JP2010040493A - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
JP2010040493A
JP2010040493A JP2008205889A JP2008205889A JP2010040493A JP 2010040493 A JP2010040493 A JP 2010040493A JP 2008205889 A JP2008205889 A JP 2008205889A JP 2008205889 A JP2008205889 A JP 2008205889A JP 2010040493 A JP2010040493 A JP 2010040493A
Authority
JP
Japan
Prior art keywords
waveguide
plasma
inner conductor
microwave
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008205889A
Other languages
English (en)
Other versions
JP5143662B2 (ja
Inventor
Kiyotaka Ishibashi
清隆 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2008205889A priority Critical patent/JP5143662B2/ja
Priority to PCT/JP2009/063522 priority patent/WO2010016417A1/ja
Priority to KR1020107028583A priority patent/KR101221859B1/ko
Priority to TW98126641A priority patent/TWI388245B/zh
Publication of JP2010040493A publication Critical patent/JP2010040493A/ja
Application granted granted Critical
Publication of JP5143662B2 publication Critical patent/JP5143662B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32229Waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】どのようなプロセス条件に対しても均一で、かつ再現性がよいプラズマを発生させることのできるプラズマ処理装置を提供する。
【解決手段】プラズマ処理装置の導波管5は外側導体5aと内側導体5bからなる軸管の部分と、軸管の上部にある矩形導波部5cとを備える。ねじ送り機構20は、矩形導波部5c上に内側導体5bを囲うように等間隔に4つ設けられ、平面上のどの方向にも内側導体5bを移動させることができる。ねじ送り機構20は、押さえ板21、固定ネジ22、調整ネジ23、ストッパ24を備える。直接に内側導体5bを押さえ板21で支持することができ、押さえ板21に備えた固定ネジ22を締めることで、内側導体5bの位置を固定する。調整ネジ23により、内側導体5bを、外側導体5aに触れない範囲内で移動させることが可能である。
【選択図】図2

Description

本発明は、プラズマ処理装置に関する。より詳しくは、マイクロ波を用いてプラズマを発生させるマイクロ波プラズマ処理装置に関する。
集積回路や液晶、太陽電池など多くの半導体デバイスにプラズマ技術は広く用いられている。半導体製造過程の薄膜の堆積やエッチング工程などで利用されているが、より高性能かつ高機能な製品のために、例えば超微細加工技術など高度なプラズマ処理が求められる。特に、低気圧高密度プラズマを得られるマイクロ波プラズマ処理装置が注目されている。
マイクロ波プラズマ源を用いたプラズマ処理装置は、マイクロ波放電により気体を電離させプラズマを発生させる。マイクロ波は導波管を介してアンテナのスロット部分から給電され、天板を透過してプラズマ処理室内へ放射される。
特許文献1に、被処理体を収容した処理容器内にマイクロ波発生器から導波管を介してマイクロ波を導入してプラズマを発生させて、前記被処理体に所定の処理を施すようにしたプラズマ処理装置において、前記導波管に、前記処理容器からの反射波をなくすためのマッチング手段を設けるように構成し、マイクロ波の反射電力を略なくすことができることが記載されている。
特開平09−190900号公報
プラズマ処理装置の、装置製造段階における各々の構成部材の公差や、プラズマにより発生する熱による部材の熱膨張により、マイクロ波の伝播状態は変化する。また、温度や圧力、ガスの種類などのプラズマ発生条件により、プラズマ特性は変化するため、どのような条件に対しても均一になるプラズマを生成することはむずかしい。
従来の技術では、プラズマ発生に寄与する実効電力(出力電力と反射電力の差)について対策がなされており、反射電力を少なくすることで、より実効電力を多くすることが目的である。しかし、効率よくプラズマを発生させるだけでなく、均一にプラズマ処理を行うことも必要である。
本発明はこうした状況に鑑みてなされたものであり、その目的は、どのようなプロセス条件に対しても均一で、かつ再現性がよいプラズマを発生させることのできるプラズマ処理装置を提供する。
上記目的を達成するため、本発明に係るプラズマ処理装置は、
マイクロ波を用いてプラズマを処理容器内に発生させ、被処理対象物にプラズマ処理を行うプラズマ処理装置であって、
前記マイクロ波を発生させるマイクロ波源と、
前記マイクロ波を伝送させる導波管と、
前記マイクロ波源から前記導波管を介して、前記マイクロ波を前記処理容器内に放射するアンテナと、
前記アンテナに接して前記マイクロ波を前記処理容器内に透過させる誘電体窓と、
前記導波管の位置と、前記アンテナの位置と、を相対的に変化するように移動させることができる位置調整手段と、
を備えることを特徴とする。
好ましくは、前記位置調整手段は、前記導波管に備えられ、前記アンテナに接する前記導波管の一部を、前記導波管の本体に対して相対的に変位させることを特徴とする。
または、前記位置調整手段は、前記アンテナに対する位置が固定して備えられ、少なくとも前記アンテナに接する前記導波管の一部を、前記アンテナに対して相対的に変位させてもよい。
好ましくは、前記導波管は、内側導体と外側導体を備える同軸導波管であることを特徴とする。
さらに好ましくは、前記導波管の一部は、前記同軸導波管の前記内側導体であることを特徴とする。
本発明のプラズマ処理装置によれば、どのようなプロセス条件に対しても均一で、かつ再現性がよいプラズマを発生させることのできるプラズマ処理装置を提供することができる。
以下、この発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付す。
(実施の形態1)
図1は、本発明の実施の形態に係るプラズマ処理装置の断面図である。図2は、図1の1点鎖線の囲み部分Kの構成概略図である。実施の形態1に係る位置調整手段を示しており、アンテナと導波管の関係を示す。
プラズマ処理装置1は、チャンバ(プラズマ処理容器)2、天板(誘電体窓)3、アンテナ4、導波管5、マイクロ波源6、冷却ジャケット7、基板保持台8、真空ポンプ9、高周波電源10、ガス通路11、温度センサ12、を備える。アンテナ4はシールド部材からなる導波部4a、スロット板4a、誘電体からなる遅波板4bとを備える。導波管5は外側導体5aと内側導体5bからなる軸管の部分と、軸管の上部にある矩形導波部5cとを備える。
図5は、従来のプラズマ処理装置のアンテナと導波管の関係を表す構成概略図で、図1の1点鎖線の囲み部分Kに対応する部分を示す。アンテナ4と導波管5は固定され、マイクロ波が天板3を介してチャンバ2内へ導入されるときの位置は固定されたままである。現行品に対し本実施の形態1では、図2に示すように、導波管5は、内側導体5bを支持するねじ送り機構20を備える。
ねじ送り機構20は、導波管5の矩形導波部5c上に、内側導体5bを囲うように等間隔に4つ設けられ、平面上のどの方向にも内側導体5bを移動させることができる。ねじ送り機構20は、押さえ板21、固定ネジ22、調整ネジ23、ストッパ24、を備える。直接に内側導体5bに触れる部分を押さえ板21で支持することができ、押さえ板21に備えた固定ネジ22を締めることで、内側導体5bの位置を固定する。調整ネジ23を回して内側導体5bの位置を調整でき、内側導体5bを外側導体5aに触れない範囲内で移動させることが可能である。調整ネジ23で最も変位を大きくしたときに、内側導体5bが外側導体5aに触れない位置に、ストッパ24を備えておくことで、内側導体5bが外側導体5aと接触するのを防止できる。
図3は、スロット板4aの一例を示す平面図である。スロット板4aは、遅波板4bに隣接して配置され、多数のスロット41、42が形成されている。スロット板4aを遅波板4bの下面に備えることでマイクロ波を遅波板4bの面方向に広げることができる。図3に示すように、スロット41、42は同心円状に、かつ互いに直交するように形成されている。マイクロ波はスロット41、42から下方向に放射され径方向に伝播し、天板3内で反射が繰り返され、干渉して強め合い、定在波が形成される。プラズマはスロット41、42の長さ方向に垂直に広がるので、天板3直下にプラズマが発生する。
プラズマ処理装置1のチャンバ2は、天板3により塞がれている。このときチャンバ2内は、真空ポンプ9で真空状態としておく。天板3上には、アンテナ4が結合されている。アンテナ4には、導波管5が接続されている。
より詳しくは、スロット板4aは内側導体5bに結合される。遅波板4bは、冷却ジャケット7とスロット板4aとの間にあり、マイクロ波の波長を圧縮する。遅波板4bは例えばSiOやAlなどの誘電体材料から構成される。
マイクロ波源6から導波管5を通してマイクロ波を供給する。マイクロ波は遅波板4bの間を径方向に伝播し、スロット板4aのスロットより放射される。マイクロ波は天板3を伝播して偏波面を有し、全体として円偏波を形成する。
アルゴン(Ar)またはキセノン(Xe)等のプラズマ励起用のガスがチャンバー2内に供給され、マイクロ波が給電されプラズマが生成される。図示しない下段ガス供給手段等により、成膜用のガスをチャンバー内へ供給することにより、基板保持台8に設置した被処理基板Wに絶縁膜などの成膜、いわゆるCVD(Chemical Vapor Deposition)等のプラズマ処理を施すことができる。被処理基板Wを搬入しプラズマ処理後に搬出するという一連の流れを繰り返し、所定枚数の基板に対して所定の基板処理を行う。
プラズマ生成時において、プラズマによる熱が発生し、天板3および天板3周辺部に熱が蓄積されていく。天板3および天板3周辺部の温度変化は、天板3の熱変形を誘発し、天板3内を伝播する電磁波の強度分布、およびプラズマ密度分布に影響を与える。そのため、プラズマ処理装置1に備えられた冷却ジャケット7で、天板3の冷却を行っている。具体的には、冷却ジャケット7の内部に形成された冷却流路7aに熱媒体を流すことで、冷却を行う。さらに、天板3上部付近、特に最も高温となりやすいアンテナ4周辺の温度を温度センサ12で測定することで、測温結果をプラズマ処理装置1を制御する制御部などにフィードバックでき、冷却流路7aに流す熱媒体の量を調節しながら、温度を制御することも可能である。
しかし、アンテナ4の冷却を行っていても、均一に冷却することは難しいため、プラズマ密度分布の不均一の原因となることがある。また、プラズマ処理装置1の製造時に各々の構成部材の公差や、プラズマ生成条件(ガスの種類や温度、圧力など)により、プラズマ密度分布が均一とならない場合がある。さらに、天板3などに蓄積された熱により、プラズマ処理装置1の各々の構成部材が熱膨張し、天板3内の電磁界分布、従って、プラズマ密度分布に偏りが生じる原因となる。
図2に示すように、導波管5は、プラズマ処理装置1にしっかりと固定されている。導波管5の内側導体5bにねじ送り機構20を備えることで、導波管5の内側導体5bを移動させることができる。内側導体5bによりマイクロ波の導入位置は決められ、内側導体5bを移動することで、マイクロ波の導入位置を変化させることができる。内側導体5bの移動は、ねじ送り機構20の調整ネジ23を回して行う。このとき、内側導体5bが外側導体5aに触れない範囲内で支持しながら移動させる。
導波管5を介して導入されたマイクロ波は、導入された位置を中心として、所定の波長の大きさで、反射を繰り返しながら、天板3内を伝播する。マイクロ波は天板3内で粗密位置パターンを形成するため、あるプラズマ密度分布を形成して安定する。マイクロ波の導入位置により、天板3内を伝播するマイクロ波の粗密位置パターンが異なることを利用して、形成されたプラズマ密度分布を変化させることができる。さらに、プラズマ密度分布が変化した場合でも容易に調整でき、所定のプラズマ密度分布を維持することができる。
導波管5の内側導体5bを変位させるときの、その変位量・方向については、実際に被処理基板Wに処理を行い、処理状況を確認し、最適かどうかの判断を行う。例えば、プラズマ処理装置1の立ち上げ時および一定期間経過毎など、所定時間経過後の処理後の基板を抜き取り、プラズマ分布密度の確認を行う。また、プラズマの発生状態をリアルタイムで測定し、プラズマ処理装置1の制御部へ情報をフィードバックし、蓄積された情報をもとに、適切な変位量を求めもよい。ねじ送り機構20を備えることで、最適なプラズマ分布密度となる位置へ内側導体5bを変位させることができる。特に後者の場合は、プラズマ密度分布の制御が随時行われており、プラズマ密度分布を短時間で、再現性よく安定させることができるので、生産性の観点からより望ましい。
ねじ送り機構20は、プラズマ処理装置1のチャンバ2の外側に備えられているので、チャンバ2内の圧力やガスを変化させることなく、簡単に位置調整が可能である。プラズマ密度分布が変化した場合であっても、ねじ送り機構20によりマイクロ波の導入位置を変化させることで、天板3内の電磁界分布を変化させ、対称性のよい磁界分布を形成し、均一なプラズマ密度分布を形成させることができる。また、異なる条件で連続してプラズマ処理を行う場合であっても、常に均一な電磁界分布を再現し、プラズマ密度分布を常に均一にすることも可能である。
(実施の形態2)
図4は本発明の実施の形態2に係る、プラズマ処理装置のアンテナと導波管の関係を示す構成概略図である。プラズマ処理装置1は図1と同じものを用いており、1点鎖線の囲み部分Kを示す。図5に示した現行品に対し本実施の形態2では、導波管5を移動でき、かつ、固定できるねじ送り機構30を備える。
ねじ送り機構30は、冷却ジャケット7の上に、導波管5の軸管を囲うように等間隔に4つ設けられ、平面上のどの方向にも導波管5を移動させることができるようにする。ねじ送り機構30は、押さえ板31、固定ネジ32、調整ネジ33、を備える。ねじ送り機構30は、直接に導波管5の軸管、ここでは外側導体5aに触れる部分を押さえ板31で支持することができ、調整ネジ33を回して、導波管5の位置を移動させる。そして、押さえ板31に備えた固定ネジ32を締め、導波管5を固定する。導波管5を移動させることで、マイクロ波の導入位置を決める内側導体5bも一緒に移動するので、対向する天板3の位置およびアンテナ4の位置が相対的に変化する。
導波管5を介して導入されたマイクロ波は、導入された位置を中心として、所定の波長の大きさで、反射を繰り返しながら、天板3内を伝播する。マイクロ波は天板3内で粗密位置パターンを形成するため、あるプラズマ密度分布を形成して安定する。マイクロ波の導入位置により、天板3内を伝播するマイクロ波の粗密位置パターンが異なることを利用して、形成されたプラズマ密度分布を変化させることができる。さらに、プラズマ密度分布が変化した場合でも容易に調整でき、所定のプラズマ密度分布を維持することができる。
導波管5の変位量・方向については、実際に処理を行って、被処理基板W上に施されたプラズマ処理の状態より、それらの最適値を順次求めてもよい。また、プラズマの発生状態をリアルタイムで測定できるときは、フィードバック処理を行って最適な位置への変位量を求めることも可能である。特に後者の場合は、基板を無駄にすることないので生産性の観点からより望ましい。求められた導波管5の変位量と方向に合わせて、ねじ送り機構30で導波管5の位置を動かし、マイクロ波の導入位置を換え、安定したプラズマ密度分布を形成する。
ねじ送り機構30は、プラズマ処理装置1のチャンバ2の外側に備えられているので、チャンバ2内の圧力やガスを変化させることなく、簡単に位置調整が可能である。プラズマ密度分布が変化した場合であっても、ねじ送り機構30によりマイクロ波の導入位置を変化させることで、プラズマ密度分布を変化させ、常に均一な密度分布をもつプラズマを安定して発生させることができる。また、異なる条件で連続してプラズマ処理を行う場合であっても、常に均一な密度分布をもつプラズマを再現し、プラズマ密度分布を安定させることも可能である。
本発明により、プラズマ密度分布が安定し、かつ再現性がよいプラズマを発生させることができる。また、異なる条件で連続してプラズマ処理する場合であっても、マイクロ波の伝播を変化させることで、プラズマ密度分布を安定させることが可能となるので、成膜処理やエッチング処理の条件を変化させたい場合に特に有効である。プラズマ処理は、他に、アッシング処理などの全てのプラズマ処理に適用することができる。
また、被処理体としての基板は半導体基板に限定されず、ガラス基板やセラミック基板などを選ぶこともでき、様々な種類の基板のプラズマ処理に適用することができる。
なお、実施の形態で説明したプラズマ処理装置は一例であり、これらに限定されるものではない。特に、導波管とアンテナとの位置を相対的に変化するように移動させることができる位置調整手段は、上述したねじ送り機構に限らず、様々な位置調整手段を用いることが可能である。例えば、可動部と可動範囲の枠の間にすき間ゲージのような調節部材を挿入して、可動部が所定の位置になるように調節する方法を採用してもよい。または、てこを用いて、可動部の変位を拡大して調節できるように構成してもよい。さらに、位置調整を行う際は、手動で行ってもよいし、自動で行われるように構成してもよい。
本発明の実施の形態に係るプラズマ処理装置の断面図である。 本発明の実施の形態1に係るプラズマ処理装置のアンテナと導波管の関係を表す構成概略図で、図1の1点鎖線の囲み部分Kを示す。 スロット板の平面図である。 本発明の実施の形態2に係るプラズマ処理装置のアンテナと導波管の関係を表す構成概略図で、図1の1点鎖線の囲み部分Kを示す。 従来のプラズマ処理装置のアンテナと導波管の関係を表す構成概略図で、図1の1点鎖線の囲み部分Kに対応する部分を示す。
符号の説明
1 プラズマ処理装置
2 チャンバ(プラズマ処理容器)
3 天板(誘電体窓)
4 アンテナ
5 導波管
5a 外側導体
5b 内側導体
5c 矩形導波部
7 冷却ジャケット
20、30 ねじ送り機構
21、31 押さえ板
22、32 固定ネジ
23、33 調整ネジ
24 ストッパ

Claims (5)

  1. マイクロ波を用いてプラズマを処理容器内に発生させ、被処理対象物にプラズマ処理を行うプラズマ処理装置であって、
    前記マイクロ波を発生させるマイクロ波源と、
    前記マイクロ波を伝送させる導波管と、
    前記マイクロ波源から前記導波管を介して、前記マイクロ波を前記処理容器内に放射するアンテナと、
    前記アンテナに接して前記マイクロ波を前記処理容器内に透過させる誘電体窓と、
    前記導波管の位置と、前記アンテナの位置と、を相対的に変化するように移動させることができる位置調整手段と、
    を備えることを特徴とするプラズマ処理装置。
  2. 前記位置調整手段は、前記導波管に備えられ、前記アンテナに接する前記導波管の一部を、前記導波管の本体に対して相対的に変位させることを特徴とする請求項1に記載のプラズマ処理装置。
  3. 前記位置調整手段は、前記アンテナに対する位置が固定して備えられ、少なくとも前記アンテナに接する前記導波管の一部を、前記アンテナに対して相対的に変位させることを特徴とする請求項1に記載のプラズマ処理装置。
  4. 前記導波管は、内側導体と外側導体を備える同軸導波管であることを特徴とする請求項1ないし3のいずれか1項に記載のプラズマ処理装置。
  5. 前記導波管の一部は、前記同軸導波管の前記内側導体であることを特徴とする請求項4に記載のプラズマ処理装置。
JP2008205889A 2008-08-08 2008-08-08 プラズマ処理装置 Expired - Fee Related JP5143662B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008205889A JP5143662B2 (ja) 2008-08-08 2008-08-08 プラズマ処理装置
PCT/JP2009/063522 WO2010016417A1 (ja) 2008-08-08 2009-07-29 プラズマ処理装置
KR1020107028583A KR101221859B1 (ko) 2008-08-08 2009-07-29 플라즈마 처리 장치
TW98126641A TWI388245B (zh) 2008-08-08 2009-08-06 Plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205889A JP5143662B2 (ja) 2008-08-08 2008-08-08 プラズマ処理装置

Publications (2)

Publication Number Publication Date
JP2010040493A true JP2010040493A (ja) 2010-02-18
JP5143662B2 JP5143662B2 (ja) 2013-02-13

Family

ID=41663637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205889A Expired - Fee Related JP5143662B2 (ja) 2008-08-08 2008-08-08 プラズマ処理装置

Country Status (4)

Country Link
JP (1) JP5143662B2 (ja)
KR (1) KR101221859B1 (ja)
TW (1) TWI388245B (ja)
WO (1) WO2010016417A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024232A1 (ja) * 2022-07-27 2024-02-01 日新電機株式会社 プラズマ処理装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5893865B2 (ja) * 2011-03-31 2016-03-23 東京エレクトロン株式会社 プラズマ処理装置およびマイクロ波導入装置
JP5916467B2 (ja) * 2012-03-27 2016-05-11 東京エレクトロン株式会社 マイクロ波放射アンテナ、マイクロ波プラズマ源およびプラズマ処理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060557A (ja) * 1999-06-18 2001-03-06 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP2003188103A (ja) * 2001-12-14 2003-07-04 Tokyo Electron Ltd プラズマ処理装置
JP2004055614A (ja) * 2002-07-16 2004-02-19 Tokyo Electron Ltd プラズマ処理装置
JP2007258595A (ja) * 2006-03-24 2007-10-04 Tokyo Electron Ltd プラズマ処理装置と方法
JP2008041323A (ja) * 2006-08-02 2008-02-21 Tokyo Electron Ltd プラズマ処理装置と方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4222707B2 (ja) * 2000-03-24 2009-02-12 東京エレクトロン株式会社 プラズマ処理装置及び方法、ガス供給リング及び誘電体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060557A (ja) * 1999-06-18 2001-03-06 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP2003188103A (ja) * 2001-12-14 2003-07-04 Tokyo Electron Ltd プラズマ処理装置
JP2004055614A (ja) * 2002-07-16 2004-02-19 Tokyo Electron Ltd プラズマ処理装置
JP2007258595A (ja) * 2006-03-24 2007-10-04 Tokyo Electron Ltd プラズマ処理装置と方法
JP2008041323A (ja) * 2006-08-02 2008-02-21 Tokyo Electron Ltd プラズマ処理装置と方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024232A1 (ja) * 2022-07-27 2024-02-01 日新電機株式会社 プラズマ処理装置

Also Published As

Publication number Publication date
WO2010016417A1 (ja) 2010-02-11
TW201018323A (en) 2010-05-01
KR101221859B1 (ko) 2013-01-15
KR20110016446A (ko) 2011-02-17
TWI388245B (zh) 2013-03-01
JP5143662B2 (ja) 2013-02-13

Similar Documents

Publication Publication Date Title
US6325018B1 (en) Flat antenna having openings provided with conductive materials accommodated therein and plasma processing apparatus using the flat antenna
JP5243457B2 (ja) マイクロ波プラズマ処理装置の天板、プラズマ処理装置およびプラズマ処理方法
KR101560122B1 (ko) 표면파 플라즈마 처리 장치
KR101751200B1 (ko) 마이크로파 방사 안테나, 마이크로파 플라즈마원 및 플라즈마 처리 장치
JP6417390B2 (ja) Cvdプラズマ処理の方法
CN115692156A (zh) 使用模块化微波源的具有对称且不规则的形状的等离子体
JP6356415B2 (ja) マイクロ波プラズマ源およびプラズマ処理装置
JP6509049B2 (ja) マイクロ波プラズマ源およびプラズマ処理装置
CN113690125A (zh) 模块式微波等离子体源
KR102300529B1 (ko) 국부적인 로렌츠 힘을 갖는 모듈형 마이크로파 공급원
KR101774164B1 (ko) 마이크로파 플라즈마원 및 플라즈마 처리 장치
KR20090127219A (ko) 마이크로파 플라즈마 처리 장치
JP2010177420A (ja) マイクロ波プラズマ処理装置、マイクロ波プラズマ処理装置用の誘電体板、及びマイクロ波プラズマ処理装置のマイクロ波給電方法
Nagatsu et al. Production of large-area surface-wave plasmas with an internally mounted planar cylindrical launcher
JP5143662B2 (ja) プラズマ処理装置
JP7139528B2 (ja) プラズマ処理装置
JP2005223367A (ja) プラズマ処理装置およびプラズマ処理方法
WO2010016423A1 (ja) 誘電体窓、誘電体窓の製造方法、およびプラズマ処理装置
KR101722307B1 (ko) 마이크로파 방사 안테나, 마이크로파 플라즈마원 및 플라즈마 처리 장치
JP2007258570A (ja) プラズマ処理装置
JP2018006256A (ja) マイクロ波プラズマ処理装置
US11842886B2 (en) Plasma processing method and plasma processing apparatus
JP2018006257A (ja) マイクロ波プラズマ処理装置
JP2021192343A (ja) プラズマ処理装置およびプラズマ処理方法
TW201946503A (zh) 模組化高頻源

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees