JP2010021499A - 車両用太陽電池パネル、太陽電池付き車両及び太陽電池シート - Google Patents
車両用太陽電池パネル、太陽電池付き車両及び太陽電池シート Download PDFInfo
- Publication number
- JP2010021499A JP2010021499A JP2008183263A JP2008183263A JP2010021499A JP 2010021499 A JP2010021499 A JP 2010021499A JP 2008183263 A JP2008183263 A JP 2008183263A JP 2008183263 A JP2008183263 A JP 2008183263A JP 2010021499 A JP2010021499 A JP 2010021499A
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- film
- vehicle
- cell element
- usually
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
【課題】自動車等の車両用途に適した新たな車両用太陽電池パネルを提供する。
【解決手段】車両用太陽電池パネル100に、化合物半導体系太陽電池素子及び有機太陽電池素子からなる群より選ばれる少なくとも1つの太陽電池素子6を設ける。
【選択図】図1
【解決手段】車両用太陽電池パネル100に、化合物半導体系太陽電池素子及び有機太陽電池素子からなる群より選ばれる少なくとも1つの太陽電池素子6を設ける。
【選択図】図1
Description
本発明は、車両用太陽電池パネル、太陽電池付き車両及び太陽電池シートに関するものである。
いわゆるハイブリッド自動車や電気自動車等のモータ、電装品等への電力供給源として太陽電池を利用する技術が従来開発されている。その例を挙げると、特許文献1〜14に記載の技術等が挙げられる。
また、従来の技術では、自動車等の車両に適用する太陽電池として、薄膜多結晶シリコン太陽電池、アモルファスシリコン太陽電池、及び色素増感型太陽電池などを用いていた。
また、従来の技術では、自動車等の車両に適用する太陽電池として、薄膜多結晶シリコン太陽電池、アモルファスシリコン太陽電池、及び色素増感型太陽電池などを用いていた。
しかし、自動車に適用されていた太陽電池のうち、薄膜多結晶シリコン太陽電池は間接光学遷移を利用したタイプの太陽電池である。このため、基板又は表面に凸凹構造を形成する等、十分な光閉じ込め構造を設けて光吸収を増加させることが要求される。さらに、薄膜多結晶シリコン太陽電池においては、例えば並板ガラス、高分子薄膜等の低コストの基板上への薄膜成長を可能とするためには、高品質薄膜作製プロセスを低温化させることも要求される。このため、薄膜多結晶シリコン太陽電池はコスト面等において実用化に大きな課題を有する。
一方、アモルファスシリコン太陽電池は、結晶シリコンにおける間接光学遷移が構造乱れのために直接遷移となったものであり、可視域での光学吸収係数が大きく、厚さ1μm程度の薄膜でも太陽光を十分に吸収できる長所を有する。しかし、アモルファスシリコン太陽電池は光吸収により発生した電子、正孔等のキャリアの移動度が構造乱れのために低い。また、シリコンの未結合手はキャリアの再結合中心となるが、アモルファスシリコン太陽電池では未結合手欠陥の密度が高いため、キャリアの寿命が短い。さらに、アモルファスシリコン太陽電池は長期間の光照射により劣化することがあった。具体的には、アモルファスシリコン太陽電池は光照射により前記欠陥の密度がさらに増加する現象(即ち、光劣化現象)を示すため、初期光電変換効率が10%程度と単結晶シリコン太陽電池の効率を下回るとともに、光照射により(飽和はするものの)光電変換効率が8%程度まで低下する傾向がある。
また、色素増感型太陽電池は、液漏れ及び光照射により劣化することがあった。
本発明は上述した課題に鑑みて創案されたもので、自動車等の車両用途に適した新たな車両用太陽電池パネル並びにそれを備えた太陽電池付き車両及び太陽電池シートを提供することを目的とする。
本発明者は上記課題を解決するべく鋭意検討した結果、化合物半導体系太陽電池素子又は有機太陽電池素子を太陽電池パネルに適用することにより、車両用途に要求される性能をバランス良く備えた車両用太陽電池パネルを実現できることを見出し、本発明を完成させた。
即ち、本発明の要旨は、車両に装着される車両用太陽電池パネルであって、化合物半導体系太陽電池素子及び有機太陽電池素子からなる群より選ばれる少なくとも1つの太陽電池素子を備えることを特徴とする車両用太陽電池パネルに存する(請求項1)。
このとき、車両用太陽電池パネルは該太陽電池素子を覆うガスバリアフィルムを備えることが好ましい(請求項2)。
また、車両用太陽電池パネルは該太陽電池素子を覆う紫外線カットフィルムを備えることも好ましい(請求項3)。
さらに、車両用太陽電池パネルは該太陽電池素子を覆い水分及び/又は酸素を吸収するゲッター材フィルムを備えることも好ましい(請求項4)。
また、車両用太陽電池パネルは表面に該太陽電池素子を覆う耐候性保護フィルムを備えることが好ましく(請求項5)、該耐候性保護フィルムはフッ素系樹脂フィルムであることがより好ましい(請求項6)。
また、車両用太陽電池パネルは該太陽電池素子を覆う紫外線カットフィルムを備えることも好ましい(請求項3)。
さらに、車両用太陽電池パネルは該太陽電池素子を覆い水分及び/又は酸素を吸収するゲッター材フィルムを備えることも好ましい(請求項4)。
また、車両用太陽電池パネルは表面に該太陽電池素子を覆う耐候性保護フィルムを備えることが好ましく(請求項5)、該耐候性保護フィルムはフッ素系樹脂フィルムであることがより好ましい(請求項6)。
また、車両用太陽電池パネルにおいては、複数の該太陽電池素子が並べて設けられ、該太陽電池素子が正面及び背面にそれぞれ電極を備え、隣り合う該太陽電池素子は前記正面の電極と前記背面の電極とを直接接合されていることが好ましい(請求項7)。
さらに、車両用太陽電池パネルにおいては、複数の該太陽電池素子が並べて設けられ、該太陽電池素子が正面及び背面にそれぞれ電極を備え、隣り合う該太陽電池素子が前記正面の電極と前記背面の電極とをインターコネクタで接続されていることも好ましい(請求項8)。
さらに、車両用太陽電池パネルにおいては、複数の該太陽電池素子が並べて設けられ、該太陽電池素子が正面及び背面にそれぞれ電極を備え、隣り合う該太陽電池素子が前記正面の電極と前記背面の電極とをインターコネクタで接続されていることも好ましい(請求項8)。
また、車両用太陽電池パネルは該太陽電池素子が逆流防止素子及び/又はバイパス素子を備えることも好ましい(請求項9)。
本発明の別の要旨は、車体と、該車体表面に装着された本発明の車両用太陽電池パネルとを備えることを特徴とする太陽電池付き車両に存する(請求項10)。
本発明の更に別の要旨は、車体と、該車体表面に形成された本発明の車両用太陽電池パネルを装着されたパネル装着部と、該パネル装着部に折りたたみ可能に接続された本発明の車両用太陽電池パネルを装着された折りたたみ部とを備え、該折りたたみ部を折りたたんだ時には該折りたたみ部が該パネル装着部に装着された車両用太陽電池パネルを覆い、該折りたたみ部を開いた時には該パネル装着部及び該折りたたみ部に装着された該車両用太陽電池パネルが露出するようになっていることを特徴とする太陽電池付き車両に存する(請求項11)。
本発明の更に別の要旨は、窓部を備えた車両の前記窓部の縁部に進退可能に配設される太陽電池シートであって、シート本体と、該シート本体に布設された本発明の車両用太陽電池パネルとを備えることを特徴とする太陽電池シートに存する(請求項12)。
本発明の更に別の要旨は、窓部を備えた車体と、該窓部の縁部に進退可能に配設された本発明の太陽電池シートとを備えることを特徴とする太陽電池付き車両に存する(請求項13)。
本発明によれば、実用的な車両用太陽電池パネルを新たに実現できる。
以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下の実施形態及び例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
[I.第一実施形態]
以下、本発明の第一実施形態について図面を示して説明する。
[太陽電池パネル]
図1は、本発明の一実施形態としての車両用太陽電池パネル(以下、適宜「太陽電池パネル」という)の構成を模式的に示す断面図である。本実施形態の太陽電池パネル100は車両として自動車に装着されるものであって、図1に示すように、少なくとも太陽電池素子6を備えて構成される。この太陽電池素子6は、通常、耐候性保護フィルム1と、紫外線カットフィルム2と、ガスバリアフィルム3と、ゲッター材フィルム4と、封止材5と、太陽電池素子6と、封止材7と、ゲッター材フィルム8と、ガスバリアフィルム9と、バックシート10とをこの順に備え、更に、耐候性保護フィルム1からバックシート10にかけての縁部をシールするシール材11を備えた薄膜太陽電池12として構成される。そして、通常は、基板13に薄膜太陽電池12が設けられて太陽電池パネル100が構成される。
このような構成では、耐候性保護フィルム1が形成された側(図中上方)から光が照射されて、太陽電池素子6が発電するようになっている。なお、後述するバックシート10としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシートなど防水性の高いシートを用いる場合は、用途によりゲッター材フィルム8及び/又はガスバリアフィルム9を用いなくてもよい。
以下、本発明の第一実施形態について図面を示して説明する。
[太陽電池パネル]
図1は、本発明の一実施形態としての車両用太陽電池パネル(以下、適宜「太陽電池パネル」という)の構成を模式的に示す断面図である。本実施形態の太陽電池パネル100は車両として自動車に装着されるものであって、図1に示すように、少なくとも太陽電池素子6を備えて構成される。この太陽電池素子6は、通常、耐候性保護フィルム1と、紫外線カットフィルム2と、ガスバリアフィルム3と、ゲッター材フィルム4と、封止材5と、太陽電池素子6と、封止材7と、ゲッター材フィルム8と、ガスバリアフィルム9と、バックシート10とをこの順に備え、更に、耐候性保護フィルム1からバックシート10にかけての縁部をシールするシール材11を備えた薄膜太陽電池12として構成される。そして、通常は、基板13に薄膜太陽電池12が設けられて太陽電池パネル100が構成される。
このような構成では、耐候性保護フィルム1が形成された側(図中上方)から光が照射されて、太陽電池素子6が発電するようになっている。なお、後述するバックシート10としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシートなど防水性の高いシートを用いる場合は、用途によりゲッター材フィルム8及び/又はガスバリアフィルム9を用いなくてもよい。
[耐候性保護フィルム1]
耐候性保護フィルム1は太陽電池素子6を覆うフィルムであって、天候変化から太陽電池素子6を保護するフィルムである。
太陽電池素子6の構成部品のなかには、温度変化、湿度変化、自然光、風雨による侵食などにより劣化するものがある。そこで、耐候性保護フィルム1で太陽電池素子6を覆うことにより、太陽電池素子6等を天候変化などから保護し、発電能力を高く維持するようにしている。
耐候性保護フィルム1は太陽電池素子6を覆うフィルムであって、天候変化から太陽電池素子6を保護するフィルムである。
太陽電池素子6の構成部品のなかには、温度変化、湿度変化、自然光、風雨による侵食などにより劣化するものがある。そこで、耐候性保護フィルム1で太陽電池素子6を覆うことにより、太陽電池素子6等を天候変化などから保護し、発電能力を高く維持するようにしている。
耐候性保護フィルム1は、薄膜太陽電池12の最表層に位置するため、耐候性、耐熱性、透明性、撥水性、耐汚染性、機械強度などの、薄膜太陽電池12の表面被覆材として好適な性能を備え、しかもそれを屋外暴露において長期間維持する性質を有することが好ましい。
また、耐候性保護フィルム1は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360〜830nm)の光の透過率が80%以上であることが好ましく、90%以上であることがより好ましく、特に好ましくは95%である。
さらに、薄膜太陽電池12は光を受けて熱せられることが多いため、耐候性保護フィルム1も熱に対する耐性を有することが好ましい。この観点から、耐候性保護フィルム1の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで薄膜太陽電池12の使用時に耐候性保護フィルム1が融解・劣化する可能性を低減できる。
耐候性保護フィルム1を構成する材料は、天候変化から太陽電池素子6を保護することができるものであれば任意である。その材料の例を挙げると、ポリエチレン樹脂、ポリプロピレン樹脂、環状ポリオレフィン樹脂、AS(アクリロニトリル−スチレン)樹脂、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリ塩化ビニル樹脂、フッ素系樹脂、ポリエチレンテレフタラート、ポリエチレンナフタレート等のポリエステル樹脂、フェノール樹脂、ポリアクリル系樹脂、各種ナイロン等のポリアミド樹脂、ポリイミド樹脂、ポリアミド−イミド樹脂、ポリウレタン樹脂、セルロース系樹脂、シリコーン系樹脂、ポリカーボネート樹脂などが挙げられる。
中でも好ましくはフッ素系樹脂が挙げられ、その具体例を挙げるとポリテトラフルオロエチレン(PTFE)、4−フッ化エチレン−パークロロアルコキシ共重合体(PFA)、4−フッ化エチレン−6−フッ化プロピレン共重合体(FEP)、2−エチレン−4−フッ化エチレン共重合体(ETFE)、ポリ3−フッ化塩化エチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)及びポリフッ化ビニル(PVF)等が挙げられる。
なお、耐候性保護フィルム1は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。また、耐候性保護フィルム1は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。
中でも好ましくはフッ素系樹脂が挙げられ、その具体例を挙げるとポリテトラフルオロエチレン(PTFE)、4−フッ化エチレン−パークロロアルコキシ共重合体(PFA)、4−フッ化エチレン−6−フッ化プロピレン共重合体(FEP)、2−エチレン−4−フッ化エチレン共重合体(ETFE)、ポリ3−フッ化塩化エチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)及びポリフッ化ビニル(PVF)等が挙げられる。
なお、耐候性保護フィルム1は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。また、耐候性保護フィルム1は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。
耐候性保護フィルム1の厚みは特に規定されないが、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まる傾向にある。
また耐候性保護フィルム1には、他のフィルムとの接着性の改良のために、コロナ処理、プラズマ処理等の表面処理を行なってもよい。
耐候性保護フィルム1は、薄膜太陽電池12においてできるだけ外側に設けることが好ましい。薄膜太陽電池12の構成部材のうちより多くのものを保護できるようにするためである。したがって、好ましくは耐候性保護フィルム1は太陽電池パネル100の表面に設けることが好ましい。
耐候性保護フィルム1は、薄膜太陽電池12においてできるだけ外側に設けることが好ましい。薄膜太陽電池12の構成部材のうちより多くのものを保護できるようにするためである。したがって、好ましくは耐候性保護フィルム1は太陽電池パネル100の表面に設けることが好ましい。
[紫外線カットフィルム2]
紫外線カットフィルム2は太陽電池素子6を覆うフィルムであって、紫外線の透過を防止するフィルムである。
薄膜太陽電池12の構成部品のなかには紫外線により劣化するものがある。また、ガスバリアフィルム3,9などは種類によっては紫外線により劣化するものがある。そこで、紫外線カットフィルム2を薄膜太陽電池12の受光部分に設け、紫外線カットフィルム2で太陽電池素子6の受光面6aを覆うことにより、太陽電池素子6及び必要に応じてガスバリアフィルム3,9等を紫外線から保護し、発電能力を高く維持することができるようになっている。
紫外線カットフィルム2は太陽電池素子6を覆うフィルムであって、紫外線の透過を防止するフィルムである。
薄膜太陽電池12の構成部品のなかには紫外線により劣化するものがある。また、ガスバリアフィルム3,9などは種類によっては紫外線により劣化するものがある。そこで、紫外線カットフィルム2を薄膜太陽電池12の受光部分に設け、紫外線カットフィルム2で太陽電池素子6の受光面6aを覆うことにより、太陽電池素子6及び必要に応じてガスバリアフィルム3,9等を紫外線から保護し、発電能力を高く維持することができるようになっている。
紫外線カットフィルム2に要求される紫外線の透過抑制能力の程度は、紫外線(例えば、波長300nm)の透過率が50%以下であることが好ましく、30%以下であることがより好ましく、特に好ましくは10%以下である。
また、紫外線カットフィルム2は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360〜830nm)の光の透過率が80%以上であることが好ましく、90%以上であることがより好ましく、特に好ましくは95%以上である。
さらに、薄膜太陽電池12は光を受けて熱せられることが多いため、紫外線カットフィルム2も熱に対する耐性を有することが好ましい。この観点から、紫外線カットフィルム2の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点が低すぎると薄膜太陽電池12の使用時に紫外線カットフィルム2が融解する可能性がある。
また、紫外線カットフィルム2は、柔軟性が高く、隣接するフィルムとの接着性が良好であり、水蒸気や酸素をカットしうるものが好ましい。
紫外線カットフィルム2を構成する材料は、紫外線の強度を弱めることができるものであれば任意である。その材料の例を挙げると、エポキシ系、アクリル系、ウレタン系、エステル系の樹脂に紫外線吸収剤を配合して成膜したフィルムなどが挙げられる。また、紫外線吸収剤を樹脂中に分散あるいは溶解させたものの層(以下、適宜「紫外線吸収層」という)を基材フィルム上に形成したフィルムを用いても良い。
紫外線吸収剤としては、例えば、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾル系、シアノアクリレート系のものを用いることができる。中でもベンゾフェノン系、ベンゾトリアゾール系が好ましい。この例としては、ベンゾフェノン系やベンゾトリアゾール系の種々の芳香族系有機化合物などが挙げられる。
ベンゾフェノン系の紫外線吸収剤の例を挙げると、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ドデシルオキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾフェノン)メタンなどが挙げられる。
また、ベンゾトリアゾール系の紫外線吸収剤の例を挙げると、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ・tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ・tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ・tert−アミルフェニル)ベンゾトリアゾール、2−{2’−ヒドロキシ−3’−(3”,4”,5”,6”−テトラヒドロフタルイミドメチル)−5’−メチルフェニル}ベンゾトリアゾール、2,2−メチレンビス{4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール}などが挙げられる。なお、紫外線吸収剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
前記したように、紫外線吸収フィルムとしては紫外線吸収層を基材フィルム上に形成したフィルムを用いることもできる。このようなフィルムは、例えば、紫外線吸収剤を含む塗布液を基材フィルム上に塗布し、乾燥させることで作製できる。
基材フィルムの材質は特に限定されないが、耐熱性、柔軟性のバランスが良好なフィルムが得られる点で、例えばポリエステルが挙げられる。
塗布は任意の方法で行うことができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、含浸・コート法、カーテンコート法などが挙げられる。また、これらの方法は1種を単独で行なってもよく、2種以上を任意に組み合わせて行うこともできる。
塗布は任意の方法で行うことができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、含浸・コート法、カーテンコート法などが挙げられる。また、これらの方法は1種を単独で行なってもよく、2種以上を任意に組み合わせて行うこともできる。
塗布液に用いる溶剤は、紫外線吸収剤を均一に溶解あるいは分散できるものであれば特に限定されない。例えば液状の樹脂を溶剤として用いることができ、その例を挙げると、ポリエステル系、アクリル系、ポリアミド系、ポリウレタン系、ポリオレフィン系、ポリカ−ボネ−ト系、ポリスチレン系などの各種合成樹脂などが挙げられる。また、例えば、ゼラチン、セルロース誘導体などの天然高分子;水、水とエタノール等のアルコール混合溶液なども溶剤として用いることができる。
さらに、溶剤として有機溶剤を使用してもよい。有機溶剤を使用すれば、色素や樹脂を溶解または分散させることが可能となり、塗工性を向上させることが可能となる。有機溶剤としては、例えば、メタノール、エタノール等のアルコール類;エチレングリコール、ジエチレングリコール等のグリコール類;酢酸エチル、酢酸イソプロピル、酢酸n−ブチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、イソホロン、ジアセトンアルコール等のケトン類などが挙げられる。
なお、溶剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
さらに、溶剤として有機溶剤を使用してもよい。有機溶剤を使用すれば、色素や樹脂を溶解または分散させることが可能となり、塗工性を向上させることが可能となる。有機溶剤としては、例えば、メタノール、エタノール等のアルコール類;エチレングリコール、ジエチレングリコール等のグリコール類;酢酸エチル、酢酸イソプロピル、酢酸n−ブチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、イソホロン、ジアセトンアルコール等のケトン類などが挙げられる。
なお、溶剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
塗布液にはさらに界面活性剤も含有させてもよい。界面活性剤の使用により、紫外線吸収色素の樹脂への分散性が向上する。これにより、紫外線吸収層において、微小な泡によるヌケ、異物などの付着による凹み、乾燥工程でのハジキなどの発生が抑制される。
界面活性剤としては、公知の界面活性剤(カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤)を用いることができる。中でも、シリコン系界面活性剤またはフッ素系界面活性剤が好ましい。その具体例を挙げると、シリコン系界面活性剤としては、アミノシラン、アクリルシラン、ビニルベンジルシラン等のシラン化合物;ポリジメチルシロキサン、ポリアルコキシシロキサン等のシロキサン化合物;などが挙げられる。一方、フッ素系界面活性剤としては、例えば4フッ化エチレン;パーフルオロアルキルアンモニウム塩、パーフルオロアルキルスルホン酸アミド等のパーフルオロアルキル化合物などが挙げられる。なお、界面活性剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
界面活性剤としては、公知の界面活性剤(カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤)を用いることができる。中でも、シリコン系界面活性剤またはフッ素系界面活性剤が好ましい。その具体例を挙げると、シリコン系界面活性剤としては、アミノシラン、アクリルシラン、ビニルベンジルシラン等のシラン化合物;ポリジメチルシロキサン、ポリアルコキシシロキサン等のシロキサン化合物;などが挙げられる。一方、フッ素系界面活性剤としては、例えば4フッ化エチレン;パーフルオロアルキルアンモニウム塩、パーフルオロアルキルスルホン酸アミド等のパーフルオロアルキル化合物などが挙げられる。なお、界面活性剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
なお、塗布液を基材フィルムに塗布した後の乾燥は、例えば熱風乾燥、赤外線ヒーターによる乾燥など、公知の乾燥方法が採用できる。中でも、乾燥速度が速い熱風乾燥が好適である。
紫外線カットフィルム2の具体的な商品の例を挙げると、カットエース(MKVプラスティック株式会社)などが挙げられる。
なお、紫外線カットフィルム2は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。また、紫外線カットフィルム2は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。
なお、紫外線カットフィルム2は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。また、紫外線カットフィルム2は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。
紫外線カットフィルム2の厚みは特に規定されないが、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで紫外線の吸収が高まる傾向にあり、薄くすることで可視光の透過率を増加させられる傾向にある。
紫外線カットフィルム2は、太陽電池素子6の受光面6aの少なくとも一部を覆う位置に設ければよいが、好ましくは太陽電池素子6の受光面6aの全てを覆う位置に設ける。
ただし、太陽電池素子6の受光面6aを覆う位置以外の位置にも紫外線カットフィルム2が設けられていてもよい。
ただし、太陽電池素子6の受光面6aを覆う位置以外の位置にも紫外線カットフィルム2が設けられていてもよい。
[ガスバリアフィルム3]
ガスバリアフィルム3は太陽電池素子6を覆うフィルムであって、水及び酸素の透過を防止するフィルムである。
太陽電池素子6は湿気及び酸素に弱い傾向があり、特に、ZnO:Al等の透明電極や、化合物半導体系太陽電池素子及び有機太陽電池素子が水分及び酸素により劣化することがある。そこで、ガスバリアフィルム3で太陽電池素子6を被覆することにより、太陽電池素子6を水及び酸素から保護し、発電能力を高く維持することができる。
ガスバリアフィルム3は太陽電池素子6を覆うフィルムであって、水及び酸素の透過を防止するフィルムである。
太陽電池素子6は湿気及び酸素に弱い傾向があり、特に、ZnO:Al等の透明電極や、化合物半導体系太陽電池素子及び有機太陽電池素子が水分及び酸素により劣化することがある。そこで、ガスバリアフィルム3で太陽電池素子6を被覆することにより、太陽電池素子6を水及び酸素から保護し、発電能力を高く維持することができる。
ガスバリアフィルム3に要求される防湿能力の程度は、太陽電池素子6の種類などに応じて様々である。例えば、太陽電池素子6が化合物半導体系太陽電池素子である場合には、単位面積(1m2)の1日あたりの水蒸気透過率が、1×10−1g/m2/day以下であることが好ましく、1×10−2g/m2/day以下であることがより好ましく、1×10−3g/m2/day以下であることが更に好ましく、1×10−4g/m2/day以下であることが中でも好ましく、1×10−5g/m2/day以下であることがとりわけ好ましく、1×10−6g/m2/day以下であることが特に好ましい。また、太陽電池素子6が有機太陽電池素子である場合には、単位面積(1m2)の1日あたりの水蒸気透過率が、1×10−1g/m2/day以下であることが好ましく、1×10−2g/m2/day以下であることがより好ましく、1×10−3g/m2/day以下であることが更に好ましく、1×10−4g/m2/day以下であることが中でも好ましく、1×10−5g/m2/day以下であることがとりわけ好ましく、1×10−6g/m2/day以下であることが特に好ましい。水蒸気が透過しなければしないほど、太陽電池素子6及び当該素子6のZnO:Al等の透明電極の水分との反応に起因する劣化が抑えられるので、発電効率が上がると共に寿命が延びる。
ガスバリアフィルム3に要求される酸素透過性の程度は、太陽電池素子6の種類などに応じて様々である。例えば、太陽電池素子6が化合物半導体系太陽電池素子である場合には、単位面積(1m2)の1日あたりの酸素透過率が、1×10−1cc/m2/day/atm以下であることが好ましく、1×10−2cc/m2/day/atm以下であることがより好ましく、1×10−3cc/m2/day/atm以下であることが更に好ましく、1×10−4cc/m2/day/atm以下であることが中でも好ましく、1×10−5cc/m2/day/atm以下であることがとりわけ好ましく、1×10−6cc/m2/day/atm以下であることが特に好ましい。また、例えば、太陽電池素子6が有機太陽電池素子である場合には、単位面積(1m2)の1日あたりの酸素透過率が、1×10−1cc/m2/day/atm以下であることが好ましく、1×10−2cc/m2/day/atm以下であることがより好ましく、1×10−3cc/m2/day/atm以下であることが更に好ましく、1×10−4cc/m2/day/atm以下であることが中でも好ましく、1×10−5cc/m2/day/atm以下であることがとりわけ好ましく、1×10−6cc/m2/day/atm以下であることが特に好ましい。酸素が透過しなければしないほど、太陽電池素子6及び当該素子6のZnO:Al等の透明電極の酸化による劣化が抑えられる。
従来はこのように高い防湿及び酸素遮断能力を有するガスバリアフィルム3の実装が困難であったため、化合物半導体系太陽電池素子及び有機太陽電池素子のように優れた太陽電池素子を備えた太陽電池を実現することが困難であったが、このようなガスバリアフィルム3を適用することにより化合物半導体系太陽電池素子及び有機太陽電池素子等の優れた性質を活かした薄膜太陽電池12の実施が容易となる。
また、ガスバリアフィルム3は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360〜830nm)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。
さらに、薄膜太陽電池12は光を受けて熱せられることが多いため、ガスバリアフィルム3も熱に対する耐性を有することが好ましい。この観点から、ガスバリアフィルム3の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで薄膜太陽電池12の使用時にガスバリアフィルム3が融解・劣化する可能性を低減できる。
ガスバリアフィルム3の具体的な構成は、太陽電池素子6を水から保護できる限り任意である。ただし、ガスバリアフィルム3を透過しうる水蒸気や酸素の量を少なくできるフィルムほど製造コストが高くなるため、これらの点を総合的に勘案して適切なものを使用することが好ましい。
以下、ガスバリアフィルム3の構成について、例を挙げて説明する。
以下、ガスバリアフィルム3の構成について、例を挙げて説明する。
ガスバリアフィルム3の構成として好ましいものは2例が挙げられる。
一つ目の例は、プラスチックフィルム基材に無機バリア層を配置したフィルムである。この際、無機バリア層は、プラスチックフィルム基材の片面のみに形成してもよいし、プラスチックフィルム基材の両面に形成してもよい。両面に形成するときは、両面に形成する無機バリア層の数が、それぞれ一致していていもよく、異なっていてもよい。
一つ目の例は、プラスチックフィルム基材に無機バリア層を配置したフィルムである。この際、無機バリア層は、プラスチックフィルム基材の片面のみに形成してもよいし、プラスチックフィルム基材の両面に形成してもよい。両面に形成するときは、両面に形成する無機バリア層の数が、それぞれ一致していていもよく、異なっていてもよい。
二つ目の例は、プラスチックフィルム基材に、無機バリア層とポリマー層とが互いに隣接して配置された2層からなるユニット層が形成されたフィルムである。この際、無機バリア層とポリマー層とが互いに隣接して配置された2層からなるユニット層を1単位として、このユニット層が1単位(無機バリア層1層とポリマー層1層を合わせて1単位の意味)のみを形成しても良いが、2単位以上形成しても良い。例えば2〜5単位、積層してもよい。
ユニット層は、プラスチックフィルム基材の片面のみに形成してもよいし、プラスチックフィルム基材の両面に形成してもよい。両面に形成するときは、両面に形成する無機バリア層及びポリマー層の数が、それぞれ一致していていもよく、異なっていてもよい。また、プラスチックフィルム基材上にユニット層を形成する場合、無機バリア層を形成してからその上にポリマー層を形成してもよいし、ポリマー層を形成してから無機バリア層を形成してもよい。
(プラスチックフィルム基材)
ガスバリアフィルム3に使用されるプラスチックフィルム基材は、上記の無機バリア層及びポリマー層を保持しうるフィルムであれば特に制限はなく、ガスバリアフィルム3の使用目的等から適宜選択することができる。
ガスバリアフィルム3に使用されるプラスチックフィルム基材は、上記の無機バリア層及びポリマー層を保持しうるフィルムであれば特に制限はなく、ガスバリアフィルム3の使用目的等から適宜選択することができる。
プラスチックフィルム基材の材料の例を挙げると、ポリエステル樹脂、メタクリル樹脂、メタクリル酸−マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド樹脂、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、アクリロイル化合物等の熱可塑性樹脂などが挙げられる。
これら樹脂のうち、好ましい例としては、ポリエステル樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、アクリロイル化合物が挙げられる。また、スピロビインダン、スピロビクロマンを含む縮合ポリマーを用いるのも好ましい。ポリエステル樹脂の中でも、二軸延伸を施したポリエチレンテレフタレート(PET)、同じく二軸延伸したポリエチレンナフタレート(PEN)は、熱的寸度安定性に優れるため、本発明においてプラスチックフィルム基材として好ましく用いられる。
なおプラスチックフィルム基材の材料は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
なおプラスチックフィルム基材の材料は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
プラスチックフィルム基材の厚みは特に規定されないが、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まる傾向にある。
プラスチックフィルム基材は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360〜830nm)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。
プラスチックフィルム基材には、無機バリア層との密着性向上のため、アンカーコート剤の層(アンカーコート層)を形成してもよい。通常、アンカーコート層はアンカーコート剤を塗布して形成される。アンカーコート剤としては、例えば、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、オキサゾリン基含有樹脂、カルボジイミド基含有樹脂、エポキシ基含有樹脂、イソシアネート含有樹脂及びこれらの共重合体などが挙げられる。中でも、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂の1種類以上と、オキサゾリン基含有樹脂、カルボジイミド基含有樹脂、エポキシ基含有樹脂、イソシアネート基含有樹脂の1種類以上とを組み合わせたものが好ましい。なお、アンカーコート剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
アンカーコート層の厚さは、通常0.005μm以上、好ましくは0.01μm以上であり、通常5μm以下、好ましくは1μm以下である。この範囲の上限値以下の厚さであれば滑り性が良好であり、アンカーコート層自体の内部応力によるプラスチックフィルム基材からの剥離もほとんどない。また、この範囲の下限値以上の厚さであれば、均一な厚さを保つことができ好ましい。
また、プラスチックフィルム基材へのアンカーコート剤の塗布性、接着性を改良するため、アンカーコート剤の塗布前に、プラスチックフィルム基材に通常の化学処理、放電処理などの表面処理を施してもよい。
また、プラスチックフィルム基材へのアンカーコート剤の塗布性、接着性を改良するため、アンカーコート剤の塗布前に、プラスチックフィルム基材に通常の化学処理、放電処理などの表面処理を施してもよい。
(無機バリア層)
無機バリア層は通常は金属酸化物、窒化物もしくは酸化窒化物により形成される層である。なお、無機バリア層を形成する金属酸化物、窒化物及び酸化窒化物は、1種でもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
金属酸化物としては、例えば、Si、Al、Mg、In、Ni、Sn、Zn、Ti、Cu、Ce、Ta等の酸化物、窒化物もしくは酸化窒化物などが挙げられる。中でも、高いバリア性と高透明性とを両立させるために、酸化アルミニウムまたは酸化珪素を含むことが好ましく、特に水分の透過性、光線透過性の観点から、酸化珪素を含むことが好ましい。
無機バリア層は通常は金属酸化物、窒化物もしくは酸化窒化物により形成される層である。なお、無機バリア層を形成する金属酸化物、窒化物及び酸化窒化物は、1種でもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
金属酸化物としては、例えば、Si、Al、Mg、In、Ni、Sn、Zn、Ti、Cu、Ce、Ta等の酸化物、窒化物もしくは酸化窒化物などが挙げられる。中でも、高いバリア性と高透明性とを両立させるために、酸化アルミニウムまたは酸化珪素を含むことが好ましく、特に水分の透過性、光線透過性の観点から、酸化珪素を含むことが好ましい。
各々の金属原子と酸素原子との比率も任意であるが、無機バリア層の透明度を向上させ着色を防ぐためには、酸素原子の比率が酸化物の化学量論的な比率から極端に少なくないことが望ましい。一方、無機バリア層の緻密性を向上させバリア性を高くするためには、酸素原子を少なくすることが望ましい。この観点から、例えば金属酸化物としてSiOxを用いる場合には前記xの値は1.5〜1.8が特に好ましい。また、例えば金属酸化物としてAlOxを用いる場合には前記xの値は1.0〜1.4が特に好ましい。
また、2種以上の金属酸化物より無機バリア層を構成する場合、金属酸化物としては酸化アルミニウムおよび酸化珪素を含むことが望ましい。中でも無機バリア層が酸化アルミニウムおよび酸化珪素からなる場合、無機バリア層中のアルミニウムとケイ素との比率は任意に設定することができるが、Si/Alの比率は、通常1/9以上、好ましくは2/8以上であり、また、通常9/1以下、好ましくは2/8以下である。
無機バリア層の厚みを厚くするとバリア性が高まる傾向にあるが、曲げた際にクラックを生じにくくし割れを防ぐためには、厚みを薄くすることが望ましい。そこで無機バリア層の適正な厚みとしては、通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは200nm以下である。
無機バリア層の成膜方法に制限は無いが、一般的にスパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法などで行うことができる。例えばスパッタリング法では1種類のあるいは複数の金属ターゲットと酸素ガスを原料とし、プラズマを用いた反応性スパッタ方式で形成することができる。
(ポリマー層)
ポリマー層にはいずれのポリマーでも使用することができ、例えば真空チャンバー内で成膜できるものも用いることができる。なお、ポリマー層を構成するポリマーは、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
ポリマー層にはいずれのポリマーでも使用することができ、例えば真空チャンバー内で成膜できるものも用いることができる。なお、ポリマー層を構成するポリマーは、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
前記ポリマーを与える化合物としては多種多様なものを用いることができるが、例えば以下の(i)〜(vii)のようなものが例示される。なお、モノマーは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
(i)例えばヘキサメチルジシロキサン等のシロキサンが挙げられる。ヘキサメチルジシロキサンを用いる場合のポリマー層の形成方法の例を挙げると、RF電極を用いた平行平板型のプラズマ装置にヘキサメチルジシロキサンを蒸気として導入し、プラズマ中で重合反応を起こさせ、プラスチックフィルム基材上に堆積させることでポリマー層をポリシロキサン薄膜として形成できる。
(ii)例えばジパラキシリレン等のパラキシリレンが挙げられる。ジパラキシリレンを用いる場合のポリマー層の形成方法の例を挙げると、まず高真空中でジパラキシリレンの蒸気を650℃〜700℃で加熱することで熱分解させて熱ラジカルを発生させる。そして、そのラジカルモノマー蒸気をチャンバー内に導いて、プラスチックフィルム基材への吸着させると同時にラジカル重合反応を進行させてポリパラキシリレンを堆積させることでポリマー層を形成できる。
(iii)例えば二種のモノマーを交互に繰り返し付加重合させることができるモノマーが挙げられる。これにより得られるポリマーは重付加ポリマーである。重付加ポリマーとしては、例えば、ポリウレタン(ジイソシアナート/グリコール)、ポリ尿素(ジイソシアナート/ジアミン)、ポリチオ尿素(ジチオイソシアナート/ジアミン)、ポリチオエーテルウレタン(ビスエチレンウレタン/ジチオール)、ポリイミン(ビスエポキシ/第一アミン)、ポリペプチドアミド(ビスアゾラクトン/ジアミン)、ポリアミド(ジオレフィン/ジアミド)などが挙げられる。
(iv)例えばアクリレートモノマーが挙げられる。アクリレートモノマーには単官能、2官能、多官能のアクリレートモノマーがあるが、いずれを用いてもよい。ただし、適切な蒸発速度、硬化度、硬化速度等を得るために、前記のアクリレートモノマーを2種以上組み合わせて併用することが好ましい。
また、単官能アクリレートモノマーとしては、例えば脂肪族アクリレートモノマー、脂環式アクリレートモノマー、エーテル系アクリレートモノマー、環状エーテル系アクリレートモノマー、芳香族系アクリレートモノマー、水酸基含有アクリレートモノマー、カルボキシ基含有アクリレートモノマー等があるが、いずれも用いることができる。
また、単官能アクリレートモノマーとしては、例えば脂肪族アクリレートモノマー、脂環式アクリレートモノマー、エーテル系アクリレートモノマー、環状エーテル系アクリレートモノマー、芳香族系アクリレートモノマー、水酸基含有アクリレートモノマー、カルボキシ基含有アクリレートモノマー等があるが、いずれも用いることができる。
(v)例えばエポキシ系やオキセタン系等の、光カチオン硬化ポリマーが得られるモノマーが挙げられる。エポキシ系モノマーとしては、例えば、脂環式エポキシ系モノマー、2官能性モノマー、多官能性オリゴマーなどが挙げられる。また、オキセタン系モノマーとしては、例えば、単官能オキセタン、2官能オキセタン、シルセスキオキサン構造を有するオキセタン等が挙げられる。
(vi)例えば酢酸ビニルが挙げられる。モノマーとして酢酸ビニルを用いると、その重合体をケン化することでポリビニルアルコールが得られ、このポリビニルアルコールをポリマーとして使用できる。
(vii)例えば、アクリル酸、メタクリル酸、エタクリル酸、フマル酸、マレイン酸、イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、無水マレイン酸、無水イタコン酸などの不飽和カルボン酸などが挙げられる。これらは、エチレンとの共重合体を構成させ、この共重合体をポリマーとして使用できる。さらに、これらの混合物、あるいはグリシジルエーテル化合物を混合した混合物、さらにはエポキシ化合物との混合物もポリマーとして用いることができる。
前記のモノマーを重合してポリマーを生成させる際、モノマーの重合方法に制限は無い。ただし、通常は、モノマーを含む組成物を塗布または蒸着して成膜した後で重合を行うようにする。重合方法の例を挙げると、熱重合開始剤を用いたときはヒーター等による接触加熱;赤外線、マイクロ波等の放射加熱;などにより重合を開始させる。また、光重合開始剤を用いたときは活性エネルギー線を照射して重合を開始させる。活性エネルギー線を照射する場合には様々な光源を使用することができ、例えば、水銀アークランプ、キセノンアークランプ、蛍光ランプ、炭素アークランプ、タングステンーハロゲン輻射ランプおよび日光による照射光などを用いることができる。また、電子線照射や大気圧プラズマ処理を行うこともできる。
ポリマー層の形成方法は、例えば、塗布法、真空成膜法等が挙げられる。
塗布法でポリマー層を形成する場合、例えば、ロールコート、グラビアコート、ナイフコート、ディップコート、カーテンフローコート、スプレーコート、バーコート等の方法を用いることができる。また、ポリマー層形成用の塗布液をミスト状で塗布するようにしてもよい。この場合の液滴の平均粒径は適切な範囲に調整すればよく、例えば重合性モノマーを含有する塗布液をミスト状でプラスチックフィルム基材上に成膜して形成する場合には、液滴の平均粒径は5μm以下、好ましくは1μm以下である。
他方、真空成膜法でポリマー層を形成する場合、例えば、蒸着、プラズマCVD等の成膜方法が挙げられる。
塗布法でポリマー層を形成する場合、例えば、ロールコート、グラビアコート、ナイフコート、ディップコート、カーテンフローコート、スプレーコート、バーコート等の方法を用いることができる。また、ポリマー層形成用の塗布液をミスト状で塗布するようにしてもよい。この場合の液滴の平均粒径は適切な範囲に調整すればよく、例えば重合性モノマーを含有する塗布液をミスト状でプラスチックフィルム基材上に成膜して形成する場合には、液滴の平均粒径は5μm以下、好ましくは1μm以下である。
他方、真空成膜法でポリマー層を形成する場合、例えば、蒸着、プラズマCVD等の成膜方法が挙げられる。
ポリマー層の厚みについては特に限定はないが、通常10nm以上であり、また、通常5000nm以下、好ましくは2000nm以下、より好ましくは1000nm以下である。ポリマー層の厚みを厚くすることで、厚みの均一性が得やすくなり無機バリア層の構造欠陥を効率よくポリマー層で埋めることができ、バリア性が向上する傾向にある。また、ポリマー層の厚みを薄くする事で、曲げ等の外力によりポリマー層自身がクラックを発生しにくくなるためバリア性が向上しうる。
中でも好適なガスバリアフィルム3としては、例えば、ポリエチレンテレフタレート(PET)或いはポリエチレンナフタレート(PEN)等の基材フィルムにSiOxを真空蒸着したフィルムなどが挙げられる。
なお、ガスバリアフィルム3は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。また、ガスバリアフィルム3は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。
なお、ガスバリアフィルム3は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。また、ガスバリアフィルム3は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。
ガスバリアフィルム3の厚みは特に規定されないが、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることでガスバリア性が高まる傾向にあり、薄くすることで柔軟性が高まりまた可視光の透過率が向上する傾向にある。
ガスバリアフィルム3は、太陽電池素子6を被覆して湿気及び酸素から保護できればその形成位置に制限は無いが、太陽電池素子6の正面(受光面側の面。図1では下側の面)及び背面(受光面とは反対側の面。図1では上側の面)を覆うことが好ましい。薄膜太陽電池12においてはその正面及び背面が他の面よりも大面積に形成されることが多いためである。本実施形態ではガスバリアフィルム3が太陽電池素子6の正面を覆い、後述するガスバリアフィルム9が太陽電池素子6の背面を覆うようになっている。そして、ガスバリアフィルム3,9の縁部をシール材11でシールし、ガスバリアフィルム3,9及びシール材11で囲まれた空間内に太陽電池素子6を納めることにより、太陽電池素子6を湿気及び酸素から保護できるようになっている。なお、後述するバックシート10としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシートなど防水性の高いシートを用いる場合は、用途によりゲッター材フィルム8及び/又はガスバリアフィルム9を用いなくてもよい。
[ゲッター材フィルム4]
ゲッター材フィルム4は太陽電池素子6を覆うフィルムであって、水分及び/又は酸素を吸収するフィルムである。太陽電池素子6の構成部品のなかには前記のように水分で劣化するものがあり、また、酸素によって劣化するものもある。そこで、ゲッター材フィルム4で太陽電池素子6を覆うことにより、太陽電池素子6等を水分及び/又は酸素から保護し、発電能力を高く維持するようにしている。
ゲッター材フィルム4は太陽電池素子6を覆うフィルムであって、水分及び/又は酸素を吸収するフィルムである。太陽電池素子6の構成部品のなかには前記のように水分で劣化するものがあり、また、酸素によって劣化するものもある。そこで、ゲッター材フィルム4で太陽電池素子6を覆うことにより、太陽電池素子6等を水分及び/又は酸素から保護し、発電能力を高く維持するようにしている。
ここで、ゲッター材フィルム4は前記のようなガスバリアフィルム3とは異なり、水分の透過を妨げるものではなく、水分を吸収するものである。水分を吸収するフィルムを用いることにより、ガスバリアフィルム3等で太陽電池素子6を被覆した場合に、ガスバリアフィルム3,9及びシール材11で形成される空間に僅かに浸入する水分をゲッター材フィルム4が捕捉して水分による太陽電池素子6への影響を排除できる。
ゲッター材フィルム4の水分吸収能力の程度は、通常0.1mg/cm2以上、好ましくは0.5mg/cm2以上、より好ましくは1mg/cm2以上である。この数値が高いほど水分吸収能力が高く太陽電池素子6の劣化を抑制しうる。また、上限に制限は無いが、通常10mg/cm2以下である。
ゲッター材フィルム4の水分吸収能力の程度は、通常0.1mg/cm2以上、好ましくは0.5mg/cm2以上、より好ましくは1mg/cm2以上である。この数値が高いほど水分吸収能力が高く太陽電池素子6の劣化を抑制しうる。また、上限に制限は無いが、通常10mg/cm2以下である。
また、ゲッター材フィルム4が酸素を吸収することにより、ガスバリアフィルム3,9等で太陽電池素子6を被覆した場合に、ガスバリアフィルム3,9及びシール材11で形成される空間に僅かに浸入する酸素をゲッター材フィルム4が捕捉して酸素による太陽電池素子6への影響を排除できる。
さらに、ゲッター材フィルム4は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360〜830nm)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。
さらに、薄膜太陽電池12は光を受けて熱せられることが多いため、ゲッター材フィルム4も熱に対する耐性を有することが好ましい。この観点から、ゲッター材フィルム4の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで薄膜太陽電池12の使用時にゲッター材フィルム4が融解・劣化する可能性を低減できる。
ゲッター材フィルム4を構成する材料は、水分及び/又は酸素を吸収することができるものであれば任意である。その材料の例を挙げると、水分を吸収する物質としてアルカリ金属、アルカリ土類金属、アルカリ土類金属の酸化物、アルカリ金属又はアルカリ土類金属の水酸化物、シリカゲル、ゼオライト系化合物、硫酸マグネシウム、硫酸ナトリウム、硫酸ニッケル等の硫酸塩、アルミニウム金属錯体、アルミニウムオキサイドオクチレート等の有機金属化合物などが挙げられる。具体的には、アルカリ土類金属としては、Ca、Sr、Baなどが挙げられる。アルカリ土類金属の酸化物としては、CaO、SrO、BaO等が挙げられる。その他にZr−Al−BaOや、アルミニウム金属錯体等も挙げられる。具体的な商品名を挙げると、例えば、OleDry(双葉電子社製)等が挙げられる。
酸素を吸収する物質としては、活性炭、シリカゲル、活性アルミナ、モレキュラーシーブ、酸化マグネシウム、酸化鉄等が挙げられる。またFe、Mn、Zn、及びこれら金属の硫酸塩・塩化物塩・硝酸塩等の無機塩も挙げられる。
なお、ゲッター材フィルム4は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。また、ゲッター材フィルム4は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。
酸素を吸収する物質としては、活性炭、シリカゲル、活性アルミナ、モレキュラーシーブ、酸化マグネシウム、酸化鉄等が挙げられる。またFe、Mn、Zn、及びこれら金属の硫酸塩・塩化物塩・硝酸塩等の無機塩も挙げられる。
なお、ゲッター材フィルム4は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。また、ゲッター材フィルム4は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。
ゲッター材フィルム4の厚みは特に規定されないが、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まる傾向にある。
ゲッター材フィルム4は、ガスバリアフィルム3,9及びシール材11で形成される空間内であればその形成位置に制限は無いが、太陽電池素子6の正面(受光面側の面。図1では下側の面)及び背面(受光面とは反対側の面。図1では上側の面)を覆うことが好ましい。薄膜太陽電池12においてはその正面及び背面が他の面よりも大面積に形成されることが多いため、これらの面を介して水分及び酸素が浸入する傾向があるからである。この観点から、ゲッター材フィルム4はガスバリアフィルム3と太陽電池素子6との間に設けることが好ましい。本実施形態ではゲッター材フィルム4が太陽電池素子6の正面を覆い、後述するゲッター材フィルム8が太陽電池素子6の背面を覆い、ゲッター材フィルム4,8がそれぞれ太陽電池素子6とガスバリアフィルム3,9との間に位置するようになっている。なお、後述するバックシート10としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシートなど防水性の高いシートを用いる場合は、用途によりゲッター材フィルム8及び/又はガスバリアフィルム9を用いなくてもよい。
ゲッター材フィルム4は吸水剤又は乾燥剤の種類に応じて任意の方法で形成することができるが、例えば、吸水剤又は乾燥剤を分散したフィルムを粘着剤で添付する方法、吸水剤又は乾燥剤の溶液をスピンコート法、インクジェット法、ディスペンサー法等で塗布する方法などを用いることができる。また真空蒸着法、スパッタリング法などの成膜法を使用してもよい。
吸水剤又は乾燥剤のためのフィルムとしては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル−スチレン共重合体(AS樹脂)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂等を用いることができる。中でも、ポリエチレン系樹脂、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂のフィルムが好ましい。なお、前記樹脂は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
[封止材5]
封止材5は、太陽電池素子6を補強するフィルムである。太陽電池素子6は薄いため通常は強度が弱く、ひいては薄膜太陽電池の強度が弱くなる傾向があるが、封止材5により強度を高く維持することが可能である。
封止材5は、太陽電池素子6を補強するフィルムである。太陽電池素子6は薄いため通常は強度が弱く、ひいては薄膜太陽電池の強度が弱くなる傾向があるが、封止材5により強度を高く維持することが可能である。
また、封止材5は、薄膜太陽電池12の強度保持の観点から強度が高いことが好ましい。
具体的強度については、封止材5以外の耐候性保護フィルム1やバックシート10の強度とも関係することになり一概には規定しにくいが、薄膜太陽電池12全体が良好な曲げ加工性を有し、折り曲げ部分の剥離を生じないような強度を有するのが望ましい。
具体的強度については、封止材5以外の耐候性保護フィルム1やバックシート10の強度とも関係することになり一概には規定しにくいが、薄膜太陽電池12全体が良好な曲げ加工性を有し、折り曲げ部分の剥離を生じないような強度を有するのが望ましい。
また、封止材5は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360〜830nm)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。
さらに、薄膜太陽電池12は光を受けて熱せられることが多いため、封止材5も熱に対する耐性を有することが好ましい。この観点から、封止材5の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで薄膜太陽電池12の使用時に封止材5が融解・劣化する可能性を低減できる。
封止材5の厚みは特に規定されないが、通常100μm以上、好ましくは150μm以上、より好ましくは200μm以上であり、また、通常700μm以下、好ましくは600μm以下、より好ましくは500μm以下である。厚みを厚くすることで薄膜太陽電池12全体の強度が高まる傾向にあり、薄くすることで柔軟性が高まりまた可視光の透過率が向上する傾向にある。
封止材5を構成する材料としては、例えば、エチレン−酢酸ビニル共重合体(EVA)樹脂組成物をフィルムにしたもの(EVAフィルム)などを用いることができる。EVAフィルムには通常は耐候性の向上のために架橋剤を配合して架橋構造を構成させる。この架橋剤としては、一般に、100℃以上でラジカルを発生する有機過酸化物が用いられる。このような有機過酸化物としては、例えば、2,5−ジメチルヘキサン;2,5−ジハイドロパーオキサイド;2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン;3−ジ−t−ブチルパーオキサイド等を用いることができる。これらの有機過酸化物の配合量は、EVA樹脂100重量部に対して、通常5重量部以下、好ましくは3重量部以下であり、通常1重量部以上である。なお、架橋剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
このEVA樹脂組成物には、接着力向上の目的で、シランカップリング剤を含有させてもよい。この目的に供されるシランカップリング剤としては、例えば、γ−クロロプロピルトリメトキシシラン;ビニルトリクロロシラン;ビニルトリエトキシシラン;ビニル−トリス−(β−メトキシエトキシ)シラン;γ−メタクリロキシプロピルトリメトキシシラン;β−(3,4−エトキシシクロヘキシル)エチルトリメトキシシラン等を挙げることができる。これらのシランカップリング剤の配合量は、EVA樹脂100重量部に対して、通常5重量部以下、好ましくは2重量部以下であり、通常0.1重量部以上である。なお、シランカップリング剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
更に、EVA樹脂のゲル分率を向上させ、耐久性を向上するために、EVA樹脂組成物に架橋助剤を含有させてもよい。この目的に供される架橋助剤としては、例えば、トリアリルイソシアヌレート、トリアリルイソシアネート等の3官能の架橋助剤等の単官能の架橋助剤等が挙げられる。これらの架橋助剤の配合量は、EVA樹脂100重量部に対して、通常10重量部以下、好ましくは5重量部以下であり、また、通常1重量部以上である。なお、架橋助剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
更に、EVA樹脂の安定性を向上する目的で、EVA樹脂組成物に、例えばハイドロキノン;ハイドロキノンモノメチルエーテル;p−ベンゾキノン;メチルハイドロキノンなどを含有させてもよい。これらの配合量は、EVA樹脂100重量部に対して、通常5重量部以下である。
しかし、EVA樹脂の架橋処理には1〜2時間程度の比較的長時間を要するため、薄膜太陽電池12の生産速度および生産効率を低下させる原因となる場合がある。また、長期間使用の際には、EVA樹脂組成物の分解ガス(酢酸ガス)またはEVA樹脂自体が有する酢酸ビニル基が、太陽電池素子6に悪影響を与えて発電効率が低下させる場合がある。そこで、封止材5としては、EVAフィルムの他に、プロピレン・エチレン・α−オレフィン共重合体からなる共重合体のフィルムを用いることもできる。この共重合体としては、例えば、下記成分1および成分2が配合された熱可塑性樹脂組成物が挙げられる。
・成分1:プロピレン系重合体が、通常0重量部以上、好ましくは10重量部以上であり、また、通常70重量部以下、好ましくは50重量部以下。
・成分2:軟質プロピレン系共重合体が、30重量部以上、好ましくは50重量部以上であり、また、通常100重量部以下、好ましくは90重量部以下。
なお、成分1および成分2の合計量は100重量部である。上記のように、成分1および成分2が好ましい範囲にあると、封止材5のシートへの成形性が良好であるとともに、得られる封止材5の耐熱性、透明性および柔軟性が良好となり、薄膜太陽電池12に好適である。
以下、成分1及び成分2について詳しく説明する。
・成分2:軟質プロピレン系共重合体が、30重量部以上、好ましくは50重量部以上であり、また、通常100重量部以下、好ましくは90重量部以下。
なお、成分1および成分2の合計量は100重量部である。上記のように、成分1および成分2が好ましい範囲にあると、封止材5のシートへの成形性が良好であるとともに、得られる封止材5の耐熱性、透明性および柔軟性が良好となり、薄膜太陽電池12に好適である。
以下、成分1及び成分2について詳しく説明する。
〔成分1〕
成分1はプロピレン系重合体であり、例えば、プロピレン単独重合体;プロピレンと、少なくとも1種のプロピレン以外の炭素原子数が2〜20のα−オレフィンとの共重合体;などが挙げられる。ここで、プロピレン以外の炭素原子数が2〜20のα−オレフィンとしては、例えば、エチレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセンなどが挙げられる。中でも、エチレンまたは炭素原子数が4〜10のα−オレフィンが好ましい。なお、α−オレフィンは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
成分1はプロピレン系重合体であり、例えば、プロピレン単独重合体;プロピレンと、少なくとも1種のプロピレン以外の炭素原子数が2〜20のα−オレフィンとの共重合体;などが挙げられる。ここで、プロピレン以外の炭素原子数が2〜20のα−オレフィンとしては、例えば、エチレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセンなどが挙げられる。中でも、エチレンまたは炭素原子数が4〜10のα−オレフィンが好ましい。なお、α−オレフィンは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
これらのα−オレフィンは、プロピレンとランダム共重合体を形成してもよく、ブロック共重合体を形成してもよい。これらのα−オレフィンから導かれる構成単位の存在割合は、ポリプロピレン中に通常35モル%以下、好ましくは30モル%以下である。
成分1は、ASTM D 1238に準拠して230℃、荷重2.16kgで測定されるメルトフローレート(MFR)が、通常0.01g/10分以上、好ましくは0.05g/10分以上であり、通常1000g/10分以下、好ましくは100g/10分以下である。
成分1の示差走査熱量計で観測される融点は、通常100℃以上、好ましくは110℃以上であり、また、通常160℃以下、好ましくは150℃以下である。
成分1はアイソタクチック構造、シンジオタクチック構造のどちらも用いることができるが、アイソタクチック構造の方が耐熱性などの点で好ましい。
また、成分1としては必要に応じて複数のプロピレン系重合体を併用することができ、例えば融点や剛性の異なる2種類以上の成分を用いることもできる。
また、成分1としては必要に応じて複数のプロピレン系重合体を併用することができ、例えば融点や剛性の異なる2種類以上の成分を用いることもできる。
〔成分2〕
成分2は軟質プロピレン系共重合体であり、例えば、プロピレンと、少なくとも1種のプロピレン以外の炭素原子数2〜20のα−オレフィンとの共重合体などが挙げられる。
また、成分2は、ショアーA硬度が、通常30以上、好ましくは35以上であり、また、通常80以下、好ましくは70以下である。
さらに、成分2の示差走査熱量計DSCで観測される融点は、100℃未満か、または融点が観測されない。ここで、融点が観測されないとは、−150〜200℃の範囲において、結晶融解熱量が1J/g以上の結晶融解ピークが観測されないことをいう。
成分2は軟質プロピレン系共重合体であり、例えば、プロピレンと、少なくとも1種のプロピレン以外の炭素原子数2〜20のα−オレフィンとの共重合体などが挙げられる。
また、成分2は、ショアーA硬度が、通常30以上、好ましくは35以上であり、また、通常80以下、好ましくは70以下である。
さらに、成分2の示差走査熱量計DSCで観測される融点は、100℃未満か、または融点が観測されない。ここで、融点が観測されないとは、−150〜200℃の範囲において、結晶融解熱量が1J/g以上の結晶融解ピークが観測されないことをいう。
成分2において、コモノマーとして用いられるα−オレフィンとしては、例えば、エチレン及び/又は炭素数4〜20のα−オレフィンが好ましい。なお、α−オレフィンは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
成分2は、プロピレン由来の単位を通常45モル%以上、好ましくは56モル%以上、また、通常92モル%以下、好ましくは90モル%以下含み、コモノマーとして用いられるα−オレフィン由来の単位を通常8モル%以上、好ましくは10モル%以上、また、通常55モル%以下、好ましくは44モル%以下含む。
成分2は、プロピレン由来の単位を通常45モル%以上、好ましくは56モル%以上、また、通常92モル%以下、好ましくは90モル%以下含み、コモノマーとして用いられるα−オレフィン由来の単位を通常8モル%以上、好ましくは10モル%以上、また、通常55モル%以下、好ましくは44モル%以下含む。
成分2は、ASTM D 1238に準拠して、230℃、荷重2.16kgで測定されるメルトフローレート(MFR)が、通常0.01g/10分以上、好ましくは0.05g/10分以上であり、また、通常100g/10分以下、好ましくは50g/10分以下である。
成分2は、JIS K6301に準拠して、JIS3号ダンベルを用い、スパン間:30mm、引っ張り速度:30mm/minで、23℃にて測定した、100%歪での応力(M100)が、通常4MPa以下、好ましくは3MPa以下、更に好ましくは2MPa以下である。軟質プロピレン系共重合体がこのような範囲にあると柔軟性、透明性、ゴム弾性に優れる。
成分2は、X線回折で測定した結晶化度が、通常20%以下、好ましくは15%以下であり、また、通常0%以上である。
また、成分2は単一のガラス転移温度Tgを有し、かつ示差走査熱量計(DSC)によって測定したガラス転移温度Tgが、通常−10℃以下、好ましくは−15℃以下の範囲にあることが望ましい。成分2のガラス転移温度Tgが前記範囲内にあると、耐寒性、低温特性に優れる。
また、成分2は単一のガラス転移温度Tgを有し、かつ示差走査熱量計(DSC)によって測定したガラス転移温度Tgが、通常−10℃以下、好ましくは−15℃以下の範囲にあることが望ましい。成分2のガラス転移温度Tgが前記範囲内にあると、耐寒性、低温特性に優れる。
成分2のGPCにより測定した分子量分布(Mw/Mn、ポリスチレン換算、Mw:重量平均分子量、Mn:数平均分子量)は、4.0以下であることが好ましく、より好ましくは3.0以下、さらに好ましくは2.5以下である。
また、成分2は、示差走査型熱量計(DSC)における吸熱曲線において融点(Tm、℃)が存在する場合には、通常、融解熱量ΔHが30J/g以下であり、かつC3(プロピレン)含量(mol%)と融解熱量ΔH(J/g)の関係において以下の関係式が成り立つことが好ましい。
ΔH<345Ln(C3含量mol%)−1492、
(ただしこの場合、76≦C3含量(mol%)≦90)
ΔH<345Ln(C3含量mol%)−1492、
(ただしこの場合、76≦C3含量(mol%)≦90)
成分2の好ましい具体例として、以下のプロピレン・エチレン・α−オレフィン共重合体を挙げることができる。このようなプロピレン・エチレン・α−オレフィン共重合体を用いることで、柔軟性、耐熱性、機械強度、太陽電池封止性および透明性が良好な封止材5が得られる。ここで、太陽電池封止性とは、良好な柔軟性により、太陽電池素子6を充填する際の素子の割れ率を低減できることをいう。
プロピレン・エチレン・α−オレフィン共重合体としては、プロピレン由来の構成単位を通常45モル%以上、好ましくは56モル%以上、より好ましくは61モル%以上、また、通常92モル%以下、好ましくは90モル%以下、より好ましくは86モル%以下含み、さらにエチレン由来の構成単位を通常5モル%以上、好ましくは8モル%以上、また、通常25モル%以下、好ましくは14モル%以下、より好ましくは14モル%以下含み、炭素数4〜20のα−オレフィン由来の構成単位を通常3モル%以上、好ましくは5モル%以上、より好ましくは6モル%以上、また、通常30モル%以下、好ましくは25モル%以下含むものが好ましい。α−オレフィンに関しては、1−ブテンが特に好ましい。
プロピレン由来の構成単位、エチレン由来の構成単位、および炭素数4〜20のα−オレフィン由来の構成単位を上記の量で含有するプロピレン・エチレン・α−オレフィン共重合体(成分2)は、プロピレン系重合体(成分1)との相溶性が良好となり、得られる封止材5は、充分な透明性、柔軟性、耐熱性および耐傷付性を発揮する。
上記の成分1および成分2が配合された熱可塑性樹脂組成物は、メルトフローレート(ASTM D 1238、230度、荷重2.16kg)が、通常0.0001g/10分以上であり、また、通常1000g/10分以下、好ましくは900g/10分以下、より好ましくは800g/10分以下である。
成分1および成分2が配合された熱可塑性樹脂組成物の融点は、通常100℃以上、好ましくは110℃以上である。また通常140℃以下、好ましくは135℃以下である。
また成分1および成分2が配合された熱可塑性樹脂組成物の密度は、0.98g/cm3以下が好ましく、0.95g/cm3以下がより好ましく、0.94g/cm3以下がさらに好ましい。
成分1および成分2が配合された熱可塑性樹脂組成物の融点は、通常100℃以上、好ましくは110℃以上である。また通常140℃以下、好ましくは135℃以下である。
また成分1および成分2が配合された熱可塑性樹脂組成物の密度は、0.98g/cm3以下が好ましく、0.95g/cm3以下がより好ましく、0.94g/cm3以下がさらに好ましい。
この封止材5においては、上記成分1および成分2に、プラスチックなどに対する接着促進剤としてカップリング剤を配合することが可能である。カップリング剤は、シラン系、チタネート系、クロム系の各カップリング剤が好ましく用いられ、特にシラン系のカップリング剤(シランカップリング剤)が好適に用いられる。
上記シランカップリング剤としては公知のものが使用でき、特に制限はないが、例えば、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(β−メトキシーエトキシシラン)、γ−グリシドキシプロピルートリピルトリーメトキシシラン、γ−アミノプロピルトリエトキシシランなどが挙げられる。なお、カップリング剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
また、これらは熱可塑性樹脂組成物(成分1および成分2の合計量)100重量部に対して、上記シランカップリング剤を通常0.1重量部以上、また、通常5重量部以下、好ましくは3重量部以下含むことが望ましい。
また、上記カップリング剤は、有機過酸化物を用いて、当該熱可塑性樹脂組成物にグラフト反応させてもよい。この場合、熱可塑性樹脂組成物(成分1および成分2の合計量)100重量部に対して、上記カップリング剤を0.1〜5重量部含むことが望ましい。シラングラフト化された熱可塑性樹脂組成物を用いても、ガラス、プラスチックに対して、シランカップリング剤ブレンドと同等以上の接着性が得られる。
有機過酸化物を用いる場合、有機過酸化物は、熱可塑性樹脂組成物(成分1および成分2の合計量)100重量部に対して、通常0.001重量部以上、好ましくは0.01重量部以上、また、通常5重量部以下、好ましくは3重量部以下である。
有機過酸化物を用いる場合、有機過酸化物は、熱可塑性樹脂組成物(成分1および成分2の合計量)100重量部に対して、通常0.001重量部以上、好ましくは0.01重量部以上、また、通常5重量部以下、好ましくは3重量部以下である。
有機過酸化物としては公知のものが使用でき、特に制限はないが、例えば、ジラウロイルパーオキサイド、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、ジベンゾイルパーオキサイド、t−アミルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシマレイン酸、などが挙げられる。なお、有機過酸化物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
また、封止材5としてエチレン・α−オレフィン共重合体からなる共重合体を用いることもできる。この共重合体としては、下記に示す成分Aおよび成分Bからなる封止材用樹脂組成物と基材とを積層してなる、ホットタック性が5〜25℃のラミネートフィルムが例示される。
・成分A:エチレン系樹脂。
・成分B:以下の(a)〜(d)の性状を有するエチレンとα−オレフィンとの共重合体。
(a)密度が0.86〜0.935g/cm3。
(b)メルトフローレート(MFR)が1〜50g/10分。
(c)温度上昇溶離分別(TREF)によって得られる溶出曲線のピークが1つであり;該ピーク温度が100℃以下である。
(d)温度上昇溶離分別(TREF)による積分溶出量が、90℃のとき90%以上である。
・成分A:エチレン系樹脂。
・成分B:以下の(a)〜(d)の性状を有するエチレンとα−オレフィンとの共重合体。
(a)密度が0.86〜0.935g/cm3。
(b)メルトフローレート(MFR)が1〜50g/10分。
(c)温度上昇溶離分別(TREF)によって得られる溶出曲線のピークが1つであり;該ピーク温度が100℃以下である。
(d)温度上昇溶離分別(TREF)による積分溶出量が、90℃のとき90%以上である。
(A)成分A(エチレン系樹脂)
封止材用樹脂組成物を構成する成分Aとしてのエチレン系樹脂の例としては、いわゆるラジカル重合法で製造される高圧法低密度ポリエチレン、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸共重合体、エチレン・アクリル酸エステル共重合体、エチレン・フッ化ビニル共重合体などが挙げられる。また、イオン重合法で製造される、いわゆる線状低密度ポリエチレン、高密度ポリエチレンなどエチレンを主成分とする重合体または共重合体も挙げられる。中でも好ましくは、エチレン・酢酸ビニル共重合体、高圧法低密度ポリエチレンである。なお、これらは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
封止材用樹脂組成物を構成する成分Aとしてのエチレン系樹脂の例としては、いわゆるラジカル重合法で製造される高圧法低密度ポリエチレン、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸共重合体、エチレン・アクリル酸エステル共重合体、エチレン・フッ化ビニル共重合体などが挙げられる。また、イオン重合法で製造される、いわゆる線状低密度ポリエチレン、高密度ポリエチレンなどエチレンを主成分とする重合体または共重合体も挙げられる。中でも好ましくは、エチレン・酢酸ビニル共重合体、高圧法低密度ポリエチレンである。なお、これらは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
封止材用樹脂組成物を構成する成分Aとしてのエチレン系樹脂がエチレン・酢酸ビニル共重合体である場合、下記の性状を有するものが好適である。
(i)メルトフローレート(MFR)
封止材用樹脂組成物を構成する成分Aとしてのエチレン・酢酸ビニル共重合体のJIS K7210によるMFR(メルトフローレート:Melt Flow rate:溶融流量)は、通常1g/10分以上、好ましくは2g/10分以上、より好ましくは3g/10分以上であり、また、通常50g/10分以下、好ましくは30g/10分以下、より好ましくは20g/10分以下である。MFRを高くすることで、成分Bとブレンドした際の透明性が高まる傾向があり、MFRを低くする事で、成形が容易となる傾向がある。
(i)メルトフローレート(MFR)
封止材用樹脂組成物を構成する成分Aとしてのエチレン・酢酸ビニル共重合体のJIS K7210によるMFR(メルトフローレート:Melt Flow rate:溶融流量)は、通常1g/10分以上、好ましくは2g/10分以上、より好ましくは3g/10分以上であり、また、通常50g/10分以下、好ましくは30g/10分以下、より好ましくは20g/10分以下である。MFRを高くすることで、成分Bとブレンドした際の透明性が高まる傾向があり、MFRを低くする事で、成形が容易となる傾向がある。
(ii)酢酸ビニル含量
封止材用樹脂組成物を構成する成分Aとしてのエチレン・酢酸ビニル共重合体の酢酸ビニル含量は、通常3重量%以上、好ましくは4重量%以上、より好ましくは5重量%以上であり、また、通常30重量%以下、好ましくは20重量%以下、より好ましくは15重量%以下である。酢酸ビニル含量を多くすることでヒートシール性が高まる傾向にあり、酢酸ビニル含量を少なくすることで封止材5のべたつきを抑えることができる。
封止材用樹脂組成物を構成する成分Aとしてのエチレン・酢酸ビニル共重合体の酢酸ビニル含量は、通常3重量%以上、好ましくは4重量%以上、より好ましくは5重量%以上であり、また、通常30重量%以下、好ましくは20重量%以下、より好ましくは15重量%以下である。酢酸ビニル含量を多くすることでヒートシール性が高まる傾向にあり、酢酸ビニル含量を少なくすることで封止材5のべたつきを抑えることができる。
封止材用樹脂組成物を構成する成分Aとしてのエチレン系樹脂が高圧法低密度ポリエチレンである場合は、下記の性状を有するものが好適である。
(i)メルトフローレート(MFR)
封止材用樹脂組成物を構成する成分Aとしての高圧法低密度ポリエチレンのJIS K7210によるMFR(メルトフローレート:Melt Flow rate:溶融流量)は、通常1g/10分以上、好ましくは2g/10分以上、より好ましくは3g/10分以上であり、また、通常50g/10分以下、好ましくは30g/10分以下、より好ましくは20g/10分以下である。MFRを高くすることで押出が容易となる傾向にあり、MFRを低くすることで柔らかくなりすぎず垂れなどが起こりにくく成形性が高まる。
(i)メルトフローレート(MFR)
封止材用樹脂組成物を構成する成分Aとしての高圧法低密度ポリエチレンのJIS K7210によるMFR(メルトフローレート:Melt Flow rate:溶融流量)は、通常1g/10分以上、好ましくは2g/10分以上、より好ましくは3g/10分以上であり、また、通常50g/10分以下、好ましくは30g/10分以下、より好ましくは20g/10分以下である。MFRを高くすることで押出が容易となる傾向にあり、MFRを低くすることで柔らかくなりすぎず垂れなどが起こりにくく成形性が高まる。
(ii)密度
封止材用樹脂組成物を構成する成分Aとしての高圧法低密度ポリエチレンのJIS K7112による密度は、通常0.915g/cm3以上、好ましくは0.916g/cm3以上、より好ましくは0.917g/cm3以上であり、また、通常0.93g/cm3以下、好ましくは0.925g/cm3以下、より好ましくは0.923g/cm3以下である。密度を高くすることで封止材5のべたつきが抑制される傾向にあり、密度を低くすることでヒートシール性が高まる傾向にある。
封止材用樹脂組成物を構成する成分Aとしての高圧法低密度ポリエチレンのJIS K7112による密度は、通常0.915g/cm3以上、好ましくは0.916g/cm3以上、より好ましくは0.917g/cm3以上であり、また、通常0.93g/cm3以下、好ましくは0.925g/cm3以下、より好ましくは0.923g/cm3以下である。密度を高くすることで封止材5のべたつきが抑制される傾向にあり、密度を低くすることでヒートシール性が高まる傾向にある。
封止材用樹脂組成物を構成する成分Aとしての高圧法低密度ポリエチレンは、市販品の中から上記物性を示すものを適宜選択して使用することが出来る。
(B)成分B(エチレン・α−オレフィン共重合体)
封止材用樹脂組成物を構成する成分Bは、上記成分A以外のエチレン・α−オレフィン共重合体である。成分Bは、下記の性状を有するものが好ましい。
封止材用樹脂組成物を構成する成分Bは、上記成分A以外のエチレン・α−オレフィン共重合体である。成分Bは、下記の性状を有するものが好ましい。
(i)密度
封止材用樹脂組成物を構成する成分Bとしてのエチレン・α−オレフィン共重合体のJlS K7112による密度は、通常0.86g/cm3以上、好ましくは0.87g/cm3以上、より好ましくは0.88g/cm3以上であり、また、通常0.935g/cm3以下、好ましくは0.915g/cm3以下、より好ましくは0.91g/cm3以下である。密度を高くすることでフィルムとしたときのべたつきが抑制される傾向にあり、密度を低くすることでヒートシール性が高まる傾向にある。
封止材用樹脂組成物を構成する成分Bとしてのエチレン・α−オレフィン共重合体のJlS K7112による密度は、通常0.86g/cm3以上、好ましくは0.87g/cm3以上、より好ましくは0.88g/cm3以上であり、また、通常0.935g/cm3以下、好ましくは0.915g/cm3以下、より好ましくは0.91g/cm3以下である。密度を高くすることでフィルムとしたときのべたつきが抑制される傾向にあり、密度を低くすることでヒートシール性が高まる傾向にある。
(ii)メルトフローレート(MFR)
封止材用樹脂組成物を構成する成分Bとしてのエチレン・α−オレフィン共重合体のJlS K7210によるMFR(メルトフローレート:Melt Flow rate:溶融流量)は、通常1g/10分以上、好ましくは2g/10分以上、より好ましくは3g/10分以上であり、また、通常50g/10分以下、好ましくは30g/10分以下、より好ましくは20g/10分以下である。MFRを高くすることで押出が容易となる傾向にあり、MFRを低くすることで柔らかくなりすぎず垂れなどが起こりにくく成形性が高まる。
封止材用樹脂組成物を構成する成分Bとしてのエチレン・α−オレフィン共重合体のJlS K7210によるMFR(メルトフローレート:Melt Flow rate:溶融流量)は、通常1g/10分以上、好ましくは2g/10分以上、より好ましくは3g/10分以上であり、また、通常50g/10分以下、好ましくは30g/10分以下、より好ましくは20g/10分以下である。MFRを高くすることで押出が容易となる傾向にあり、MFRを低くすることで柔らかくなりすぎず垂れなどが起こりにくく成形性が高まる。
ここでα−オレフィンとしては、炭素数4〜40のα−オレフィンが好ましい。中でも、α−オレフィンの中でも、炭素数が通常4以上、好ましくは6以上であり、通常12以下、好ましくは10以下のものが望ましい。その例を挙げると、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−へプテン、4−メチルペンテン−1、4−メチルヘキセン−1、4,4−ジメチルペンテン−1等が挙げられる。なお、α−オレフィンは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
α−オレフィンとエチレンとの比率は、α−オレフィンを通常2重量%以上、好ましくは5重量%以上、より好ましくは10重量%以上、また、通常60重量%以下、好ましくは50重量%以下、より好ましくは30重量%以下とし、エチレンを通常40重量%以上、好ましくは50重量%以上、より好ましくは70重量%以上、また、通常98重量%以下、好ましくは95重量%以下、より好ましくは90重量%以下とすることが望ましい。
成分Aと成分Bとの配合割合(成分A/成分B)は、重量比で、通常50/50以上、好ましくは55/45以上、より好ましくは60/40以上であり、また、通常99/1以下、好ましくは90/10以下、より好ましくは85/15以下である。成分Bの配合量を多くすることで透明性やヒートシール性が高まる傾向にあり、成分Bの配合量を少なくすることでフィルムの作業性が高まる傾向にある。
成分Aと成分Bを配合して生成される封止材用樹脂組成物のメルトフローレート(MFR)は、通常2g/10分以上、好ましくは3g/10分以上であり、通常50g/10分以下、好ましくは40g/10分以下である。なおMFRの測定と評価は、JIS K7210(190℃、2.16kg荷重)に準拠する方法によって実施することができる。
封止材用樹脂組成物の融点は、好ましくは50℃以上、より好ましくは55℃以上であり、また、通常300℃以下、好ましくは250℃以下、さらに好ましくは200℃以下である。融点を高くすることで薄膜太陽電池12の使用時に融解・劣化する可能性を低減できる。
封止材用樹脂組成物の密度は、0.80g/cm3以上が好ましく、0.85g/cm3以上がより好ましく、また、0.98g/cm3以下が好ましく、0.95g/cm3以下がより好ましく、0.94g/cm3以下がさらに好ましい。なお、密度の測定と評価は、JIS K7112に準拠する方法によって実施することができる。
さらに、エチレン・α−オレフィン共重合体を用いた封止材5において、前記プロピレン・エチレン・α−オレフィン共重合体を用いた場合と同様に、カップリング剤を用いることが可能である。
上述した封止材5は、材料由来の分解ガスを発生することがないため、太陽電池素子6への悪影響がなく、良好な耐熱性、機械強度、柔軟性(太陽電池封止性)および透明性を有する。また、材料の架橋工程を必要としないため、シート成形時および薄膜太陽電池12の製造時間が大きく短縮できるとともに、使用後の薄膜太陽電池12のリサイクルも容易となる。
なお、封止材5は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。また、封止材5は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。
封止材5の厚みは、通常2μm以上、好ましくは5μm以上、より好ましくは10μm以上であり、また、通常500μm以下、好ましくは300μm以下、より好ましくは100μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まりまた光線透過率が高まる傾向にある。
封止材5を設ける位置に制限は無いが、通常は太陽電池素子6を挟み込むように設ける。太陽電池素子6を確実に保護するためである。本実施形態では、太陽電池素子6の正面及び背面にそれぞれ封止材5及び封止材7を設けるようにしている。
[太陽電池素子6]
太陽電池素子6は、光を受けて発電する素子である。本発明では、太陽電池素子6として、化合物半導体系太陽電池素子又は有機太陽電池素子を用いる。さらに、化合物半導体系太陽電池素子のうちでも、例えばS、Se、Teなどカルコゲン元素を含むカルコゲナイド系太陽電池素子が好ましく、なかでもI−III−VI2族半導体系(カルコパイライト系)太陽電池素子が好ましく、特にI族元素としてCuを用いたCu−III−VI2族半導体系太陽電池素子が、Si結晶型太陽電池より理論的に高い光電変換効率を有し好ましい。
太陽電池素子6は、光を受けて発電する素子である。本発明では、太陽電池素子6として、化合物半導体系太陽電池素子又は有機太陽電池素子を用いる。さらに、化合物半導体系太陽電池素子のうちでも、例えばS、Se、Teなどカルコゲン元素を含むカルコゲナイド系太陽電池素子が好ましく、なかでもI−III−VI2族半導体系(カルコパイライト系)太陽電池素子が好ましく、特にI族元素としてCuを用いたCu−III−VI2族半導体系太陽電池素子が、Si結晶型太陽電池より理論的に高い光電変換効率を有し好ましい。
〔Cu−III−VI2族半導体系太陽電池素子〕
Cu−III−VI2族半導体系太陽電池素子は、構成材料としてCu−III−VI2族半導体を有する太陽電池素子をいう。Cu−III−VI2族半導体とは、CuとIII族元素とVI族元素が1:1:2の割合で含まれる化合物からなる半導体を言い、例えばCuInSe2、CuGaSe2、Cu(In1−xGax)Se2、CuInS2、CuGaS2、Cu(In1−xGax)S2、CuInTe2、CuGaTe2、Cu(In1−xGax)Te2が挙げられる。これらの2種以上の混合物であってもよい。中でも特に、CIS系太陽電池素子及びCIGS系太陽電池素子が好ましい。
Cu−III−VI2族半導体系太陽電池素子は、構成材料としてCu−III−VI2族半導体を有する太陽電池素子をいう。Cu−III−VI2族半導体とは、CuとIII族元素とVI族元素が1:1:2の割合で含まれる化合物からなる半導体を言い、例えばCuInSe2、CuGaSe2、Cu(In1−xGax)Se2、CuInS2、CuGaS2、Cu(In1−xGax)S2、CuInTe2、CuGaTe2、Cu(In1−xGax)Te2が挙げられる。これらの2種以上の混合物であってもよい。中でも特に、CIS系太陽電池素子及びCIGS系太陽電池素子が好ましい。
CIS系太陽電池素子とは、構成材料としてCIS系半導体を有する太陽電池をいい、CIS系半導体とは、CuIn(Se1−ySy)2のことをいう。なお、yは0以上1以下の数を表す。すなわち、CuInSe2、CuInS2、又はこれらが混合状態にあるもののことをいう。Seに代えてSを用いると安全性が高まり好ましい。
また、CIGS系太陽電池素子とは、構成材料としてCIGS系半導体を有する太陽電池をいう。ここでCIGS系半導体とは、Cu(In1−xGax)(Se1−ySy)2のことをいう。なお、xは0より大きく1未満の数を、yは0以上1以下の数をそれぞれ表す。またCu(In1−xGax)Se2は、通常、CuInSe2とCuGaSe2との混晶となっている。尚、xの範囲は、通常は0より大きく、好ましくは0.05より大きく、より好ましくは0.1より大きく、また、通常0.8未満、好ましくは0.5未満、より好ましくは0.4未満である。
また、CIGS系太陽電池素子とは、構成材料としてCIGS系半導体を有する太陽電池をいう。ここでCIGS系半導体とは、Cu(In1−xGax)(Se1−ySy)2のことをいう。なお、xは0より大きく1未満の数を、yは0以上1以下の数をそれぞれ表す。またCu(In1−xGax)Se2は、通常、CuInSe2とCuGaSe2との混晶となっている。尚、xの範囲は、通常は0より大きく、好ましくは0.05より大きく、より好ましくは0.1より大きく、また、通常0.8未満、好ましくは0.5未満、より好ましくは0.4未満である。
前記のCu−III−VI2族半導体は通常はp型半導体として機能する。ここでp型及びn型の半導体について説明する。半導体においては、電荷を輸送するキャリアは電子と正孔の2種類存在し、その密度の大きいほうが多数キャリアと呼ばれる。多数キャリアは、通常は半導体の種類やドーピング状態によって決定される。また、半導体のタイプとしては、多数キャリアが、電子であるものはn型、正孔であるものはp型、つり合っているものはi型と呼ばれる。
ただし、p型、n型は半導体の種類により絶対的に決まるものではない。例えば、同じ型の半導体を組み合わせても、そのエネルギー準位(HOMO準位、LUMO準位、フェルミ準位)やドーピング状態の関係で、一方がp型、もう一方がn型として動作することもある。
ただし、p型、n型は半導体の種類により絶対的に決まるものではない。例えば、同じ型の半導体を組み合わせても、そのエネルギー準位(HOMO準位、LUMO準位、フェルミ準位)やドーピング状態の関係で、一方がp型、もう一方がn型として動作することもある。
半導体が示す半導体特性の程度は、キャリア移動度の値では、通常10−7cm2/Vs以上、好ましくは10−5cm2/Vs以上である。電気伝導度はキャリア移動度×キャリア密度で定義されるため、ある程度の大きさのキャリア移動度を有する材料であれば、例えば熱、ドーピング、電極からの注入などによりキャリアが当該材料内に存在すれば、その材料は電荷を輸送することができるのである。なお、半導体のキャリア移動度は大きいほど望ましい。
前記のCu−III−VI2族半導体は、通常、太陽電池素子6を構成する層のうちの少なくとも1つに含有され、太陽電池素子6は当該半導体を含有する層で光を吸収して電気が発生するようになっている。具体的な太陽電池素子6の構成を以下に例を挙げて説明する。ただし、本発明に係る太陽電池素子6は以下に説明する例に限定されるものではない。
例えば、Cu−III−VI2族半導体系太陽電池素子は、少なくとも、一対の電極間に光吸収層とバッファ層とを備えて構成される。このような構成の太陽電池素子では、光吸収層において光が吸収されて電気が発生し、発生した電気が電極から取り出されるようになっている。
・電極
電極は、導電性を有する任意の材料により形成することが可能である。電極の材料の例を挙げると、白金、金、銀、アルミニウム、クロム、ニッケル、銅、チタン、マグネシウム、カルシウム、バリウム、ナトリウム等の金属あるいはそれらの合金;酸化インジウムや酸化錫等の金属酸化物、あるいはその合金(ITO);ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン等の導電性高分子;前記導電性高分子に、塩酸、硫酸、スルホン酸等の酸、FeCl3等のルイス酸、ヨウ素等のハロゲン原子、ナトリウム、カリウム等の金属原子などのドーパントを含有させたもの;金属粒子、カーボンブラック、フラーレン、カーボンナノチューブ等の導電性粒子をポリマーバインダー等のマトリクスに分散した導電性の複合材料などが挙げられる。なお、電極の材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
電極は、導電性を有する任意の材料により形成することが可能である。電極の材料の例を挙げると、白金、金、銀、アルミニウム、クロム、ニッケル、銅、チタン、マグネシウム、カルシウム、バリウム、ナトリウム等の金属あるいはそれらの合金;酸化インジウムや酸化錫等の金属酸化物、あるいはその合金(ITO);ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン等の導電性高分子;前記導電性高分子に、塩酸、硫酸、スルホン酸等の酸、FeCl3等のルイス酸、ヨウ素等のハロゲン原子、ナトリウム、カリウム等の金属原子などのドーパントを含有させたもの;金属粒子、カーボンブラック、フラーレン、カーボンナノチューブ等の導電性粒子をポリマーバインダー等のマトリクスに分散した導電性の複合材料などが挙げられる。なお、電極の材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
また、太陽電池素子6において、電極は少なくとも一対(2個)設けられる。この際、一対の電極のうち、少なくとも受光面側の電極は、発電のために光を透過させるため透明であるようにすることが好ましい。但し、発電層の面積に比べて電極の面積が小さいなど、電極が透明でなくても発電性能に著しく悪影響を与えない場合は必ずしも透明でなくてもよい。透明な電極の材料を挙げると、例えば、ITO、酸化インジウム亜鉛(IZO)等の酸化物;金属薄膜などが挙げられる。また、この際、光の透過率の具体的範囲に制限は無いが、太陽電池素子6の発電効率を考慮すると、80%以上が好ましい。なお、光の透過率は、通常の分光光度計で測定可能できる。
電極は、光吸収により生じた正孔及び電子を捕集する機能を有するものである。したがって、電極には、正孔及び電子を捕集するのに適した電極材料を用いることが好ましい。正孔の捕集に適した電極の材料を挙げると、例えば、Au、ITO等の高い仕事関数を有する材料が挙げられる。一方、電子の捕集に適した電極の材料を挙げると、例えば、Alのような低い仕事関数を有する材料が挙げられる。
なお、電極の形成方法に制限はない。例えば、真空蒸着、スパッタ等のドライプロセスにより形成することができる。また、例えば、導電性インク等を用いたウェットプロセスにより形成することもできる。この際、導電性インクとしては任意のものを使用することができ、例えば、導電性高分子、金属粒子分散液等を用いることができる。
さらに、電極は2層以上積層してもよく、表面処理による特性(電気特性やぬれ特性等)を改良してもよい。
さらに、電極は2層以上積層してもよく、表面処理による特性(電気特性やぬれ特性等)を改良してもよい。
・光吸収層
光吸収層は、上述したCu−III−VI2族半導体を含有する層である。通常、Cu−III−VI2族半導体はp型半導体として機能するため、後述するバッファ層をn型半導体で形成することにより、光を吸収して電気を発生させることが可能となっている。なお、Cu−III−VI2族半導体はそれぞれ1種で形成してもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。また、CIS系半導体とCIGS系半導体とを組み合わせても良い。
光吸収層は、上述したCu−III−VI2族半導体を含有する層である。通常、Cu−III−VI2族半導体はp型半導体として機能するため、後述するバッファ層をn型半導体で形成することにより、光を吸収して電気を発生させることが可能となっている。なお、Cu−III−VI2族半導体はそれぞれ1種で形成してもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。また、CIS系半導体とCIGS系半導体とを組み合わせても良い。
通常は光吸収層はCu−III−VI2族半導体のみにより形成するが、本発明の効果を著しく損なわない限り、その他の成分を含有していても良い。例えば、Ag等の添加剤などが挙げられる。なお、その他の成分は1種を含んでいてもよく、2種以上を任意の組み合わせ及び比率で含んでいても良い。
光吸収層の形成方法に制限は無い。例えば、真空蒸着、スパッタ等により形成することができる。
さらに、光吸収層は通常1層のみを形成するが、2層以上積層してもよい。
さらに、光吸収層は通常1層のみを形成するが、2層以上積層してもよい。
・バッファ層
バッファ層は、光吸収層と接するように積層される層であり、光吸収層が有する半導体がp型であればn型半導体により形成され、光吸収層が有する半導体がn型であればp型半導体により形成される。通常、Cu−III−VI2族半導体はp型半導体であるので、Cu−III−VI2族半導体系太陽電池素子においてバッファ層はn型半導体により形成される。
バッファ層は、光吸収層と接するように積層される層であり、光吸収層が有する半導体がp型であればn型半導体により形成され、光吸収層が有する半導体がn型であればp型半導体により形成される。通常、Cu−III−VI2族半導体はp型半導体であるので、Cu−III−VI2族半導体系太陽電池素子においてバッファ層はn型半導体により形成される。
バッファ層を形成する半導体の具体例を挙げると、CdS、Zn1−xMgxO(0<x<0.8)、ZnS(O,OH)、InSなどが挙げられる。また、前述のCuInS2は作製条件により化学量論比からずれた組成とすることでn型半導体層としても形成可能であるため、これをバッファ層としてもよい。なお、バッファ層を形成する半導体は、1種でもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
バッファ層の形成方法に制限は無い。例えば、真空蒸着、スパッタ等により形成することができる。
さらに、バッファ層は通常1層のみを形成するが、2層以上積層してもよい。
さらに、バッファ層は通常1層のみを形成するが、2層以上積層してもよい。
〔有機太陽電池素子〕
有機太陽電池素子とは、構成材料として有機半導体を有する太陽電池素子をいう。ここで有機半導体とは、例えば、ナフタレン(或いはペリレン)テトラカルボン酸ジイミド、フラーレン(C60)およびその誘導体等が挙げられる。
また、例えば、ポリチオフェン、ポリフルオレン、ポリチエニレンビニレン、ポリアセチレン、ポリアニリン等の共役高分子;アルキル置換されたオリゴチオフェン等の高分子半導体も挙げられる。これらは、有機溶媒に可溶な半導体であり、有機太陽電池素子の製造プロセスにおいて塗布法を使用できるため、好ましい。
さらに、例えば、ナフタセン、ペンタセン、ピレン、フラーレン等の縮合芳香族炭化水素;α−セキシチオフェン等のチオフェン環を4個以上含むオリゴチオフェン類;チオフェン環、ベンゼン環、フルオレン環、ナフタレン環、アントラセン環、チアゾール環、チアジアゾール環、ベンゾチアゾール環を合計4個以上連結したもの;ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の、芳香族カルボン酸無水物やそのイミド化物;銅フタロシアニン、パーフルオロ銅フタロシアニン等のフタロシアニン化合物、テトラベンゾポルフィリン等のポルフィリン化合物及びその金属塩等の大環状化合物なども挙げられる。
その他、国際公開第2007/126102号パンフレットに記載のものも使用できる。
有機太陽電池素子とは、構成材料として有機半導体を有する太陽電池素子をいう。ここで有機半導体とは、例えば、ナフタレン(或いはペリレン)テトラカルボン酸ジイミド、フラーレン(C60)およびその誘導体等が挙げられる。
また、例えば、ポリチオフェン、ポリフルオレン、ポリチエニレンビニレン、ポリアセチレン、ポリアニリン等の共役高分子;アルキル置換されたオリゴチオフェン等の高分子半導体も挙げられる。これらは、有機溶媒に可溶な半導体であり、有機太陽電池素子の製造プロセスにおいて塗布法を使用できるため、好ましい。
さらに、例えば、ナフタセン、ペンタセン、ピレン、フラーレン等の縮合芳香族炭化水素;α−セキシチオフェン等のチオフェン環を4個以上含むオリゴチオフェン類;チオフェン環、ベンゼン環、フルオレン環、ナフタレン環、アントラセン環、チアゾール環、チアジアゾール環、ベンゾチアゾール環を合計4個以上連結したもの;ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の、芳香族カルボン酸無水物やそのイミド化物;銅フタロシアニン、パーフルオロ銅フタロシアニン等のフタロシアニン化合物、テトラベンゾポルフィリン等のポルフィリン化合物及びその金属塩等の大環状化合物なども挙げられる。
その他、国際公開第2007/126102号パンフレットに記載のものも使用できる。
有機半導体は種類や使用状態に応じてp型、n型、i型のいずれかとして機能する。
また、有機半導体が示す半導体特性の程度は、Cu−III−VI2族半導体と同じ程度であることが好ましい。
また、有機半導体が示す半導体特性の程度は、Cu−III−VI2族半導体と同じ程度であることが好ましい。
前記の有機半導体は、通常、太陽電池素子6を構成する層のうちの少なくとも1つに含有され、太陽電池素子6は当該半導体を含有する層で光を吸収して電気が発生するようになっている。具体的な太陽電池素子6の構成を以下に例を挙げて説明する。ただし、本発明に係る太陽電池素子6は以下に説明する例に限定されるものではない。
例えば、有機太陽電池素子は、少なくとも、一対の電極間に活性層を備えて構成される。このような構成の太陽電池素子では、活性層において光が吸収されて電気が発生し、発生した電気が電極から取り出されるようになっている。
・電極
有機太陽電池素子においても、電極はCu−III−VI2族半導体系太陽電池素子と同様である。
有機太陽電池素子においても、電極はCu−III−VI2族半導体系太陽電池素子と同様である。
・活性層
活性層は、半導体を含有する層であり、光を吸収して電荷を分離する層である。この活性層は、単層の膜のみによって構成されていてもよく、2以上の積層膜によって構成されていても良い。有機太陽電池素子においては、前記の半導体のうち少なくとも1種、好ましくは全てとして有機半導体を用いる。
活性層は、半導体を含有する層であり、光を吸収して電荷を分離する層である。この活性層は、単層の膜のみによって構成されていてもよく、2以上の積層膜によって構成されていても良い。有機太陽電池素子においては、前記の半導体のうち少なくとも1種、好ましくは全てとして有機半導体を用いる。
少なくともp型の半導体及びn型の半導体が含有されていれば、活性層の具体的な構成は任意である。例えば、n型の半導体とp型の半導体とを別々の膜に含有させるようにしても良く、n型の半導体とp型の半導体とを同じ膜に含有させても良い。また、n型の半導体及びp型の半導体は、それぞれ、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
さらに、有機半導体は、通常、粒子状、ファイバー状等の凝集状態で存在する。この際、半導体の粒径は、通常2nm以上、好ましくは5nm以上、また、通常10μm以下、好ましくは1μm以下である。有機太陽電池素子においてはこのような小粒径の粒子を活性層内で良好に分散させることが可能であり、特に、国際公開第2007/126102号パンフレット等に記載されたように、潜在顔料を用いて製造した有機太陽電池素子においては特に良好に分散させることが可能である。
潜在顔料とは、顔料の化学構造の異なる前駆体のことをいう。潜在顔料に対して例えば加熱や光照射等の外的な刺激を与えることにより、潜在顔料の化学構造は変化し、顔料に変換されるものである。
また、潜在顔料は、成膜性に優れるものが好ましい。成膜性が良好でない顔料であっても、潜在顔料の状態で成膜してから顔料に変換することにより、成膜時のコストを抑制することができるからである。特に、塗布プロセスを適用できるようにするためには、当該潜在顔料自体が液状で塗布可能であるか、当該潜在顔料が何らかの溶媒に対して溶解性が高く溶液として塗布可能であることが好ましい。溶解性の好適な範囲を挙げると、潜在顔料の溶媒に対する溶解性は、通常0.1重量%以上、好ましくは0.5重量%以上、より好ましくは1重量%以上である。
さらに、潜在顔料は、容易に顔料に変換できることが好ましい。潜在顔料から顔料への変換工程において、どのような外的な刺激を潜在顔料に与えるかは任意であるが、通常は、熱処理、光照射などを行なう。
また、潜在顔料は、変換工程を経て、高い収率で顔料に変換されることが好ましい。この際、潜在顔料から変換して得られる顔料の収率は有機光電変換素子の性能を著しく損なわない限り任意である。収率の好適な範囲を挙げると、潜在顔料から得られる顔料の収率は高いほど好ましく、通常90%以上、好ましくは95%以上、より好ましくは99%以上である。
潜在顔料を変換して得られる有機半導体は、一般的な溶媒への溶解度は小さい化合物である。ここで、一般的な溶媒への溶解度が小さいとは、例えば、トルエンに対する溶解度が、通常1%以下、好ましくは0.1%以下であることをいう。
また、潜在顔料は、成膜性に優れるものが好ましい。成膜性が良好でない顔料であっても、潜在顔料の状態で成膜してから顔料に変換することにより、成膜時のコストを抑制することができるからである。特に、塗布プロセスを適用できるようにするためには、当該潜在顔料自体が液状で塗布可能であるか、当該潜在顔料が何らかの溶媒に対して溶解性が高く溶液として塗布可能であることが好ましい。溶解性の好適な範囲を挙げると、潜在顔料の溶媒に対する溶解性は、通常0.1重量%以上、好ましくは0.5重量%以上、より好ましくは1重量%以上である。
さらに、潜在顔料は、容易に顔料に変換できることが好ましい。潜在顔料から顔料への変換工程において、どのような外的な刺激を潜在顔料に与えるかは任意であるが、通常は、熱処理、光照射などを行なう。
また、潜在顔料は、変換工程を経て、高い収率で顔料に変換されることが好ましい。この際、潜在顔料から変換して得られる顔料の収率は有機光電変換素子の性能を著しく損なわない限り任意である。収率の好適な範囲を挙げると、潜在顔料から得られる顔料の収率は高いほど好ましく、通常90%以上、好ましくは95%以上、より好ましくは99%以上である。
潜在顔料を変換して得られる有機半導体は、一般的な溶媒への溶解度は小さい化合物である。ここで、一般的な溶媒への溶解度が小さいとは、例えば、トルエンに対する溶解度が、通常1%以下、好ましくは0.1%以下であることをいう。
活性層においては、p型半導体とn型半導体とが相分離して、活性層が相分離構造を有していることが好ましい。活性層が相分離構造を有している場合には、光照射によりキャリア分離が起こり、正孔と電子とが生じた後で、それらが再結合することなく電極にたどりつく確率を高くすることが期待できるからである。このような相分離構造は、半導体として有機半導体と無機半導体とを組み合わせて用いた場合に好適に実現できる。
なお、相分離構造とは、相を構成する材料(例えば、半導体等)が分子レベルで均一に混合しておらず、それぞれの材料が凝集状態をとっている構造であり、その凝集状態の間に界面を有するものである。この相分離構造は、光学顕微鏡、あるいは電子顕微鏡、原子間力顕微鏡(AFM)等の局所的な構造を調べる手法で観察したり、X線回折で、凝集部分に由来する回折を観察したりして確認することができる。
活性層の具体的な構成は、その有機太陽電池素子のタイプにより様々である。活性層の構成の例を挙げると、バルクヘテロ接合型、積層型(ヘテロpn接合型)、ショットキー型などが挙げられる。
バルクヘテロ接合型は、単一の活性層内に、p型の半導体とn型の半導体とを含んで構成されている。そして、p型の半導体とn型の半導体とが相分離した相分離構造となっていて、当該相の界面でキャリア分離が起こり、各相において正電荷(正孔)と負電荷(電子)とが分離、輸送されるものである。
バルクヘテロ接合型の活性層において、その相分離構造は、光吸収過程、励起子の拡散過程、励起子の解離(キャリア分離)過程、キャリア輸送過程などに対する影響がある。したがって、相分離構造を最適化することにより、良好な光電変換効率を実現することができるものと考えられる。
バルクヘテロ接合型の活性層において、その相分離構造は、光吸収過程、励起子の拡散過程、励起子の解離(キャリア分離)過程、キャリア輸送過程などに対する影響がある。したがって、相分離構造を最適化することにより、良好な光電変換効率を実現することができるものと考えられる。
積層型(ヘテロpn接合型)は、活性層が2以上の膜から構成されていて、少なくとも一つの膜がp型の半導体を含有して形成され、他の膜がn型の半導体を含有して形成されているものである。そして、当該p型の半導体を含有する膜とn型の半導体を含有する膜との境界にはp型の半導体とn型の半導体との相界面が形成されて、当該相界面でキャリア分離が起こるようになっている。
また、バルクヘテロ接合型と積層型とを組み合わせることも可能である。例えば、活性層を2以上の膜から構成すると共に、それらの膜の少なくとも一つにp型及びn型の両方の半導体を含有させるとともに、p型の半導体とn型の半導体とが相分離するように構成するのである。この場合、積層した膜間に形成される相界面、及び、p型及びn型の両方の半導体を含有した膜内におけるp型の半導体とn型の半導体との相界面の両方でキャリア分離が生じるようになっている。或いは、この場合、例えば積層した膜間において一方のキャリアをブロックして、電気取り出し効率を向上させることも期待されている。
ショットキー型は、電極近傍にショットキー障壁が形成され、この部分の内部電場でキャリア分離を行なうものである。電極としてショットキー障壁を形成するものを用いればその活性層の構成に制限は無い。ショットキー型における活性層の具体的な構成は、前記のバルクヘテロ接合型、積層型及び両者を組み合わせた型のいずれを採用することも可能であり、特に高い特性(例えば、変換効率など)が期待できる。
なお有機太陽電池素子においては、活性層に少なくとも1種の有機半導体を用いるが、この他に無機物質を含んでいてもよい(以下、これをハイブリッド型と称する)。
ハイブリッド型は、活性層が無機物質及び有機物質を共に含有して形成されるものである。この際、少なくとも1種の有機半導体を含有する以外は、ハイブリッド型の活性層が含有する無機物質及び有機物質は半導体特性を有していないものでもよいが、半導体特性を有しているもの(即ち、無機半導体及び有機半導体)を使用することが好ましい。例えば、ハイブリッド型に用いる有機半導体としてはペリレン顔料、キナクリドン顔料、フタロシアニン顔料、ポルフィリン顔料等が挙げられ、無機半導体としてはチタニア、酸化亜鉛等が挙げられる。
ハイブリッド型は、活性層が無機物質及び有機物質を共に含有して形成されるものである。この際、少なくとも1種の有機半導体を含有する以外は、ハイブリッド型の活性層が含有する無機物質及び有機物質は半導体特性を有していないものでもよいが、半導体特性を有しているもの(即ち、無機半導体及び有機半導体)を使用することが好ましい。例えば、ハイブリッド型に用いる有機半導体としてはペリレン顔料、キナクリドン顔料、フタロシアニン顔料、ポルフィリン顔料等が挙げられ、無機半導体としてはチタニア、酸化亜鉛等が挙げられる。
ハイブリッド型の活性層の層構成の具体例を挙げると、バルクヘテロ接合型の活性層において、p型及びn型の半導体の一方として無機物質を使用すると共に他方として有機物質を使用した場合、p型及びn型の半導体の一方又は両方として無機物質及び有機物質を使用した場合などが挙げられる。これにより、活性層は、無機半導体と有機半導体との混合膜として構成され、有機太陽電池素子の高効率化が期待できる。
〔その他の事項〕
・その他の層
上記の例に示したCu−III−VI2族半導体系太陽電池素子、並びに有機太陽電池素子は、上述した電極、光吸収層、バッファ層及び活性層以外にその他の層を備えていても良い。なお、その他の層を形成する位置は太陽電池素子6の発電を阻害しない限り任意である。そのような層の例を挙げると、電極界面層が挙げられる。
・その他の層
上記の例に示したCu−III−VI2族半導体系太陽電池素子、並びに有機太陽電池素子は、上述した電極、光吸収層、バッファ層及び活性層以外にその他の層を備えていても良い。なお、その他の層を形成する位置は太陽電池素子6の発電を阻害しない限り任意である。そのような層の例を挙げると、電極界面層が挙げられる。
電極界面層は、光吸収層、バッファ層又は活性層と電極との間に、電気特性の改良のために設けられる層である。通常は、正孔を捕集する電極と光吸収層、バッファ層又は活性層との間には電子をブロックして正孔のみ伝導する層(p型半導体層)を形成し、電子を捕集する電極と光吸収層、バッファ層又は活性層との間には正孔をブロックして電子のみ伝導する層(n型半導体層)を形成する。
p型半導体層の材料(p型半導体)としては、生成した正孔を効率よく正極へ輸送できるものが好ましい。そのためには、p型半導体は、正孔移動度が高いこと、導電率が高いこと、正極との間の正孔注入障壁が小さいこと、光吸収層、バッファ層又は活性層からp型半導体層への正孔注入障壁が小さいこと、などの性質を有することが好ましい。
さらに、p型半導体層を通して光吸収層又は活性層に光を取り込む場合には、p型半導体として透明な材料を用いることが好ましい。通常は光のうちでも可視光を光吸収層又は活性層に取り込むことになるため、透明なp型半導体としては、当該p型半導体層を透過する可視光の透過率が、通常60%以上、中でも80%以上となるものを用いることが好ましい。これを実現するためには、可視光の吸収のない材料を用いるか、吸収があっても前記透過率を満たす程度に薄い薄膜としてp型半導体層を形成すればよい。
さらに、太陽電池素子6の製造コストの抑制、大面積化などを実現するためには、p型半導体として有機半導体を用い、p型半導体層をp型有機半導体層として形成することが好ましい。
さらに、p型半導体層を通して光吸収層又は活性層に光を取り込む場合には、p型半導体として透明な材料を用いることが好ましい。通常は光のうちでも可視光を光吸収層又は活性層に取り込むことになるため、透明なp型半導体としては、当該p型半導体層を透過する可視光の透過率が、通常60%以上、中でも80%以上となるものを用いることが好ましい。これを実現するためには、可視光の吸収のない材料を用いるか、吸収があっても前記透過率を満たす程度に薄い薄膜としてp型半導体層を形成すればよい。
さらに、太陽電池素子6の製造コストの抑制、大面積化などを実現するためには、p型半導体として有機半導体を用い、p型半導体層をp型有機半導体層として形成することが好ましい。
このような観点から、p型半導体の好適な例を挙げると、ポルフィリン化合物又はフタロシアニン化合物が挙げられる。これらの化合物は、中心金属を有していてもよいし、無金属のものでもよい。その具体例を挙げると、29H,31H−フタロシアニン、銅(II)フタロシアニン、亜鉛(II)フタロシアニン、チタンフタロシアニンオキシド、銅(II)4,4’,4'',4'''−テトラアザ−29H,31H−フタロシアニン等のフタロシアニン化合物;テトラベンゾポルフィリン、テトラベンゾ銅ポルフィリン、テトラベンゾ亜鉛ポルフィリン等のポルフィリン化合物;などが挙げられる。
また、ポルフィリン化合物及びフタロシアニン化合物以外の好ましいp型半導体の例としては、正孔輸送性高分子にドーパントを混合した系が挙げられる。この場合、正孔輸送性高分子の例としては、ポリ(エチレンジオキシチオフェン)、ポリチオフェン、ポリアニリン、ポリピロールなどが挙げられる。一方、ドーパントの例としては、ヨウ素;ポリ(スチレンスルホン酸)、カンファースルホン酸等の酸;PF5、AsF5、FeCl3等のルイス酸;などが挙げられる。なお、p型半導体は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。また、ここで例示した半導体は、光吸収層、バッファ層又は活性層に含有させることも可能である。
p型半導体層の厚みに制限はないが、例えば有機太陽電池素子では、通常3nm以上、中でも10nm以上、また、通常200nm以下、中でも100nm以下とすることが好ましい。p型半導体層を厚くすることで膜の均一性が高まる傾向にあり、p型半導体層を薄くすることで透過率が向上しまた直列抵抗が低下する傾向にある。
また、例えばCu−III−VI2族半導体系太陽電池素子では、通常0.5μm以上、中でも1μm以上、また、通常10μm以下、中でも5μm以下とすることが好ましい。p型半導体層を薄くすると発電効率が低下する傾向にあり、厚くすること曲げた時に亀裂が入りやすくなったり、Mo層と乖離が生じ易くなる。
また、例えばCu−III−VI2族半導体系太陽電池素子では、通常0.5μm以上、中でも1μm以上、また、通常10μm以下、中でも5μm以下とすることが好ましい。p型半導体層を薄くすると発電効率が低下する傾向にあり、厚くすること曲げた時に亀裂が入りやすくなったり、Mo層と乖離が生じ易くなる。
一方、n型半導体層に求められる役割は、光吸収層又は活性層から分離された正孔をブロックし、電子のみを負極に輸送するものである。n型半導体層の材料(n型半導体)としては、生成した電子を効率よく負極へ輸送できるものが好ましい。そのためには、n型半導体は、電子移動度が高いこと、導電率が高いこと、負極との間の電子注入障壁が小さいこと、光吸収層、バッファ層又は活性層からn型半導体への電子注入壁が小さいこと、などの性質を有することが好ましい。
さらに、n型半導体層を通して光吸収層又は活性層に光を取り込む場合には、n型半導体として透明な材料を用いることが好ましい。通常は光のうちでも可視光を光吸収層又は活性層に取り込むことになるため、透明なn型半導体としては、当該n型半導体層を透過する可視光の透過率が、通常60%以上、中でも80%以上となるものを用いることが好ましい。これを実現するためには、可視光の吸収のない材料を用いるか、吸収があっても前記透過率を満たす程度に薄い薄膜としてn型半導体層を形成すればよい。
また、n型半導体層に求められる役割は、光吸収層又は活性層で光を吸収して生成する励起子(エキシトン)が負極により消光されるのを防ぐことにもある。そのためには、電子供与体及び電子受容体が有する光学的ギャップより大きい光学的ギャップを、n型半導体が有することが好ましい。
さらに、n型半導体層を通して光吸収層又は活性層に光を取り込む場合には、n型半導体として透明な材料を用いることが好ましい。通常は光のうちでも可視光を光吸収層又は活性層に取り込むことになるため、透明なn型半導体としては、当該n型半導体層を透過する可視光の透過率が、通常60%以上、中でも80%以上となるものを用いることが好ましい。これを実現するためには、可視光の吸収のない材料を用いるか、吸収があっても前記透過率を満たす程度に薄い薄膜としてn型半導体層を形成すればよい。
また、n型半導体層に求められる役割は、光吸収層又は活性層で光を吸収して生成する励起子(エキシトン)が負極により消光されるのを防ぐことにもある。そのためには、電子供与体及び電子受容体が有する光学的ギャップより大きい光学的ギャップを、n型半導体が有することが好ましい。
このような観点から、n型半導体の好適な例を挙げると、フェナントロリン誘導体、シロール誘導体等の電子輸送性を示す有機化合物;TiO2等の無機半導体などが挙げられる。なお、n型半導体は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。また、ここで例示した半導体は、光吸収層、バッファ層又は活性層に含有させることも可能である。
n型半導体層の厚みに制限はないが、例えば有機太陽電池素子では、通常2nm以上、中でも5nm以上、また、通常200nm以下、中でも100nm以下とすることが好ましい。n型半導体層をこのような範囲の厚みに形成することにより、正極より入射した光が光吸収層又は活性層で吸収されずに透過した場合、負極で反射されて再び光吸収層又は活性層に戻ることによる光干渉効果を活用することが可能である。
・形状、配置、接続など
太陽電池素子6の形状に制限は無いが、通常は、その平面形状は矩形に形成される。
また、太陽電池素子6の寸法に制限はなく、任意に設定できる。ただし、太陽電池パネル100を軽量化する観点から、太陽電池素子6の厚みは薄いことが好ましい。
太陽電池素子6の形状に制限は無いが、通常は、その平面形状は矩形に形成される。
また、太陽電池素子6の寸法に制限はなく、任意に設定できる。ただし、太陽電池パネル100を軽量化する観点から、太陽電池素子6の厚みは薄いことが好ましい。
太陽電池素子6は、太陽電池パネル100に1個だけを設けてもよいが、通常は図2に示すように、2個以上の太陽電池素子6を設ける。具体的な太陽電池素子6の個数は任意に設定すればよい。太陽電池素子6を複数設ける場合、太陽電池素子6は図2に示すようにアレイ状に並べて設けられていることが多い。なお、図2においては基板13及び太陽電池素子6以外の要素は図示を省略している。
太陽電池素子6を複数設ける場合、通常は、太陽電池素子6同士は電気的に接続され、接続された一群の太陽電池素子6から生じた電気を基板13に設けた端子(図示せず)から取り出すようになっている。この際、電圧を高めるため通常は太陽電池素子6は直列に接続される。
このように太陽電池素子6同士を接続する場合には、太陽電池素子6間の距離は小さいことが好ましく、ひいては、太陽電池素子6と太陽電池素子6との間の隙間は狭いことが好ましい。太陽電池素子6の受光面積を広くして受光量を増加させ、太陽電池パネル100の発電量を増加させるためである。これを実現するためには、例えば、図3(a),(b)に示すような構成を採用することが好ましい。
図3(a),(b)は太陽電池素子6間の接続状態を説明するための図であり、太陽電池素子6同士の接続部近傍(図2におけるIII部)を拡大して模式的に示す断面図である。
図3(a)の構成では、電極14、光吸収層15、バッファ層16及び電極17がこの順に設けられた構成の太陽電池素子6が並べて設けられていて、電極17の側から入射した光を光吸収層15が吸収して電気が発生するようになっている。即ち、太陽電池素子6は正面(図3(a)の上側の面。受光側の面。)に電極17を備え、背面(図3(a)の下側の面。基板側の面。)に電極14を備えた構成となっている。この場合、隣り合う一対の太陽電池素子6のうち、一方の太陽電池素子6の電極14と、他方の太陽電池素子6の電極17とを、必要に応じて延在して形成することにより、直接接合すればよい。通常、電極14,17はいずれも非常に薄く形成できるため、このような構成により、太陽電池素子6間の距離を小さくすることが可能である。
図3(a)の構成では、電極14、光吸収層15、バッファ層16及び電極17がこの順に設けられた構成の太陽電池素子6が並べて設けられていて、電極17の側から入射した光を光吸収層15が吸収して電気が発生するようになっている。即ち、太陽電池素子6は正面(図3(a)の上側の面。受光側の面。)に電極17を備え、背面(図3(a)の下側の面。基板側の面。)に電極14を備えた構成となっている。この場合、隣り合う一対の太陽電池素子6のうち、一方の太陽電池素子6の電極14と、他方の太陽電池素子6の電極17とを、必要に応じて延在して形成することにより、直接接合すればよい。通常、電極14,17はいずれも非常に薄く形成できるため、このような構成により、太陽電池素子6間の距離を小さくすることが可能である。
一方、図3(b)の構成では、図3(a)と同様に電極14、光吸収層15、バッファ層16及び電極17を備えた構成において、隣り合う一対の太陽電池素子6のうち、一方の太陽電池素子6の電極14と、他方の太陽電池素子6の電極17とを、金属層(例えばAl層など)によるインターコネクタ18により接続している。インターコネクタ18は非常に小さく形成できるため、このような構成によっても、太陽電池素子6間の距離を小さくすることが可能である。
また、図3(a),(b)においては太陽電池素子6としてCu−III−VI2族半導体系太陽電池素子の実施形態として説明した構成(光吸収層15とバッファ層16とを備えた構成)を例として用いたが、例えば有機太陽電池素子の実施形態として説明した構成などの、他の構成であっても、同様の接続を採用して太陽電池素子6間の距離を小さくすることができる。
また、太陽電池素子6は逆流防止素子及び/又はバイパス素子を備えることが好ましい。逆電流防止素子は、太陽電池素子6の発電に対する逆電流を防止する素子であり、例えば逆電流防止ダイオードなどが挙げられる。また、バイパス素子は、太陽電池素子6で発電が無くなった場合に当該太陽電池素子6を通らないで通電回路を接続する素子であり、例えばバイパスダイオードなどが挙げられる。太陽電池素子6が逆流防止素子及びバイパス素子を備えた場合の太陽電池パネル100の回路の部分構成の一例を模式的に示すと図4のようなものが挙げられる。
図4の構成において、太陽電池素子6にはそれぞれバイパス素子19が設けられている。これにより、例えば図4(a)で説明したように太陽電池素子6が影に入り発電できなくなった場合でも、電流はこの太陽電池素子6を迂回して流れることができる。したがって、他の太陽電池素子6で生じた電気を、当該発電しない太陽電池素子の抵抗で損なうことなく、太陽電池パネル100の外部に取り出すことができる。
また、図4の構成において、太陽電池素子6のうちの一つに逆電流防止素子20が設けられている。これにより、例えば前記の影の影響などで生じる可能性のある逆電流を防止できる。したがって、他の太陽電池素子6で生じた電気を逆電流で損なうことなく、太陽電池パネル100の外部に取り出すことができる。
[封止材7]
封止材7は、上述した封止材5と同様のフィルムであり、配設位置が異なる他は封止材7と同様のものを同様に用いることができる。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。
封止材7は、上述した封止材5と同様のフィルムであり、配設位置が異なる他は封止材7と同様のものを同様に用いることができる。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。
[ゲッター材フィルム8]
ゲッター材フィルム8は、上述したゲッター材フィルム4と同様のフィルムであり、配設位置が異なる他はゲッター材フィルム4と同様のものを同様に必要に応じて用いることができる。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。また使用する水分あるいは酸素吸収剤をゲッター材フィルム4よりも多く含有するフィルムを用いることも可能となる。このような吸収剤としては、水分吸収剤としてCaO、BaO、Zr−Al−BaO、酸素の吸収剤として活性炭、モレキュラーシーブなどが挙げられる。
ゲッター材フィルム8は、上述したゲッター材フィルム4と同様のフィルムであり、配設位置が異なる他はゲッター材フィルム4と同様のものを同様に必要に応じて用いることができる。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。また使用する水分あるいは酸素吸収剤をゲッター材フィルム4よりも多く含有するフィルムを用いることも可能となる。このような吸収剤としては、水分吸収剤としてCaO、BaO、Zr−Al−BaO、酸素の吸収剤として活性炭、モレキュラーシーブなどが挙げられる。
[ガスバリアフィルム9]
ガスバリアフィルム9は、上述したガスバリアフィルム3と同様のフィルムであり、配設位置が異なる他はガスバリアフィルム9と同様のものを同様に必要に応じて用いることができる。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。
ガスバリアフィルム9は、上述したガスバリアフィルム3と同様のフィルムであり、配設位置が異なる他はガスバリアフィルム9と同様のものを同様に必要に応じて用いることができる。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。
[バックシート10]
バックシート10は、上述した耐候性保護フィルム1と同様のフィルムであり、配設位置が異なる他は耐候性保護フィルム1と同様のものを同様に用いることができる。また、このバックシート10が水及び酸素を透過させ難いものであれば、バックシート10をガスバリア層として機能させることも可能である。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。このため、バックシート10としては、以下に説明するもの(i)〜(iv)を用いることが特に好ましい。
バックシート10は、上述した耐候性保護フィルム1と同様のフィルムであり、配設位置が異なる他は耐候性保護フィルム1と同様のものを同様に用いることができる。また、このバックシート10が水及び酸素を透過させ難いものであれば、バックシート10をガスバリア層として機能させることも可能である。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。このため、バックシート10としては、以下に説明するもの(i)〜(iv)を用いることが特に好ましい。
(i)バックシート10としては、強度に優れ、耐候性、耐熱性、耐水性、耐光性に優れた各種の樹脂のフィルムないしシートを使用することができる。例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリルースチレン共重合体(AS樹脂)、アクリロニトリルーブタジエンースチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレートまたはポリエチレンナフタレート等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂、その他等の各種の樹脂のシートを使用することができる。これらの樹脂のシートの中でも、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂のシートを使用することが好ましい。なお、これらは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(ii)バックシート10としては、金属薄膜を用いることもできる。例えば、腐蝕防止したアルミニウム金属箔、ステンレス製薄膜などが挙げられる。なお、前記の金属は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
(iii)バックシート10としては、例えばアルミ箔の両面にフッ素系樹脂フイルムを接着した防水性の高いシートを用いても良い。フッ素系樹脂としては、例えば、一弗化エチレン(商品名:テドラー,デュポン社製)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンとエチレン又はプロピレンとのコポリマー(ETFE)、フッ化ビニリデン系樹脂(PVDF)、フッ化ビニル系樹脂(PVF)等が挙げられる。なお、フッ素系樹脂は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
(iv)バックシート10としては、例えば、基材フィルムの片面あるは両面に、無機酸化物の蒸着膜を設け、更に、上記の無機酸化物の蒸着膜を設けた基材フィルムの両面に、耐熱性のポリプロピレン系樹脂フィルムを積層したものを用いてもよい。なお、通常は、基材フィルムにポリプロピレン系樹脂フィルムを積層する場合には、ラミネート用接着剤で張り合わせることで積層する。無機酸化物の蒸着膜を設けることで、水分、酸素等の侵入を防止する防湿性に優れたバックシート10として使用できる。
・基材フィルム
基材フィルムとしては、基本的には、無機酸化物の蒸着膜等との密接着性に優れ、強度に優れ、耐候性、耐熱性、耐水性、耐光性に優れた各種の樹脂のフィルムを使用することができる。例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリルースチレン共重合体(AS樹脂)、アクリロニトリルーブタジエンースチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート又はポリエチレンナフタレート等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂、その他等の各種の樹脂のフィルムを使用することができる。中でも、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル系樹脂、ポリアミド系樹脂、または、ポリエステル系樹脂のフィルムを使用することが好ましい。
基材フィルムとしては、基本的には、無機酸化物の蒸着膜等との密接着性に優れ、強度に優れ、耐候性、耐熱性、耐水性、耐光性に優れた各種の樹脂のフィルムを使用することができる。例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリルースチレン共重合体(AS樹脂)、アクリロニトリルーブタジエンースチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート又はポリエチレンナフタレート等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂、その他等の各種の樹脂のフィルムを使用することができる。中でも、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル系樹脂、ポリアミド系樹脂、または、ポリエステル系樹脂のフィルムを使用することが好ましい。
上記のような各種の樹脂のフィルムのなかでも、例えば、ポリテトラフルオロエチレン(PTFE)、フッ化ビニリデン系樹脂(PVDF)、または、フッ化ビニル系樹脂(PVF)等のフッ素系樹脂のフィルムを使用することがより好ましい。更に、このフッ素系樹脂のフィルムの中でも、特に、ポリフッ化ビニル系樹脂(PVF);テトラフルオロエチレンとエチレン又はプロピレンとのコポリマー(ETFE)からなるフッ素系樹脂のフィルムが、強度等の観点から特に好ましい。なお、前記樹脂は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
また、上記のような各種の樹脂のフィルムのなかでも、シクロペンタジエン及びその誘導体、シクロヘキサジエン及びその誘導体等の環状ポリオレフィン系樹脂のフィルムを使用することもより好ましい。
基材フィルムの膜厚としては、通常12μm以上、好ましくは20μm以上であり、また、通常300μm以下、好ましくは200μm以下である。
・無機酸化物の蒸着膜
無機酸化物の蒸着膜としては、基本的に金属の酸化物を蒸着した薄膜であれば使用可能である。例えば、ケイ素(Si)、アルミニウム(Al)、の酸化物の蒸着膜を使用することができる。この際、酸化ケイ素としては例えばSiOx(x=1.0〜2.0)を用いることができ、酸化アルミニウムとしては例えばAlOx(x=0.5〜1.5)を用いることができる。
なお、使用する金属及び無機酸化物の種類は1種でもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
無機酸化物の蒸着膜としては、基本的に金属の酸化物を蒸着した薄膜であれば使用可能である。例えば、ケイ素(Si)、アルミニウム(Al)、の酸化物の蒸着膜を使用することができる。この際、酸化ケイ素としては例えばSiOx(x=1.0〜2.0)を用いることができ、酸化アルミニウムとしては例えばAlOx(x=0.5〜1.5)を用いることができる。
なお、使用する金属及び無機酸化物の種類は1種でもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
無機酸化物の蒸着膜の膜厚としては、通常50Å以上、好ましくは100Å以上であり、また、通常4000Å以下、好ましくは1000Å以下である。
蒸着膜の作製方法としては、プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等を用いることができる。具体例を挙げると、基材フィルムの一方の面に、有機珪素化合物等の蒸着用モノマーガスを原料とし、キャリヤーガスとして、アルゴンガス、ヘリウムガス等の不活性ガスを使用し、更に、酸素供給ガスとして、酸素ガス等を使用し、低温プラズマ発生装置等を利用する低温プラズマ化学気相成長法を用いて酸化珪素等の無機酸化物の蒸着膜を形成することができる。
・ポリプロピレン系樹脂フィルム
ポリプロピレン系樹脂としては、例えば、プロピレンの単独重合体;プロピレンと他のモノマー(例えばα−オレフィン等)との共重合体を使用することができる。また、ポリプロピレン系樹脂としては、アイソタクチック重合体を用いることもできる。
ポリプロピレン系樹脂としては、例えば、プロピレンの単独重合体;プロピレンと他のモノマー(例えばα−オレフィン等)との共重合体を使用することができる。また、ポリプロピレン系樹脂としては、アイソタクチック重合体を用いることもできる。
ポリプロピレン系樹脂の融点は通常164℃〜170℃であり、比重は通常0.90〜0.91であり、分子量は通常10万〜20万である。
ポリプロピレン系樹脂は、その結晶性により性質が大きく支配されるが、アイソタクチックの高いポリマーは、引っ張り強さ、衝撃強度に優れ、耐熱性、耐屈曲疲労強度を良好であり、かつ、加工性は極めて良好なものである。
ポリプロピレン系樹脂は、その結晶性により性質が大きく支配されるが、アイソタクチックの高いポリマーは、引っ張り強さ、衝撃強度に優れ、耐熱性、耐屈曲疲労強度を良好であり、かつ、加工性は極めて良好なものである。
・接着剤
基材フィルムにポリプロピレン系樹脂フィルムを積層する場合には、通常はラミネート用接着剤を用いる。これにより、基材フィルムとポリプロピレン系樹脂フィルムとはラミネート用接着剤層を介して積層されることになる。
ラミネート用接着剤層を構成する接着剤としては、例えば、ポリ酢酸ビニル系接着剤、ポリアクリル酸エステル系接着剤、シアノアクリレート系接着剤、エチレン共重合体系接着剤、セルロース系接着剤、ポリエステル系接着剤、ポリアミド系接着剤、ポリイミド系接着剤、アミノ樹脂系接着剤、フェノール樹脂系接着剤、エポキシ系接着剤、ポリウレタン系接着剤、反応型(メタ)アクリル系接着剤、シリコーン系接着剤等が挙げられる。なお、接着剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
基材フィルムにポリプロピレン系樹脂フィルムを積層する場合には、通常はラミネート用接着剤を用いる。これにより、基材フィルムとポリプロピレン系樹脂フィルムとはラミネート用接着剤層を介して積層されることになる。
ラミネート用接着剤層を構成する接着剤としては、例えば、ポリ酢酸ビニル系接着剤、ポリアクリル酸エステル系接着剤、シアノアクリレート系接着剤、エチレン共重合体系接着剤、セルロース系接着剤、ポリエステル系接着剤、ポリアミド系接着剤、ポリイミド系接着剤、アミノ樹脂系接着剤、フェノール樹脂系接着剤、エポキシ系接着剤、ポリウレタン系接着剤、反応型(メタ)アクリル系接着剤、シリコーン系接着剤等が挙げられる。なお、接着剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
上記の接着剤の組成系は、水性型、溶液型、エマルジョン型、分散型等のいずれの組成物形態でもよい。また、その性状は、フィルム・シート状、粉末状、固形状等のいずれの形態でもよい。さらに、接着機構については、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれの形態でもよいものである。
上記の接着剤は、例えば、ロールコート法、グラビアロールコート法、キスコート法、その他等のコート法、あるいは、印刷法等によって施すことができる。そのコーティング量としては、乾燥状態で0.1g/m2〜10g/m2が望ましい。
上記の接着剤は、例えば、ロールコート法、グラビアロールコート法、キスコート法、その他等のコート法、あるいは、印刷法等によって施すことができる。そのコーティング量としては、乾燥状態で0.1g/m2〜10g/m2が望ましい。
[シール材11]
シール材11は、上述した耐候性保護フィルム1、紫外線カットフィルム2、ガスバリアフィルム3、ゲッター材フィルム4、封止材5、封止材7、ゲッター材フィルム8、ガスバリアフィルム9及びバックシート10の縁部をシールして、これらのフィルムで被覆された空間内に湿気及び酸素が浸入しないようにシールする部材である。
シール材11は、上述した耐候性保護フィルム1、紫外線カットフィルム2、ガスバリアフィルム3、ゲッター材フィルム4、封止材5、封止材7、ゲッター材フィルム8、ガスバリアフィルム9及びバックシート10の縁部をシールして、これらのフィルムで被覆された空間内に湿気及び酸素が浸入しないようにシールする部材である。
シール材11に要求される防湿能力の程度は、単位面積(1m2)の1日あたりの水蒸気透過率が0.1g/m2/day以下であることが好ましく、0.05g/m2/day以下であることがより好ましい。従来はこのように高い防湿能力を有するシール材11の実装が困難であったため、化合物半導体系太陽電池素子及び有機太陽電池素子のように優れた太陽電池素子を備えた太陽電池を実現することが困難であったが、このようなシール材11を適用することにより化合物半導体系太陽電池素子及び有機太陽電池素子の優れた性質を活かした薄膜太陽電池12の実施が容易となる。
さらに、薄膜太陽電池12は光を受けて熱せられることが多いため、シール材11も熱に対する耐性を有することが好ましい。この観点から、シール材11の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常250℃以下、好ましくは200℃以下、より好ましくは180℃以下である。融点が低すぎると薄膜太陽電池12の使用時にシール材11が融解する可能性がある。
シール材11を構成する材料としては、例えば、フッ素系樹脂、シリコーン樹脂、アクリル系樹脂等のポリマーが挙げられる。
なお、シール材11は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。
なお、シール材11は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。
シール材11は、少なくともガスバリアフィルム3,9の縁部をシールできる位置に設ける。これにより、少なくともガスバリアフィルム3,9及びシール材11で囲まれた空間を密閉し、この空間内に湿気及び酸素が侵入しないようにすることができる。
このシール材11を形成する方法に制限は無いが、例えば、材料を耐候性保護フィルム1とバックシート10との間に注入することにより形成できる。形成方法の具体例を挙げると、以下の方法が挙げられる。
即ち、例えば封止材5の硬化が進行する途中で、半硬化状態の薄膜太陽電池12を前記ラミネート装置から取り出し、太陽電池素子6の外周部であって耐候性保護シート1とバックシート10との間の部分に液状のポリマーを注入し、このポリマーを封止材5と共に硬化させればよい。また、封止材5の硬化が終了した後にラミネート装置から取り出して単独で硬化させてもよい。なお、前記のポリマーを架橋・硬化させるための温度範囲は通常130℃以上、好ましくは140℃以上であり、通常180℃以下、好ましくは170℃以下である。
即ち、例えば封止材5の硬化が進行する途中で、半硬化状態の薄膜太陽電池12を前記ラミネート装置から取り出し、太陽電池素子6の外周部であって耐候性保護シート1とバックシート10との間の部分に液状のポリマーを注入し、このポリマーを封止材5と共に硬化させればよい。また、封止材5の硬化が終了した後にラミネート装置から取り出して単独で硬化させてもよい。なお、前記のポリマーを架橋・硬化させるための温度範囲は通常130℃以上、好ましくは140℃以上であり、通常180℃以下、好ましくは170℃以下である。
[薄膜太陽電池の寸法等]
本実施形態の薄膜太陽電池12は、通常、膜状の薄い部材である。このように膜状の部材として薄膜太陽電池12を形成することにより、薄膜太陽電池12を自動車等の車両に容易に設置できるようになっている。薄膜太陽電池12は、軽く、割れにくく、従って安全性の高い太陽電池が得られ、また曲面にも適用可能であるため更に多くの用途に使用しうる。薄くて軽いため輸送や保管など流通面でも好ましい。更に、膜状であるためロール・トゥ・ロール式の製造が可能であり大幅なコストカットが可能である。
薄膜太陽電池12の具体的な寸法に制限は無いが、その厚みは、通常300μm以上、好ましくは500μm以上、より好ましくは700μm以上であり、また、通常3000μm以下、好ましくは2000μm以下、より好ましくは1500μm以下である。
本実施形態の薄膜太陽電池12は、通常、膜状の薄い部材である。このように膜状の部材として薄膜太陽電池12を形成することにより、薄膜太陽電池12を自動車等の車両に容易に設置できるようになっている。薄膜太陽電池12は、軽く、割れにくく、従って安全性の高い太陽電池が得られ、また曲面にも適用可能であるため更に多くの用途に使用しうる。薄くて軽いため輸送や保管など流通面でも好ましい。更に、膜状であるためロール・トゥ・ロール式の製造が可能であり大幅なコストカットが可能である。
薄膜太陽電池12の具体的な寸法に制限は無いが、その厚みは、通常300μm以上、好ましくは500μm以上、より好ましくは700μm以上であり、また、通常3000μm以下、好ましくは2000μm以下、より好ましくは1500μm以下である。
[薄膜太陽電池の製造方法]
本実施形態の薄膜太陽電池12の製造方法に制限は無いが、例えば、耐候性保護フィルム1とバックシート10との間に、1個又は2個以上の太陽電池素子6を直列または並列接続したものを、紫外線カットフィルム2、ガスバリアフィルム3,9、ゲッター材フィルム4,8及び封止材5,7と共に一般的な真空ラミネート装置でラミネートすることで製造できる。この際、加熱温度は通常130℃以上、好ましくは140℃以上であり、通常180℃以下、好ましくは170℃以下である。また、加熱時間は通常10分以上、好ましくは20分以上であり、通常100分以下、好ましくは90分以下である。圧力は通常0.001MPa以上、好ましくは0.01MPa以上であり、通常0.2MPa以下、好ましくは0.1MPa以下である。圧力をこの範囲とすることで封止を確実に行い、かつ、端部からの封止材5,7がはみ出しや過加圧による膜厚低減を抑え、寸法安定性を確保しうる。
本実施形態の薄膜太陽電池12の製造方法に制限は無いが、例えば、耐候性保護フィルム1とバックシート10との間に、1個又は2個以上の太陽電池素子6を直列または並列接続したものを、紫外線カットフィルム2、ガスバリアフィルム3,9、ゲッター材フィルム4,8及び封止材5,7と共に一般的な真空ラミネート装置でラミネートすることで製造できる。この際、加熱温度は通常130℃以上、好ましくは140℃以上であり、通常180℃以下、好ましくは170℃以下である。また、加熱時間は通常10分以上、好ましくは20分以上であり、通常100分以下、好ましくは90分以下である。圧力は通常0.001MPa以上、好ましくは0.01MPa以上であり、通常0.2MPa以下、好ましくは0.1MPa以下である。圧力をこの範囲とすることで封止を確実に行い、かつ、端部からの封止材5,7がはみ出しや過加圧による膜厚低減を抑え、寸法安定性を確保しうる。
[基板13]
基板13は太陽電池素子6を支持する支持部材である。
基板13を形成する材料としては、例えば、ガラス、サファイア、チタニア等の無機材料;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂フィルム、塩化ビニル、ポリエチレン、セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン等の有機材料;紙、合成紙等の紙材料;ステンレス、チタン、アルミニウム等の金属に、絶縁性を付与するために表面をコート或いはラミネートしたもの等の複合材料;などが挙げられる。なお、基板の材料は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。また、これら有機材料あるいは紙材料に炭素繊維を含ませ、機械的強度を補強させても良い。この補強により軽量で強靭な車両用太陽電池パネルが完成する。
中でも、基板13は軽量であることが好ましく、また、太陽電池パネル100の設置部位の変形に追従して変形できるものが好ましい。この観点から、基板13は上記の例示物の中でも有機材料により形成することが好ましい。
基板13は太陽電池素子6を支持する支持部材である。
基板13を形成する材料としては、例えば、ガラス、サファイア、チタニア等の無機材料;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂フィルム、塩化ビニル、ポリエチレン、セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン等の有機材料;紙、合成紙等の紙材料;ステンレス、チタン、アルミニウム等の金属に、絶縁性を付与するために表面をコート或いはラミネートしたもの等の複合材料;などが挙げられる。なお、基板の材料は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。また、これら有機材料あるいは紙材料に炭素繊維を含ませ、機械的強度を補強させても良い。この補強により軽量で強靭な車両用太陽電池パネルが完成する。
中でも、基板13は軽量であることが好ましく、また、太陽電池パネル100の設置部位の変形に追従して変形できるものが好ましい。この観点から、基板13は上記の例示物の中でも有機材料により形成することが好ましい。
基板13の形状に制限は無いが、通常は、板状又はフィルム状のものを用いる。また、基板13を板状に成形する場合、基板13は平板状に形成しても良いが、車両の装着部分の形状に応じて湾曲や凹凸のある形状に形成しても良い。なお、基板13をフィルム状に成形する場合、通常は基板13は車両の装着部分の形状に合わせて変形できるため、微細な形状設計が不要であり成形が容易である。
また、基板13には太陽電池素子6から生じた電気を取り出すための配線及び端子(図示省略)が設けられている。また、太陽電池パネル100を車両に装着するため、必要に応じて取付具(図示省略)が設けられていてもよい。
基板13の寸法に制限は無いが、厚みは50μm以上2mm以下に形成することが好ましい。軽量化、可撓性及び加工性などの観点からである。
また、車両の外観を考慮すると、基板13の色、形状、寸法などを設定する際に太陽電池パネル100のデザイン性も考慮して設計を行うことが好ましい。
なお、太陽電池素子6自体が高い強度を有している場合、耐候性保護フィルム1、紫外線カットフィルム2、ガスバリアフィルム3,9、ゲッター材フィルム4,8、封止材5,7、バックシート10がある程度高い剛性を有し基板として機能する場合などには、基板13は必ずしも設けなくとも良い。
なお、太陽電池素子6自体が高い強度を有している場合、耐候性保護フィルム1、紫外線カットフィルム2、ガスバリアフィルム3,9、ゲッター材フィルム4,8、封止材5,7、バックシート10がある程度高い剛性を有し基板として機能する場合などには、基板13は必ずしも設けなくとも良い。
[太陽電池パネルの利点]
本実施形態の太陽電池パネル100は上述したように構成されているため、その受光面に光を照射されると、その光を吸収した太陽電池素子6が発電するようになっている。
この際、本実施形態の太陽電池パネル100は、ガスバリアフィルム3,9及びシール材11により太陽電池素子6を湿気から保護できるため、湿度が高い環境においても使用できる。また、本発明の太陽電池パネル100は、紫外線カットフィルム2を備えているため、紫外線によりガスバリアフィルム3,9及び太陽電池素子6等が劣化せず、長期間にわたって高い効率で発電が可能である。このように、本発明によれば湿気及び紫外線に対して耐性のある実用的な太陽電池を新たに実現することができる。
本実施形態の太陽電池パネル100は上述したように構成されているため、その受光面に光を照射されると、その光を吸収した太陽電池素子6が発電するようになっている。
この際、本実施形態の太陽電池パネル100は、ガスバリアフィルム3,9及びシール材11により太陽電池素子6を湿気から保護できるため、湿度が高い環境においても使用できる。また、本発明の太陽電池パネル100は、紫外線カットフィルム2を備えているため、紫外線によりガスバリアフィルム3,9及び太陽電池素子6等が劣化せず、長期間にわたって高い効率で発電が可能である。このように、本発明によれば湿気及び紫外線に対して耐性のある実用的な太陽電池を新たに実現することができる。
また、本実施形態の太陽電池パネル100は、太陽電池素子6としてCu−III−VI2族半導体などの化合物半導体形太陽電池素子、及び/又は、有機太陽電池素子を備えているため、高い発電効率で発電ができる。
さらに、本実施形態の太陽電池パネル100はゲッター材フィルム4,8を備えているため、太陽電池素子6を湿気及び酸素からより確実に保護できる。
また、本実施形態の太陽電池パネル100は耐候性保護フィルム1及びバックシート10を備えているため、天候の変化に対しても耐性を有し、より長期間にわたって安定して発電できる。
さらに、本実施形態の太陽電池パネル100は封止材5,7を備えているため、強度が高く取り扱い性が良好である。
さらに、本実施形態の太陽電池パネル100はゲッター材フィルム4,8を備えているため、太陽電池素子6を湿気及び酸素からより確実に保護できる。
また、本実施形態の太陽電池パネル100は耐候性保護フィルム1及びバックシート10を備えているため、天候の変化に対しても耐性を有し、より長期間にわたって安定して発電できる。
さらに、本実施形態の太陽電池パネル100は封止材5,7を備えているため、強度が高く取り扱い性が良好である。
さらに、本実施形態の太陽電池パネル100は、長期間、外部に曝しても十分発電量の確保が可能になり、また十分な柔軟性や強度を有することで、従来は設置できなかったような曲面への設置が可能である。
[車両]
以下、車両の例として自動車を例に挙げて、上述した太陽電池パネル100の使用方法について説明する。
自動車200に太陽電池パネル100を装着する場合、太陽電池パネル100の設置位置に制限はなく、自動車200の表面であればどの位置に装着しても良い。例えば、図5に示すように、ボンネット201、ルーフ202、トランクリッド203、ドア204、フロントフェンダー205、リアフェンダー206、ピラー207、バンパー208、バックミラー209などの表面に装着することができる。中でも、日光を受光しやすいボンネット201、ルーフ202及びトランクリッド203に装着することが好ましい。装着は、通常は基板13を接着することにより行われる。
以下、車両の例として自動車を例に挙げて、上述した太陽電池パネル100の使用方法について説明する。
自動車200に太陽電池パネル100を装着する場合、太陽電池パネル100の設置位置に制限はなく、自動車200の表面であればどの位置に装着しても良い。例えば、図5に示すように、ボンネット201、ルーフ202、トランクリッド203、ドア204、フロントフェンダー205、リアフェンダー206、ピラー207、バンパー208、バックミラー209などの表面に装着することができる。中でも、日光を受光しやすいボンネット201、ルーフ202及びトランクリッド203に装着することが好ましい。装着は、通常は基板13を接着することにより行われる。
装着された太陽電池パネル100から電気を取り出すため、太陽電池パネル100の出力端子(図示せず)は自動車200のバッテリー(図示せず)に接続される。
ルーフ202に設置された太陽電池パネル100の出力端子とバッテリーをつなぐ配線(図示せず)はピラー207の内部を通るように配設すると、配線の破損を防ぎ、また意匠的な美感を得ることができるので望ましい。同様の理由から、ボンネット210に設置された太陽電池パネル100の出力端子とバッテリーとをつなぐ配線(図示せず)は、ボンネット210の裏の部分を通るように配設することが望ましく、トランクリッド203に設置された太陽電池パネル100の出力端子とバッテリーとをつなぐ配線は、トランクリッド203の裏の部分を通るように配設することが望ましい。
通常は1台の自動車に対して太陽電池パネル100を複数装着する。この際、各太陽電池パネル100は通常は電気的に接続される。太陽電池パネル100から取り出す電気の電圧を高めるためには太陽電池パネル100は直列に接続されることが好ましく、また、電流量を増やす観点からは太陽電池パネル100は並列に接続されることが好ましい。
ルーフ202に設置された太陽電池パネル100の出力端子とバッテリーをつなぐ配線(図示せず)はピラー207の内部を通るように配設すると、配線の破損を防ぎ、また意匠的な美感を得ることができるので望ましい。同様の理由から、ボンネット210に設置された太陽電池パネル100の出力端子とバッテリーとをつなぐ配線(図示せず)は、ボンネット210の裏の部分を通るように配設することが望ましく、トランクリッド203に設置された太陽電池パネル100の出力端子とバッテリーとをつなぐ配線は、トランクリッド203の裏の部分を通るように配設することが望ましい。
通常は1台の自動車に対して太陽電池パネル100を複数装着する。この際、各太陽電池パネル100は通常は電気的に接続される。太陽電池パネル100から取り出す電気の電圧を高めるためには太陽電池パネル100は直列に接続されることが好ましく、また、電流量を増やす観点からは太陽電池パネル100は並列に接続されることが好ましい。
このように太陽電池パネル100を自動車200に装着した場合、自動車200に光が照射されると、太陽電池パネル100の太陽電池素子1で電気が生じ、これをバッテリーへ取り出すことができる。
この際、太陽電池素子1としてCu−III−VI2族半導体系太陽電池素子等の化合物半導体系太陽電池を用いれば、高効率な発電が可能である。特に、Cu−III−VI2族半導体系太陽電池素子は耐光性に優れているため、経時劣化を抑制できる。
一方、太陽電池素子1として有機太陽電池素子を用いれば、有機太陽電池素子は通常は柔軟性に優れるため、何らかの理由で変形が生じても太陽電池パネル100の機能を損なうことは無い。また、有機太陽電池素子は製造が塗布法などにより大面積化が容易であるため、太陽電池パネル100の製造コストを抑制できる。更に、有機太陽電池素子は色調を広範囲に調整できるので、デザインの選択性が広がり好ましい。
さらに、化合物半導体系太陽電池素子及び有機太陽電池素子はシリコン系太陽電池素子と異なり曲面に合わせて形成可能であり、また、シリコン系太陽電池素子と比較して軽量であることも、利点の一つである。
この際、太陽電池素子1としてCu−III−VI2族半導体系太陽電池素子等の化合物半導体系太陽電池を用いれば、高効率な発電が可能である。特に、Cu−III−VI2族半導体系太陽電池素子は耐光性に優れているため、経時劣化を抑制できる。
一方、太陽電池素子1として有機太陽電池素子を用いれば、有機太陽電池素子は通常は柔軟性に優れるため、何らかの理由で変形が生じても太陽電池パネル100の機能を損なうことは無い。また、有機太陽電池素子は製造が塗布法などにより大面積化が容易であるため、太陽電池パネル100の製造コストを抑制できる。更に、有機太陽電池素子は色調を広範囲に調整できるので、デザインの選択性が広がり好ましい。
さらに、化合物半導体系太陽電池素子及び有機太陽電池素子はシリコン系太陽電池素子と異なり曲面に合わせて形成可能であり、また、シリコン系太陽電池素子と比較して軽量であることも、利点の一つである。
また、太陽電池素子1同士の接続を、正面の電極14と背面の電極11との直接接合(図3(a)参照)、又は、インターコネクタ15による接続(図3(b)参照)により行えば、太陽電池素子1の受光面の面積をより広くすることができる。即ち、従来のように端子等により接続するのと異なり、太陽電池素子1間に比較的大きな隙間を形成しなくてもよくなり、空間を有効に活用できる。これにより、発電量を増加させることができる。
また、太陽電池素子1がバイパス素子19を備えていれば、複数の太陽電池素子1を電気的に接続した場合に、発電しない太陽電池素子1の抵抗による影響を排除し、発電量の減少を抑制できる(図4参照)。
さらに、太陽電池素子1が逆電流防止素子20を備えていれば、逆電流の影響を排除し、発電流の減少を抑制できる(図4参照)。
さらに、太陽電池素子1が逆電流防止素子20を備えていれば、逆電流の影響を排除し、発電流の減少を抑制できる(図4参照)。
[II.第二実施形態]
以下、本発明の第二実施形態について図面を示して説明する。図6(a),(b)は本発明の第二実施形態としての自動車を模式的に示す斜視図である。
本実施形態において、太陽電池パネル100は第一実施形態で説明したものと同様である。よって、その太陽電池パネル100を装着した自動車300に注目して説明する。
以下、本発明の第二実施形態について図面を示して説明する。図6(a),(b)は本発明の第二実施形態としての自動車を模式的に示す斜視図である。
本実施形態において、太陽電池パネル100は第一実施形態で説明したものと同様である。よって、その太陽電池パネル100を装着した自動車300に注目して説明する。
図6(a)に示すように、本実施形態の自動車300においては、車体301の屋根として形成されたルーフ302がパネル装着部として機能し、このルーフ302の表面全体に太陽電池パネル100が装着されている。
ルーフ302の前方縁部302Aには、前方折りたたみ部303が前方縁部302Aを回動軸として回動可能に接続されている。この前方折りたたみ部303は後方に向けて回動させることで、図6(b)に示すように折りたたむことができるようになっている。
さらに、図6(a)に示すように、前方折りたたみ部303の裏面303Bには表面全体に太陽電池パネル100が装着されていて、前方折りたたみ部303を開いた時には裏面303Bが鉛直上方を向き、裏面303Bに装着された太陽電池パネル100が露出して受光できるようになっている。また、前方折りたたみ部303のおもて面303Aは図6(b)に示すように車体301の他の部分と同様のカラーリングが施され、前方折りたたみ部303を折りたたんだ時に車体301全体としての統一感を損なうことが無いようになっている。
さらに、図6(a)に示すように、前方折りたたみ部303の裏面303Bには表面全体に太陽電池パネル100が装着されていて、前方折りたたみ部303を開いた時には裏面303Bが鉛直上方を向き、裏面303Bに装着された太陽電池パネル100が露出して受光できるようになっている。また、前方折りたたみ部303のおもて面303Aは図6(b)に示すように車体301の他の部分と同様のカラーリングが施され、前方折りたたみ部303を折りたたんだ時に車体301全体としての統一感を損なうことが無いようになっている。
一方、図6(a)に示すように、ルーフ302の後方縁部302Bには、後方折りたたみ部304が後方縁部302Bを回動軸として回動可能に接続されている。この後方折りたたみ部304は前方に向けて回動させることで、図6(b)に示すように折りたたむことができるようになっている。
さらに、図6(a)に示すように、後方折りたたみ部304の裏面304Bには表面全体に太陽電池パネル100が装着されていて、後方折りたたみ部304を開いた時には裏面304Bが鉛直上方を向き、裏面304Bに装着された太陽電池パネル100が露出して受光できるようになっている。また、後方折りたたみ部304のおもて面304Aは図6(b)に示すように車体301の他の部分と同様のカラーリングが施され、後方折りたたみ部304を折りたたんだ時に車体301全体としての統一感を損なうことが無いようになっている。
さらに、図6(a)に示すように、後方折りたたみ部304の裏面304Bには表面全体に太陽電池パネル100が装着されていて、後方折りたたみ部304を開いた時には裏面304Bが鉛直上方を向き、裏面304Bに装着された太陽電池パネル100が露出して受光できるようになっている。また、後方折りたたみ部304のおもて面304Aは図6(b)に示すように車体301の他の部分と同様のカラーリングが施され、後方折りたたみ部304を折りたたんだ時に車体301全体としての統一感を損なうことが無いようになっている。
前方折りたたみ部303及び後方折りたたみ部304を折りたたんだ時には、図6(b)に示すように、前方折りたたみ部303及び後方折りたたみ部304がルーフ302に装着された太陽電池パネル100を覆うようになっている。この際、前方折りたたみ部303及び後方折りたたみ部304は、ルーフ302に装着された太陽電池パネル100の少なくとも一部を覆うことができればよいが、ルーフ302に装着された太陽電池パネル100の全てを覆えるものが好ましい。常に露出した太陽電池パネル100が生じることを防ぎ、太陽電池パネル100の長寿命化を達成するためである。
これを実現する観点から、図6(b)に示すように、前方折りたたみ部303及び後方折りたたみ部304の幅方向の寸法Wは、それぞれルーフ302と同じに設定されることが好ましい。また、前方折りたたみ部303及び後方折りたたみ部304の前後方向の寸法Lは、前方折りたたみ部303及び後方折りたたみ部304の合計長さがルーフ302と同じに設定されることが好ましい。
また、太陽電池パネル100から電気を取り出すため、太陽電池パネル100の出力端子(図示せず)は自動車300のバッテリー(図示せず)に接続されている。
また、太陽電池パネル100から電気を取り出すため、太陽電池パネル100の出力端子(図示せず)は自動車300のバッテリー(図示せず)に接続されている。
本実施形態の自動車300は以上のように構成されているので、第一実施形態と同様に、自動車300に光が照射されると、太陽電池パネル100の太陽電池素子1で電気が生じ、これをバッテリー(図示せず)へ取り出すことができる。即ち、図6(a)に示すように前方折りたたみ部303及び後方折りたたみ部304を開いた時には、ルーフ302、前方折りたたみ部303及び後方折りたたみ部304に装着された太陽電池パネル100がすべて露出し、受光して発電するのである。
一方で、図6(b)に示すように前方折りたたみ部303及び後方折りたたみ部304を折りたたんだ時には前方折りたたみ部303及び後方折りたたみ部304のおもて面303A及び304Aを表に出して自動車300の美観を保つことができる。
一方で、図6(b)に示すように前方折りたたみ部303及び後方折りたたみ部304を折りたたんだ時には前方折りたたみ部303及び後方折りたたみ部304のおもて面303A及び304Aを表に出して自動車300の美観を保つことができる。
このような構成により、本実施形態の自動車300では、多様な態様での太陽電池パネル100の使用が可能である。
例えば、降雨時、降雪時等のように発電量が期待できず太陽電池パネル100が劣化しやすいときには前方折りたたみ部303及び後方折りたたみ部304を折りたたんで太陽電池パネル100を保護するとともに、晴天時などの発電量が期待できるときには前方折りたたみ部303及び後方折りたたみ部304を開いて太陽電池パネル100による発電をさせることで、太陽電池パネル100を長寿命化を達成することができる。
例えば、降雨時、降雪時等のように発電量が期待できず太陽電池パネル100が劣化しやすいときには前方折りたたみ部303及び後方折りたたみ部304を折りたたんで太陽電池パネル100を保護するとともに、晴天時などの発電量が期待できるときには前方折りたたみ部303及び後方折りたたみ部304を開いて太陽電池パネル100による発電をさせることで、太陽電池パネル100を長寿命化を達成することができる。
また、例えば、自動車300の走行時には前方折りたたみ部303及び後方折りたたみ部304を折りたたんで空気抵抗を抑制する一方で、駐車時に前方折りたたみ部303及び後方折りたたみ部304を開いてバッテリーの充電を行うようにして、バッテリーの電力消費を抑制することも可能である。
また、本実施形態では、第一実施形態と同様の利点を得ることができる。
また、本実施形態では、第一実施形態と同様の利点を得ることができる。
ところで、本実施形態ではルーフ302の前後の縁部302A,302Bに折りたたみ部303,304を接続するようにしたが、例えば図7(a),(b)に示すようにルーフ302の左右の縁部302C,302Dに折りたたみ部305,306を接続し、上記実施形態と同様に太陽電池パネル100を装着するようにしても良い。なお、図7(a),(b)の構成において、折りたたみ部305,306の接続位置以外は上記実施形態と同様である。
さらに、本実施形態ではパネル装着部をルーフ302としたが、ボンネット、トランクリッド、ドア、フロントフェンダー、リアフェンダー、ピラー、バンパー、バックミラーなどの他の部分をパネル装着部としてもよい。
さらに、本実施形態ではパネル装着部をルーフ302としたが、ボンネット、トランクリッド、ドア、フロントフェンダー、リアフェンダー、ピラー、バンパー、バックミラーなどの他の部分をパネル装着部としてもよい。
[III.第三実施形態]
以下、本発明の第三実施形態について図面を示して説明する。図8(a),(b)は本発明の第三実施形態としての自動車を模式的に示す斜視図であり、図8(c)は太陽電池シートを模式的に示す断面図である。
本実施形態において、太陽電池パネル100は第一実施形態で説明したものと同様である。よって、その太陽電池パネル100を装着した自動車400に注目して説明する。
以下、本発明の第三実施形態について図面を示して説明する。図8(a),(b)は本発明の第三実施形態としての自動車を模式的に示す斜視図であり、図8(c)は太陽電池シートを模式的に示す断面図である。
本実施形態において、太陽電池パネル100は第一実施形態で説明したものと同様である。よって、その太陽電池パネル100を装着した自動車400に注目して説明する。
図8(a)に示すように、本実施形態の自動車400においては、車体401に窓部として形成されたフロントウィンド402の縁部402Aに太陽電池シート403が配設されている。この太陽電池シート403は、図8(c)に示すように、柔軟性を有するシート本体404と、シート本体404に布設された太陽電池パネル100とから構成されていて、図8(b)に示すように、普段はボンネット405の裏側に収納されている。この際、太陽電池シート403は省スペースのためにロール状に巻くか折りたたまれて収納されることが好ましい。そして、太陽電池シート403は、その端部403Aを引き出すことでフロントウィンド402上に進退可能になっている。
この際、太陽電池シート403の進退時には太陽電池パネル100も変形するため、その太陽電池パネル100に使用する太陽電池素子1は変形により破損し難いものが好ましく、具体的には有機太陽電池素子が好ましい。
また、太陽電池パネル100から電気を取り出すため、太陽電池パネル100の出力端子(図示せず)は自動車400のバッテリー(図示せず)に接続されている。
また、太陽電池パネル100から電気を取り出すため、太陽電池パネル100の出力端子(図示せず)は自動車400のバッテリー(図示せず)に接続されている。
本実施形態の自動車400は以上のように構成されているので、第一実施形態と同様に、自動車400に光が照射されると、太陽電池パネル100の太陽電池素子1で電気が生じ、これをバッテリー(図示せず)へ取り出すことができる。即ち、図8(a)に示すように太陽電池シート403を引き出してフロントウィンド402を覆うようにすれば、太陽電池シート403に装着された太陽電池パネル100がすべて露出し、受光して発電するのである。
一方で、図8(b)に示すように、太陽電池シート403をボンネット405の裏に収納した時には太陽電池シート403は風雨から遮断されて太陽電池パネル100が劣化することを防止できるとともに、フロントウィンド402における視野を確保できる。
一方で、図8(b)に示すように、太陽電池シート403をボンネット405の裏に収納した時には太陽電池シート403は風雨から遮断されて太陽電池パネル100が劣化することを防止できるとともに、フロントウィンド402における視野を確保できる。
このような構成により、本実施形態の自動車400では、多様な態様での太陽電池パネル100の使用が可能である。
例えば、自動車400の走行時には太陽電池シート403を収納する一方で、駐車時に太陽電池シート403を引き出してバッテリーの充電を行うようにして、バッテリーの電力消費を抑制することも可能である。
また、本実施形態では、第一実施形態と同様の利点を得ることができる。
例えば、自動車400の走行時には太陽電池シート403を収納する一方で、駐車時に太陽電池シート403を引き出してバッテリーの充電を行うようにして、バッテリーの電力消費を抑制することも可能である。
また、本実施形態では、第一実施形態と同様の利点を得ることができる。
ところで、本実施形態ではフロントウィンド402の下側の縁部402Aに太陽電池シート403を配設するようにしたが、例えば太陽電池シート403は窓部の上下左右のどの縁部に配設するようにしても良い。さらに、本実施形態では窓部をフロントウィンド402としたが、サイドウィンド及びリアウィンドなどの他の窓部に太陽電池シート403を配設しても良い。
[IV.その他]
以上、本発明の実施形態について詳細に説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で任意に変更して実施できる。
以上、本発明の実施形態について詳細に説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で任意に変更して実施できる。
例えば、図6に示す前方折りたたみ部303のおもて面303A及び/または後方折りたたみ部304のおもて面304Aに太陽電池パネル100を装着しても良い。かかる場合には、前方折りたたみ部303及び後方折りたたみ部304を閉じていても、自動車300のルーフ部分に光が照射されると電気が生じ、これをバッテリーへ取り出すことができる。
同様に、図7に示す折りたたみ部305のおもて面及び/または306のおもて面についても太陽電池パネル100を装着しても良い。
同様に、図7に示す折りたたみ部305のおもて面及び/または306のおもて面についても太陽電池パネル100を装着しても良い。
例えば、太陽電池パネルを装着する車両は自動車に限定されるものではない。したがって、例えば電車、重機などに装着するようにしてもよい。
また、例えば、太陽電池パネルには独立した基板を設けず、耐候性保護フィルム1、紫外線カットフィルム2、ガスバリアフィルム3,9、ゲッター材フィルム4,8、封止材5,7、バックシート10などのフィルム材のうちいずれかを基板として兼用してもよい。この場合、基板と兼用されるフィルムには太陽電池素子を指示できる程度の強度を備えさせることが好ましい。これらにより、太陽電池パネルの厚みを薄くして更なる省スペース化を実現できる。
また、例えば、太陽電池パネルには独立した基板を設けず、耐候性保護フィルム1、紫外線カットフィルム2、ガスバリアフィルム3,9、ゲッター材フィルム4,8、封止材5,7、バックシート10などのフィルム材のうちいずれかを基板として兼用してもよい。この場合、基板と兼用されるフィルムには太陽電池素子を指示できる程度の強度を備えさせることが好ましい。これらにより、太陽電池パネルの厚みを薄くして更なる省スペース化を実現できる。
また、例えば、耐候性保護フィルム1、紫外線カットフィルム2、ガスバリアフィルム3,9、ゲッター材フィルム4,8、封止材5,7、バックシート10などのフィルム材を形成する順番は上記実施形態のものに限定されず、任意に変更できる。
また、太陽電池パネルに光を入射される向きは限定されず、背面(基板側)から入射するようにしてもよく、正面(基板と反対側)から入射するようにしてもよい。
また、太陽電池パネルに光を入射される向きは限定されず、背面(基板側)から入射するようにしてもよく、正面(基板と反対側)から入射するようにしてもよい。
本発明は車両に関する任意の分野に適用でき、特に、電気自動車やハイブリッドカー等の自動車に用いて好適である。
1 耐候性保護フィルム
2 紫外線カットフィルム
3,9 ガスバリアフィルム
4,8 ゲッター材フィルム
5,7 封止材
6 太陽電池素子
10 バックシート
11 シール材
12 薄膜太陽電池
13 基板
14,17 電極
15 光吸収層
16 バッファ層
18 インターコネクタ
19 バイパス素子
20 逆電流防止素子
100 太陽電池パネル
200,300,400 自動車
2 紫外線カットフィルム
3,9 ガスバリアフィルム
4,8 ゲッター材フィルム
5,7 封止材
6 太陽電池素子
10 バックシート
11 シール材
12 薄膜太陽電池
13 基板
14,17 電極
15 光吸収層
16 バッファ層
18 インターコネクタ
19 バイパス素子
20 逆電流防止素子
100 太陽電池パネル
200,300,400 自動車
Claims (13)
- 車両に装着される車両用太陽電池パネルであって、
化合物半導体系太陽電池素子及び有機太陽電池素子からなる群より選ばれる少なくとも1つの太陽電池素子を備えることを特徴とする車両用太陽電池パネル。 - 該太陽電池素子を覆うガスバリアフィルムを備えることを特徴とする請求項1記載の車両用太陽電池パネル。
- 該太陽電池素子を覆う紫外線カットフィルムを備えることを特徴とする請求項1又は請求項2に記載の車両用太陽電池パネル。
- 該太陽電池素子を覆い水分及び/又は酸素を吸収するゲッター材フィルムを備えることを特徴とする請求項1〜3のいずれか一項に記載の車両用太陽電池パネル。
- 表面に該太陽電池素子を覆う耐候性保護フィルムを備えることを特徴とする請求項1〜4のいずれか一項に記載の車両用太陽電池パネル。
- 該耐候性保護フィルムがフッ素系樹脂フィルムであることを特徴とする請求項5記載の車両用太陽電池パネル。
- 複数の該太陽電池素子が並べて設けられ、
該太陽電池素子が正面及び背面にそれぞれ電極を備え、
隣り合う該太陽電池素子は前記正面の電極と前記背面の電極とを直接接合されていることを特徴とする請求項1〜6のいずれか一項に記載の車両用太陽電池パネル。 - 複数の該太陽電池素子が並べて設けられ、
該太陽電池素子が正面及び背面にそれぞれ電極を備え、
隣り合う該太陽電池素子が前記正面の電極と前記背面の電極とをインターコネクタで接続されていることを特徴とする請求項1〜6のいずれか一項に記載の車両用太陽電池パネル。 - 該太陽電池素子が逆流防止素子及び/又はバイパス素子を備えることを特徴とする請求項1〜8のいずれか一項に記載の車両用太陽電池パネル。
- 車体と、該車体表面に装着された請求項1〜9のいずれか一項に記載の車両用太陽電池パネルとを備える
ことを特徴とする太陽電池付き車両。 - 車体と、
該車体表面に形成された、請求項1〜9のいずれか一項に記載の車両用太陽電池パネルを装着されたパネル装着部と、
該パネル装着部に折りたたみ可能に接続された、請求項1〜9のいずれか一項に記載の車両用太陽電池パネルを装着された折りたたみ部とを備え、
該折りたたみ部を折りたたんだ時には該折りたたみ部が該パネル装着部に装着された車両用太陽電池パネルを覆い、該折りたたみ部を開いた時には該パネル装着部及び該折りたたみ部に装着された該車両用太陽電池パネルが露出するようになっている
ことを特徴とする太陽電池付き車両。 - 窓部を備えた車両の前記窓部の縁部に進退可能に配設される太陽電池シートであって、
シート本体と、
該シート本体に布設された請求項1〜9のいずれか一項に記載の車両用太陽電池パネルとを備える
ことを特徴とする太陽電池シート。 - 窓部を備えた車体と、
該窓部の縁部に進退可能に配設された請求項12記載の太陽電池シートとを備える
ことを特徴とする太陽電池付き車両。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008183263A JP2010021499A (ja) | 2008-07-14 | 2008-07-14 | 車両用太陽電池パネル、太陽電池付き車両及び太陽電池シート |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008183263A JP2010021499A (ja) | 2008-07-14 | 2008-07-14 | 車両用太陽電池パネル、太陽電池付き車両及び太陽電池シート |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010021499A true JP2010021499A (ja) | 2010-01-28 |
Family
ID=41706063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008183263A Pending JP2010021499A (ja) | 2008-07-14 | 2008-07-14 | 車両用太陽電池パネル、太陽電池付き車両及び太陽電池シート |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010021499A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012033573A (ja) * | 2010-07-28 | 2012-02-16 | Mazda Motor Corp | 車載太陽電池パネル及びその取付構造 |
JP2013004646A (ja) * | 2011-06-15 | 2013-01-07 | Dainippon Printing Co Ltd | 太陽電池モジュール用封止材組成物 |
WO2013045679A1 (de) * | 2011-09-30 | 2013-04-04 | Saint-Gobain Glass France | Laminierter verbund mit trocknungsmittel, sowie verfahren zu dessen herstellung |
JP2014127575A (ja) * | 2012-12-26 | 2014-07-07 | Nitto Denko Corp | 封止シート |
KR101848112B1 (ko) * | 2010-10-22 | 2018-04-11 | 가디언 인더스트리즈 코퍼레이션. | 향상된 광전기적 모듈들 및/또는 이의 제조 방법들 |
CN110970517A (zh) * | 2018-09-29 | 2020-04-07 | 汉能移动能源控股集团有限公司 | 一种太阳能发电组件 |
CN113066877A (zh) * | 2021-04-29 | 2021-07-02 | 广东金源光能股份有限公司 | 一种太阳能汽车天窗面板及其制作方法 |
WO2023008068A1 (ja) * | 2021-07-26 | 2023-02-02 | シャープ株式会社 | 太陽電池モジュールおよび太陽光発電システム |
-
2008
- 2008-07-14 JP JP2008183263A patent/JP2010021499A/ja active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012033573A (ja) * | 2010-07-28 | 2012-02-16 | Mazda Motor Corp | 車載太陽電池パネル及びその取付構造 |
KR101848112B1 (ko) * | 2010-10-22 | 2018-04-11 | 가디언 인더스트리즈 코퍼레이션. | 향상된 광전기적 모듈들 및/또는 이의 제조 방법들 |
JP2013004646A (ja) * | 2011-06-15 | 2013-01-07 | Dainippon Printing Co Ltd | 太陽電池モジュール用封止材組成物 |
WO2013045679A1 (de) * | 2011-09-30 | 2013-04-04 | Saint-Gobain Glass France | Laminierter verbund mit trocknungsmittel, sowie verfahren zu dessen herstellung |
JP2014127575A (ja) * | 2012-12-26 | 2014-07-07 | Nitto Denko Corp | 封止シート |
CN110970517A (zh) * | 2018-09-29 | 2020-04-07 | 汉能移动能源控股集团有限公司 | 一种太阳能发电组件 |
CN113066877A (zh) * | 2021-04-29 | 2021-07-02 | 广东金源光能股份有限公司 | 一种太阳能汽车天窗面板及其制作方法 |
WO2023008068A1 (ja) * | 2021-07-26 | 2023-02-02 | シャープ株式会社 | 太陽電池モジュールおよび太陽光発電システム |
JP2023017512A (ja) * | 2021-07-26 | 2023-02-07 | シャープ株式会社 | 太陽電池モジュールおよび太陽光発電システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010021498A (ja) | 薄膜太陽電池、太陽電池ユニット及び太陽電池構造体 | |
JP2013168672A (ja) | 膜状太陽電池及び太陽電池パネル | |
JP2010021499A (ja) | 車両用太陽電池パネル、太陽電池付き車両及び太陽電池シート | |
JP2010021502A (ja) | ブラインド用太陽電池パネル及び縦型ブラインド | |
WO2011013341A1 (ja) | 太陽電池モジュール | |
JP2012064645A (ja) | 有機光電変換素子及びその製造方法 | |
JP2012199541A (ja) | 有機薄膜太陽電池素子、太陽電池及び太陽電池モジュール | |
JP2010021501A (ja) | ブラインド用太陽電池パネル及びブラインド | |
JP2013179297A (ja) | 光学制御層を有する太陽電池セル | |
JP5652712B2 (ja) | 光電変換素子及びその製造方法、並びにインク | |
TW201208097A (en) | Solar cell module and production method for solar cell module | |
JP2013229576A (ja) | 太陽電池モジュール及び車輌用部材 | |
JP5601039B2 (ja) | チアジアゾール含有高分子 | |
JP6094572B2 (ja) | 有機薄膜太陽電池モジュールの製造方法、及び有機薄膜太陽電池モジュール | |
JP2012191194A (ja) | 光電変換素子、太陽電池及び太陽電池モジュール並びにこれらの製造方法 | |
JP2010049998A (ja) | コンセント及び電源供給切替装置 | |
JP2010021500A (ja) | 電力供給システム | |
WO2014003187A1 (ja) | 有機薄膜太陽電池モジュール | |
JP5445200B2 (ja) | ビシクロポルフィリン化合物及び溶媒を含有する光電変換素子半導体層形成用組成物、それを用いて得られる光電変換素子。 | |
JP2011192916A (ja) | 光電変換素子およびその素子の製造方法 | |
JP5569021B2 (ja) | 光電変換素子の製造方法 | |
JP2012009518A (ja) | 有機太陽電池モジュール | |
JP2012207104A (ja) | ヨウ素化縮合チオフェン化合物を用いたコポリマーの製造方法、及びヨウ素化ジオキソピロロチオフェン化合物 | |
JP2010050293A (ja) | スイッチ装置 | |
JP2011077375A (ja) | 光電変換素子の製造方法および太陽電池の製造方法 |