃のときのレジストパターン寸法が80nmであったのに対し、PEB温度が118℃のときのレジストパターン寸法は84nmであった。
半導体基板20の温度は端部からなだらかに分布するため、レジストパターン寸法も中心に向かってなだらかに減少する。端部から20mm以内の領域では、レジストパターン寸法は、端部の寸法である84nmから80nmに徐々に変化していた。端部から20mm以上内側の領域では、レジストパターン寸法は80nm一定であった。
図4は、半導体基板端部におけるレジストパターン寸法(抜き幅)と周辺部材14の配置領域の幅との関係を示すグラフである。図4は、直径約300mmのベークプレート10の周縁部に、厚さ14mmの石英の周縁部材14を設け、その上に直径300mmの半導体基板を載置した実験例である。周辺部材14の配置領域の幅とは、半導体基板20の端部から直径方向に測定した周辺部材14の幅である。
図4に示すように、半導体基板端部におけるレジストパターン寸法は、周辺部材14の配置領域の幅が増加するほどに狭くなっている。すなわち、周辺部材14の配置領域の幅を広げるほどに、半導体基板端部の温度が低くなっている。
周辺部材14の配置領域の幅や厚みは、周辺部材14を形成する材料、半導体基板の端部と中心部との間に必要な温度差等に応じて適宜設定することが望ましい。
なお、本実施形態による基板処理方法では、ベークプレート10を工夫することにより、半導体基板周縁部の温度を中心部の温度よりも低くしている。ベークプレート10の温度制御を行う別の方法としては、加熱ヒータ16の温度分布を制御することが考えられる。しかしながら、通常、加熱ヒータ16は面内分布を均一に保つように設計されており、周縁部の温度が低くなるように制御しようとすると、加熱ヒータ16の制御が複雑になる。本実施形態の方法は、加熱ヒータ16を制御する方法と比較して、容易且つ簡便な方法である。
次いで、PEBを行ったフォトレジスト膜22を現像し、露光された領域のフォトレジスト膜22を選択的に除去する。これにより半導体基板20上に、所定のレジストパターンを有するフォトレジスト膜22を形成する(図1(c))。
レジストパターン倒れは、現像液の表面張力の影響を受けやすく、特に半導体基板の端部から数mm〜十数mmの周縁部で発生しやすい。図1に示す基板処理装置を用いてPEB処理を行うことにより、半導体基板20の中心部のレジストパターン寸法を80nmとし、周縁部のレジストパターン寸法を84nmとすることができる。
フォトレジスト膜22の膜厚が250nmであるとすると、半導体基板20の中心部のレジストパターンのアスペクト比は、250/80=3.13となる。一方、半導体基板20の周縁部のレジストパターンのアスペクト比は、250/84=2.98となる。
一般的に、アスペクト比が3以下であればレジストパターン倒れは発生しないといわれている。本実施形態による基板処理装置を用いてPEB処理を行うことにより、半導体基板20の周縁部におけるレジストパターン倒れを抑制することができる。
半導体基板20の端部から数mm〜十数mmの周縁部の領域は、製品として使用されない領域であり、レジストパターン寸法が中心部のレジストパターン寸法と異なっていても問題はない。
なお、レジストパターン倒れが半導体基板の端部で生じやすい原因は、フォトレジスト膜の膜厚の影響によるものではない。図5は、半導体基板上におけるフォトレジスト膜の膜厚の分布を示すグラフである。図5に示すように、フォトレジスト膜の膜厚の面内ばらつきは、±1nm未満であり、半導体基板の周辺において厚膜化しているなどの現象は見られない。
このように、本実施形態によれば、容易且つ簡便な手法によりレジストパターン倒れを効果的に防止することができる。これにより、デバイスパターンの未形成やパーティクルの発生を防止することができ、ひいては半導体デバイスの特性や製造歩留まりを向上することができる。
[第2実施形態]
第2実施形態による基板処理装置について図6を用いて説明する。なお、図1及び図2に示す第1実施形態による基板処理装置及び基板処理方法と同様の構成要素には同一の符号を付し説明を省略し或いは簡潔にする。
図6は本実施形態による基板処理装置の構造を示す概略断面図である。
はじめに、本実施形態による基板処理装置の構造について図6を用いて説明する。
本実施形態による基板処理装置は、周辺部材14の形成材料が異なるほかは、図1に示す第1実施形態による基板処理装置と同様である。
すなわち、本実施形態による基板処理装置の周辺部材14aは、多孔質材料により形成されている。多孔質材料としては、特に限定されるものではないが、アルミナ系又はシリカ系のセラミックポーラス材料を適用することができる。
ポーラス材料は、多数の空孔を有するものであり、空孔内には空気が充填されている。乾燥空気の熱伝導率は0.024W/m・℃程度と非常に小さいため、熱伝導率が160〜250W/m・℃程度のセラミック材料を母材に用いた場合にも、多孔質とすることにより周辺部材14a全体としての熱伝導率を大幅に低減することができる。
これにより、第1実施形態による基板処理装置と同様の効果を得ることができる。
一例として、表面が酸化されたアルミニウムの主部材12と、幅50mm、厚さ14mmのセラミックポーラス材料の周縁部材14aとを有する直径約300mmのベークプレート10上に直径300mmの半導体基板20を載置したときの温度分布を調べた。セラミックポーラス材料としては、空隙率が80%のものを用いた。その結果、半導体基板20の中心部の温度が120℃のとき、半導体基板20の端部の温度は118℃であった。
図3に示したように、レジストパターン寸法は、PEB温度が高いほど小さくなる。例えば、PEB温度が120℃のときのレジストパターン寸法が80nmであったのに対し、PEB温度が118℃のときのレジストパターン寸法は84nmであった。
半導体基板20の温度は端部からなだらかに分布するため、レジストパターン寸法も中心に向かってなだらかに減少する。端部から20mm以内の領域では、レジストパターン寸法は、端部の寸法である84nmから80nmに徐々に変化していた。端部から20mm以上内側の領域では、レジストパターン寸法は80nm一定であった。
周辺部材14aの配置領域の幅や厚みは、周辺部材14aを形成する材料、半導体基板の端部と中心部との間に必要な温度差等に応じて適宜設定することが望ましい。
このように、本実施形態によれば、容易且つ簡便な手法によりレジストパターン倒れを効果的に防止することができる。これにより、デバイスパターンの未形成やパーティクルの発生を防止することができ、ひいては半導体デバイスの特性や製造歩留まりを向上することができる。
[第3実施形態]
第3実施形態による基板処理装置について図7及び図8を用いて説明する。なお、図1乃至図6に示す第1及び第2実施形態による基板処理装置及び基板処理方法と同様の構成要素には同一の符号を付し説明を省略し或いは簡潔にする。
図7は本実施形態による基板処理装置の構造を示す概略断面図、図8は半導体基板端部におけるレジストパターン寸法と半導体基板の端部からベークプレートの端部までの距離との関係を測定した結果を示すグラフである。
はじめに、本実施形態による基板処理装置の構造について図7を用いて説明する。
本実施形態による基板処理装置は、基板20を載置し加熱処理するためのベークプレート10を有している。
ベークプレート10は、直径が基板20よりも小さい主部材12を有している。主部材12の構成材料は、第1実施形態による基板処理装置の場合と同様である。ベークプレート10の内部には、加熱ヒータ16が設けられている。
第1実施形態及び第2実施形態による基板処理装置では、ベークプレート10の周縁部に、主部材12よりも熱伝導性の低い材料の周縁部材14を設けることにより、ベークプレート10の周縁部の温度が中心部よりも低くなるようにした。
一方、本実施形態による基板処理装置では、主部材12の直径を基板20の直径よりも小さくしている。この構造は、基板20の周縁部の下に空気の周縁部材が設けられていることと等価である。乾燥空気の熱伝導率は0.024W/m・℃程度と非常に小さいため、ベースプレート10の周縁部に熱伝導率の低い周縁部材14を設けることと同様の効果がある。したがって、本実施形態による基板処理装置によっても、第1及び第2実施形態による基板処理装置と同様の効果を得ることができる。
或いは、別の観点からいえば、本実施形態による基板処理装置のベークプレート10は、基板20を載置したときに基板20の周縁部に接する部分における単位領域あたりの接触面積が、他の部分における単位領域あたりの接触面積よりも小さくなっている。これにより、ベークプレート10から基板20への熱伝導性が低下しているともいえる。
一例として、表面が酸化されたアルミニウムの主部材12を有する直径約298mmのベークプレート10上に直径300mmの半導体基板20を載置したときの温度分布を調べた。その結果、半導体基板20の中心部の温度が120℃のとき、半導体基板20の端部の温度は116℃であった。
図3に示したように、レジストパターン寸法は、PEB温度が高いほど小さくなる。例えば、PEB温度が120℃のときのレジストパターン寸法が80nmであったのに対し、PEB温度が116℃のときのレジストパターン寸法は88nmであった。
半導体基板20の温度は端部からなだらかに分布するため、レジストパターン寸法も中心に向かってなだらかに減少する。端部から5mm以内の領域では、レジストパターン寸法は、端部の寸法である88nmから80nmに徐々に変化していた。端部から5mm以上内側の領域では、レジストパターン寸法は80nm一定であった。
図8は、半導体基板端部におけるレジストパターン寸法(抜き幅)と、半導体基板の端部からベークプレートの端部までの距離との関係を示すグラフである。
図8に示すように、半導体基板端部におけるレジストパターン寸法は、半導体基板の端部とベークプレートの端部との距離が増加するほどに狭くなっている。すなわち、半導体基板の端部とベークプレートの端部との距離を広げるほどに、半導体基板端部の温度が低くなっている。
主部材12の直径は、主部材12を形成する材料、半導体基板の端部と中心部との間に必要な温度差等に応じて適宜設定することが望ましい。
このように、本実施形態によれば、容易且つ簡便な手法によりレジストパターン倒れを効果的に防止することができる。これにより、デバイスパターンの未形成やパーティクルの発生を防止することができ、ひいては半導体デバイスの特性や製造歩留まりを向上することができる。
[第4実施形態]
第4実施形態による基板処理装置について図9を用いて説明する。なお、図1乃至図7に示す第1乃至第3実施形態による基板処理装置及び基板処理方法と同様の構成要素には同一の符号を付し説明を省略し或いは簡潔にする。
図9は本実施形態による基板処理装置の構造を示す概略断面図である。
本実施形態による基板処理装置は、基板20を載置し加熱処理するためのベークプレート10を有している。
ベークプレート10は、主部材12を有している。主部材12の構成材料は、第1実施形態による基板処理装置の場合と同様である。ベークプレート10の内部には、加熱ヒータ16が設けられている。
主部材12の基板20と接する表面の周縁部には、切り欠き部24が設けられている。これにより、基板20と接する表面における主部材12の直径が、基板20の直径よりも小さくなっている。主部材12に切り欠き部24を設ける効果は、第3実施形態の場合のように、主部材12aの直径を均一に基板20の直径よりも小さくした場合と同様である。
すなわち、主部材12に切り欠き部24を設けることは、基板20の周縁部の下に空気の周縁部材を設けることと等価である。乾燥空気の熱伝導率は0.024W/m・℃程度と非常に小さいため、ベースプレート10の表面周縁部に熱伝導率の低い周縁部材14を設けることと同様の効果がある。したがって、本実施形態による基板処理装置によっても、第1乃至第3実施形態による基板処理装置と同様の効果を得ることができる。
或いは、別の観点からいえば、本実施形態による基板処理装置のベークプレート10は、基板20を載置したときに基板20の周縁部に接する部分における単位領域あたりの接触面積が、他の部分における単位領域あたりの接触面積よりも小さくなっている。これにより、ベークプレート10から基板20への熱伝導性が低下しているともいえる。
一例として、表面が酸化されたアルミニウムの主部材12を有し、表面周縁部に幅1mm、厚さ14mmの切り欠き部24を設けた直径約300mmのベークプレート10上に直径300mmの半導体基板20を載置したときの温度分布を調べた。その結果、半導体基板20の中心部の温度が120℃のとき、半導体基板20の端部の温度は116℃であった。
図3に示したように、レジストパターン寸法は、PEB温度が高いほど小さくなる。例えば、PEB温度が120℃のときのレジストパターン寸法が80nmであったのに対し、PEB温度が116℃のときのレジストパターン寸法は88nmであった。
半導体基板20の温度は端部からなだらかに分布するため、レジストパターン寸法も中心に向かってなだらかに減少する。端部から5mm以内の領域では、レジストパターン寸法は、端部の寸法である88nmから80nmに徐々に変化していた。端部から5mm以上内側の領域では、レジストパターン寸法は80nm一定であった。
切り欠き部24の幅及び厚みは、主部材12を形成する材料、半導体基板の端部と中心部との間に必要な温度差等に応じて適宜設定することが望ましい。
このように、本実施形態によれば、容易且つ簡便な手法によりレジストパターン倒れを効果的に防止することができる。これにより、デバイスパターンの未形成やパーティクルの発生を防止することができ、ひいては半導体デバイスの特性や製造歩留まりを向上することができる。
[第5実施形態]
第5実施形態による基板処理装置について図10を用いて説明する。なお、図1乃至図9に示す第1乃至第4実施形態による基板処理装置及び基板処理方法と同様の構成要素には同一の符号を付し説明を省略し或いは簡潔にする。
図10は本実施形態による基板処理装置の構造を示す概略断面図である。
本実施形態による基板処理装置は、基板20を載置し加熱処理するためのベークプレート10を有している。
ベークプレート10は、主部材12を有している。主部材12の構成材料は、第1実施形態による基板処理装置の場合と同様である。ベークプレート10の内部には、加熱ヒータ16が設けられている。
主部材12の基板20と接する表面の周縁部には、同心円状に複数の溝26が設けられている。これにより、主部材12の周縁部における基板20に対する接触面積が小さくなっている。主部材12の周縁部に溝26を設ける効果は、第3実施形態の場合のように主部材12aの直径を均一に基板20の直径よりも小さくした場合や、第4実施形態の場合のように主部材12の周縁部に切り欠き部24を設けた場合と同様である。
すなわち、主部材12の周縁部に溝26を設けることは、基板20の周縁部の下に部分的に空気の周縁部材を設けることと等価である。乾燥空気の熱伝導率は0.024W/m・℃程度と非常に小さいため、ベースプレート10の表面周縁部に熱伝導率の低い周縁部材14を設けることと同様の効果がある。したがって、本実施形態による基板処理装置によっても、第1乃至第4実施形態による基板処理装置と同様の効果を得ることができる。
或いは、別の観点からいえば、本実施形態による基板処理装置のベークプレート10は、基板20を載置したときに基板20の周縁部に接する部分における単位領域あたりの接触面積が、他の部分における単位領域あたりの接触面積よりも小さくなっている。これにより、ベークプレート10から基板20への熱伝導性が低下しているともいえる。
一例として、表面が酸化されたアルミニウムの主部材12を有し、表面周縁部の幅50mmの領域に深さ14mmの複数の溝26を設けた直径約300mmのベークプレート10上に直径300mmの半導体基板20を載置したときの温度分布を調べた。溝26を設けたことによる周縁部の空隙率は、90%とした。その結果、半導体基板20の中心部の温度が120℃のとき、半導体基板20の端部の温度は118℃であった。
図3に示したように、レジストパターン寸法は、PEB温度が高いほど小さくなる。例えば、PEB温度が120℃のときのレジストパターン寸法が80nmであったのに対し、PEB温度が118℃のときのレジストパターン寸法は84nmであった。
半導体基板20の温度は端部からなだらかに分布するため、レジストパターン寸法も中心に向かってなだらかに減少する。端部から20mm以内の領域では、レジストパターン寸法は、端部の寸法である84nmから80nmに徐々に変化していた。端部から20mm以上内側の領域では、レジストパターン寸法は80nm一定であった。
溝26を設ける領域の幅、溝26の幅及び深さ、溝26を設けたことによる周縁部の空隙率は、主部材12を形成する材料、半導体基板の端部と中心部との間に必要な温度差等に応じて適宜設定することが望ましい。
このように、本実施形態によれば、容易且つ簡便な手法によりレジストパターン倒れを効果的に防止することができる。これにより、デバイスパターンの未形成やパーティクルの発生を防止することができ、ひいては半導体デバイスの特性や製造歩留まりを向上することができる。
[第6実施形態]
第6実施形態による基板処理装置について図11を用いて説明する。なお、図1乃至図10に示す第1乃至第5実施形態による基板処理装置及び基板処理方法と同様の構成要素には同一の符号を付し説明を省略し或いは簡潔にする。
図11は本実施形態による基板処理装置の構造を示す概略断面図である。
本実施形態による基板処理装置は、基板20を載置し加熱処理するためのベークプレート10を有している。ベークプレート10は、主部材12を有している。主部材12の構成材料は、第1実施形態による基板処理装置の場合と同様である。ベークプレート10の内部には、加熱ヒータ16が設けられている。
本実施形態による基板処理装置では、加熱ヒータ16は、ベークプレート10の全面には設けられておらず、ベークプレート10の周縁部から所定距離離間して設けられている。すなわち、加熱ヒータ16が設けられた領域の直径は、ベークプレート10の直径よりも小さくなっている。本質的には、加熱ヒータ16が設けられた領域の直径が、ベークプレート10上に載置する基板20の直径よりも小さくなっている。
ベークプレート10の直径よりも小さい直径の加熱ヒータ16を設けることにより、加熱ヒータ16で加熱したときのベークプレート10の周縁部の温度は、中心部の温度よりも低くなる。したがって、本実施形態による基板処理装置によっても、第1乃至第5実施形態による基板処理装置と同様の効果を得ることができる。
一例として、直径280mmの領域に加熱ヒータ16を埋設した表面が酸化されたアルミニウムの主部材12を有する直径約300mmのベークプレート10上に直径300mmの半導体基板20を載置したときの温度分布を調べた。その結果、半導体基板20の中心部の温度が120℃のとき、半導体基板20の端部の温度は118℃であった。
図3に示したように、レジストパターン寸法は、PEB温度が高いほど小さくなる。例えば、PEB温度が120℃のときのレジストパターン寸法が80nmであったのに対し、PEB温度が118℃のときのレジストパターン寸法は84nmであった。
半導体基板20の温度は端部からなだらかに分布するため、レジストパターン寸法も中心に向かってなだらかに減少する。端部から5mm以内の領域では、レジストパターン寸法は、端部の寸法である84nmから80nmに徐々に変化していた。端部から5mm以上内側の領域では、レジストパターン寸法は80nm一定であった。
加熱ヒータ16を配置しない周縁部の幅は、主部材12を形成する材料、主部材12の表面から加熱ヒータ16までの距離、半導体基板の端部と中心部との間に必要な温度差等に応じて適宜設定することが望ましい。
このように、本実施形態によれば、容易且つ簡便な手法によりレジストパターン倒れを効果的に防止することができる。これにより、デバイスパターンの未形成やパーティクルの発生を防止することができ、ひいては半導体デバイスの特性や製造歩留まりを向上することができる。
[変形実施形態]
上記実施形態に限らず種々の変形が可能である。
例えば、上記第5実施形態では、ベークプレート10の周縁部に、同心円状の複数の溝26を設けることにより、基板20を載置したときに基板20の周縁部に接する部分における単位領域あたりの接触面積が、他の部分における単位領域あたりの接触面積よりも小さくなるようにしたが、溝26の形状は、同心円状に限定されるものではない。例えば、直径方向に延在する溝や、メッシュ状の溝を設けるようにしてもよい。
また、基板20を載置したときに基板20の周縁部に接する部分における単位領域あたりの接触面積が、他の部分における単位領域あたりの接触面積よりも小さくなっていればよく、基板20の周縁部に接する部分にのみならず、他の部分に溝を設けるようにしてもよい。
また、上記第6実施形態による基板処理装置では、ベークプレート10自体には変更を加えずに加熱ヒータ16の大きさを基板20よりも小さくしているが、第1乃至第5実施形態のベークプレート10に第6実施形態の加熱ヒータ16を更に組み合わせるようにしてもよい。
以上の実施形態に関し、更に以下の付記を開示する。
(付記1) 基板を載置し加熱処理するためのベークプレートを有し、
前記ベークプレートは、前記基板を載置したときに前記基板の周縁部が位置する部分に、他の部分よりも熱伝導率の低い部材を有する
ことを特徴とする基板処理装置。
(付記2) 付記1記載の基板処理装置において、
前記熱伝導率の低い部材は、石英、ポリスチレン、エポキシ樹脂、又はシリコーンゴムである
ことを特徴とする基板処理装置。
(付記3) 付記1記載の基板処理装置において、
熱伝導率の低い前記部材は、多孔質状の部材である
ことを特徴とする基板処理装置。
(付記4) 付記3記載の基板処理装置において、
前記多孔質状の部材は、セラミックポーラス材料である
ことを特徴とする基板処理装置。
(付記5) 付記1乃至4のいずれか1項に記載の基板処理装置において、
前記ベークプレートの前記他の部分は、セラミック材料又はアルミニウムにより形成されている
ことを特徴とする基板処理装置。
(付記6) 基板を載置し加熱処理するためのベークプレートを有し、
前記ベークプレートは、前記基板を載置したときに前記基板の周縁部に接する部分における単位領域あたりの接触面積が、他の部分における単位領域あたりの接触面積よりも小さい
ことを特徴とする基板処理装置。
(付記7) 付記6記載の基板処理装置において、
前記ベークプレートは、前記基板の前記周縁部に接しないように、少なくとも前記基板に接する面が前記基板よりも小さくなっている
ことを特徴とする基板処理装置。
(付記8) 付記6記載の基板処理装置において、
前記ベークプレートは、前記基板の前記周縁部に接する部分に溝が形成されている
ことを特徴とする基板処理装置。
(付記9) 付記1乃至8のいずれか1項に記載の基板処理装置において、
前記ベークプレートは、前記ベークプレートを加温するための加熱ヒータを内蔵し、
前記加熱ヒータが設けられた領域は、前記基板が載置される領域よりも狭くなっている
ことを特徴とする基板処理装置。
(付記10) 基板を載置し加熱処理するためのベークプレートを有し、
前記ベークプレートは、前記ベークプレートを加温するための加熱ヒータを内蔵し、
前記加熱ヒータが設けられた領域は、前記基板が載置される領域よりも狭くなっている
ことを特徴とする基板処理装置。
(付記11) 付記1乃至10のいずれか1項に記載の基板処理装置において、
前記ベークプレートは、セラミック材料又はアルミニウムにより形成されている
ことを特徴とする基板処理装置。
(付記12) 基板上にフォトレジスト膜を形成する工程と、
前記フォトレジスト膜に所定のパターンを露光する工程と、
前記パターンを露光した前記フォトレジスト膜をベークする工程と、
ベークした前記フォトレジスト膜を現像する工程とを有し、
前記フォトレジスト膜をベークする工程では、周縁部の温度が他の部分の温度よりも低くなるように、前記基板を加熱する
ことを特徴とする基板処理方法。
(付記13) 付記12記載の基板処理方法において、
前記フォトレジスト膜をベークする工程では、付記1乃至11のいずれか1項に記載の基板処理装置を用いる
ことを特徴とする基板処理方法。
図1は、第1実施形態による基板処理装置の構造を示す概略断面図である。 図2は、第1実施形態による基板処理方法を示す工程断面図である。 図3は、レジストパターン寸法とPEB温度との関係を示すグラフである。 図4は、半導体基板端部におけるレジストパターン寸法と周辺部材の配置領域の幅との関係を示すグラフである。 図5は、半導体基板上におけるフォトレジスト膜の膜厚の分布を示すグラフである。 図6は、第2実施形態による基板処理装置の構造を示す概略断面図である。 図7は、第3実施形態による基板処理装置の構造を示す概略断面図である。 図8は、半導体基板端部におけるレジストパターン寸法と半導体基板の端部からベークプレートの端部までの距離との関係を示すグラフである。 図9は、第4実施形態による基板処理装置の構造を示す概略断面図である。 図10は、第5実施形態による基板処理装置の構造を示す概略断面図である。 図11は、第6実施形態による基板処理装置の構造を示す概略断面図である。
符号の説明
10…ベークプレート
12…主部材
14…周縁部剤
16…加熱ヒータ
20…基板、半導体基板
22…フォトレジスト膜
24…切り欠き部
26…溝

Claims (7)

  1. 基板を載置し加熱処理するためのベークプレートを有し、
    前記ベークプレートは、前記基板を載置したときに前記基板の周縁部が位置する部分に、他の部分よりも熱伝導率の低い部材を有する
    ことを特徴とする基板処理装置。
  2. 基板を載置し加熱処理するためのベークプレートを有し、
    前記ベークプレートは、前記基板を載置したときに前記基板の周縁部に接する部分における単位領域あたりの接触面積が、他の部分における単位領域あたりの接触面積よりも小さい
    ことを特徴とする基板処理装置。
  3. 請求項2記載の基板処理装置において、
    前記ベークプレートは、前記基板の前記周縁部に接しないように、少なくとも前記基板に接する面が前記基板よりも小さくなっている
    ことを特徴とする基板処理装置。
  4. 請求項2記載の基板処理装置において、
    前記ベークプレートは、前記基板の前記周縁部に接する部分に溝が形成されている
    ことを特徴とする基板処理装置。
  5. 基板を載置し加熱処理するためのベークプレートを有し、
    前記ベークプレートは、前記ベークプレートを加温するための加熱ヒータを内蔵し、
    前記加熱ヒータが設けられた領域は、前記基板が載置される領域よりも狭くなっている
    ことを特徴とする基板処理装置。
  6. 基板上にフォトレジスト膜を形成する工程と、
    前記フォトレジスト膜に所定のパターンを露光する工程と、
    前記パターンを露光した前記フォトレジスト膜をベークする工程と、
    ベークした前記フォトレジスト膜を現像する工程とを有し、
    前記フォトレジスト膜をベークする工程では、周縁部の温度が他の部分の温度よりも低くなるように、前記基板を加熱する
    ことを特徴とする基板処理方法。
  7. 請求項6記載の基板処理方法において、
    前記フォトレジスト膜をベークする工程では、請求項1乃至5のいずれか1項に記載の基板処理装置を用いる
    ことを特徴とする基板処理方法。
JP2008208520A 2008-08-13 2008-08-13 基板処理装置及び基板処理方法 Pending JP2010045213A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008208520A JP2010045213A (ja) 2008-08-13 2008-08-13 基板処理装置及び基板処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008208520A JP2010045213A (ja) 2008-08-13 2008-08-13 基板処理装置及び基板処理方法

Publications (1)

Publication Number Publication Date
JP2010045213A true JP2010045213A (ja) 2010-02-25

Family

ID=42016356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008208520A Pending JP2010045213A (ja) 2008-08-13 2008-08-13 基板処理装置及び基板処理方法

Country Status (1)

Country Link
JP (1) JP2010045213A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181798A1 (ja) * 2013-05-08 2014-11-13 旭化成イーマテリアルズ株式会社 エッチング被加工材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181798A1 (ja) * 2013-05-08 2014-11-13 旭化成イーマテリアルズ株式会社 エッチング被加工材
JP2014239208A (ja) * 2013-05-08 2014-12-18 旭化成イーマテリアルズ株式会社 エッチング被加工材及びそれを用いたエッチング方法

Similar Documents

Publication Publication Date Title
JP2009218574A (ja) パターン形成方法、半導体装置の製造方法及び半導体装置の製造装置
JP2010080903A (ja) パターン形成方法、半導体装置の製造方法及び半導体装置の製造装置
JP4308407B2 (ja) 半導体装置の製造方法
EP1526406B1 (en) Photomask
JP2010045213A (ja) 基板処理装置及び基板処理方法
KR20090050698A (ko) 반도체 소자의 제조 방법
JP2008042174A (ja) マスクパターン形成方法
JP2007188925A (ja) 基板処理方法
JP2009139695A (ja) 半導体装置の製造方法
KR101061357B1 (ko) 포토 마스크
KR101033354B1 (ko) 반도체 소자의 미세패턴 형성방법
JP2001194768A (ja) レジストパターンの形成方法
JP4512979B2 (ja) 半導体装置の製造方法
KR100275661B1 (ko) 실리레이션을이용한감광막패턴형성방법
JP4328516B2 (ja) レジストパターンの形成方法及び加熱処理装置
JP5007084B2 (ja) レジストフロー工程及びコーティング処理工程を含む半導体素子の製造方法
JP4480424B2 (ja) パターン形成方法
JP2010118501A (ja) 半導体装置の製造方法
KR20020000351A (ko) 반도체소자의 미세패턴 형성방법
KR20100011489A (ko) 반도체 소자의 콘택홀 형성 방법
JP2009109768A (ja) レジストパターン形成方法
JP2011171497A (ja) マスクの製造方法
KR100959724B1 (ko) 반도체 소자의 미세 컨택홀 패턴 형성 방법
JP2005181758A (ja) レジストパターン形成方法
KR100810422B1 (ko) 반도체 소자의 패턴 형성 방법