JP2010026027A - 紫外レーザ装置 - Google Patents

紫外レーザ装置 Download PDF

Info

Publication number
JP2010026027A
JP2010026027A JP2008184528A JP2008184528A JP2010026027A JP 2010026027 A JP2010026027 A JP 2010026027A JP 2008184528 A JP2008184528 A JP 2008184528A JP 2008184528 A JP2008184528 A JP 2008184528A JP 2010026027 A JP2010026027 A JP 2010026027A
Authority
JP
Japan
Prior art keywords
laser
wavelength
light
output
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008184528A
Other languages
English (en)
Inventor
Yoshinori Kubota
能徳 久保田
Hideyuki Okamoto
英之 岡本
Takeshi Kasuga
健 春日
Ikunari Hara
育成 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2008184528A priority Critical patent/JP2010026027A/ja
Priority to PCT/JP2009/062524 priority patent/WO2010007938A1/ja
Publication of JP2010026027A publication Critical patent/JP2010026027A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1613Solid materials characterised by an active (lasing) ion rare earth praseodymium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

【課題】 本発明の目的は、紫外光波長域で特定の波長に同調または、一定の波長範囲を波長可変可能な連続発振紫外レーザを提供することである。
【解決手段】 波長が可変である可視レーザ発振部(レーザ1)と、波長が一定のレーザ光を発生するレーザ(レーザ2)と、レーザ1の出力光(出力光a1)とレーザ2の出力光(出力光b)に基づく和周波発生により紫外光を発生させる波長変換部(変換部1)を備えたレーザ装置において、該レーザ1が、レーザ媒質として少なくともPrをコアに含有する光導波路と、励起光源として波長400nm以上480nm以下の励起光を発生する半導体レーザを備え、且つ、該変換部1に強誘電性フッ化物結晶を用いることにより、波長250nm以下の紫外光(出力光c)を連続的に出力することを特徴とする紫外レーザ装置。
【選択図】 図3

Description

本発明は、紫外レーザ装置に関する。
従来、紫外レーザとしてはKrFレーザ、ArFレーザ、Fレーザなどのエキシマレーザを中心に開発が進んでおり、半導体露光用のステッパ装置に広く応用されている。これらの紫外レーザはガスレーザであり、低繰り返しのパルスレーザ発振となっており、連続運転でのパワー安定性やビーム品質の維持が難しい。また、エキシマレーザはフッ素を使用するために危険であり、メンテナンスも手間がかかる。このため、装置は高価で大型な物となっている。さらに、エキシマレーザは低繰り返しパルスレーザであるため、露光以外の用途への展開が困難である。たとえば、直接描画微細加工では加工効率向上のために高速で走査したいが、エキシマレーザでは繰り返しが遅いため走査は困難である。このため、紫外光加工が有効な樹脂材料加工などに応用されてはいるものの、その範囲は限定的となっているのが現状である。
また、エキシマレーザを用いた装置類に使用する光学部品の検査や開発には、パルス光では作業効率が低下するため、連続波が有用である。このため、高圧水銀ランプの輝線や、白色ランプ光からエキシマレーザ波長と同じ波長の光を切り出して使用しているが、レーザではないため集光性などに問題がある。エキシマレーザを使用した場合の集光性などは、高度な光学シミュレーションを活用しても十分ではない場合が多く、試行錯誤的な開発となりやすい。このような理由から高精度な紫外光学系開発には多大な時間と費用が必要であり、大型のエキシマレーザ光学系は非常に高価である。効率的な開発のために、エキシマレーザ波長で連続波のレーザが求められている。
これに対し、ガスの取り扱いが不要な固体レーザの開発が進んでいる。例えば、赤外固体レーザの波長変換技術が進み、全固体の紫外レーザが発表されている。これらのレーザは連続発振または高繰り返し発振が可能であり、エキシマレーザよりも安定に駆動可能である。連続発振または高繰り返しの基本波を発生するレーザとしてはNd添加YAG結晶(Nd:YAG)やYb添加ファイバ(YDF)が用いられている。これらのレーザのレーザ発振波長はNd:YAGが1064nm、YDFは1000〜1100nmがほとんどである。これらのレーザをLiNbO(LN)やLiTaO(LT)やKNbO(KN)やBaB(β−BBO)などの非線形結晶で波長変換する。基本波波長が1μm帯の赤外レーザでは、2倍波で緑色の領域、3〜5倍波で紫外光が得られる。よく利用されているのはNd:YAGの4倍波であり、266nmを発生する。波長変換用の非線形光学結晶はバルク型と疑似位相整合(QPM)型が知られている。QPM型は、周期分極反転技術によって高効率波長変換が可能となっている。QPM素子には板状のバルクタイプと導波路タイプが知られており、導波路タイプは光閉じこめ効果が利用できるためにQPM素子の中でも高効率とされている。導波路型のQPM素子で最もよく知られているのは、周期分極反転LN結晶(PPLN)であり、波長変換素子として広く使われつつある。波長変換には中心対称性がなく、屈折率異方性のある強誘電性結晶が有用であることが古くから知られており、特にd33やd32の性能指数が高い材料の探索が続けられている。また、最近では可視〜紫外など短波長発生用に、古くから知られている強誘電性フッ化物結晶(特許文献1)を利用したQPM素子や周期分極反転デバイスが研究されている(非特許文献1,非特許文献2、特許文献2)。
しかし、レーザ媒質に結晶を用いた全固体レーザの波長変換では、元になる固体結晶レーザの発振可能な波長範囲が数nm以下と狭いため、波長は固定状態に近く、所望の波長を得ることは困難である。所望の波長を得るために、基本波となる元のレーザにはなるべく広い波長(周波数)範囲の可変性が求められる。広帯域波長可変な赤外固体レーザ゛の中ではEr添加ファイバ(EDF)レーザが進歩しており、高出力化も果たされている。1550nm帯の基本波は1500nmから1600nmまで広い範囲で波長可変可能であり、所望の波長の紫外光を得られる可能性がある。しかし、EDFレーザはレーザ発振波長が1550nm帯と長波長であることから、紫外光を得るためには5倍波以上の多段の高次波長変換が必要となる。さらには、波長1546.4nmに基本波の波長を調整して8倍波を得れば、ArFエキシマレーザ波長の193.3nmが得られる可能性があるが、8倍波のような高次波長変換では、基本波に対する変換効率が1%以下と非常に低いため、変換途中で波長変換結晶中のパワー密度が低下し、紫外連続発振レーザを得ることは困難となる。別の広帯域波長可変な固体レーザとしてはTi:サファイアレーザがよく知られており、650nmから1100nmまでの非常に広い波長範囲でレーザ発振可能である。このため、広帯域波長可変光源としては最もよく使用されている(特許文献3)。しかし、Ti:サファイアレーザは励起源に500nm帯の高出力レーザが必要であり、装置が大型化するだけでなく、電気−光変換効率が低いため消費電力が大きい。
最近では半導体レーザ技術が進歩してきたため、所定の波長に調整された半導体レーザを用いて、固定波長であるが望む波長にレーザ波長を調整する技術が進んできた。この技術には異なる波長のレーザの周波数を加算する和周波発生(SFG)技術が使われており、PPLNなどの導波路型波長変換素子を使用して実用的な変換効率を達成している。例えば、SFG技術により生物観察用の蛍光色素励起光源が実用化されている。しかし、半導体レーザを基本波に用いる和周波発生により得られるレーザ出力は、青〜赤の可視光の領域で高々数十〜百mWにとどまっている。この程度の出力のレーザをさらに波長変換して紫外光を得たとしても、数mW程度以下の出力となり実用的でない。高出力化には特定波長に調整したカスタムメイドの半導体レーザの高出力化や、特定波長に調整したファイバグレーティングなどによる波長固定が必要であり、特殊化が避けられない。また、半導体レーザは高出力化によってビーム品質が劣化しやすく、集光性が著しく低下する問題がある。このため、高出力半導体レーザを用いても波長変換効率が低くなり、結果として波長変換後に十分なパワーの紫外光を得ることは困難となる。
一方、高出力でも高品位なレーザ出力が得られるファイバレーザが基本波として有用と考えられ、少なくともファイバレーザを1台使用した和周波発生による紫外連続波レーザ光源が提案されている(特許文献4)。ここでは、950nm〜1580nmの間の離散的な3波長の中から2波長を選び、そのうち一方を高次高調波として利用して、最終的に紫外光を得る方法が開示されている。しかし、和周波発生用の非線形光学結晶として、CsLiB10(CLBO)結晶またはBBO結晶を用いていることから、酸化物結晶の紫外吸収端の問題から必ずしも透明性は十分でなく、紫外波長域で波長変換効率が高いとは言えない。さらに、CLBOは既知の紫外波長変換結晶としては高性能な結晶であるが、潮解性があって取り扱いが困難なだけでなく、結晶表面に直接誘電体多層膜が製膜できないため、入射角度の制限や使用環境の制限が非常に厳しい。また、既存のファイバレーザは赤外波長域のレーザであることから、紫外光発生のためには第二高調波では不十分であって、第三次高調波や第四次高調波など高次の波長変換が必要となり、効率が著しく低下する問題がある。
S.C.Buchter, T.Y.Fan, V.Liberman, J.J.Zayhowski, M.Rothschild, E.J.Mason, A.Cassanho, H.P.Jenssen, and J.H.Burnett,"Periodically poled BaMgF4 for ultraviolet frequency generation,"Optics Lett., vol. 26, No. 21 (2001) pp. 1693−1695. 島村清史, E.G.Villore, 竹川俊二, 中村優, 「紫外非線形光学応用の強誘電体フッ化物単結晶」,第55回応用物理学関係連合講演会 29p−A−7(2008年3月29日) 米国特許第3982136号明細書 国際公開第2001/090812号 特開平10−341054号公報 特開2006−73970号公報
上記のとおり、連続発振の固体紫外レーザでレーザ発振波長が従来のエキシマレーザに十分に近く、コンパクトで高効率なレーザは実現が困難である。このため、レーザ描画による紫外レーザ加工、エキシマレーザ装置類の設計および部品検査などに利用可能な、エキシマレーザ波長に調整できる連続発振の全固体紫外レーザが望まれている。また、分光計測用途では紫外波長域で波長可変な連続発振の全固体紫外レーザが望まれている。
そこで本発明は、紫外光波長域で特定の波長に同調または、一定の波長範囲を波長可変可能な連続発振紫外レーザ、を提供することを目的としている。
本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、既存のエキシマレーザ波長に同調可能なレーザ光を連続発振する、和周波発生技術を用いた紫外レーザ装置において、基本波の光源に波長可変のレーザ光源を用い、また、高次の波長変換による効率低下を避けるためには、基本波としてなるべく短波長のレーザ光源を用い、さらに、最終段の和周波発生に、紫外光波長域でも十分な透明性を保った非線形光学結晶を用いることにより上記目的を達成できることを見出し、本発明に至ったものである。
すなわち本発明は、波長が可変である可視レーザ発振部(レーザ1)と、波長が一定のレーザ光を発生するレーザ(レーザ2)と、レーザ1の出力光(出力光a1)とレーザ2の出力光(出力光b)に基づく和周波発生により紫外光を発生させる波長変換部(変換部1)を備えたレーザ装置において、該レーザ1が、レーザ媒質として少なくともPrをコアに含有する光導波路と、励起光源として波長400nm以上480nm以下の励起光を発生する半導体レーザを備え、且つ、該変換部1に強誘電性フッ化物結晶を用いることにより、波長250nm以下の紫外光(出力光c)を連続的に出力することを特徴とする紫外レーザ装置であり、
また、上記記載の紫外レーザ装置において、該レーザ1のレーザ発振波長が700nm以上715nm以下であり、且つ、該レーザ2として波長が250nm超300nm以下のいずれかであるレーザを用いることを特徴とする紫外レーザ装置、または、該レーザ1のレーザ発振波長が598nm以上715nm以下であり、該レーザ2として波長が400nm以上550nm以下のいずれかであるレーザを用い、さらに、該レーザ1と該変換部1の間に出力光a1の波長を変換する波長変換部(変換部2)を備え、波長を変換された出力光(出力光a2)と該出力光bに基づく和周波発生により紫外光を発生させることを特徴とする紫外レーザ装置であり、
さらには、上記記載の紫外レーザ装置において、該強誘電性フッ化物結晶が、XMgF、XZnF、XAlF、NaMgAlF、またはNaZnAlFで表される組成(ただしXは、Ca,Sr,Baのいずれかから選ばれる1つの元素を示す。)であることを特徴とする紫外レーザ装置を提供するものである。
本発明により、紫外光波長域で特定の波長に同調または、一定の波長範囲を波長可変可能な連続発振紫外レーザを提供することができる。また、波長が既存エキシマレーザに同調された紫外CWレーザを提供することができる。
本発明は、波長が可変である可視レーザ発振部(レーザ1)と、波長が一定のレーザ光を発生するレーザ(レーザ2)と、レーザ1の出力光(出力光a1)とレーザ2の出力光(出力光b)に基づく和周波発生により紫外光を発生させる波長変換部(変換部1)を備えた紫外レーザ装置であり、レーザ1が、レーザ媒質として少なくともPrをコアに含有する光導波路と、励起光源として波長400nm以上480nm以下の励起光を発生する半導体レーザを備え、且つ、該変換部1に強誘電性フッ化物結晶を用いることにより、波長250nm以下の紫外光(出力光c)を連続的に出力することを特徴とする紫外レーザ装置である。
励起源としての400nm帯青色半導体レーザは、青色DVDヘッド用や青色レーザプロジェクション用などGaN系半導体レーザを中心に開発が進んでおり、適宜波長と出力を選択して入手することができる。励起源にT−O CAN形状の半導体レーザやレーザチップを使用する場合、半導体レーザからの出射ビーム形状は楕円かつ発散角が方向によって異なるので、光学結合系の上流でプリズムやアナモルフィックレンズによるビーム成形を行うことが好ましい。レーザ1の励起レーザの最適波長や最適パワーは、Prイオン濃度と共振器構成で変化するので一義的に決められないが、Prイオンの吸収断面積、濃度消光しない濃度限界、容易に入手可能な励起レーザ波長を勘案すると、波長420〜470nmの範囲で100mW〜10Wの範囲が最も適している。この波長帯域で励起する場合、Prの発光上準位よりもエネルギーレベルの高い準位(など)を直接励起していることから、従来のアップコンバージョンレーザと比較して励起効率が高く、高い発光強度が得られる。
レーザ1は可視光領域で直接レーザ発振する必要がある。このような材料としてはフッ化物ガラスが好適である。フッ化物ガラスの種類としては、Zr系ガラス、Al系ガラス、In系ガラス、Ga系ガラスなどを用いることができる。レーザ1のレーザ媒質のコア部として、これらフッ化物ガラスにPrを添加したPr添加フッ化物光導波路を用いることで、高効率で可視光レーザ発振が可能となる。コア部にフッ化物ガラスが使用されていれば、クラッド部はフッ化物ガラスでも良いし、フッ化物ガラス以外の材料を用いることもできる。例えば、コア部がPr添加Al系フッ化物ガラスであり、クラッド部がフツリン酸塩ガラスの異種ガラスで構成された光導波路や、コア部がPr添加Zr系フッ化物ガラスであり、クラッド部がアクリル系の樹脂である樹脂クラッド光導波路などを用いることができる。
Pr添加光導波路には、目的に応じたPr添加濃度と導波路パラメータを持った光導波路を用意する。Pr濃度は濃すぎると濃度消光するため、2×1020個/cm以下の濃度が好ましく、高効率動作のためには1×1020個/cm以下の濃度となるように調整することがより好ましい。一方、Pr濃度が1×1017個/cm未満の濃度では、励起光の吸収に必要な長さが長くなるため好ましくない。必要な光導波路長を10m程度以下にするためには、Pr濃度を1×1018個/cm以上の濃度にすることがより好ましい。
光導波路の構造としては、断面内の屈折率分布が階段状の屈折率分布でも良いし、なだらかに屈折率が変化する分布屈折率型の光導波路でも良い。また、クラッド層が複数層ある、いわゆるダブルクラッド構造でも良い。ダブルクラッド構造の場合は、コアに近接するクラッド(第一クラッド)の断面形状は非円形が好ましい。第一クラッドの断面形状としては、たとえばD形状、長方形、星形、花びら型などが知られており、励起光は第一クラッドにひとまず結合され、第一クラッド内を伝搬しながら徐々にコアに結合される。Pr添加光導波路としては、Pr添加ファイバが光結合や製造効率の面から好ましい。
Pr添加光導波路への励起光の光学的結合方法としては、レンズで光導波路端に集光して結合させる方法または、Pr添加光導波路がPr添加光ファイバである場合はファイバを通して結合させることができる。励起光源がファイバピグテール付きの場合は、透過特性に波長依存性のあるファイバ型光結合器や合分波器が励起光結合に使用できるため、励起光結合損失の低減が可能であるため特に好ましい。
このとき、少なくとも高出力の励起レーザを集光させる集光端には、光破壊閾値の高い非Pr添加光導波路または非Pr添加ガラスブロックなど(以降、非Pr添加部)を用いることが好ましい。これらの非Pr添加部は、励起光入射端のみ取り付けることもできるし、両端に取り付けることもできるが、端面破壊防止の観点からは両端に取り付けることが特に好ましい。とりつける非Pr添加部は、石英系光導波路、石英系光ファイバ、石英系ガラスブロック、石英系ガラス基板を用いた誘電体多層膜、石英系結晶化ガラス基板を用いた誘電体多層膜などが好ましい。石英ファイバの中では、Geをコアに添加していない純石英コアの石英ファイバを用いることが特に好ましい。これらの非Pr添加部と利得媒質であるPr添加光導波路は、接着剤を用いない接続方法で接続されていることが好ましい。Pr添加光導波路がPr添加ファイバであり、前述の非Pr添加部が石英ファイバである場合、両者の接続方法は融着接続であることが特に好ましい。このように石英ファイバと接続したPr添加ファイバは、金属パッケージなど耐湿耐候性のパッケージに封入して(以下、「Prファイバモジュール」と言う)使用することが特に好ましい。
レーザ1の共振器構成は、レーザ発振できる形式であれば、ファブリペロー共振器,リング共振器,多段縦列接続,合分波カプラによる並列接続,アンプ接続形式など、どのような形式でもかまわない。レーザ1は、所望のレーザ波長同調範囲で出力が得られるように、共振器内または共振器外にレーザ波長を調整する波長調整機能を備える必要がある。波長調整機能は、回折格子の角度調整,折り返しミラーの角度調整,エタロンによる調整,副共振器による調整,注入レーザ波長による調整,共振器損失の調整によるレーザ発振波長調整,ファイバグレーティングの温度調節や張力調整によるレーザ発振波長調整などが知られており、波長変化させることができる方法であれば何でも良い。
また、エキシマレーザとして露光用途などに特に重要なArFレーザの発振波長は193.3nm付近であり、この波長に同調されたCWレーザは実用上特に重要であり、この波長域での波長可変特性が得られれば光学部品検査やステッパの性能試験に使用できるため、非常に重要である。レーザ1の発振波長が700nm以上715nm以下であり、レーザ2の発振波長が250nm超300nm以下の範囲の固定波長である場合、紫外光出力として184.2nm以上211.3nm以下の波長範囲から選ばれる紫外光を得ることができる。この構成では、波長可変レーザの基本波長出力をそのまま使用するため高出力化が可能である利点がある。レーザ2は、発振波長250nm超300nm以下の範囲のレーザ波長をもつ固体レーザである。レーザ2には半導体レーザの直接第四次高調波や、固体レーザの第四次高調波を用いることができる。例えば、Nd:YAGレーザやYb:ファイバレーザの第四次高調波により、波長266nmや257nm付近の高出力のレーザが比較的安価で市販されているので好ましい。レーザ2に波長266nmのNd:YAGレーザの第四次高調波を用いる場合、レーザ1の波長を707.3nm±0.5nmに調整することにより、和周波によって193.3nm帯の紫外光出力が得られる。
また、レーザ1のレーザ発振波長が598nm以上715nm以下であり、レーザ2として波長が400nm以上550nm以下のいずれかであるレーザを用い、さらに、レーザ1と変換部1の間に出力光a1の波長を変換する波長変換部(変換部2)を備え、波長を変換された出力光(出力光a2)と出力光bに基づく和周波発生により紫外光を発生させる場合、出力光a2として波長299nm以上357.5nm以下の波長のレーザが得られる。この出力光a2とレーザ2からの出力光bを変換部1で和周波発生すると、波長171.1nm以上216.7nm以下の範囲の紫外光を得ることができる。
レーザ1の発振波長としては、特に波長598〜645nm、700〜715nmの範囲がレーザ発振しやすく、好適である。これらの波長域では高出力動作が可能であり、紫外出力の向上に適している。この範囲のレーザ1を用いると、レーザ2との組み合わせで、波長171.1nm以上203.3nm以下の紫外光波長範囲と、波長186.7nm以上216.7nm以下の二種類の範囲から選ばれる紫外光を得ることができる。
レーザ2は、発振波長400nm以上550nm以下の範囲のレーザ波長をもつ固体レーザである。レーザ2には半導体レーザの直接第二次高調波や、固体レーザの第二次高調波を用いることができる。例えば、915,960,976nmなどの高出力半導体レーザの第二次高調波によって、407.5,480,488nmなどのレーザが市販されている。また、Nd:YAGレーザやYb:ファイバレーザの第二次高調波により、532nmや515nmのレーザが得られ、高出力で比較的安価なレーザが市販されていることから、これらのレーザを用いることが好ましい。または、レーザ2に波長532nmのNd:YAGレーザの第二次高調波を用いた場合、レーザ1の波長を607.2nm±0.5nmに調整することで、波長193.3nm帯の紫外光出力を得ることができる。または、レーザ2に波長488nmの半導体レーザの第二次高調波を用いた場合、レーザ1の波長を640.2nm±0.5nmに調整することで、波長193.3nm帯の紫外光出力を得ることができる。
これ以外にも、レーザ2には低出力で高品質なシード光と増幅器の組み合わせを用いる、Muster Laser Power Amplifier(MOPA)形式のレーザを用いることができる。低出力のシードには、Yb添加YVO4などのマイクロチップレーザやDFB半導体レーザのようなモード制御性に優れたレーザを用い、増幅部にYb添加ファイバまたはYb添加結晶などの希土類添加ファイバや希土類添加結晶を用いることで、高出力であってもシングルモードかつ集光性のよいレーザビームを得ることができる。低出力のシード光と増幅部の間には、シード光発生部に増幅された強い光が戻らないように、光アイソレータなどの非相反手段を挿入することが望ましい。
変換部2は、基本波長598nm以上715nm以下の波長に対して第二次高調波を発生し、波長299nm以上357.5nm以下の範囲で出力可能な非線形光学結晶であればどのような物でも良い。このような結晶としては、LiNbO(LN)、LiTaO(LT)、β−BaB(β−BBO)など、多くの結晶が知られている。これらの結晶は特定方位のバルク形状として使用しても良いし、疑似位相整合(QPM)可能な分極反転素子に加工して用いても良い。また、QPM素子としては導波路型の素子も市販されており、効率を重視する用途では特に好ましい。レーザ1はファイバ出力なので、変換部2はファイバピグテール接続されたファイバデバイスであることが特に好ましい。変換部2は、レーザ1の波長調整に応じて変換波長が変化するため、結晶角度や結晶温度などを変化させてレーザ1に追従することが好ましく、レーザ1の波長調整機構と変換部2の調整機能が連動している事が特に好ましい。
また、本発明は変換部1の強誘電性フッ化物結晶が、XMgF、XZnF、XAlF、NaMgAlF、またはNaZnAlFで表される組成(ただしXは、Ca,Sr,Baのいずれかから選ばれる1つの元素を示す。)であることを特徴とする、紫外レーザ装置である。
変換部1は、変換部2からの出力光(出力光a2)またはレーザ1の出力光(出力光a1)とレーザ2の紫〜緑色出力光(出力光b)をもとに和周波発生させ、波長171.3nmから216.7nmの紫外光を出力でき、紫外域で透明性の高い強誘電性フッ化物光学結晶が適している。酸化物結晶は、300nm以下の波長で損失が大きく、200nm以下の波長で不透明であることから、高出力の紫外光で光損傷を受けやすい。これに対してフッ化物結晶は200nm以下でも透明性が高く、光損傷も受けにくい。よく知られているように、中心対称性のない結晶であれば二次の非線形光学効果を得ることができることから、中心対称性がなく、必要な波長域で必要な透明性が確保できるフッ素化合物結晶なら何でも良い。結晶組成としては、紫外波長域での吸収は電子遷移なので、元素またはイオン固有の吸収となる。このため、遷移金属やランタニドの一部の元素を含む化合物は適さない。具体的には、Fe、Ni、Co、Cu、Cr、Mn、Ce、Pr、Nd、Er、Tmなどを含有するフッ素化合物結晶は適さない。一方、Rb、Cs、Sr、Ba、Zn、Pb、Ga、Zr、Hf、Nb、Ta、Y、La、Gd、Luなどのフッ素化合物は紫外波長域でも透明性が高く、しかも電子密度が高いため、これらを含有するフッ素化合物結晶は非線形光学特性が向上する。
変換部1に好適なフッ素化合物結晶を例示すると、結晶点群が「mm2」-に属するABF(A:Ca,Sr,Baから選ばれる少なくとも1種類の元素、B:Mg,Zn,Snから選ばれる少なくとも1種類の元素)およびCBDF(C:Na,K,Rb,Csから選ばれる少なくとも1種類の元素、B:同上、D:Al,Gaから選ばれる少なくとも1種類の元素)、結晶点群が「4」に属するADF、(A,D共に前述)、結晶点群が「32」に属するCLnF(Cは前述、LnはY,La,Gd,Luから選ばれる少なくとも1種類の元素)などが挙げられる。
中でも、XMgFまたはXZnFまたはXAlF(ただしXはCa,Sr,Baから選ばれる少なくとも一種類の元素)で表される一連の組成や、NaMgAlFまたはNaZnAlFなどが、結晶作製が比較的容易で実用的である。フッ素化合物結晶としては比較的高屈折率で紫外波長域まで透明性が高いBaMgF4,BaZnF4,SrAlF5は特に好適である。特にBaMgF4はQPM素子加工が可能であり、高効率変換に適している。また、NaMgAlF、NaZnAlFは、QPM加工に加えて比較的容易に導波路を形成することが可能であり、光閉じこめを利用した波長変換に適している。
また、本発明の紫外レーザ装置は、出力光a1の波長が可変であることから、変換部1の結晶方位および変換部2がある場合は変換部2の結晶方位をも調整することで、出力光cの波長を171.3nm以上216.7nm以下の範囲で調整する事ができる。
次に、共振器がリング共振器であり、レーザ媒質にPr添加フッ化物ファイバを用いたレーザ1の最適な構成例を、図1で説明する。この例は波長620〜640nmを可変する場合を示しているが、他の波長帯域でも使用部品の光学特性が異なるだけで、構成としては同様の構成が好ましい。
レーザ媒質としては、Prを3000質量ppm含有するZBLANフッ化物ガラスをコアとするシングルモードのPr添加フッ化物ファイバ1を用いた。ファイバのコア径は3.4μm、開口数は0.13、カットオフ波長は570nm、ファイバ長は25cmである。このファイバの両端に、同様のファイバパラメータをもつ石英ファイバ(石英ファイバ3、石英ファイバ4)を融着接続し、ステンレス製の耐候性パッケージ2内に封止してファイバモジュール(モジュール1)とした。モジュール1からは、石英ファイバ3と石英ファイバ4が出ている。なお、Pr添加濃度、ファイバ長、コア径などのファイバパラメータは、励起レーザ特性,目的とするレーザ発振波長,共振器などの光学部品類の光学特性などで変化するので、常にこの例が最適とは限らない。
励起光源として、波長440nmの半導体レーザ5の出力光を、コア径2.2μm、開口数0.13、カットオフ波長375nmの石英ファイバに結合した物を用意した。この励起光源のファイバ端出力は最大150mWである。
励起光をモジュール1に導入するための合分波素子11としては、溶融延伸カプラが用いることができる。例えば、溶融延伸カプラは、635nm帯の信号光導入ポート(石英ファイバ6)と波長440nmの励起光導入ポート(石英ファイバ8)、その反対側に励起光と信号光が合波されて出射する共通ポート(石英ファイバ7)と光出力がほとんど無いブランクポート(石英ファイバ9)からなっている。溶融延伸カプラの光の伝播損失については、例えば、波長440nmの励起光導入ポートから共通ポートへの伝搬損失は1.2dB、635nm帯の信号光導入ポートから共通ポートへの伝搬損失は1.3dBである。合分波素子11の励起光導入ポート(石英ファイバ8)に、励起光源の石英ファイバが融着接続されている。共通ポート(石英ファイバ7)には、ファイバモジュールから出ている石英ファイバ3が融着接続されている。ブランクポート(石英ファイバ9)の先端は、空気とのフレネル反射が戻らないように、角度8°で斜め切断し、ファイバ3のコア屈折率とほぼ同じ、屈折率1.45の接着剤でシリコーンチューブ内に固定してある(ビームダンパ10)。
励起光の一部は、Pr添加フッ化物ファイバ1内で吸収され、蛍光を発する。発生した蛍光はPr添加フッ化物ファイバ1を伝搬中に増幅され、増強された光となって石英ファイバ4側から放射される。この放射がリング構成の共振器内を通過することで、最終的にレーザ発振する。一方、逆方向の石英ファイバ3からも蛍光が放射されるが、これについては後述する。
合分波素子11と同様の構成のデカプラ(合分波素子11’)を用意し、共通ポート(石英ファイバ7’)とファイバモジュールの石英ファイバ4が融着接続されている。レーザ発振波長である620nm〜640nm帯の光は信号光ポート(石英ファイバ6’)に向かい、波長440nmの励起光はドロップポート(石英ファイバ8’)に分離される。ドロップポートの先端は斜め8°にクリーブし、ファイバ3のコア屈折率とほぼ同じ、屈折率1.45の接着剤でシリコーンチューブ内に固定してある(ビームダンパ10’’)。ブランクポート(石英ファイバ9’)の先端も同様にクリーブし、同じ接着剤でシリコーンチューブ内に固定してある(ビームダンパ10’)。
デカプラ(合分波素子11’)の信号光ポート(石英ファイバ6’)は、ファイバで作製されているファイバ型偏波コントローラ(偏波コントローラ12)に融着接続し、偏波状態を整える。なお、この偏波コントローラ12は、後述するように出力カップリング比の調整にも使用する。
偏波コントローラ12の入出力端13は、ジルコニア・フェルールに固定,平面研磨し、誘電体多層膜の無反射コーティングを施した。入出力端13の波長620〜640nmでの反射率は0.5%以下である。
入出力端13からの放射はコリメートレンズ14でコリメートされ、偏光ビームスプリッタ15で偏波分離する。分離された一方の出力光23は、レーザ1の出力光として取り出される。共振器内の光パワーに対する出力光23の割合は、偏光状態によって調整可能であり、前述の偏波コントローラ12を制御することで出力比を変化させて出力の微調整に使用する。
偏光ビームスプリッタ15を透過した光は、ファラデー回転子16で45°偏波回転される。偏波回転された光は分散プリズム17にブリュースター角で導入され、低損失で分散される。この分散プリズム17によって、波長の違いは角度の違いに変換される。分散後の光は波長選択用の広帯域ミラー18で折り返される。広帯域ミラー18の、波長620〜640nmでの反射率は99%以上であり、入射角0°±10°での反射率の角度依存性は0.5%以下である。広帯域ミラー18を回転させると、共振器を構成可能な方向の光以外は損失が大きくなるため、分散プリズム17の機能と合わせることで、波長選択素子として動作する。
広帯域ミラー18で折り返された光は、再度分散プリズム17を通ってファラデー回転子16を通り、45°偏波回転する。さらに、偏光ビームスプリッタ15で折り曲げられた光は、可視光用の光アイソレータ19を通過し、集光レンズ20で石英ファイバ6の入出射端21に集光される。図1では折り曲げ光学系の例として反射ミラー22が例示してあるが、必ずしも必要ではない。入出射端21は、入出射端13と同様に研磨、無反射コーティングが施されている。入出射端21への集光が良好に行われる特定入射角度の光、すなわち、特定角度内に分散プリズム17と広帯域ミラー18で選択された特定波長の光だけがファイバのコアに結合し、波長選択が行われる。
入出射端21に結合した特定波長の光は、カプラ(合分波素子11)を通ってPr添加フッ化物ファイバ1に戻り、増幅される。増幅率が光学系の全損失を上回るとレーザ発振が開始され、所定波長のレーザ1の出力光として出力光23が取り出される。
ここで、ファイバモジュールの石英ファイバ3側からの蛍光について説明する。石英ファイバ3からの蛍光は、カプラ(合分波素子11)の信号光ポート(石英ファイバ6)へ透過し、入出射端21から逆方向に放射される。放射された光は集光レンズ20でコリメートされ、可視光用の光アイソレータ19でブロックまたは角度偏向され、共振器系外に排除される。
ファラデー回転子16と光アイソレータ19は、可視光で透明かつ非相反動作が必要である。このため、材料としては古くから鉛フリントガラスが知られているが、最近では高濃度Tb添加ガラスなどの希土類添加ガラス、TbGa12(TGG)結晶が用いられており、磁界調整による波長可変特性が実現されている。
偏波コントローラ12、ファラデー回転子16、光アイソレータ19は、波長とファラデー回転子や可視光用アイソレータに加える磁界、目標出力と偏波コントローラの最適状態をあらかじめ計測してメモリに記憶し、フィードバック回路とプログラムで自動的に駆動されている。また、すべての光学系は温度制御された熱浴内で一定温度に制御されている。また、すべてのファイバや部品は除震機能のある筐体に固定してある。
また、共振器がファブリペロー共振器であり、利得媒質にPr添加フッ化物ガラスを用いたレーザ1に、変換部2を共振器内に設置した形式のレーザ1の最適な構成例を図2で説明する。
レーザ媒質はPrを3000重量ppm含有するAl系フッ化物ガラスをコアとするシングルモードのPr添加フッ化物ファイバ34を用いる。Pr添加フッ化物ファイバ34のコア径は2.4μm、開口数は0.16、カットオフ波長は500nm、ファイバ長は40cmである。このファイバの両端に、同様のファイバパラメータを持つ石英ファイバ(石英ファイバ35,石英ファイバ35’)を融着接続し、ステンレス製の耐候性パッケージ36に封入した。石英ファイバ35の先端(入出力端37)は平面に研磨し、励起光を導入するために励起光波長とレーザ発振波長帯で無反射となるARコーティングが施されている。石英ファイバ35’の端面(入出力端39)は平面に研磨し、レーザ発振波長帯域で無反射となるARコーティングが施されている。励起用GaN系半導体レーザ(起半導体レーザ31)は、発振波長450nmであり、ペルチェ素子で一定温度に保持された放熱台に固定されている。半導体レーザ31から放射された励起光はアナモルフィックプリズム対32でビームを真円に整形後、集光レンズ33と凹面ダイクロイック反射鏡(レーザ共振器用ダイクロイック凹面鏡38)を透過して石英ファイバ端(入出力端37)に集光されて、石英ファイバ35のコアに結合する。凹面ダイクロイック反射鏡(レーザ共振器用ダイクロイック凹面鏡38)は、励起光を透過しレーザ1のレーザ発振波長を全反射する特性となっており、共振器の一方の端を構成している。また、凹面ダイクロイック反射鏡は球面鏡であり、入出力端37から放射されるレーザ1のレーザ光を反射して、入出力端37のコアに折り返す位置に調整されている。
結合された励起光はPr添加フッ化物ファイバ34に吸収されて蛍光を発する。発生した蛍光はPr添加フッ化物ファイバ34を伝搬中に増幅され、増強された光となって入出力端39から放射される。一方、逆方向に進行する蛍光は入出力端37から放射され、凹面ダイクロイック反射鏡(レーザ共振器用ダイクロイック凹面鏡38)で折り返され、再度Pr添加フッ化物ファイバ34を通過時に増幅され、入出力端39から放射される。入出力端39から放射された蛍光はコリメートレンズ40でコリメートされ、偏光ビームスプリッタ41で直交する偏光成分に分解される。一方の偏光(偏光パワー成分43)は分散プリズム45に最小偏角付近の角度で入射し、波長選択ミラー(広帯域ミラー46)で特定の分散角度の方向の蛍光だけが折り返される。波長選択されて折り返された光は、偏光ビームスプリッタ41とコリメートレンズ40を通って入出力端39に集光され、共振器が完成する。一方、偏光成分(偏光パワー成分43)と直交する成分(偏光パワー成分42)は集光レンズ47とダイクロイック凹面鏡51を通って導波路型周期分極反転LN結晶(PPLN)(非線形結晶48)のコアに集光され、波長変換される。PPLN(非線形結晶48)は、レーザ1(基本波)の波長を変えた場合に最適変換波長を追従させられるように、ペルチェ素子を取り付けた温度調整ベンチに搭載されている。波長変換された光は出力光a2として、ダイクロイック凹面鏡50を通って出力される(レーザ出力光49)。ダイクロイック凹面鏡50は、PPLN(非線形結晶48)で波長変換された出力光(出力光a2)を透過し、レーザ1の波長は全反射する。逆に、ダイクロイック凹面鏡51は波長変換された出力(出力光a2)を全反射し、レーザ1の波長は透過する。ダイクロイック凹面鏡50で反射されたレーザ1の波長は再度PPLN(非線形結晶48)中を通り、集光レンズ47、偏光ビームスプリッタ41、コリメートレンズ40を通過して、入出力端39に集光され、レーザ1の共振器の一部を構成している。ダイクロイック凹面鏡51で反射された出力光a2は、PPLN素子中を通過してダイクロイック凹面鏡50を透過して出力される(レーザ出力光49)。この構成では、ダイクロイック凹面鏡2枚(レーザ共振器用ダイクロイック凹面鏡38,ダイクロイック凹面鏡50)で作られる共振器と、ダイクロイック凹面鏡(レーザ共振器用ダイクロイック凹面鏡38)と波長選択ミラー46で構成される共振器があり、後者が優勢となるように偏波コントローラ44で偏光状態を制御する必要がある。
この構成では、波長変換に使用されなかった残りの基本波が共振器内で回収できるため、見かけ上の波長変換効率を高めることが可能である。また、アイソレータが必要ないため、波長依存性が大きい部材が少なく、広帯域波長可変に適している。5nmを超える広帯域波長可変特性を持たせる場合は、波長変換結晶に導波路タイプのPPLNを用いるのではなく、バルク形状や平板QPM素子を用い、結晶方位を調整した方がよい。
以下に、本発明を用いた具体的な実施例を開示する
全体の構成を図3に示す。レーザ64(レーザ1)には、図1に示した構成例を基本とする構成のレーザを使用する。ただし、図1のリングレーザ内において、入出射端21と合分波素子11の信号光ポート(石英ファイバ6)の間にファイバ結合型の波長可変ショートカット波長選択フィルタを、さらに該波長可変ショートカットフィルタと合分波素子11の信号光ポート(石英ファイバ6)の間に波長可変ロングカット波長選択フィルタを挿入し、リング共振器の通過波長帯域を制限しており、透過中心波長は波長選択ミラー(広帯域ミラー18)の選択波長に同調している。また、使用するレーザ媒質(Pr添加フッ化物ファイバ1)はコア部のガラス組成が32.8AlF−15YF−4.7LaF−9.4MgF−7.4CaF−5.4SrF−20BaF−5BaCl−0.3PrFで表され、クラッドが32.8AlF−15YF−5LaF−9.4MgF−8.4CaF−7.4SrF−17BaF−5BaClで表される、Al系フッ化物ファイバを用いる。コアの直径は4μm、ファイバの直径は125μmである。このファイバの開口数は0.1であった。また、ファイバ長は10cmである。両端面は8°斜め研磨し、可視光域の広帯域無反射コーティングを施した。反射率は可視光波長域全域で2%以下である。
この出力光(出力光a1)を集光レンズ52で絞ってLiNbO非線形光学結晶53に入力した。波長変換された光と基本波は、LN結晶の反対側から放射される。LiNbO非線形光学結晶53からの出力は、コリメートレンズ54でコリメートし、ダイクロイックミラー55に照射される。ダイクロイックミラー55は、600nm帯の基本波を反射し、300nm帯の二倍波(出力光a2)を透過する。
レーザ56(レーザ2)には、波長532nmのNd:YAGレーザの二倍波(出力光b)を用いる。レーザ2の出力光は、レーザ1のレーザビーム径と一致させるために、凹レンズ57と凸レンズ58で倍率調整した。ビーム径を制御した後、90度折り曲げミラー(直角ミラー59)で反射し、ダイクロイックミラー55上でさらに90度折り曲げ反射され、レーザ1の出力光と合成する。
合成されたレーザ光は、色消し集光レンズ60でBaMgF疑似位相整合素子61(QPMC)に入射される。色消し集光レンズ60によって、波長の異なる出力光a2と出力光bは同一の焦点距離でBaMgF疑似位相整合素子61に集光され、和周波変換効率を最大に保つことができる。BaMgF疑似位相整合素子61内では、レーザ1とレーザ2の出力光の和周波が発生する。QPMCから出射された紫外光は、コリメートレンズ62でコリメートされ、ダイクロイックミラー63でレーザ1の二倍波とレーザ2の出力をカットし、紫外光(出力光c)だけが通過して出力される。
レーザ1の波長を602nmから612nmまでと、630nmから638nmまで変化させたときの、紫外光出力波長とレーザ1の出力波長の関係を図4に示す。レーザ1の波長に応じて紫外光出力が線形に変化することが判る。紫外光出力を分光器と紫外光用フォトマルチプライヤで計測して得られた、出力スペクトルの一例を図5に示す。分解能は0.02nmである。図5から判るとおり、レーザ発振線の半値全幅は0.05nm程度であり、狭帯域である事が判る。紫外光の連続出力の様子を、紫外光出力の相対強度の経時変化で図6に示す。連続した安定出力が得られている事が判る。また、冷却系を含む全投入電力が合計で500Wの時、紫外光出力は100mWであり、実用的な効率であった。
実施例1と同様だが、図7の構成で、レーザ1と変換部2を合わせた300nm帯レーザ(レーザ65)には図2の構成例を基本とする構成のレーザを用いた。ただし、多波長でレーザ発振する事を防止するため、図2において、偏波コントローラ44と入出力端39の間にファイバ付きのファブリペロー波長可変フィルタを、さらに該ファブリペロー波長可変フィルタと入出力端39の間にファイバ付きの狭帯域波長可変フィルタを取り付けてある。このフィルタ類の同調範囲は580nmから680nm、ファブリペロー波長可変フィルタのフィネスは2000、狭帯域波長可変フィルタの帯域間隔は200GHzである。また、使用するレーザ65の利得媒質(Pr添加フッ化物ファイバ34)として、コア部のガラス組成が53ZrF−18.5BaF−2.7LaF−4YF−3AlF−18.5NaF―0.3PrFで表されるZr系フッ化物ガラス(3000ppm)であり、クラッドが26ZrF−24HfF−21BaF−3LaF−2YF−4AlF−20NaFからなるフッ化物ファイバを用いる。コアの直径は3μm、ファイバの直径は125μmである。このファイバの開口数は0.16であった。また、ファイバ長は25cmである。ピグテール石英ファイバ(石英ファイバ35,石英ファイバ35’)は、コア径と開口数が同程度のファイバを選定して融着接続した。これらの石英ファイバの両端面(入出力端37,入出力端39)は8°斜め研磨し、可視光域の広帯域無反射コーティングを施した。反射率は可視光波長域全域で2%以下である。600nm帯の基本波は共振器内に閉じこめられ、共振器内に設置した変換部2のバルク型LN非線形結晶(非線形結晶48)で300nm帯に変換されて、出力ミラー(ダイクロイック凹面鏡50)から出力光a2(レーザ出力49)として放射される。LN結晶は、波長可変ミラー(広帯域ミラー46)と連動して結晶方位を自動的に調整し、出力光a2のパワーが最大となるように制御されている。
波長300nm帯のレーザ(レーザ65)の出力光(出力光a2)は、ダイクロイックミラー66を透過し、モード直径を調整されたレーザ67(レーザ2)の出力光(出力光b)と合波される。レーザ2には、波長980nmの高出力半導体レーザの2倍波を用いた。レーザ波長は490nm、出力は600mWである。レーザ2(レーザ67)の出力は、凹レンズ68と凸レンズ69で300nm帯レーザ(レーザ65)のモード径と一致するように調整され、直角ミラー70で折り返され、ダイクロイックミラー66で300nm帯レーザ(レーザ65)と合波される。ダイクロイックミラー66は、300nm帯で広帯域無反射であり、450〜500nm帯で全反射するコーティングが施されている。合波されたレーザ光は、ダイクロイックミラー71を透過し、色消し集光レンズ72でQPM−SrAlF結晶(フッ素化合物結晶73)に集光入射される。QPM−SrAlF結晶(フッ素化合物結晶73)は、結晶温度が制御できる温度制御ベンチに取り付けられており、温度制御で最適変換波長を制御している。ダイクロイックミラー71は、300nm〜500nm帯で無反射かつ190nm帯で全反射のコーティングを施してある。QPM−SrAlF結晶(フッ素化合物結晶73)中で和周波によって発生した紫外光および元となった出力光a2と出力光bは、色消しコリメートレンズ74でコリメートされ、ダイクロイックミラー75に入射する。紫外光出力は、ダイクロイックミラー75を透過してレーザ出力として取り出される。一方、和周波の元となった出力光a2と出力光bは反射され、色消しコリメートレンズ74によって再びQPM−SrAlF結晶(フッ素化合物結晶73)中に集光され、和周波発生に再利用される。このとき発生した紫外光は、色消し集光レンズ72でコリメートされ、ダイクロイックミラー71で反射され、色消し集光レンズ72、QPM−SrAlF結晶(フッ素化合物結晶73)、色消しコリメートレンズ74、ダイクロイックミラー75を通って出力される。
レーザ1の発振波長を638.5nmに調整すると、出力される紫外光(出力光c)の波長は193.3nmとなった。また、レーザ1(レーザ65)の出力が500W、レーザ2(レーザ67)の出力が600mWの時、紫外光(出力光c)の出力は最大で40mWであった。
全体の構成を図7に示す。レーザ65には、図1に示した構成例を基本とする構成のレーザを使用する。ただし、レーザ65は、図1において入出射端21と合分波素子11の信号光ポート(石英ファイバ6)の間にファイバ結合型の波長可変ショートカット波長選択フィルタを、さらに該波長可変ショートカットフィルタと合分波素子11の信号光ポート(石英ファイバ6)の間に波長可変ロングカット波長選択フィルタを挿入して、リング共振器の通過波長帯域を制限しており、透過中心波長は波長選択ミラー(広帯域ミラー18)の選択波長である、波長700nm〜715nmの範囲に同調している。また、使用する利得媒質(Pr添加フッ化物ファイバ1)はコア部のガラス組成が32.8AlF−15YF−4.7LaF−9.4MgF−7.4CaF−5.4SrF−20BaF−5BaCl−0.3PrFで表され、クラッドが32.8AlF−15YF−5LaF−9.4MgF−8.4CaF−7.4SrF−17BaF−5BaClで表される、Al系フッ化物ファイバを用いる。コアの直径は4μm、ファイバの直径は125μmである。このファイバの開口数は0.1であった。また、ファイバ長は20cmである。両端面は8°斜め研磨し、可視光域の広帯域無反射コーティングを施した。反射率は可視光波長域全域で2%以下である。
レーザ1(レーザ65)の出力光(出力光a1)は、ダイクロイックミラー66を透過し、モード直径を調整されたレーザ2(レーザ67)の出力光(出力光b)と合波される。レーザ2(レーザ67)には、波長1064nmの高出力Nd:YAGレーザの4倍波を用いた。レーザ波長は266nm、出力は400mWである。レーザ2(レーザ67)の出力は、凹レンズ68と凸レンズ69でレーザ1(レーザ65)のモード径と一致するように調整され、直角ミラー70で折り返され、ダイクロイックミラー66でレーザ1(レーザ65)の出力と合波される。ダイクロイックミラー66は、700〜715nm帯で広帯域無反射であり、266nm帯で全反射するコーティングが施されている。合波されたレーザ光は、ダイクロイックミラー71を透過し、色消し集光レンズ72でQPM−BaMgF結晶(フッ素化合物結晶73)に集光入射される。QPM−BaMgF結晶(フッ素化合物結晶73)は、結晶温度が制御できる温度制御ベンチに取り付けられており、温度制御で最適変換波長を制御している。ダイクロイックミラー71は、250nm〜750nm帯で無反射の広帯域無反射かつ190nm帯で全反射の紫外反射ダイクロイックコーティングを施してある。QPM−BaMgF結晶(フッ素化合物結晶73)中で和周波によって発生した紫外光および元となった出力光a1と出力光bは、コリメートレンズ74でコリメートされ、ダイクロイックミラー75に入射する。紫外光出力は、ダイクロイックミラー75を透過してレーザ出力として取り出される。一方、和周波の元となった出力光a1と出力光bは反射され、コリメートレンズ74によって再びQPM−BaMgF結晶(フッ素化合物結晶73)中に集光され、和周波発生に再利用される。このとき発生した紫外光は、色消し集光レンズ72でコリメートされ、ダイクロイックミラー71で反射され、色消し集光レンズ72、QPM−BaMgF結晶(フッ素化合物結晶73)、コリメートレンズ74、ダイクロイックミラー75を通って出力される。
レーザ1の発振波長を707.3nmに調整すると、出力される紫外光(出力光c)波長は193.3nmとなった。また、レーザ1(レーザ65)の出力が500W、レーザ2(レーザ67)の出力が400mWの時、紫外光(出力光c)の出力は最大で25mWであった。
本発明の紫外レーザ装置は、既存のエキシマレーザを使用する機器の光学設計、検査、検証、組み立て工程などに利用可能であり、これまでの非レーザ検査光源よりも高精度かつ簡便に測定結果が得られることが期待できる。また、本発明の紫外レーザ装置は波長可変であることから、紫外域での光学部品の波長応答や分散の検査、加工対象に対する最適波長の選択、選択的分子反応などに利用が可能である。
さらには、半導体製造装置、半導体製造装置や光学系の設計、検査および組み立て、表面形状計測、干渉計測、金属、セラミックス、ガラス、結晶、ポリマーなどの加工やマーキング、有機化合物の分解や合成、選択的分子切断や選択的分子結合、化学薬品や中間体を含む医薬合成への応用、DNAなど特定分子の改変など、幅広い分野への応用も可能である。
本発明のレーザ1の構成例を示す図である。 本発明のレーザ1の別の構成例を示す図である。 本発明のレーザの構成例を示す図である。 本発明のレーザ1の波長と紫外光波長の関係を示す図である。 本発明の紫外光出力スペクトルを示す図である。 本発明の紫外光出力安定性を示す図である。 本発明のレーザの構成例を示す図である。
符号の説明
1 Pr添加フッ化物ファイバ
2,36 耐候性パッケージ
3,4 石英ファイバ
5 半導体レーザ
6,7,8,9 石英ファイバ
10,10’,10’’ ビームダンパ
11,11’ 合分波素子
12 偏波コントローラ
13 入出射端
14 コリメートレンズ
15 偏光ビームスプリッタ
16 ファラデー回転子
17 分散プリズム
18 広帯域ミラー
19 光アイソレータ
20 集光レンズ
21 入出射端
22 偏光ビームスプリッタ
23 出力光(出力光a1)
31 起半導体レーザ
32 アナモルフィックプリズム対
33 集光レンズ
34 Pr添加フッ化物ファイバ
35,35’ 石英ファイバ
37,39 入出力端
38 レーザ共振器用ダイクロイック凹面鏡
40 コリメートレンズ
41 偏光ビームスプリッタ
42,43 偏光パワー成分
44 偏波コントローラ
45 分散プリズム
46 広帯域ミラー
47 集光レンズ
48 非線形結晶
49 レーザ出光力(出力光a2)
50,51 ダイクロイック凹面鏡
52 集光レンズ
53 LiNbO非線形光学結晶
54 コリメートレンズ
55 ダイクロイックミラー
56 レーザ(レーザ2)
57 凹レンズ
58 凸レンズ
59 直角ミラー
60 色消し集光レンズ
61 BaMgF疑似位相整合素子(QPMC)
62 コリメートレンズ
63 ダイクロイックミラー
64 レーザ(レーザ1)
65 レーザ
66 ダイクロイックミラー
67 レーザ(レーザ2)
68 凹レンズ
69 凸レンズ
70 直角ミラー
71,75 ダイクロイックミラー
72 色消し集光レンズ
73 フッ素化合物結晶
74 色消しコリメートレンズ

Claims (4)

  1. 波長が可変である可視レーザ発振部(レーザ1)と、波長が一定のレーザ光を発生するレーザ(レーザ2)と、レーザ1の出力光(出力光a1)とレーザ2の出力光(出力光b)に基づく和周波発生により紫外光を発生させる波長変換部(変換部1)を備えたレーザ装置において、該レーザ1が、レーザ媒質として少なくともPrをコアに含有する光導波路と、励起光源として波長400nm以上480nm以下の励起光を発生する半導体レーザを備え、且つ、該変換部1に強誘電性フッ化物結晶を用いることにより、波長250nm以下の紫外光(出力光c)を連続的に出力することを特徴とする紫外レーザ装置。
  2. 該レーザ1のレーザ発振波長が700nm以上715nm以下であり、且つ、該レーザ2として波長が250nm超300nm以下のいずれかであるレーザを用いることを特徴とする、請求項1に記載の紫外レーザ装置。
  3. 該レーザ1のレーザ発振波長が598nm以上715nm以下であり、該レーザ2として波長が400nm以上550nm以下のいずれかであるレーザを用い、さらに、該レーザ1と該変換部1の間に出力光a1の波長を変換する波長変換部(変換部2)を備え、波長を変換された出力光(出力光a2)と該出力光bに基づく和周波発生により紫外光を発生させることを特徴とする、請求項1に記載の紫外レーザ装置。
  4. 該強誘電性フッ化物結晶が、XMgF、XZnF、XAlF、NaMgAlF、またはNaZnAlFで表される組成(ただしXは、Ca,Sr,Baのいずれかから選ばれる1つの元素を示す。)であることを特徴とする、請求項1乃至請求項3のいずれか記載の紫外レーザ装置。
JP2008184528A 2008-07-16 2008-07-16 紫外レーザ装置 Pending JP2010026027A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008184528A JP2010026027A (ja) 2008-07-16 2008-07-16 紫外レーザ装置
PCT/JP2009/062524 WO2010007938A1 (ja) 2008-07-16 2009-07-09 紫外レーザ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184528A JP2010026027A (ja) 2008-07-16 2008-07-16 紫外レーザ装置

Publications (1)

Publication Number Publication Date
JP2010026027A true JP2010026027A (ja) 2010-02-04

Family

ID=41550341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184528A Pending JP2010026027A (ja) 2008-07-16 2008-07-16 紫外レーザ装置

Country Status (2)

Country Link
JP (1) JP2010026027A (ja)
WO (1) WO2010007938A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135668A (zh) * 2011-03-17 2011-07-27 广州中国科学院工业技术研究院 光纤激光器的准直器及光纤激光器
CN102570311A (zh) * 2012-02-24 2012-07-11 哈尔滨工业大学 可调谐窄带紫外激光发生装置及其发生方法
CN102590097A (zh) * 2012-03-05 2012-07-18 哈尔滨工业大学 基于二极管激光的汞气连续监测装置及监测方法
JP2014504004A (ja) * 2010-12-03 2014-02-13 ユーブイテック システムズ インコーポレイテッド ウェハーのエッジ処理用の光ファイバビーム送出システム
JP2015018984A (ja) * 2013-07-12 2015-01-29 ウシオ電機株式会社 ファイバーレーザ光源装置
JP2016517174A (ja) * 2013-03-21 2016-06-09 レーザーライン ゲゼルシャフト フュア エントヴィックルング ウント フェアトリープ フォン ディオーデンラーザン ミット ベシュレンクテル ハフツングLaserline Gesellschaft fuer Entwicklung und Vertrieb von Diodenlasern mbH レーザ装置
JP2016517636A (ja) * 2013-03-21 2016-06-16 レーザーライン ゲゼルシャフト フュア エントヴィックルング ウント フェアトリープ フォン ディオーデンラーザン ミット ベシュレンクテル ハフツングLaserline Gesellschaft fuer Entwicklung und Vertrieb von Diodenlasern mbH レーザ装置
JP2020520107A (ja) * 2017-05-12 2020-07-02 ケンブリッジ エンタープライズ リミテッド レーザ装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598864A (zh) * 2018-01-21 2018-09-28 重庆师范大学 利用面发射激光器差频的宽波段可调谐中红外激光器
CN111048982A (zh) * 2019-11-28 2020-04-21 北京科益虹源光电技术有限公司 一种355nm紫外光的输出方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204862A (ja) * 1998-01-16 1999-07-30 Fuji Photo Film Co Ltd ファイバーレーザーおよびファイバーアンプ
JP2001036175A (ja) * 1999-07-21 2001-02-09 Fuji Photo Film Co Ltd レーザーダイオード励起固体レーザー
JP2001036168A (ja) * 1999-07-21 2001-02-09 Fuji Photo Film Co Ltd ファイバーレーザーおよびファイバーアンプ
JP2005275095A (ja) * 2004-03-25 2005-10-06 Nikon Corp 光源装置、半導体露光装置、レーザー治療装置、レーザー干渉計装置およびレーザー顕微鏡装置
JP2006073970A (ja) * 2004-09-06 2006-03-16 Cyber Laser Kk Cw深紫外線光源
JP2007308344A (ja) * 2006-05-19 2007-11-29 National Institute For Materials Science フッ化物強誘電体単結晶における負の分極面を有する領域をエッチングする方法、および、それを用いてフッ化物強誘電体単結晶の分極状態を判定する方法
JP5191692B2 (ja) * 2006-06-22 2013-05-08 パナソニック株式会社 レーザ光源装置及び画像表示装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504004A (ja) * 2010-12-03 2014-02-13 ユーブイテック システムズ インコーポレイテッド ウェハーのエッジ処理用の光ファイバビーム送出システム
CN102135668A (zh) * 2011-03-17 2011-07-27 广州中国科学院工业技术研究院 光纤激光器的准直器及光纤激光器
CN102570311A (zh) * 2012-02-24 2012-07-11 哈尔滨工业大学 可调谐窄带紫外激光发生装置及其发生方法
CN102590097A (zh) * 2012-03-05 2012-07-18 哈尔滨工业大学 基于二极管激光的汞气连续监测装置及监测方法
JP2016517174A (ja) * 2013-03-21 2016-06-09 レーザーライン ゲゼルシャフト フュア エントヴィックルング ウント フェアトリープ フォン ディオーデンラーザン ミット ベシュレンクテル ハフツングLaserline Gesellschaft fuer Entwicklung und Vertrieb von Diodenlasern mbH レーザ装置
JP2016517636A (ja) * 2013-03-21 2016-06-16 レーザーライン ゲゼルシャフト フュア エントヴィックルング ウント フェアトリープ フォン ディオーデンラーザン ミット ベシュレンクテル ハフツングLaserline Gesellschaft fuer Entwicklung und Vertrieb von Diodenlasern mbH レーザ装置
US9640937B2 (en) 2013-03-21 2017-05-02 Laserline Gesellschaft Fur Entwicklung Und Vertrieb Von Diodenlasern Mbh Laser arrangement
US9685752B2 (en) 2013-03-21 2017-06-20 Laserline Gesellschaft Fur Entwicklung Und Vertrieb Von Diodenlasern Mbh Laser assembly
JP2015018984A (ja) * 2013-07-12 2015-01-29 ウシオ電機株式会社 ファイバーレーザ光源装置
JP2020520107A (ja) * 2017-05-12 2020-07-02 ケンブリッジ エンタープライズ リミテッド レーザ装置
JP7194121B2 (ja) 2017-05-12 2022-12-21 ケンブリッジ エンタープライズ リミテッド レーザ装置、光学装置及び方法
US11936157B2 (en) 2017-05-12 2024-03-19 Cambridge Enterprise Limited Laser device

Also Published As

Publication number Publication date
WO2010007938A1 (ja) 2010-01-21

Similar Documents

Publication Publication Date Title
WO2010007938A1 (ja) 紫外レーザ装置
AU2011220332B2 (en) Mid to far infrared diamond Raman laser systems and methods
JP3997450B2 (ja) 波長変換装置
Lallier et al. Nd: MgO: LiNbO/sub 3/channel waveguide laser devices
US5682397A (en) Er:YALO upconversion laser
US7443903B2 (en) Laser apparatus having multiple synchronous amplifiers tied to one master oscillator
WO2010004882A1 (ja) 広帯域な波長可変レーザ装置
Fibrich et al. Diode-pumped Pr: YAP lasers
JP5096171B2 (ja) レーザ光源装置、画像表示装置及び照明装置
Ren et al. Highly efficient Ho: YAP laser with 202 W of linearly polarized output power at 2118 nm
RU2328064C2 (ru) Волоконный лазер с внутрирезонаторным удвоением частоты (варианты)
JP3211770B2 (ja) 固体レーザ装置及びそれを備えた固体レーザ増幅器
JP2010080928A (ja) レーザ装置
JP2008511182A (ja) 注入同期型高パワーレーザシステム
US20140003455A1 (en) Diode-pumped solid state laser
EP1683241A2 (en) High power 938 nanometer fiber laser and amplifier
JP2010080927A (ja) レーザ装置
Kratochvíl et al. 1.7 μm diode-pumped Tm: GGAG and Tm, Ho: GGAG 2.0-2.1 μm laser
TW200917600A (en) Device for producing a laser beam second harmonic wave
Wetter et al. Quasi-three level Nd: YLF fundamental and Raman laser operating under 872-nm and 880-nm direct diode pumping
McComb Power scaling of large mode area thulium fiber lasers in various spectral and temporal regimes
WO2010050341A1 (ja) 紫外光源装置
Ma et al. A 3.9 µm Ho3+: BYF laser pumped by a three-mirror cavity Cr: LiSAF laser with high optical-to-optical efficiency
US20220407281A1 (en) Efficient energy transfer from er3+ to ho3+ and dy3+ in mid-infrared materials
Weerasinghe Power scaling and mode quality of an acetylene mid-infrared hollow-core optical fiber gas laser

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326