JP2010014505A - Three-dimensional shape measuring apparatus and three-dimensional shape measurement method - Google Patents

Three-dimensional shape measuring apparatus and three-dimensional shape measurement method Download PDF

Info

Publication number
JP2010014505A
JP2010014505A JP2008174064A JP2008174064A JP2010014505A JP 2010014505 A JP2010014505 A JP 2010014505A JP 2008174064 A JP2008174064 A JP 2008174064A JP 2008174064 A JP2008174064 A JP 2008174064A JP 2010014505 A JP2010014505 A JP 2010014505A
Authority
JP
Japan
Prior art keywords
light
optical system
light sources
imaging
target object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008174064A
Other languages
Japanese (ja)
Inventor
Yuka Ito
由佳 伊藤
Koichiro Komatsu
宏一郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008174064A priority Critical patent/JP2010014505A/en
Publication of JP2010014505A publication Critical patent/JP2010014505A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional shape measuring apparatus for irradiating an object to be measured with lights at a plurality of angles, and accurately measuring the surface shape at an optimal angle. <P>SOLUTION: The three-dimensional shape measuring apparatus 10 has a light-emitting system 1 with a plurality of light sources 1a-1c, an imaging optical system 7, and an image processing section 8. A plurality of the light sources 1a-1c included in the light-emitting system 1 have different angles between an optical axis of the imaging optical system 7 and optical axes of a plurality of the light sources 1a-1c, in a predetermined plane containing the optical axis of the imaging optical system 7, and are disposed so as to irradiate the same region on a surface of the object to be measured 2. The imaging optical system 7 captures the lights irradiated by the light sources 1a-1c of the light-emitting system 1. The image processing section 8 obtains a plurality of the images, selects an optimal portion, calculates shape information, and measures a three-dimensional shape. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、三次元形状測定装置及び三次元形状測定方法に関する。   The present invention relates to a three-dimensional shape measuring apparatus and a three-dimensional shape measuring method.

従来、物体の三次元形状を非接触で測定する方法の一つに光切断法が存在する。光切断法は三角測量の原理に基づいており、ライン状の光を測定対象物体に投影し、測定対象物体の形状に応じて変形したライン光をカメラで撮像して測定対象物体の表面形状を得る方法である。図4に、従来公知の光切断法による測定の原理を示す。この図4に示されるように、光源51から照射された光はスリット52を通過するとライン状の光(以下、ライン光53と呼ぶ)となる。このライン光53を測定対象物体2に照射すると、測定対象物体2上に光切断線54ができ、この光切断線54をカメラで撮像すると、画像55が得られる。光切断線54上にある一点PはP′に撮像されており、光源51と点Pと点P′を結んでできる三角形に注目すると、光源51と点P′の距離L、光源51と点P′を結ぶ線分と光源51と点Pを結ぶ線分53aのなす角θ、点Pと点P′を結ぶ線分と光源51と点P′を結ぶ線分のなす角θは既知である。一辺とその両端の角度がわかるとき三角形は一つに決まるので、三角形の三辺と三つの角度が求められ、点P′の位置を測定することができる。ライン光53をスキャンさせ、その他の点についても同様に求めれば物体の三次元形状を求めることができる。このような光切断法を利用した三次元形状測定装置として、複数の光源から測定対象物体の異なる位置にライン光を照射して、当該測定対象物体の三次元形状を測定する装置が開示されている(例えば、特許文献1参照)。
(例えば、特許文献1参照)。
特開2001−255125号公報
Conventionally, there is a light cutting method as one of methods for measuring a three-dimensional shape of an object without contact. The light cutting method is based on the principle of triangulation, projecting line-shaped light onto the object to be measured, imaging the line light deformed according to the shape of the object to be measured with a camera, and determining the surface shape of the object to be measured. How to get. FIG. 4 shows the principle of measurement by a conventionally known light cutting method. As shown in FIG. 4, when the light emitted from the light source 51 passes through the slit 52, it becomes line-shaped light (hereinafter referred to as line light 53). When the measurement target object 2 is irradiated with the line light 53, a light cutting line 54 is formed on the measurement target object 2. When the light cutting line 54 is imaged with a camera, an image 55 is obtained. One point P on the light cutting line 54 is imaged at P ′, and attention is paid to the triangle formed by connecting the light source 51, the point P, and the point P ′, the distance L between the light source 51 and the point P ′, the light source 51 and the point P ′. The angle θ 1 formed by the line segment connecting P ′ and the line segment 53a connecting the light source 51 and the point P, and the angle θ 2 formed by the line segment connecting the point P and the point P ′ and the line segment connecting the light source 51 and the point P ′ are Known. Since the triangle is determined to be one when the angles of one side and both ends thereof are known, the three sides and three angles of the triangle are obtained, and the position of the point P ′ can be measured. If the line light 53 is scanned and other points are similarly obtained, the three-dimensional shape of the object can be obtained. As a three-dimensional shape measurement apparatus using such a light cutting method, an apparatus is disclosed that irradiates line light from a plurality of light sources to different positions of a measurement target object and measures the three-dimensional shape of the measurement target object. (For example, refer to Patent Document 1).
(For example, refer to Patent Document 1).
JP 2001-255125 A

しかしながら、この従来の光切断法では、図5(a)に示すように測定対象物体面2′の傾きとライン光53との照射角度がほぼ等しくなったときに、図5(b)のように測定対象物体面2′の傾きとライン光53との照射角度が等しくない場合に比べて、光切断線の幅61が増大して精度劣化及び空間分解能低下を生じ、また、測定対象物体面2′によっては散乱光の角度特性があり、撮像光学系では測定対象物体面2′からの散乱光を検出するため、受光する角度によって受光できる光量が大きく異なってしまうという課題があった。   However, in this conventional light cutting method, as shown in FIG. 5A, when the inclination of the measurement object surface 2 ′ and the irradiation angle of the line light 53 are substantially equal, as shown in FIG. Compared with the case where the inclination of the measurement object surface 2 ′ and the irradiation angle of the line light 53 are not equal, the width 61 of the optical cutting line increases, resulting in deterioration in accuracy and spatial resolution, and the measurement object surface Depending on 2 ', there is an angle characteristic of scattered light, and the imaging optical system detects scattered light from the object surface 2' to be measured.

本発明はこのような課題に鑑みてなされたものであり、複数の角度から測定対象物体の略同一領域に光を照射し、当該表面形状の測定に適した角度での撮像データが得られ、高精度な測定が可能な三次元形状測定装置及び三次元形状測定方法を提供することを目的とする。   The present invention has been made in view of such a problem, irradiating light to substantially the same region of the measurement target object from a plurality of angles, to obtain imaging data at an angle suitable for measurement of the surface shape, It is an object of the present invention to provide a three-dimensional shape measuring apparatus and a three-dimensional shape measuring method capable of highly accurate measurement.

前記課題を解決するために、本発明に係る三次元形状測定装置は、複数の光源を有し、測定対象物体の表面に異なる方向から光を照射する投光系と、この投光系の光源の各々から測定対象物体に照射された光を撮像する撮像光学系と、撮像光学系で撮像された光源の各々に対応する測定対象物体の像を処理する画像処理部と、を有して構成される。そして、投光系が有する複数の光源の各々は、撮像光学系の光軸を含む所定の面内で、この撮像光学系の光軸と各々の光源の光軸とのなす角度が異なり、測定対象物体の表面の略同一領域を照射するよう配置され、画像処理部は、光源の各々に対応する測定対象物体の像から、最適な部分を選択して形状情報を算出することを特徴とする。   In order to solve the above problems, a three-dimensional shape measuring apparatus according to the present invention has a plurality of light sources, a light projecting system that irradiates light on the surface of the measurement target object from different directions, and a light source of the light projecting system An imaging optical system that captures light emitted from each of the measurement target objects, and an image processing unit that processes an image of the measurement target object corresponding to each of the light sources captured by the imaging optical system Is done. Each of the plurality of light sources included in the light projecting system is different in the angle formed between the optical axis of the imaging optical system and the optical axis of each light source within a predetermined plane including the optical axis of the imaging optical system. It is arranged to irradiate substantially the same area on the surface of the target object, and the image processing unit calculates shape information by selecting an optimum part from the image of the measurement target object corresponding to each of the light sources. .

このような三次元形状測定装置において、投光系が有する複数の光源の各々は、測定対象物体にスリット光を照射するよう構成されることが好ましい。   In such a three-dimensional shape measuring apparatus, each of the plurality of light sources included in the light projecting system is preferably configured to irradiate the measurement target object with slit light.

このとき、画像処理部は、複数のスリット光を測定対象物体上に照射することにより撮像光学系で撮像された複数のスリット像のうち、強度が最大のスリット像、又は短手方向の幅が最小のスリット像を用いて測定対象物体の形状情報を算出することが好ましい。   At this time, the image processing unit irradiates the measurement target object with a plurality of slit lights, and among the plurality of slit images captured by the imaging optical system, the slit image having the maximum intensity or the width in the short direction is It is preferable to calculate the shape information of the measurement target object using the minimum slit image.

また、このような三次元形状測定装置において、投光系が有する複数の光源の各々は、互いに異なる波長の光を放射するよう構成され、撮像光学系は、複数の光源からの異なる波長の光を分離可能な光学素子と、波長ごとに分離された光をそれぞれ受光して測定対象物体の像を検出する複数の撮像素子とを有し、撮像光学系の光軸に垂直な直線に対する光源の光軸の傾きをθとし、撮像素子の撮像面の撮像光学系の光軸と垂直な直線に対する傾きをθ′とし、光源の光軸と撮像光学系の光軸とが交わる位置から撮像光学系の主平面までの距離をaとし、撮像光学系の後側主平面から撮像光学系の光軸上の撮像素子の位置までの距離をbとしたとき、次式
a×tanθ′ = b×tanθ
の条件を満足するように、撮像素子を配置することが好ましい。
Further, in such a three-dimensional shape measuring apparatus, each of the plurality of light sources included in the light projecting system is configured to emit light having different wavelengths, and the imaging optical system is configured to emit light having different wavelengths from the plurality of light sources. And a plurality of image sensors for detecting the image of the object to be measured by receiving the light separated for each wavelength, and the light source for the straight line perpendicular to the optical axis of the imaging optical system. The inclination of the optical axis is θ, the inclination of the imaging surface of the imaging device with respect to a straight line perpendicular to the optical axis of the imaging optical system is θ ′, and the imaging optical system starts from the position where the optical axis of the light source and the optical axis of the imaging optical system intersect. Where a is the distance to the principal plane of the imaging optical system, and b is the distance from the rear principal plane of the imaging optical system to the position of the imaging element on the optical axis of the imaging optical system, a × tan θ ′ = b × tan θ
It is preferable to arrange the image sensor so as to satisfy the above condition.

また、このような三次元形状測定装置において、撮像光学系は、両側テレセントリック光学系であり、且つ、撮像素子を一つ有し、投光系が有する複数の光源を順次切り換えながら点灯して測定対象物体に光を照射して一つの撮像素子で光源の各々に対する測定対象物体の像を検出するよう構成されることが好ましい。   In such a three-dimensional shape measuring apparatus, the imaging optical system is a double-sided telecentric optical system, has one imaging element, and measures by switching on and sequentially switching a plurality of light sources of the light projecting system. It is preferable that the object is irradiated with light and an image of the object to be measured for each of the light sources is detected by one image sensor.

あるいは、撮像光学系は、両側テレセントリック光学系であり、且つ、カラー撮像素子を一つ有し、投光系が有する複数の光源から測定対象物体に照射される波長の異なる各光を、一つのカラー撮像素子で受光し、各光を色信号として分離して撮像することにより、光源の各々に対する測定対象物体の像を検出するように構成されることが好ましい。   Alternatively, the imaging optical system is a double-sided telecentric optical system, and has one color imaging device, and each of the light beams with different wavelengths irradiated from the plurality of light sources of the light projecting system to the measurement target object It is preferable to be configured to detect an image of the measurement target object with respect to each of the light sources by receiving the light with a color image sensor and separating and imaging each light as a color signal.

また、本発明に係る三次元形状測定方法は、複数の光源を有し、測定対象物体の表面に異なる方向から光を照射する投光系と、この投光系の光源の各々から測定対象物体に照射された光を撮像する撮像光学系と、を有する三次元形状測定装置により測定対象物体の三次元形状を測定する方法であって、投光系が有する複数の光源の各々を、撮像光学系の光軸を含む所定の面内で、撮像光学系の光軸と各々の光源の光軸とのなす角度が異なり、測定対象物体の表面の略同一領域を照射するよう配置し、撮像光学系により、投光系の光源の各々から測定対象物体に照射された光を撮像し、光源の各々に対応する測定対象物体の像から、最適な部分を選択して形状情報を算出することを特徴とする。   The three-dimensional shape measurement method according to the present invention includes a light projecting system that has a plurality of light sources and irradiates light on the surface of the measurement target object from different directions, and a measurement target object from each of the light sources of the light projection system. An imaging optical system for imaging the light emitted to the object, and a method for measuring the three-dimensional shape of the object to be measured by a three-dimensional shape measuring apparatus, wherein each of the plurality of light sources of the light projecting system is imaged optically The angle between the optical axis of the imaging optical system and the optical axis of each light source is different within a predetermined plane including the optical axis of the system, and is arranged so as to irradiate substantially the same region of the surface of the object to be measured. The system captures the light irradiated to the measurement target object from each of the light sources of the light projecting system, calculates the shape information by selecting the optimum part from the image of the measurement target object corresponding to each of the light sources. Features.

本発明に係る三次元形状測定装置及び三次元形状測定方法を以上のように構成すると、複数の角度から測定対象物体の略同一領域に光を照射することで、当該表面形状の測定に適した角度での画像データが得られ、三次元形状の高精度な測定が可能となる。   When the three-dimensional shape measurement apparatus and the three-dimensional shape measurement method according to the present invention are configured as described above, light is applied to substantially the same region of the measurement target object from a plurality of angles, which is suitable for measurement of the surface shape. Image data at an angle is obtained, and high-precision measurement of a three-dimensional shape is possible.

以下、本発明の好ましい実施形態について図面を参照して説明する。図1に示すように、本実施の形態に係る三次元形状測定装置10は、複数の光源(図1の場合は3個の光源1a〜1c)を有する投光系1と、撮像レンズ3、複数の光学素子(図1の場合は2個の光学素子4a,4b)、光路長補正板5、及び、複数の撮像素子(図1の場合は3個の撮像素子6a〜6c)から構成され、測定対象物体2の像を検出する撮像光学系7と、この撮像光学系7で撮像された光源の各々に対応する測定対象物体2の像を処理する画像処理部8と、から構成されている。このような構成とするのは、上述のように、投光系1の光軸が測定対象物体2の表面に対し垂直入射の場合に投影されるライン幅が最も狭くなり散乱光の光強度も強くなるので、できるだけ垂直入射に近い条件で撮像することが望ましいためである。これを実現するため、この三次元形状測定装置10では、撮像光学系7を含む所定の平面内に、投光系1を構成する複数の光源(1a〜1c)を配置し、さらに、この撮像光学系7の光軸に対する光源(1a〜1c)の光軸の角度がそれぞれ異なるように配置して、投光系1を構成する複数の光源(1a〜1c)から測定対象物体2上の略同一領域に光を照射するように構成されている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the three-dimensional shape measuring apparatus 10 according to the present embodiment includes a light projecting system 1 having a plurality of light sources (three light sources 1a to 1c in the case of FIG. 1), an imaging lens 3, It is composed of a plurality of optical elements (two optical elements 4a and 4b in the case of FIG. 1), an optical path length correction plate 5, and a plurality of imaging elements (three imaging elements 6a to 6c in the case of FIG. 1). An imaging optical system 7 that detects an image of the measurement target object 2, and an image processing unit 8 that processes the image of the measurement target object 2 corresponding to each of the light sources imaged by the imaging optical system 7. Yes. As described above, this is because the projected line width is narrowest when the optical axis of the light projecting system 1 is perpendicularly incident on the surface of the object 2 to be measured, and the light intensity of the scattered light is also reduced. This is because it becomes stronger, and it is desirable to image under conditions as close to normal incidence as possible. In order to realize this, in the three-dimensional shape measuring apparatus 10, a plurality of light sources (1a to 1c) constituting the light projecting system 1 are arranged in a predetermined plane including the imaging optical system 7, and the imaging is further performed. The angle of the optical axis of the light source (1a to 1c) with respect to the optical axis of the optical system 7 is arranged so as to be different from each other, and from the plurality of light sources (1a to 1c) constituting the light projecting system 1, approximately It is comprised so that light may be irradiated to the same area.

なお、この三次元形状測定装置10では、スリットなどを用いて投光系1から測定対象物体2にスリット状の光を照射し、撮像光学系7で受光するよう構成してもよい。   Note that the three-dimensional shape measuring apparatus 10 may be configured to irradiate the measurement target object 2 with slit-shaped light from the light projecting system 1 using a slit or the like and receive the light with the imaging optical system 7.

測定対象物体2により反射された光は、測定対象物体2の形状に応じて変形し、撮像光学系7により撮像される。画像処理部8は、撮像された複数の画像データから最適な部分を抽出し、形状情報(座標)を算出することで、測定対象物体2の三次元形状について精度のよい測定が可能となる。   The light reflected by the measurement target object 2 is deformed according to the shape of the measurement target object 2 and is imaged by the imaging optical system 7. The image processing unit 8 extracts an optimum portion from a plurality of captured image data and calculates shape information (coordinates), thereby enabling accurate measurement of the three-dimensional shape of the measurement target object 2.

また、この三次元形状測定装置10では、投光系1を構成する複数の光源1a〜1cが、互いに異なる波長の光を照射するよう構成され、撮像光学系7が、投光系1の複数の光源1a〜1cからの異なる波長の光を分岐可能な光学素子4と、波長ごとに分岐された光をそれぞれ受光する複数の撮像素子6を有するよう構成してもよい。光学素子4としては、ダイクロイックプリズムやダイクロイックミラー等を用いるのが好ましい。このような構成とすることにより、撮像光学系7において、投光系1の光源1a〜1cの各々から照射され、測定対物物2で反射した光を光学素子4で波長毎に分岐した後、各波長に対応する撮像素子6a〜6cで受光する。この場合、各波長の投光角度(図1に示すように、撮像光学系7の光軸と光源1a〜1cとを含む平面において、撮像光学系7の光軸に対して直交する線と各光源1a〜1cの光軸との角度θa〜θc)に応じてそれぞれの撮像素子6a〜6cを、シャインプルーフの法則にしたがって傾けることで、測定対象物体2の全面で精度よく計測できるようになり、投光系1の複数の光源1a〜1cからの光を分離して、一回の走査での形状測定が可能となる。   In the three-dimensional shape measuring apparatus 10, the plurality of light sources 1 a to 1 c constituting the light projecting system 1 are configured to irradiate light having different wavelengths, and the imaging optical system 7 includes a plurality of light projecting systems 1. You may comprise so that it may have the optical element 4 which can branch the light of a different wavelength from these light sources 1a-1c, and the several image pick-up element 6 which each receives the light branched for every wavelength. As the optical element 4, it is preferable to use a dichroic prism, a dichroic mirror, or the like. By having such a configuration, in the imaging optical system 7, after the light irradiated from each of the light sources 1a to 1c of the light projecting system 1 and reflected by the measurement object 2 is branched for each wavelength by the optical element 4, Light is received by the image sensors 6a to 6c corresponding to the respective wavelengths. In this case, the projection angle of each wavelength (as shown in FIG. 1, in the plane including the optical axis of the imaging optical system 7 and the light sources 1 a to 1 c, the line orthogonal to the optical axis of the imaging optical system 7 and each line By tilting the image sensors 6a to 6c according to the Scheinproof law according to the angles θa to θc with the optical axes of the light sources 1a to 1c, it becomes possible to measure the entire surface of the measurement target object 2 with high accuracy. By separating the light from the plurality of light sources 1a to 1c of the light projecting system 1, the shape can be measured by one scan.

以下、シャインプルーフの法則にしたがった撮像素子6の配置について説明する。シャインプルーフの法則は、図2に示されるように、測定対象物体2の物体面21と撮像光学系7の主平面22と撮像素子6の像面23とのそれぞれの延長線が1点(図2のS)で交わるようにするもので、光軸上の物体面21の位置(投光系1の光源1a〜1cの光軸と撮像光学系7の光軸とが交わる位置)から主平面22までの距離をaとし、主平面22から撮像光学系7の光軸上の像面23の位置までの距離をbとし、物体面21の撮像光学系7の光軸に直交する直線に対する傾きをθとし、像面23の撮像光学系7の光軸に直交する直線に対する傾きをθ′としたときに、これらの関係は次式(1)のように表される。   Hereinafter, the arrangement of the image sensor 6 according to the Scheinproof law will be described. As shown in FIG. 2, Scheimpflug's law is such that one extension line of each of the object plane 21 of the measurement target object 2, the main plane 22 of the imaging optical system 7, and the image plane 23 of the imaging element 6 (see FIG. 2). 2), the main plane from the position of the object plane 21 on the optical axis (the position where the optical axes of the light sources 1a to 1c of the light projecting system 1 and the optical axis of the imaging optical system 7 intersect). The distance from the main plane 22 to the position of the image plane 23 on the optical axis of the imaging optical system 7 is b, and the object plane 21 is inclined with respect to a straight line perpendicular to the optical axis of the imaging optical system 7. Where θ is θ and the inclination of the image plane 23 with respect to a straight line orthogonal to the optical axis of the imaging optical system 7 is θ ′, these relationships are expressed by the following equation (1).

a×tanθ′ = b×tanθ (1) a × tan θ ′ = b × tan θ (1)

また、この三次元形状測定装置10では、撮像光学系7を両側テレセントリック光学系で構成してもよく、物体面と像面との位置が光軸方向にずれた場合の撮像光学系7の倍率変化を防ぐことができる。また、投光系1を構成する光源1a〜1cの各々のON/OFFを切り替えたり、多色の光源1a〜1cを有する投光系1とカラー撮像素子6を用いて色信号として分離して撮像するようにしてもよい。このような構成とすると、投光系1の光源の数に対応して複数の撮像素子6を用いる必要がなく、一つの撮像素子6で受光して、処理することが可能となる。   Further, in this three-dimensional shape measuring apparatus 10, the imaging optical system 7 may be constituted by a bilateral telecentric optical system, and the magnification of the imaging optical system 7 when the positions of the object plane and the image plane are shifted in the optical axis direction. Change can be prevented. Further, each of the light sources 1a to 1c constituting the light projecting system 1 is switched on / off, or separated as a color signal by using the light projecting system 1 and the color imaging device 6 having the multicolor light sources 1a to 1c. You may make it image. With such a configuration, it is not necessary to use a plurality of image sensors 6 corresponding to the number of light sources of the light projecting system 1, and it is possible to receive and process with one image sensor 6.

〔第1実施例〕
以下、上述の三次元測定装置10の具体的な実施例について説明する。まず、図1を用いて第1実施例に係る非接触三次元形状測定装置10の構成について説明する。この図1に示される三次元形状測定装置10は、複数の光源を有する投光系1と、撮像レンズ3、光線を分岐する複数のダイクロイックプリズム4、光路長補正板5、及び、光源と同数の撮像素子6からなる撮像光学系7と、この撮像光学系7で撮像された光源の各々に対応する測定対象物体2の像を処理する画像処理部8と、から構成されている。この第1実施例及び以降の各実施例では、投光系1が3つの光源1a,1b,1cを有する例を示している。光源1a〜1cからは、図示しないスリットなどを介して、各々異なる波長λa,λb,λcを有するライン光が、それぞれ異なる投光角度θa,θb,θcから測定対象物体2に照射される(光源1a〜1cの配置についての考え方は上述のとおりである)。ここで、ダイクロイックプリズム4は、波長λcの光のみを反射する第1のダイクロイックプリズム4cと、波長λbの光のみを反射する第2のダイクロイックプリズム4bから構成される。撮像素子6は、波長λa,波長λb,波長λcの光をそれぞれ受光する第1〜第3の撮像素子6a,6b,6cから構成される。
[First embodiment]
Hereinafter, specific examples of the above-described three-dimensional measuring apparatus 10 will be described. First, the configuration of the non-contact three-dimensional shape measuring apparatus 10 according to the first embodiment will be described with reference to FIG. The three-dimensional shape measuring apparatus 10 shown in FIG. 1 includes a projection system 1 having a plurality of light sources, an imaging lens 3, a plurality of dichroic prisms 4 for branching light beams, an optical path length correction plate 5, and the same number of light sources. And an image processing unit 8 for processing the image of the measurement target object 2 corresponding to each of the light sources imaged by the imaging optical system 7. In the first embodiment and the following embodiments, the light projecting system 1 has three light sources 1a, 1b, and 1c. From the light sources 1a to 1c, line lights having different wavelengths λa, λb, and λc are irradiated to the measurement target object 2 from different projection angles θa, θb, and θc through slits (not shown) (light source). The way of thinking about the arrangement of 1a to 1c is as described above). Here, the dichroic prism 4 includes a first dichroic prism 4c that reflects only light having a wavelength λc, and a second dichroic prism 4b that reflects only light having a wavelength λb. The image sensor 6 includes first to third image sensors 6a, 6b, and 6c that receive light having wavelengths λa, λb, and λc, respectively.

ここで、ダイクロイックプリズム4と撮像素子6との位置関係であるが、第1のダイクロイックプリズム4cから第3の撮像素子6cまで距離と第1のダイクロイックプリズム4cから第1の撮像素子6aまでの距離、第2のダイクロイックプリズム4bから第2の撮像素子6bまで距離と第2のダイクロイックプリズム4bから第1の撮像素子6aまでの距離、及び、光路長補正板5の光路長と第2のダイクロイックプリズム4bの光路長は、それぞれ等しくなっている。そして、これらの位置関係をもとに、撮像素子6a〜6cを上述のシャインプルーフの法則にしたがって光軸に対して傾けて配置する。これにより、撮像素子6a〜6cは、上述のダイクロイックプリズム4と撮像素子6との位置関係を基に、上記式(1)より求められる像面23に合わせて各々θa′,θb′,θc′の角度で傾ければよい。このように配置することにより、各撮像素子6a〜6cの面上全体でピントのあった画像がそれぞれ得られる。   Here, regarding the positional relationship between the dichroic prism 4 and the image sensor 6, the distance from the first dichroic prism 4c to the third image sensor 6c and the distance from the first dichroic prism 4c to the first image sensor 6a. The distance from the second dichroic prism 4b to the second image sensor 6b, the distance from the second dichroic prism 4b to the first image sensor 6a, and the optical path length of the optical path length correction plate 5 and the second dichroic prism The optical path lengths of 4b are equal. Then, based on these positional relationships, the image sensors 6a to 6c are arranged to be inclined with respect to the optical axis in accordance with the above-mentioned Scheinproof law. As a result, the image pickup devices 6a to 6c are respectively set to θa ′, θb ′, θc ′ in accordance with the image plane 23 obtained from the above formula (1) based on the positional relationship between the dichroic prism 4 and the image pickup device 6 described above. Tilt at an angle of. By arranging in this way, images in focus on the entire surface of each of the image sensors 6a to 6c are obtained.

このような、第1実施例に係る三次元形状測定装置10において、投光系1を構成する光源1a〜1cから波長λa,λb,λcのライン光が、撮像光学系7の光軸に直交する直線に対して角度θa,θb,θcの方向から測定対象物体2に照射される。この測定対象物体2により反射されたライン光は、測定対象物体2の形状に応じて変形し、撮像レンズ3を介してこの測定対象物体2の像として結像される。その際、撮像レンズ3を透過したライン光は第1のダイクロイックプリズム4cにより分離される。この第1のダイクロイックプリズム4cでは、光源1cから放射された波長λcの光のみを反射し、それ以外の波長λa、λbの光は透過する(すなわち、波長λcの光のみを分離する)。第1のダイクロイックプリズム4cで反射された波長λcの光は、光路長補正板5を通過し、撮像素子6cに達する。一方、第1のダイクロイックプリズム4cを透過した波長λa、λbの光のうち、波長λbの光は第2のダイクロイックプリズム4bで反射され、波長λaの光は透過してこれらの光は分離される。   In such a three-dimensional shape measuring apparatus 10 according to the first embodiment, the line lights having the wavelengths λa, λb, and λc from the light sources 1 a to 1 c constituting the light projecting system 1 are orthogonal to the optical axis of the imaging optical system 7. The measurement object 2 is irradiated from the directions of angles θa, θb, and θc with respect to the straight line. The line light reflected by the measurement target object 2 is deformed according to the shape of the measurement target object 2 and is formed as an image of the measurement target object 2 through the imaging lens 3. At that time, the line light transmitted through the imaging lens 3 is separated by the first dichroic prism 4c. The first dichroic prism 4c reflects only the light with the wavelength λc emitted from the light source 1c, and transmits the other light with the wavelengths λa and λb (that is, separates only the light with the wavelength λc). The light having the wavelength λc reflected by the first dichroic prism 4c passes through the optical path length correction plate 5 and reaches the image sensor 6c. On the other hand, of the light having the wavelengths λa and λb transmitted through the first dichroic prism 4c, the light having the wavelength λb is reflected by the second dichroic prism 4b, and the light having the wavelength λa is transmitted and separated. .

波長λbの光はダイクロイックプリズム4bで反射された後、撮像素子6bに達し、波長λaの光はダイクロイックプリズム4bを透過した後、撮像素子6aに達する。各撮像素子6a〜6cは上述のシャインプルーフの法則にしたがって傾けて配置されているため、これらの撮像素子6a〜6cの面上全体でピントのあった3つの画像が得られる。この撮像素子6a〜6cで得られた画像(検出信号)は画像処理部8に送信され、この画像処理部8において、これらの画像のうち、光切断線の幅が細く光強度の強い画像データの部分を抽出し、形状情報(座標)を算出することで、測定対象物体2に対する三次元形状の精度のよい測定が可能となる。   The light having the wavelength λb is reflected by the dichroic prism 4b and then reaches the image sensor 6b. The light having the wavelength λa is transmitted through the dichroic prism 4b and then reaches the image sensor 6a. Since each of the image sensors 6a to 6c is inclined and arranged in accordance with the above-mentioned Scheinproof law, three images that are in focus on the entire surface of these image sensors 6a to 6c are obtained. The images (detection signals) obtained by the image pickup devices 6a to 6c are transmitted to the image processing unit 8. In the image processing unit 8, image data having a narrow light section line and high light intensity among these images. By extracting this part and calculating the shape information (coordinates), it is possible to measure the three-dimensional shape with respect to the measurement target object 2 with high accuracy.

〔第2実施例〕
次に、図3を用いて、第2実施例に係る三次元測定装置10の構成を説明する。この図3の三次元測定装置10は、複数の光源1a〜1cを有する投光系1、撮像レンズ3、及び、1つの撮像素子6からなる撮像光学系7と、この撮像光学系7で撮像された光源の各々に対応する測定対象物体2の像を処理する画像処理部8と、を有して構成されている。なお、撮像レンズ3は、前群レンズ3aと後群レンズ3bとにより構成されており、前群レンズ3aの後側焦点の位置と後群レンズ3bの前側焦点の位置は一致するように配置されている。更に、前群レンズ3aの後側焦点の位置(後群レンズ3bの前側焦点の位置)に絞り31が配置され、この第2実施例に係る撮像レンズ3は両側テレセントリックな光学系となっている。このような両側テレセントリック光学系とすることにより、物体面又は像面のいずれかの位置が光軸方向にずれても撮像光学系7の倍率が変化するのを防ぐことができる。
[Second Embodiment]
Next, the configuration of the three-dimensional measuring apparatus 10 according to the second embodiment will be described with reference to FIG. The three-dimensional measuring apparatus 10 in FIG. 3 includes a light projecting system 1 having a plurality of light sources 1 a to 1 c, an imaging lens 3, and an imaging optical system 7 including one imaging element 6, and imaging with the imaging optical system 7. And an image processing unit 8 that processes an image of the measurement target object 2 corresponding to each of the light sources. The imaging lens 3 includes a front group lens 3a and a rear group lens 3b, and is arranged so that the position of the rear focus of the front group lens 3a and the position of the front focus of the rear group lens 3b coincide. ing. Further, a stop 31 is disposed at the position of the rear focal point of the front group lens 3a (the position of the front focal point of the rear group lens 3b), and the imaging lens 3 according to the second embodiment is a bilateral telecentric optical system. . Such a double-sided telecentric optical system can prevent the magnification of the imaging optical system 7 from changing even if the position of either the object plane or the image plane is shifted in the optical axis direction.

このような、第2実施例に係る三次元形状測定装置10において、第1実施例と同様に、投光系1の3つの光源1a〜1cから、波長λa〜λcのライン光が、撮像光学系7の光軸に直交する直線に対して角度θa、θb、θcの方向から測定対象物体2に照射される。測定対象物体2の形状に応じて変形したライン光は、両側テレセントリック光学系の撮像レンズ3により、撮像素子6の撮像面上にこの測定対象物体2の像として結像される。このとき、この第2実施例では、光源1a〜1cのON/OFFの切り換えをすることで、順に点灯させ、それぞれの光源1a〜1cが点灯したときの各光切断線を、撮像素子6にてそれぞれ撮像する。   In such a three-dimensional shape measuring apparatus 10 according to the second embodiment, line lights having wavelengths λa to λc are picked up from the three light sources 1a to 1c of the light projecting system 1 as in the first embodiment. The measurement object 2 is irradiated from the directions of angles θa, θb, and θc with respect to a straight line orthogonal to the optical axis of the system 7. The line light deformed in accordance with the shape of the measurement target object 2 is formed as an image of the measurement target object 2 on the imaging surface of the image sensor 6 by the imaging lens 3 of the bilateral telecentric optical system. At this time, in the second embodiment, the light sources 1a to 1c are turned on / off to turn on the light in order, and the respective light cutting lines when the light sources 1a to 1c are turned on are supplied to the image sensor 6. To image each.

画像処理部8は、このようにして、各光源1a〜1cを順に点灯させることにより撮像素子6で得られた3つの画像のうちから、光切断線の幅が細く光強度の強い画像データの部分を抽出し、形状情報(座標)を算出して、精度のよい三次元形状の測定を行う。このように、投光系1を構成する光源1a〜1cを順次点灯させることにより、撮像素子6は一つあればよく、三次元形状測定装置10を安価な構成とすることができる。なお、この第2実施例でも各光源1a〜1cの波長を異なるものとしているが、光源1a〜1cのON/OFF切り換えることにより撮像するので、各光源1a〜1cの波長を同一にすることも可能である。   In this way, the image processing unit 8 turns on each of the light sources 1a to 1c in order, and among the three images obtained by the imaging device 6, the image processing unit 8 generates image data with a narrow light section line and high light intensity. A part is extracted, shape information (coordinates) is calculated, and an accurate three-dimensional shape is measured. In this way, by sequentially lighting the light sources 1a to 1c constituting the light projecting system 1, only one image sensor 6 is required, and the three-dimensional shape measuring apparatus 10 can be configured at low cost. In the second embodiment, the wavelengths of the light sources 1a to 1c are different from each other. However, since the images are taken by switching the light sources 1a to 1c on and off, the wavelengths of the light sources 1a to 1c may be the same. Is possible.

〔第3実施例〕
最後に、第3実施例に係る三次元測定装置10について説明する。この第3実施例の三次元形状測定装置10は、図3に示す第2実施例の三次元測定装置10と同様の構成を有しており、複数の光源1a〜1cを有する投光系1と、撮像レンズ3及び1つの撮像素子6により構成される撮像光学系7と、この撮像光学系7で撮像された光源の各々に対応する測定対象物体2の像を処理する画像処理部8と、を有して構成される。撮像レンズ3は、前群レンズ3a、後群レンズ3b、及び絞り31を有する両側テレセントリックな光学系となっている。なお、第3実施例では、撮像素子6としてカラー撮像素子を用いている。
[Third embodiment]
Finally, the three-dimensional measuring apparatus 10 according to the third embodiment will be described. The three-dimensional shape measuring apparatus 10 of the third embodiment has the same configuration as the three-dimensional measuring apparatus 10 of the second embodiment shown in FIG. 3, and a light projecting system 1 having a plurality of light sources 1a to 1c. An image pickup optical system 7 composed of the image pickup lens 3 and one image pickup device 6, and an image processing unit 8 that processes an image of the measurement target object 2 corresponding to each of the light sources imaged by the image pickup optical system 7. , And is configured. The imaging lens 3 is a bilateral telecentric optical system having a front group lens 3 a, a rear group lens 3 b, and a diaphragm 31. In the third embodiment, a color image sensor is used as the image sensor 6.

このような、第3実施例に係る三次元形状測定装置10において、第2実施例と同様に、投光系1の3つの光源1a〜1cから波長λa〜λcのライン光が、撮像光学系7の光軸に直交する直線に対して角度θa、θb、θcの方向から測定対象物体2に照射される。そして、測定対象物体2の形状に応じて変形したライン光は、両側テレセントリック光学系の撮像レンズ3により撮像素子6の撮像面上にこの測定対象物体2の像として結像される。この第3実施例では、カラー撮像素子6を用いているため、撮像レンズ3を透過した各波長の光は色信号として分離して撮像される。そのため、3つの光源1a〜1cから放射される光線の波長は、カラー撮像素子6の画素に応じて、RGBの3色であることが好ましい。また、単色用の撮像素子を使用する場合は、撮像素子の入射面側に光源の波長に対応した透過波長帯域を有するフィルタをそれぞれターレット上に配置し、それらを順次切り替えて使用することにより実現できる。   In such a three-dimensional shape measuring apparatus 10 according to the third example, line light of wavelengths λa to λc from the three light sources 1a to 1c of the light projecting system 1 is picked up by the imaging optical system, as in the second example. The measurement object 2 is irradiated from directions of angles θa, θb, and θc with respect to a straight line orthogonal to the optical axis 7. Then, the line light deformed according to the shape of the measurement target object 2 is formed as an image of the measurement target object 2 on the imaging surface of the image sensor 6 by the imaging lens 3 of the both-side telecentric optical system. In the third embodiment, since the color image pickup device 6 is used, the light of each wavelength transmitted through the image pickup lens 3 is separated and picked up as a color signal. Therefore, the wavelengths of the light rays emitted from the three light sources 1a to 1c are preferably three colors of RGB in accordance with the pixels of the color image sensor 6. In addition, when using an image sensor for a single color, a filter having a transmission wavelength band corresponding to the wavelength of the light source is arranged on the turret on the incident surface side of the image sensor, and these are realized by switching them in order. it can.

画像処理部8は、このようにして分離して撮像された画像の中から、光切断線の幅が細く光強度の強い画像データの部分を抽出し、形状情報(座標)を算出することにより、精度のよい三次元形状の測定を行う。また、カラー撮像素子6が一つあればよく、三次元形状測定装置10を安価な構成とすることができる。   The image processing unit 8 extracts a portion of the image data having a narrow light section line and a high light intensity from the images picked up in this way, and calculates shape information (coordinates). Measure the three-dimensional shape with high accuracy. Further, only one color image sensor 6 is required, and the three-dimensional shape measuring apparatus 10 can be configured at a low cost.

本発明に係る第1実施例の三次元形状測定装置の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the three-dimensional shape measuring apparatus of 1st Example which concerns on this invention. シャインプルーフの法則の原理を説明するための説明図である。It is explanatory drawing for demonstrating the principle of Scheinproof's law. 本発明に係る第2実施例及び第3実施例の三次元形状測定装置の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the three-dimensional shape measuring apparatus of 2nd Example and 3rd Example based on this invention. 従来技術の光切断法の原理を説明するための説明図である。It is explanatory drawing for demonstrating the principle of the optical cutting method of a prior art. ライン光と物体面との角度により、光切断線の面積が異なることを説明するための説明図であり、(a)は物体面の傾きとライン光との照射角度がほぼ等しい場合の光切断線の幅を示し、(b)は物体面の傾きとライン光との照射角度が等しくない場合の光切断線の幅を示す。It is explanatory drawing for demonstrating that the area of an optical cutting line changes with angles of a line light and an object surface, (a) is the optical cutting when the inclination of an object surface and the irradiation angle of a line light are substantially equal The line width is shown, and (b) shows the width of the light section line when the inclination of the object plane and the irradiation angle of the line light are not equal.

符号の説明Explanation of symbols

1 投光系 1a,1b,1c 光源 2 測定対象物体 3 撮像レンズ
4 光学素子 4a,4b、4c ダイクロイックプリズム
5 光路長補正板 6 撮像素子 7 撮像光学系 8 画像処理部
10 三次元形状測定装置
DESCRIPTION OF SYMBOLS 1 Light projection system 1a, 1b, 1c Light source 2 Object to be measured 3 Imaging lens 4 Optical element 4a, 4b, 4c Dichroic prism 5 Optical path length correction plate 6 Imaging element 7 Imaging optical system 8 Image processing part 10 Three-dimensional shape measuring apparatus

Claims (7)

複数の光源を有し、測定対象物体の表面に異なる方向から光を照射する投光系と、
前記投光系の前記光源の各々から前記測定対象物体に照射された光を撮像する撮像光学系と、
前記撮像光学系で撮像された前記光源の各々に対応する前記測定対象物体の像を処理する画像処理部と、を有し、
前記投光系が有する複数の前記光源の各々は、前記撮像光学系の光軸を含む所定の面内で、前記撮像光学系の光軸と各々の前記光源の光軸とのなす角度が異なり、前記測定対象物体の表面の略同一領域を照射するよう配置され、
前記画像処理部は、前記光源の各々に対応する前記測定対象物体の像から、最適な部分を選択して形状情報を算出することを特徴とする三次元形状測定装置。
A light projecting system having a plurality of light sources and irradiating light from different directions on the surface of the object to be measured;
An imaging optical system for imaging light irradiated on the measurement target object from each of the light sources of the light projecting system;
An image processing unit that processes an image of the measurement target object corresponding to each of the light sources imaged by the imaging optical system,
Each of the plurality of light sources included in the light projecting system has a different angle between the optical axis of the imaging optical system and the optical axis of each of the light sources within a predetermined plane including the optical axis of the imaging optical system. , Arranged to irradiate substantially the same region of the surface of the measurement object,
The three-dimensional shape measuring apparatus, wherein the image processing unit calculates shape information by selecting an optimum part from the image of the measurement target object corresponding to each of the light sources.
前記投光系が有する複数の前記光源の各々は、前記測定対象物体にスリット光を照射するよう構成された請求項1に記載の三次元形状測定装置。   The three-dimensional shape measuring apparatus according to claim 1, wherein each of the plurality of light sources included in the light projecting system is configured to irradiate the measurement target object with slit light. 前記画像処理部は、複数の前記スリット光を前記測定対象物体上に照射することにより前記撮像光学系で撮像された複数のスリット像のうち、強度が最大の前記スリット像、又は短手方向の幅が最小の前記スリット像を用いて前記測定対象物体の形状情報を算出することを特徴とする請求項2に記載の三次元形状測定装置。   The image processing unit includes a plurality of slit images captured by the imaging optical system by irradiating the measurement target object with a plurality of slit lights, or the slit image having the maximum intensity, or in a short direction. The three-dimensional shape measuring apparatus according to claim 2, wherein shape information of the measurement target object is calculated using the slit image having a minimum width. 前記投光系が有する複数の前記光源の各々は、互いに異なる波長の光を放射するよう構成され、
前記撮像光学系は、複数の前記光源からの異なる波長の光を分離可能な光学素子と、波長ごとに分離された光をそれぞれ受光して前記測定対象物体の像を検出する複数の撮像素子とを有し、
前記撮像光学系の光軸に垂直な直線に対する前記光源の光軸の傾きをθとし、前記撮像素子の撮像面の前記撮像光学系の光軸と垂直な直線に対する傾きをθ′とし、前記光源の光軸と前記撮像光学系の光軸とが交わる位置から前記撮像光学系の主平面までの距離をaとし、前記撮像光学系の後側主平面から前記撮像光学系の光軸上の前記撮像素子の位置までの距離をbとしたとき、次式
a×tanθ′ = b×tanθ
の条件を満足するように、前記撮像素子を配置した請求項1〜3いずれか一項に記載の三次元形状測定装置。
Each of the plurality of light sources included in the light projecting system is configured to emit light having different wavelengths,
The imaging optical system includes: an optical element capable of separating light of different wavelengths from the plurality of light sources; and a plurality of imaging elements for receiving the light separated for each wavelength and detecting the image of the measurement target object. Have
The inclination of the optical axis of the light source with respect to a straight line perpendicular to the optical axis of the imaging optical system is θ, the inclination of the imaging surface of the imaging element with respect to a straight line perpendicular to the optical axis of the imaging optical system is θ ′, and the light source The distance from the position where the optical axis of the imaging optical system intersects the optical axis of the imaging optical system to the main plane of the imaging optical system is a, and the rear main plane of the imaging optical system on the optical axis of the imaging optical system Assuming that the distance to the position of the image sensor is b, the following formula: a × tan θ ′ = b × tan θ
The three-dimensional shape measuring apparatus according to any one of claims 1 to 3, wherein the imaging element is arranged so as to satisfy the above condition.
前記撮像光学系は、両側テレセントリック光学系であり、且つ、撮像素子を一つ有し、
前記投光系が有する複数の前記光源を順次切り換えながら点灯して前記測定対象物体に光を照射して前記一つの撮像素子で前記光源の各々に対する前記測定対象物体の像を検出するよう構成された請求項1〜4いずれか一項に記載の三次元形状測定装置。
The imaging optical system is a double-sided telecentric optical system and has one imaging element,
The plurality of light sources included in the light projecting system are sequentially turned on to illuminate the measurement target object, and the one image sensor detects an image of the measurement target object for each of the light sources. The three-dimensional shape measuring apparatus according to any one of claims 1 to 4.
前記撮像光学系は、両側テレセントリック光学系であり、且つ、カラー撮像素子を一つ有し、
前記投光系が有する複数の前記光源から前記測定対象物体に照射される波長の異なる各光を、前記一つのカラー撮像素子で受光し、各光を色信号として分離して撮像することにより、前記光源の各々に対する前記測定対象物体の像を検出するように構成された請求項1〜4いずれか一項に記載の三次元形状測定装置。
The imaging optical system is a double-sided telecentric optical system, and has one color imaging device,
By receiving each light having different wavelengths irradiated to the measurement target object from the plurality of light sources included in the light projecting system with the one color image sensor, and separating and imaging each light as a color signal, The three-dimensional shape measuring apparatus according to claim 1, configured to detect an image of the measurement target object with respect to each of the light sources.
複数の光源を有し、測定対象物体の表面に異なる方向から光を照射する投光系と、
前記投光系の前記光源の各々から前記測定対象物体に照射された光を撮像する撮像光学系と、を有する三次元形状測定装置により前記測定対象物体の三次元形状を測定する三次元形状測定方法であって、
前記投光系が有する複数の前記光源の各々を、前記撮像光学系の光軸を含む所定の面内で、前記撮像光学系の光軸と各々の前記光源の光軸とのなす角度が異なり、前記測定対象物体の表面の略同一領域を照射するよう配置し、
前記撮像光学系により、前記投光系の前記光源の各々から前記測定対象物体に照射された光を撮像し、前記光源の各々に対応する前記測定対象物体の像から、最適な部分を選択して形状情報を算出することを特徴とする三次元形状測定方法。
A light projecting system having a plurality of light sources and irradiating light from different directions on the surface of the object to be measured;
A three-dimensional shape measurement device that measures a three-dimensional shape of the measurement target object by a three-dimensional shape measurement apparatus having an imaging optical system that images light irradiated on the measurement target object from each of the light sources of the light projecting system A method,
The angle between the optical axis of the imaging optical system and the optical axis of each of the light sources is different within a predetermined plane including the optical axis of the imaging optical system for each of the plurality of light sources included in the light projecting system. , Arranged to irradiate substantially the same area of the surface of the measurement object,
The imaging optical system images the light irradiated on the measurement target object from each of the light sources of the light projecting system, and selects an optimum portion from the image of the measurement target object corresponding to each of the light sources. And calculating shape information.
JP2008174064A 2008-07-03 2008-07-03 Three-dimensional shape measuring apparatus and three-dimensional shape measurement method Pending JP2010014505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008174064A JP2010014505A (en) 2008-07-03 2008-07-03 Three-dimensional shape measuring apparatus and three-dimensional shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008174064A JP2010014505A (en) 2008-07-03 2008-07-03 Three-dimensional shape measuring apparatus and three-dimensional shape measurement method

Publications (1)

Publication Number Publication Date
JP2010014505A true JP2010014505A (en) 2010-01-21

Family

ID=41700750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008174064A Pending JP2010014505A (en) 2008-07-03 2008-07-03 Three-dimensional shape measuring apparatus and three-dimensional shape measurement method

Country Status (1)

Country Link
JP (1) JP2010014505A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215496A (en) * 2011-04-01 2012-11-08 Nikon Corp Shape measuring device
US9116504B2 (en) 2010-09-07 2015-08-25 Dai Nippon Printing Co., Ltd. Scanner device and device for measuring three-dimensional shape of object
JP2017026584A (en) * 2015-07-28 2017-02-02 ブラザー工業株式会社 Three-dimensional shape measurement device
US9851580B2 (en) 2010-09-07 2017-12-26 Dai Nippon Printing Co., Ltd. Projection type image display apparatus
US10802444B2 (en) 2010-09-07 2020-10-13 Dai Nippon Printing Co., Ltd. Illumination apparatus using a coherent light source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131028A (en) * 2000-10-24 2002-05-09 Daido Steel Co Ltd Measuring method and apparatus for shape of square shaped material
JP2004006504A (en) * 2002-05-31 2004-01-08 Cradle Corp Bump inspection method and apparatus
JP2004309240A (en) * 2003-04-04 2004-11-04 Olympus Corp Three-dimensional shape measuring apparatus
JP2005030774A (en) * 2003-07-07 2005-02-03 Art Denshi Kk Shape measuring method and shape measuring device for solder paste bump
JP2007017181A (en) * 2005-07-05 2007-01-25 Nano System Solutions:Kk Device and method for inspecting surface
JP2008191040A (en) * 2007-02-06 2008-08-21 Toyota Motor Corp Method of measuring cross sectional shape of workpiece

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131028A (en) * 2000-10-24 2002-05-09 Daido Steel Co Ltd Measuring method and apparatus for shape of square shaped material
JP2004006504A (en) * 2002-05-31 2004-01-08 Cradle Corp Bump inspection method and apparatus
JP2004309240A (en) * 2003-04-04 2004-11-04 Olympus Corp Three-dimensional shape measuring apparatus
JP2005030774A (en) * 2003-07-07 2005-02-03 Art Denshi Kk Shape measuring method and shape measuring device for solder paste bump
JP2007017181A (en) * 2005-07-05 2007-01-25 Nano System Solutions:Kk Device and method for inspecting surface
JP2008191040A (en) * 2007-02-06 2008-08-21 Toyota Motor Corp Method of measuring cross sectional shape of workpiece

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9116504B2 (en) 2010-09-07 2015-08-25 Dai Nippon Printing Co., Ltd. Scanner device and device for measuring three-dimensional shape of object
EP3064895A1 (en) 2010-09-07 2016-09-07 Dai Nippon Printing Co., Ltd. Linear illumination device
US9851580B2 (en) 2010-09-07 2017-12-26 Dai Nippon Printing Co., Ltd. Projection type image display apparatus
US10051243B2 (en) 2010-09-07 2018-08-14 Dai Nippon Printing Co., Ltd. Scanner device and device for measuring three-dimensional shape of object
US10156732B2 (en) 2010-09-07 2018-12-18 Dai Nippon Printing Co., Ltd. Projection type image display apparatus
US10523902B2 (en) 2010-09-07 2019-12-31 Dai Nippon Printing Co., Ltd. Scanner device and device for measuring three-dimensional shape of object
US10802444B2 (en) 2010-09-07 2020-10-13 Dai Nippon Printing Co., Ltd. Illumination apparatus using a coherent light source
US11953857B2 (en) 2010-09-07 2024-04-09 Dai Nippon Printing Co., Ltd. Illumination apparatus using a coherent light source
JP2012215496A (en) * 2011-04-01 2012-11-08 Nikon Corp Shape measuring device
JP2017026584A (en) * 2015-07-28 2017-02-02 ブラザー工業株式会社 Three-dimensional shape measurement device

Similar Documents

Publication Publication Date Title
US10788318B2 (en) Three-dimensional shape measurement apparatus
KR101911006B1 (en) Image sensor positioning apparatus and method
KR101659302B1 (en) Three-dimensional shape measurement apparatus
JP2002139304A (en) Distance measuring device and distance measuring method
JP2008241643A (en) Three-dimensional shape measuring device
TWI500901B (en) Measuring apparatus
US20140160267A1 (en) Image Pickup Apparatus
JP2010014505A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measurement method
JP2017020873A (en) Measurement device for measuring shape of measurement object
JP2007093412A (en) Three-dimensional shape measuring device
JP6030471B2 (en) Shape measuring device
JP2008039750A (en) Device for height measuring
US20170016716A1 (en) Method and apparatus for recording images in the aligning of vehicles having a color-selective beam splitter
JP2014010089A (en) Range finder
JP2008175604A (en) Optical displacement sensor and displacement measuring device using it
JP4339165B2 (en) Light receiving center detection method, distance measuring device, angle measuring device, and optical measuring device
JP6508763B2 (en) Surface inspection device
JP2001133231A (en) Three-dimensional image acquisition and generation apparatus
JPH076775B2 (en) 3D shape data acquisition device
KR102089977B1 (en) Assist light projection apparatus, Flash apparatus, and Photographing apparatus
JPS62291512A (en) Distance measuring apparatus
JP2006189390A (en) Optical displacement measuring method and device
JP2007148084A (en) Focus detector
JP4611174B2 (en) Image sensor position measuring apparatus and image sensor position measuring method
JP2009042128A (en) Height measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130131