JP2008191040A - Method of measuring cross sectional shape of workpiece - Google Patents

Method of measuring cross sectional shape of workpiece Download PDF

Info

Publication number
JP2008191040A
JP2008191040A JP2007026885A JP2007026885A JP2008191040A JP 2008191040 A JP2008191040 A JP 2008191040A JP 2007026885 A JP2007026885 A JP 2007026885A JP 2007026885 A JP2007026885 A JP 2007026885A JP 2008191040 A JP2008191040 A JP 2008191040A
Authority
JP
Japan
Prior art keywords
workpiece
sectional shape
cross
light
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007026885A
Other languages
Japanese (ja)
Inventor
Kazuki Kuwabara
一樹 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007026885A priority Critical patent/JP2008191040A/en
Publication of JP2008191040A publication Critical patent/JP2008191040A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of measuring a cross sectional shape of a workpiece for improving measurement precision of the cross sectional shape of the workpiece of a complicated shape at first and accelerating measurement of the cross sectional shape of the whole workpiece of the complicated shape at second. <P>SOLUTION: The method of measuring the cross sectional shape of the workpiece irradiates a plurality of slit lights onto the same line of the workpiece W from positions mutually differentiating inclination angles to the workpiece, and measures the cross sectional shape of the workpiece W by properly calculating each brightness value of each reflection light from the workpiece W. Therefore the method can accurately measure the cross sectional shape of the workpiece by the other slit lights even when one slit light generates halation, and in addition, can improve the measurement precision as compared with the conventional method having measured the cross sectional shape by one slit light by properly calculating each brightness value of each reflection light from the plurality of the slit lights. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、スリット光をワーク表面に照射してワークの断面形状を計測するワークの断面形状計測方法に関するものであり、詳しくは、複雑な形状のワークの断面形状を計測する際スリット光の乱反射等の影響を軽減して正確にその断面形状を計測するワークの断面形状計測方法及びワーク全体の断面形状を計測する際の計測時間を短縮するワークの断面形状計測方法に関するものである。   The present invention relates to a workpiece cross-sectional shape measuring method for measuring the cross-sectional shape of a workpiece by irradiating the surface of the workpiece with slit light, and more specifically, irregular reflection of slit light when measuring the cross-sectional shape of a workpiece having a complicated shape. The present invention relates to a cross-sectional shape measurement method for a workpiece that measures the cross-sectional shape accurately by reducing the influence of the above, and a cross-sectional shape measurement method for a workpiece that reduces the measurement time when measuring the cross-sectional shape of the entire workpiece.

一般に、自動車等の工業製品の生産ラインにおいて、不具合製品が市場に流出するのを防ぐために、インラインにおいて部品等を検査するニーズが高まっており、特に、ワークの断面形状を検査する際その計測精度を向上させることが重要な課題で、さらには、ワークの断面形状を全数検査する際にはその高速性も重要な課題となっている。   In general, in the production line of industrial products such as automobiles, there is a growing need to inspect parts etc. in-line in order to prevent defective products from flowing into the market, especially when inspecting the cross-sectional shape of workpieces. It is an important issue to improve the speed, and furthermore, the high speed is an important issue when 100% inspection of the cross-sectional shape of the workpiece is performed.

そこで、前者のワークの断面形状の計測精度を向上させる課題に対して、従来の断面形状計測方法は、図5及び図6に示すように、特に、1台の投光器2によりスリット光をワークW表面に照射して、その拡散反射光を受光器3により受光して、三角測量の原理によりワークの断面形状を計測している。
しかしながら、この方法では、例えば、自動車のボデー形状や部品形状、さらには溶接のビード検査などの複雑な形状のワークの断面形状を計測する際には、図6に示すように、1台の投光器2からのスリット光がワークW表面の傾斜面10等で正反射して、その反射光の輝度が周囲と比べて過多となり受光器3の適正露光量が越え、ハレーションを起してしまい、その部位の計測が不良になる場合があり、計測精度が悪化することがある。
In view of the problem of improving the accuracy of measuring the cross-sectional shape of the former workpiece, the conventional cross-sectional shape measuring method, particularly, as shown in FIGS. The surface is irradiated and the diffuse reflected light is received by the light receiver 3, and the cross-sectional shape of the workpiece is measured by the principle of triangulation.
However, in this method, for example, when measuring the cross-sectional shape of a workpiece having a complicated shape such as an automobile body shape, a part shape, or a weld bead inspection, as shown in FIG. The slit light from 2 is specularly reflected by the inclined surface 10 or the like of the surface of the workpiece W, the brightness of the reflected light is excessive compared to the surroundings, the appropriate exposure amount of the light receiver 3 is exceeded, and halation occurs. The measurement of the part may be poor, and the measurement accuracy may deteriorate.

また、後者のワーク全体の断面形状の計測時間を高速化する課題に対して、従来の断面形状計測方法では、図5及び図7に示すように、1台の投光器2と1台の受光器3とを備えた計測ユニット5を、1スキャンごとにワークWの長手方向に沿って順次移動させてワークW全体の断面形状を計測している。
しかしながら、この方法では、計測ユニット5が静止している間に、ワークWの一部位の断面形状しか計測することができず、ワーク全体の断面形状を計測する時間に相当な時間を要し、生産ラインのタクトタイムを短縮することができない。
Further, in response to the problem of speeding up the measurement time of the cross-sectional shape of the entire workpiece, in the conventional cross-sectional shape measuring method, as shown in FIGS. 5 and 7, one projector 2 and one light receiver. 3 is sequentially moved along the longitudinal direction of the workpiece W for each scan, and the cross-sectional shape of the entire workpiece W is measured.
However, in this method, only the cross-sectional shape of one part of the workpiece W can be measured while the measuring unit 5 is stationary, and it takes a considerable time to measure the cross-sectional shape of the entire workpiece. The tact time of the production line cannot be shortened.

ところで、前者のワークの断面形状の計測精度を向上させる課題に対する従来技術として特許文献1には、角部材の側端部にスリット光を照射角度を変えて照射するとともにその照射ごとにその照射個所を撮像することを該角部材の長手方向に沿って所定間隔でなし、それにより得られた撮像画像に基いて角形状の側面形状を測定するとともに角落ちなどの角部の異常を検出する角部材の形状測定方法が開示されている。   By the way, as a conventional technique for the problem of improving the measurement accuracy of the cross-sectional shape of the former workpiece, Patent Literature 1 irradiates a side end portion of a corner member with slit light while changing the irradiation angle, and the irradiation location for each irradiation. Is used at predetermined intervals along the longitudinal direction of the corner member to measure the side surface shape of the corner shape based on the obtained captured image and to detect an abnormality of the corner portion such as a corner drop. A member shape measuring method is disclosed.

また、後者のワーク全体の断面形状の計測時間を高速化する課題に対する従来技術として特許文献2には、被測定物の表面に対して主走査方向に扇状に拡がるスリット光を照射する光源部と、被測定物の表面からの反射光を受光し被測定物の明暗に応じた電気信号を出力する光電変換素子と、を備えた測定ユニットを副走査方向に順次移動させることによって、光電変換素子からの電気信号に基いて被測定物の表面形状の座標を演算する三次元座標測定装置であって、前記光源部がスリット光を副走査方向に複数本出力する機能を有し、順次又は同時に照射することによって、測定ユニットの1回の副走査方向への移動時にスリット光の出力本数に応じた主走査を行う三次元座標測定装置が開示されている。
特開2002−131028号公報 特開平7−167617号公報
Further, as a conventional technique for the problem of speeding up the measurement time of the cross-sectional shape of the entire workpiece, Patent Document 2 discloses a light source unit that irradiates a surface of an object to be measured with slit light spreading in a fan shape in the main scanning direction And a photoelectric conversion element that receives reflected light from the surface of the object to be measured and outputs an electric signal corresponding to the brightness of the object to be measured, and sequentially moves the measurement unit in the sub-scanning direction, thereby converting the photoelectric conversion element A three-dimensional coordinate measuring device that calculates the coordinates of the surface shape of the object to be measured based on the electrical signal from the light source unit, the light source unit having a function of outputting a plurality of slit lights in the sub-scanning direction, sequentially or simultaneously A three-dimensional coordinate measuring apparatus is disclosed that performs main scanning in accordance with the number of slit light outputs when the measurement unit is moved once in the sub-scanning direction by irradiation.
JP 2002-131028 A JP-A-7-167617

しかしながら、特許文献1に開示された角部材の形状測定方法は、エッジの異常部分を検出するために第1レーザマーカ、第2レーザマーカ及び第3レーザマーカが相互にワークに対して傾斜角度を相違させて備えられ、それぞれのレーザマーカから照射された各スリット光が角落ちしたエッジのそれぞれ異なる部位で反射するため、それぞれの反射検出値が異なり、エッジが正常でないと判定されるものであるため、この特許文献1の形状測定方法を採用しても、単に、エッジ部分の異常だけが検出されるだけであって、前者の課題、すなわち複雑な形状のワークの断面形状を精度良く計測できるものではない。   However, in the method for measuring the shape of a corner member disclosed in Patent Document 1, the first laser marker, the second laser marker, and the third laser marker are different from each other in inclination angles with respect to the workpiece in order to detect an abnormal portion of the edge. Since each slit light emitted from each laser marker is reflected at different parts of the edge where the angle has dropped, each reflection detection value is different, and it is determined that the edge is not normal. Even if the shape measuring method disclosed in Document 1 is adopted, only an abnormality in the edge portion is detected, and the former problem, that is, the cross-sectional shape of a workpiece having a complicated shape cannot be accurately measured.

また、特許文献2に開示された三次元座標測定装置は、測定ユニット内の光源部が複数のスリット光をワーク表面に照射することにより、被測定物全体の断面形状を計測する計測時間を短縮しているが、この光源部から複数のスリット光を同時に照射する際には、1主走査内に3つの測定信号が存在することでそれぞれの座標を演算している。しかしながら、この特許文献2の三次元座標測定装置では、表面が平坦で単純な形状のワークであれば、投光器から同時に照射された各スリット光の各反射光が時間差で受光器に受光されてそれぞれの座標を演算することができるが、表面が凹凸状で複雑な形状のワークを計測する際には、各反射光が受光器に同じタイミングで受光されることが予想され、各反射光がどの部位からの反射光であるか認識できずに計測不良を起す虞がある。   In addition, the three-dimensional coordinate measuring apparatus disclosed in Patent Document 2 shortens the measurement time for measuring the cross-sectional shape of the entire object to be measured by irradiating the workpiece surface with a plurality of slit lights by the light source unit in the measurement unit. However, when simultaneously irradiating a plurality of slit lights from the light source unit, the respective coordinates are calculated because there are three measurement signals in one main scan. However, in the three-dimensional coordinate measuring device of Patent Document 2, if the surface is flat and the workpiece has a simple shape, each reflected light of each slit light simultaneously irradiated from the projector is received by the light receiver with a time difference. However, when measuring a complex workpiece with an uneven surface, it is expected that each reflected light will be received by the receiver at the same timing. There is a possibility that measurement failure may occur because it is not possible to recognize whether the light is reflected from the part.

本発明は、かかる点に鑑みてなされたものであり、第1に複雑な形状のワークの断面形状の計測精度を向上させるワークの断面形状計測方法を提供することを目的とし、第2に複雑な形状のワーク全体の断面形状の計測時間を高速化するワークの断面形状計測方法を提供することを目的とする。   The present invention has been made in view of such a point, and firstly, it aims to provide a method for measuring the cross-sectional shape of a workpiece that improves the measurement accuracy of the cross-sectional shape of a workpiece having a complicated shape. An object of the present invention is to provide a method for measuring a cross-sectional shape of a workpiece that speeds up the measurement time of the cross-sectional shape of the entire workpiece having a simple shape.

上記第1の課題を解決するために、本発明のワークの断面形状計測方法は、複数のスリット光を、ワークに対する傾斜角度を相互に相違させた位置からワークの同一ライン上に照射すると共に、ワークからの各反射光の各輝度値を演算処理してワークの断面形状を計測することを特徴としている。
これにより、1本のスリット光がハレーションを起しても、他のスリット光により正確にワークの断面形状を計測することができる。また、複数のスリット光からの各反射光の各輝度値を適宜演算処理することにより、1本のスリット光により断面形状を計測していた従来に比べて、その計測精度を向上させることができる。
In order to solve the above first problem, the workpiece cross-sectional shape measurement method of the present invention irradiates a plurality of slit lights on the same line of the workpiece from positions where the inclination angles with respect to the workpiece are different from each other, It is characterized in that the cross-sectional shape of the work is measured by calculating each luminance value of each reflected light from the work.
Thereby, even if one slit light causes halation, the cross-sectional shape of the workpiece can be accurately measured by the other slit light. In addition, by appropriately calculating each luminance value of each reflected light from a plurality of slit lights, the measurement accuracy can be improved as compared with the conventional case where the cross-sectional shape is measured by one slit light. .

また、上記第2の課題を解決するために、本発明のワークの断面形状計測方法は、ワークに対して略平行でワークの長手方向に沿って複数配置されると共に、ワークの非同一ライン上に各スリット光を互いに識別可能に照射する各投光器と、ワークからの各反射光をそれぞれ識別して受光する受光器とを備えた計測ユニットをワークの長手方向に沿って順次移動させて、ワーク全体の断面形状を計測することを特徴としている。
これにより、ワーク全体の断面形状を計測する時間を短縮でき高速化できると共に、ワーク表面が凹凸状になっている場合でも、各照射部位の位置(座標)を正確に計測してそれぞれの断面形状を正確に計測することができる。
なお、本発明の断面形状計測方法の各種態様およびそれらの作用については、以下の(発明の態様)の項において詳しく説明する。
In order to solve the second problem, a method for measuring a cross-sectional shape of a workpiece according to the present invention is arranged in parallel with the workpiece in a plurality along the longitudinal direction of the workpiece, and on a non-identical line of the workpiece. The measuring unit including each light projector for irradiating each slit light so as to be distinguishable from each other and a light receiver for identifying and receiving each reflected light from the work is sequentially moved along the longitudinal direction of the work. It is characterized by measuring the entire cross-sectional shape.
As a result, the time required to measure the cross-sectional shape of the entire workpiece can be shortened and the speed can be increased, and even when the workpiece surface is uneven, the position (coordinates) of each irradiation site is accurately measured and each cross-sectional shape is measured. Can be measured accurately.
Various aspects of the cross-sectional shape measurement method of the present invention and their actions will be described in detail in the following section (Aspect of the Invention).

(発明の態様)
以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある。)の態様をいくつか例示し、それらについて説明する。なお、各態様は、請求項と同様に、項に区分し、各項に番号を付して、必要に応じて他の項を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、請求可能発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載、実施の形態等に参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要件を付加した態様も、また、各項の態様から構成要件を削除した態様も、請求可能発明の一態様となり得るのである。なお、以下の各項において、(1)乃至(3)項の各々が、請求項1乃至3の各々に相当する。
(Aspect of the Invention)
In the following, some aspects of the invention that can be claimed in the present application (hereinafter sometimes referred to as “claimable invention”) will be exemplified and described. In addition, each aspect is divided into a term like a claim, it attaches | subjects a number to each term, and is described in the format which quotes another term as needed. This is for the purpose of facilitating the understanding of the claimable invention, and is not intended to limit the combinations of the constituent elements constituting the claimable invention to those described in the following sections. In other words, the claimable invention should be construed in consideration of the description, embodiments, etc. accompanying each section, and as long as the interpretation is followed, there may be embodiments in which other constituent elements are added to the aspects of each section. In addition, an aspect in which the constituent elements are deleted from the aspect of each item can be an aspect of the claimable invention. In the following items, each of items (1) to (3) corresponds to each of claims 1 to 3.

(1)複数のスリット光を、ワークに対する傾斜角度を相互に相違させた位置からワークの同一ライン上に照射すると共に、ワークからの各反射光の各輝度値を演算処理してワークの断面形状を計測することを特徴とするワークの断面形状計測方法。
従って、(1)項のワークの断面形状計測方法では、ワーク表面の照射部位が傾斜しており、その傾斜面により1本の反射光がハレーションを起した場合でも、他の反射光の輝度値によりその部位の位置(座標)を計測することができ、その断面形状を計測することができる。また、ハレーションが起きない場合でも各反射光の各輝度値を平均化するなどして演算処理することにより、照射部位の位置を計測しその断面形状を計測できるので、1本の反射光の輝度値により一部位の位置を計測していた従来方式に比べて、計測精度が向上される。
(1) A plurality of slit lights are irradiated on the same line of the work from positions where the inclination angles with respect to the work are different from each other, and each brightness value of each reflected light from the work is processed to obtain a cross-sectional shape of the work A method for measuring a cross-sectional shape of a workpiece, characterized by measuring
Therefore, in the method for measuring the cross-sectional shape of the workpiece of item (1), even if the irradiated portion of the workpiece surface is inclined and one reflected light causes halation due to the inclined surface, the luminance value of the other reflected light Thus, the position (coordinates) of the part can be measured, and the cross-sectional shape can be measured. In addition, even when no halation occurs, the position of the irradiated part can be measured and the cross-sectional shape thereof can be measured by performing arithmetic processing, for example, by averaging the luminance values of the reflected light, so that the luminance of one reflected light can be measured. The measurement accuracy is improved as compared with the conventional method in which the partial position is measured by the value.

(2)各スリット光は、互いに識別可能に照射されることを特徴とする(1)項に記載のワークの断面形状計測方法。
従って、(2)項のワークの断面形状計測方法では、特に、各スリット光が同時に照射される場合には、それぞれのスリット光による計測結果が明確になる。
(2) The method for measuring a cross-sectional shape of a workpiece according to (1), wherein the slit lights are irradiated so as to be distinguishable from each other.
Therefore, in the method for measuring the cross-sectional shape of the workpiece of item (2), particularly when each slit light is irradiated simultaneously, the measurement result by each slit light becomes clear.

(3)ワークに対して略平行でワークの長手方向に沿って複数配置されると共に、ワークの非同一ライン上に各スリット光を互いに識別可能に照射する各投光器と、ワークからの各反射光をそれぞれ識別して受光する受光器とを備えた計測ユニットをワークの長手方向に沿って順次移動させて、ワーク全体の断面形状を計測することを特徴とするワークの断面形状計測方法。
従って、(3)項のワークの断面形状計測方法では、計測ユニットに複数の投光器を備え、これら各投光器(N個)はワークに対して略平行でワークの長手方向に沿って配置されており、各投光器から各スリット光がワークの非同一ライン上に照射されるので、計測ユニットを静止させて1台の投光器によりワークの一部位を計測する従来の形態に比べて、計測ユニットを静止させて計測する回数が1/N回になり、ワーク全体の断面形状を計測する計測時間が従来よりも短縮される。
また、各投光器から照射されるスリット光は、互いに識別可能であるので、ワーク表面が凹凸状であっても各投光器からのそれぞれのスリット光を受光器でそれぞれ識別でき、各投光器から照射された各スリット光の各照射部位の位置を正確に認識でき、それぞれの断面形状を正確に計測することができる。
(3) A plurality of projectors arranged substantially parallel to the workpiece and along the longitudinal direction of the workpiece, and irradiating each slit light on a non-identical line of the workpiece so as to be distinguishable from each other, and each reflected light from the workpiece A cross-sectional shape measurement method for a workpiece, comprising: measuring a cross-sectional shape of the entire workpiece by sequentially moving a measuring unit including a light receiver for identifying and receiving the light along the longitudinal direction of the workpiece.
Therefore, in the method for measuring the cross-sectional shape of the workpiece in (3), the measuring unit includes a plurality of projectors, and each of these projectors (N) is arranged substantially parallel to the workpiece and along the longitudinal direction of the workpiece. Because each slit light is emitted from each projector onto a non-identical line of the workpiece, the measurement unit is stationary compared to the conventional configuration in which one unit of light is used to measure one part of the workpiece. The number of times of measurement is 1 / N times, and the measurement time for measuring the cross-sectional shape of the entire workpiece is shortened compared to the conventional method.
In addition, since the slit light emitted from each projector is distinguishable from each other, each slit light from each projector can be identified by the light receiver even if the workpiece surface is uneven, and each slit light is emitted from each projector. The position of each irradiation part of each slit light can be recognized correctly, and each cross-sectional shape can be measured accurately.

(4)前記各スリット光は、同時に照射されることを特徴とする(3)項に記載のワークの断面形状計測方法。
従って、(4)項のワークの断面形状計測方法では、計測ユニットを静止させて計測する際、ワークの複数の位置を同時に計測でき、計測時間をさらに短縮することができる。
(4) The method for measuring a cross-sectional shape of a workpiece according to (3), wherein the slit lights are irradiated simultaneously.
Therefore, in the workpiece cross-sectional shape measuring method of (4), when measuring with the measuring unit stationary, a plurality of positions of the workpiece can be measured simultaneously, and the measurement time can be further shortened.

(5)前記各スリット光は、色の相違で識別されるか、あるいは光線のドットパターンの相違で識別されることを特徴とする(3)項または(4)項に記載のワークの断面形状計測方法。
従って、(5)項のワークの断面形状計測方法では、各スリット光の識別方法は、使用環境等に基いて適宜選択される。
(5) Each slit light is identified by a difference in color or by a difference in a dot pattern of light rays, and the cross-sectional shape of the workpiece according to (3) or (4) Measurement method.
Therefore, in the method for measuring the cross-sectional shape of the workpiece in (5), the method for identifying each slit light is appropriately selected based on the use environment and the like.

本発明によれば、第1に複雑な形状のワークの断面形状の計測精度を向上させるワークの断面形状計測方法を提供することでき、第2に複雑な形状のワーク全体の断面形状の計測時間を高速化するワークの断面形状計測方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cross-sectional shape measuring method of the workpiece | work which improves the measurement accuracy of the cross-sectional shape of the workpiece | work of a 1st complicated shape can be provided first, and the measurement time of the cross-sectional shape of the 2nd whole workpiece | work of a complicated shape It is possible to provide a method for measuring the cross-sectional shape of a workpiece that increases the speed of the workpiece.

以下、本発明を実施するための最良の形態を図1〜図4に基いて詳細に説明する。
本発明の第1の実施の形態に係るワークの断面形状計測方法は、乱反射等が発生するような傾斜面や凹凸状の表面を有するワークの断面形状を精度良く計測するための方法であり、この方法を具現化するための第1の実施の形態に係るワークの断面形状計測装置1は、図1に示すように、ワークWに対する傾斜角度を相互に相違させた位置からワークWの同一ライン上に各スリット光を照射する複数の投光器2a、2b、2cと、これら各投光器2a、2b、2cからの各スリット光がワークWに反射してなる各反射光を受光する受光器3と、該受光器3で検出された各反射光の各輝度値を適宜演算処理すると共に、その演算結果により導き出された1つの輝度値に基いて、ワークWの一部位の位置(座標)を演算して、1スキャン分のワークWの断面形状をデータとしてメモリーする第1の演算処理部4と、を備えた計測ユニット5を具備している。
そして、この計測ユニット5が、ワークWの長手方向(図1の矢印の方向)に沿って所定ピッチで順次移動されて、ワークWの各部位ごとにその断面形状が計測されると共に、各部位の各断面形状が統合されてワークW全体の断面形状が構築される。
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to FIGS.
The workpiece cross-sectional shape measurement method according to the first embodiment of the present invention is a method for accurately measuring the cross-sectional shape of a workpiece having an inclined surface or an uneven surface that causes irregular reflection or the like, The workpiece cross-sectional shape measuring apparatus 1 according to the first embodiment for embodying this method, as shown in FIG. 1, has the same line of the workpiece W from the position where the inclination angles with respect to the workpiece W are different from each other. A plurality of projectors 2a, 2b, and 2c that irradiate each slit light thereon, and a light receiver 3 that receives each reflected light formed by reflecting each slit light from each of the projectors 2a, 2b, and 2c on the workpiece W; Each luminance value of each reflected light detected by the light receiver 3 is appropriately calculated, and the position (coordinates) of one part of the workpiece W is calculated based on one luminance value derived from the calculation result. For one scan The W of the cross-sectional shape as the first arithmetic processing unit 4 for memory as data, and a measuring unit 5 with a.
The measuring unit 5 is sequentially moved at a predetermined pitch along the longitudinal direction of the workpiece W (the direction of the arrow in FIG. 1), and the cross-sectional shape is measured for each portion of the workpiece W. These cross-sectional shapes are integrated to construct a cross-sectional shape of the entire workpiece W.

投光器2a、2b、2cは、図1に示すように、ワークWの上方をその長手方向に沿って所定ピッチで順次移動する移動体6に、ワークWの側面視で放射状に複数(本実施の形態では3台)配設されており、これら各投光器2a、2b、2cからの各スリット光が、ワークWに対する傾斜角度を相互に相違させた位置からワークWの同一ライン上に照射されるようになっている。
また、各投光器2a、2b、2cからの各スリット光は、同時に照射される形態、または順次に照射される形態のいずれかが採用される。特に、各投光器2a、2b、2cからの各スリット光が同時に照射される場合には、各投光器2a、2b、2cからのスリット光が互いに識別可能に照射されることになる。例えば、各投光器2a、2b、2cからの各スリット光を色の相違によって識別するか、あるいは、各スリット光をその光線のドットパターンの相違によって識別している。
As shown in FIG. 1, a plurality of projectors 2a, 2b, and 2c are radially provided on the moving body 6 that sequentially moves at a predetermined pitch along the longitudinal direction of the workpiece W (in this embodiment, in a side view). In this embodiment, three projectors) are arranged, and each slit light from each of the projectors 2a, 2b, 2c is irradiated on the same line of the workpiece W from a position where the inclination angles with respect to the workpiece W are different from each other. It has become.
In addition, each of the slit lights from each of the projectors 2a, 2b, and 2c may be applied in the form of being irradiated simultaneously or sequentially. In particular, when the slit lights from the projectors 2a, 2b, and 2c are simultaneously irradiated, the slit lights from the projectors 2a, 2b, and 2c are irradiated so as to be distinguishable from each other. For example, each slit light from each projector 2a, 2b, 2c is identified by a difference in color, or each slit light is identified by a difference in dot pattern of the light beam.

受光器3は、移動体6の各投光器2a、2b、2cに隣接する位置に配設されて、ワーク撮像素子であるCCDカメラまたはCMOSセンサー等を備え、各投光器2a、2b、2cからの各スリット光がワークW表面で反射してなる各反射光をそれぞれ受光し、それぞれの反射光の輝度値を検出すると共にバッファする機能を有している。なお、この受光器3は、移動体6の長手方向に沿って設けた溝部6aに沿ってその配置が適宜決定される。
また、各投光器2a、2b、2cから、上述したような識別可能な各スリット光が照射される場合には、当然ながら受光器3は、各投光器2a、2b、2cから互い識別されて照射される各スリット光をそれぞれ識別して受光し、各輝度値を検出できるように構成される。例えば、色の相違によって各スリット光が識別される場合には、受光器3はカラーカメラ及びカラーフィルタにて対応されて、各スリット光をそれぞれ識別して受光し、各輝度値が検出される。
なお、これら投光器2a、2b、2c及び受光器3は、従来から使用しているものと同等で基本的に三角測量の原理でワークW表面の位置(座標)を演算して、その断面形状を計測するものである。
The light receiver 3 is disposed at a position adjacent to the projectors 2a, 2b, and 2c of the moving body 6 and includes a CCD camera or a CMOS sensor that is a work image pickup device, and each of the projectors 2a, 2b, and 2c. Each of the reflected lights formed by reflecting the slit light on the surface of the workpiece W is received, and the brightness value of each reflected light is detected and buffered. The arrangement of the light receiver 3 is appropriately determined along the groove 6 a provided along the longitudinal direction of the moving body 6.
In addition, when each of the light projectors 2a, 2b, and 2c emits the identifiable slit light as described above, the light receiver 3 is naturally identified and irradiated from each of the light projectors 2a, 2b, and 2c. Each slit light is identified and received, and each luminance value can be detected. For example, when each slit light is identified by a color difference, the light receiver 3 is supported by a color camera and a color filter, and each light is identified and received, and each luminance value is detected. .
The light projectors 2a, 2b, 2c and the light receiver 3 are equivalent to those used in the past, and basically calculate the position (coordinates) of the surface of the workpiece W by the principle of triangulation, and determine the cross-sectional shape thereof. It is to be measured.

第1の演算処理部4は、移動体6に内蔵されて、受光器3から伝送された各反射光の各輝度値を適宜演算処理してその演算結果により導き出された1つの輝度値に基いて、三角測量の原理によりワークWの照射部位の位置(座標)を演算して、1スキャン分のワークWの一部位の断面形状をデータとしてメモリーする機能を有している。また、第1の演算処理部4は、各部位の各断面形状を統合してワークW全体の断面形状を構築する機能を有している。
この第1の演算処理部4における各反射光の各輝度値を演算する演算方法は、各反射光の各輝度値を平均化して出力する第1の演算方法、または所定値以上の各輝度値だけを抜粋して、抜粋されたものを平均化して出力する第2の演算方法、または各輝度値中の最大値を出力する第3の演算方法のいずれかが採用される。なお、これら第1、第2、第3の演算方法では、適正露光量を超えるような反射光は演算処理の対象から外される。
The first calculation processing unit 4 is built in the moving body 6 and appropriately calculates each luminance value of each reflected light transmitted from the light receiver 3, and based on one luminance value derived from the calculation result. The position (coordinates) of the irradiation part of the workpiece W is calculated according to the principle of triangulation, and the cross-sectional shape of one part of the workpiece W for one scan is stored as data. Further, the first arithmetic processing unit 4 has a function of integrating the cross-sectional shapes of the respective parts to construct the cross-sectional shape of the entire workpiece W.
The calculation method for calculating each luminance value of each reflected light in the first calculation processing unit 4 is a first calculation method that averages and outputs each luminance value of each reflected light, or each luminance value equal to or greater than a predetermined value. Either the second calculation method for extracting only the extracted values and averaging and outputting the extracted values or the third calculation method for outputting the maximum value in each luminance value is employed. In the first, second, and third calculation methods, the reflected light that exceeds the appropriate exposure amount is excluded from the calculation processing target.

次に、本発明の第1の実施の形態に係るワークの断面形状計測装置1の作用を、図2のフロー図に基いて説明する。
計測ユニット5(移動体6)をワークWの所定位置に静止させて、ワークWの断面形状の計測が開始される。
まず、ステップS1〜S3では、各投光器2a、2b、2cから各スリット光がワークWの一部位の同一ライン上に順次照射される。
続いて、ステップS4では、受光器3において、各投光器2a、2b、2cから順次照射された各反射光の各輝度値が検出されてそれぞれバッファされる。
続いて、ステップS5〜S7では、第1の演算処理部4において、受光器3から伝送された各反射光の各輝度値を、前述した第1または第2または第3の演算方法のいずれかの演算方法で演算処理し、その演算結果により導き出された1つの輝度値に基いて、三角測量の原理によりワークWの照射部位の位置(座標)を演算して、1スキャンでワークWの一部位の断面形状を出力し、そのデータをメモリーする。
Next, the operation of the workpiece cross-sectional shape measuring apparatus 1 according to the first embodiment of the present invention will be described based on the flowchart of FIG.
The measurement unit 5 (moving body 6) is stopped at a predetermined position of the workpiece W, and measurement of the cross-sectional shape of the workpiece W is started.
First, in steps S1 to S3, each slit light is sequentially irradiated onto the same line at one part of the workpiece W from each of the projectors 2a, 2b, and 2c.
Subsequently, in step S4, in the light receiver 3, each brightness value of each reflected light sequentially irradiated from each projector 2a, 2b, 2c is detected and buffered.
Subsequently, in steps S5 to S7, each luminance value of each reflected light transmitted from the light receiver 3 in the first arithmetic processing unit 4 is any one of the first, second, or third arithmetic methods described above. Based on one luminance value derived from the calculation result, the position (coordinates) of the irradiated part of the workpiece W is calculated according to the principle of triangulation, and one scan of the workpiece W is calculated. The sectional shape of the part is output and the data is stored in memory.

次に、計測ユニット5をワークWの長手方向に沿って所定ピッチで順次移動させて、前記ステップS1〜S7が繰り返し実施されると共に、ワークWの各部位ごとにその断面形状が計測される。
そして、ステップS8では、第1の演算処理部4において、計測ユニット5の移動と共に順次計測された各部位の各断面形状が統合されてワークW全体の断面形状が構築される。
Next, the measurement unit 5 is sequentially moved at a predetermined pitch along the longitudinal direction of the workpiece W, and the steps S1 to S7 are repeatedly performed, and the cross-sectional shape of each part of the workpiece W is measured.
In step S8, the first arithmetic processing unit 4 integrates the cross-sectional shapes of the respective parts that are sequentially measured along with the movement of the measuring unit 5 to construct the cross-sectional shape of the entire workpiece W.

なお、ステップS1〜S3では、各投光器2a、2b、2cからの各スリット光が順次照射されているが、各投光器2a、2b、2cからの各スリット光を同時に照射するようにしてもよい。この形態の場合には、各投光器2a、2b、2cからの各スリット光は互いに識別可能に照射される方が好ましい。なお、計測時間を短縮するという観点からは、各投光器2a、2b、2cからの各スリット光を互いに識別可能として同時に照射するほうが好ましい。   In steps S1 to S3, the slit lights from the projectors 2a, 2b, and 2c are sequentially irradiated. However, the slit lights from the projectors 2a, 2b, and 2c may be irradiated at the same time. In the case of this form, it is preferable that each slit light from each projector 2a, 2b, 2c is irradiated so that it can be distinguished from each other. From the viewpoint of shortening the measurement time, it is preferable to irradiate the slit lights from the projectors 2a, 2b, and 2c simultaneously so that they can be distinguished from each other.

以上説明したように、本発明の第1の実施の形態では、各投光器2a、2b、2cにより、ワークWに対する傾斜角度を相互に相違させた位置からワークWの同一ライン上に複数のスリット光を同時にまたは順次照射すると共に、受光器3によりワークWからの各反射光を受光して各輝度値を検出し、その後、第1の演算処理部4にて各反射光の各輝度値を、前記した第1または第2または第3の演算処理方法のいずれかの演算方法で演算処理して、その演算結果導き出された1つの輝度値に基いて、ワークWの一部位の断面形状を計測している。   As described above, in the first embodiment of the present invention, a plurality of slit lights are placed on the same line of the workpiece W from the positions where the inclination angles with respect to the workpiece W are made different from each other by the projectors 2a, 2b, and 2c. Are simultaneously or sequentially irradiated, each reflected light from the workpiece W is received by the light receiver 3, and each brightness value is detected. Thereafter, each brightness value of each reflected light is detected by the first arithmetic processing unit 4. The cross-sectional shape of one part of the workpiece W is measured based on one luminance value derived from the calculation result by performing the calculation process by any one of the first, second, or third calculation processing methods described above. is doing.

これにより、ワークW表面に傾斜面10があり、1台の投光器、例えば投光器2cからのスリット光がワークWの傾斜面10で正反射して適正露光量を超える反射光を受光した場合でも、他の投光器2a、2bからのデータを使用でき、その傾斜面10の部位の位置(座標)を正確に計測できるようになった。
また、ハレーションが起きない部位であっても各投光器2a、2b、2cからの各反射光の各輝度値を適宜演算処理してワークWの断面形状を計測するので、従来のように1台の投光器2によって断面形状を計測する形態に比べて、その計測精度を向上させることができる。
Thereby, even when the inclined surface 10 is present on the surface of the workpiece W and slit light from one projector, for example, the projector 2c is regularly reflected by the inclined surface 10 of the workpiece W and received reflected light exceeding the appropriate exposure amount, Data from other projectors 2a and 2b can be used, and the position (coordinates) of the portion of the inclined surface 10 can be accurately measured.
In addition, even in a region where halation does not occur, the brightness value of each reflected light from each projector 2a, 2b, 2c is appropriately processed to measure the cross-sectional shape of the workpiece W. Compared with a mode in which the cross-sectional shape is measured by the projector 2, the measurement accuracy can be improved.

次に、本発明の第2の実施の形態に係るワークの断面形状計測方法は、ワークW表面が凹凸状で形状が複雑なワークW全体の断面形状を高速化して計測する方法であり、その方法を具現化するための第2の実施の形態に係る断面形状計測装置1aは、図3に示すように、ワークWに対して略平行でワークWの長手方向に沿って複数配置され、ワークWの非同一ライン上に各スリット光を互いに識別可能に照射する各投光器2a、2b、2cと、これら各投光器2a、2b、2cからの各スリット光がワークWに反射してなる各反射光をそれぞれ識別して受光する受光器3と、該受光器3で検出された各反射光の各輝度値に基いて、複数の照射部位の位置(座標)を演算して、ワークWの複数部位の各断面形状をデータとしてメモリーする第2の演算処理部4aと、を備えた計測ユニット5aを具備している。
そして、この計測ユニット5aが、ワークWの長手方向(図3の矢印の方向)に沿って所定ピッチで順次移動して、ワークWの各部位ごとにその断面形状が計測されると共に、各部位の各断面形状が統合されてワークW全体の断面形状が構築される。
なお、以下に、第2の実施の形態に係る断面形状計測装置1aに採用された各構成部材を説明するが、その説明においては、第1の実施の形態に係る断面形状計測装置1に採用された各構成部材との相違点を主に説明する。
Next, the workpiece cross-sectional shape measuring method according to the second embodiment of the present invention is a method of measuring the cross-sectional shape of the entire workpiece W, which has an uneven surface and a complex shape, at high speed, As shown in FIG. 3, the cross-sectional shape measuring device 1 a according to the second embodiment for embodying the method is arranged in parallel with the workpiece W and arranged along the longitudinal direction of the workpiece W. Each of the projectors 2a, 2b, and 2c that irradiate each slit light on a non-identical line of W so as to be distinguishable from each other, and each reflected light that is reflected from the slit light from each of the projectors 2a, 2b, and 2c on the workpiece W And a plurality of parts of the workpiece W by calculating positions (coordinates) of a plurality of irradiation parts based on each luminance value of each reflected light detected by the light receiver 3. Second to memorize each cross-sectional shape as data And it includes an arithmetic processing unit 4a, the measuring unit 5a having a.
The measuring unit 5a is sequentially moved at a predetermined pitch along the longitudinal direction of the workpiece W (the direction of the arrow in FIG. 3), and the cross-sectional shape is measured for each portion of the workpiece W. These cross-sectional shapes are integrated to construct a cross-sectional shape of the entire workpiece W.
In the following, each component employed in the cross-sectional shape measuring apparatus 1a according to the second embodiment will be described. In the description, the cross-sectional shape measuring apparatus 1 according to the first embodiment will be used. Differences from the respective components made will be mainly described.

投光器2a、2b、2cは、図3に示すように、ワークWの上方をワークWの長手方向に沿って所定ピッチで順次移動する移動体6に、ワークWに対して略平行でワークWの長手方向に沿うように所定の間隔をあけて複数(本実施の形態では3台)配設されて、これら各投光器2a、2b、2cからの各スリット光が、ワークWの非同一ライン上に照射されるようになっている。
各投光器2a、2b、2cからのスリット光は、互いに識別可能に照射されており、例えば、各スリット光を色の相違によって識別するか、あるいは、各スリット光をその光線のドットパターンの相違によって識別している。
As shown in FIG. 3, the projectors 2 a, 2 b, and 2 c are substantially parallel to the workpiece W and move to the moving body 6 that sequentially moves at a predetermined pitch along the longitudinal direction of the workpiece W. A plurality (three in this embodiment) are arranged at predetermined intervals along the longitudinal direction, and each slit light from each of the projectors 2a, 2b, 2c is placed on a non-identical line of the workpiece W. Irradiated.
The slit light from each projector 2a, 2b, 2c is irradiated so that it can be distinguished from each other. For example, each slit light is identified by a difference in color, or each slit light is identified by a difference in dot pattern of the light beam. Identifying.

一方、受光器3は、移動体6の各投光器2a、2b、2cに隣接する位置に配設されており、各投光器2a、2b、2cから互い識別されて照射される各スリット光をそれぞれ識別して受光し、各輝度値を検出できるように構成される。例えば、色の相違によって各スリット光が識別される場合には、受光器3はカラーカメラ及びカラーフィルタにて対応されて、各スリット光をそれぞれ識別して受光し、各輝度値が検出される。   On the other hand, the light receiver 3 is disposed at a position adjacent to each of the projectors 2a, 2b, and 2c of the moving body 6, and identifies each slit light that is radiated from each of the projectors 2a, 2b, and 2c. And configured to be able to detect each luminance value. For example, when each slit light is identified by a color difference, the light receiver 3 is supported by a color camera and a color filter, and each light is identified and received, and each luminance value is detected. .

第2の演算処理部4aは、移動体6に内蔵されて、受光器3で受光された各反射光の各輝度値に基いて、三角測量の原理により複数の照射部位の位置を演算して、ワークWの複数部位の各断面形状をデータとしてメモリーし、各部位の各断面形状を統合してワークW全体の断面形状を構築する機能を有している。   The second calculation processing unit 4a is built in the moving body 6 and calculates the positions of a plurality of irradiation parts by the principle of triangulation based on each luminance value of each reflected light received by the light receiver 3. In addition, each cross-sectional shape of a plurality of parts of the work W is stored as data, and each cross-sectional shape of each part is integrated to construct a cross-sectional shape of the whole work W.

次に、本発明の第2の実施の形態に係るワークの断面形状計測装置1aの作用を、図4のフロー図に基いて説明する。
計測ユニット5a(移動体6)をワークWの所定位置に静止させて、ワークWの断面形状計測が開始される。
まず、ステップS1a〜S3aでは、各投光器2a、2b、2cから互いに識別可能なスリット光がワークWの複数部位の非同一ライン上に同時に照射される。
続いて、ステップS4aでは、受光器3において、各投光器2a、2b、2cからの各反射光をそれぞれ識別して各輝度値を検出しバッファされる。
続いて、ステップS5a〜S7aでは、第2の演算処理部4aにおいて、受光器3から伝送された各反射光の各輝度値に基いて、三角測量の原理によりワークWの複数の照射部位の位置(座標)をそれぞれ演算し、1スキャン分でワークWの複数部位の断面形状を出力して、それぞれのデータをメモリーする。
Next, the operation of the workpiece cross-sectional shape measuring apparatus 1a according to the second embodiment of the present invention will be described with reference to the flowchart of FIG.
The measurement unit 5a (moving body 6) is stopped at a predetermined position of the workpiece W, and measurement of the cross-sectional shape of the workpiece W is started.
First, in steps S1a to S3a, slit lights that can be distinguished from each other from the projectors 2a, 2b, and 2c are simultaneously irradiated onto non-identical lines in a plurality of parts of the workpiece W.
Subsequently, in step S4a, the light receiver 3 identifies each reflected light from each of the projectors 2a, 2b, 2c, and detects and buffers each luminance value.
Subsequently, in steps S5a to S7a, in the second arithmetic processing unit 4a, the positions of a plurality of irradiation sites of the workpiece W are determined based on the triangulation principle based on the brightness values of the reflected lights transmitted from the light receiver 3. (Coordinates) are calculated, and cross-sectional shapes of a plurality of parts of the work W are output for one scan, and each data is stored in memory.

次に、計測ユニット5aをワークWの長手方向に沿って所定ピッチで順次移動させて、前記ステップS1a〜S7aが繰り返し実施されると共に、ワークWの各部位ごとにその断面形状が計測される。
そして、ステップS8aでは、第2の演算処理部4aにおいて、計測ユニット5の移動と共に順次計測された各部位の各断面形状が統合されてワークW全体の断面形状が構築される。
Next, the measuring unit 5a is sequentially moved at a predetermined pitch along the longitudinal direction of the workpiece W, the steps S1a to S7a are repeatedly performed, and the cross-sectional shape of each part of the workpiece W is measured.
In step S8a, in the second arithmetic processing unit 4a, the cross-sectional shapes of the respective parts sequentially measured along with the movement of the measuring unit 5 are integrated to construct the cross-sectional shape of the entire workpiece W.

なお、ステップS1a〜S3aにおいて、各投光器2a、2b、2cからの各スリット光を順次照射してもよいが、計測時間の短縮するという観点から本実施の形態のように各スリット光を同時に照射する方が好ましい。   In steps S1a to S3a, each slit light from each of the projectors 2a, 2b, and 2c may be sequentially irradiated. However, from the viewpoint of shortening the measurement time, each slit light is simultaneously irradiated as in the present embodiment. Is preferred.

以上説明したように、本発明の第2の実施の形態では、計測ユニット5aに、各投光器2a、2b、2cをワークWに対して略平行でワークWの長手方向に沿うように複数配置し、各投光器2a、2b、2cからワークWの複数部位の非同一ライン上に各スリット光を互いに識別可能に照射すると共に、受光器3によりワークWからの各反射光をそれぞれ識別して受光すると共に各輝度値を検出して、第2の演算処理部4aにより各輝度値に基いてワークWの複数部位の各断面形状を計測している。
これにより、計測ユニット5aが静止している間に、ワークWの、N台の投光器に対応するN個所の部位の断面形状を計測することができ、従来のように、計測ユニット5aを静止している間、1台の投光器2によりワークWの一部位の断面形状しか計測できなかった形態に比べて、計測ユニット5aを静止させて計測する回数が1/N回になり、ワークW全体の断面形状を計測する計測時間を従来よりも短縮することができる。さらに、各スリット光は各投光器2a、2b、2cから同時に照射されるのでさらなる時間短縮が達成される。
As described above, in the second embodiment of the present invention, a plurality of projectors 2a, 2b, 2c are arranged in the measurement unit 5a so as to be substantially parallel to the workpiece W and along the longitudinal direction of the workpiece W. In addition, each of the light projectors 2a, 2b and 2c irradiates each slit light onto non-identical lines of a plurality of parts of the workpiece W so that they can be distinguished from each other. At the same time, each brightness value is detected, and the second arithmetic processing unit 4a measures each cross-sectional shape of a plurality of parts of the workpiece W based on each brightness value.
As a result, while the measurement unit 5a is stationary, the cross-sectional shape of the N portions corresponding to the N projectors of the workpiece W can be measured, and the measurement unit 5a can be stationary as in the past. The number of times that the measurement unit 5a is stationary and measured is 1 / N times compared to a configuration in which only one cross-sectional shape of the workpiece W can be measured by one projector 2, while the entire workpiece W is measured. The measurement time for measuring the cross-sectional shape can be shortened compared to the conventional case. Furthermore, since each slit light is simultaneously irradiated from each projector 2a, 2b, 2c, further time reduction is achieved.

しかも、本発明の第2の実施の形態では、各投光器2a、2b、2cからの各スリット光は互いに識別可能に照射されるので、ワークW表面が凹凸状であっても、受光器3により各投光器2a、2b、2cからの各反射光を正確に識別でき、各スリット光の各照射部位の断面形状を正確に計測することができる。   Moreover, in the second embodiment of the present invention, each slit light from each of the projectors 2a, 2b, 2c is irradiated so as to be distinguishable from each other. Each reflected light from each light projector 2a, 2b, 2c can be identified correctly, and the cross-sectional shape of each irradiation part of each slit light can be measured accurately.

図1は、本発明の第1の実施の形態に係るワークの断面形状計測方法を具現化した断面形状計測装置の模式図である。FIG. 1 is a schematic diagram of a cross-sectional shape measuring apparatus that embodies a cross-sectional shape measuring method for a workpiece according to a first embodiment of the present invention. 図2は、本発明の第1の実施の形態に係るワークの断面形状計測方法のフロー図である。FIG. 2 is a flowchart of the method for measuring the cross-sectional shape of the workpiece according to the first embodiment of the present invention. 図3は、本発明の第2の実施の形態に係るワークの断面形状計測方法を具現化した断面形状計測装置の模式図である。FIG. 3 is a schematic diagram of a cross-sectional shape measuring apparatus that embodies a cross-sectional shape measuring method for a workpiece according to a second embodiment of the present invention. 図4は、本発明の第2の実施の形態に係るワークの断面形状計測方法のフロー図である。FIG. 4 is a flowchart of the method for measuring the cross-sectional shape of the workpiece according to the second embodiment of the present invention. 図5は、一般的なワークの断面形状計測方法を示す模式図である。FIG. 5 is a schematic diagram showing a general method for measuring the cross-sectional shape of a workpiece. 図6は、従来のワークの断面形状計測方法において第1の課題を説明するための模式図である。FIG. 6 is a schematic diagram for explaining the first problem in the conventional method for measuring the cross-sectional shape of a workpiece. 図7は、従来のワークの断面形状計測方法において第2の課題を説明するための模式図である。FIG. 7 is a schematic diagram for explaining a second problem in the conventional method for measuring the cross-sectional shape of a workpiece.

符号の説明Explanation of symbols

1、1a 断面形状計測装置,2a、2b、2c 投光器,3 受光器,4 第1の演算処理部,4a 第2の演算処理部,5、5a 計測ユニット,W ワーク
DESCRIPTION OF SYMBOLS 1, 1a Section shape measuring device, 2a, 2b, 2c Emitter, 3 Light receiver, 4 1st arithmetic processing part, 4a 2nd arithmetic processing part, 5, 5a Measuring unit, W work

Claims (3)

複数のスリット光を、ワークに対する傾斜角度を相互に相違させた位置からワークの同一ライン上に照射すると共に、ワークからの各反射光の各輝度値を演算処理してワークの断面形状を計測することを特徴とするワークの断面形状計測方法。   A plurality of slit lights are irradiated on the same line of the workpiece from positions where the inclination angles with respect to the workpiece are different from each other, and each cross-sectional shape of the workpiece is measured by calculating each luminance value of each reflected light from the workpiece. A method for measuring a cross-sectional shape of a workpiece, characterized in that 前記各スリット光は、互いに識別可能に照射されることを特徴とする請求項1に記載のワークの断面形状計測方法。   2. The method for measuring a cross-sectional shape of a workpiece according to claim 1, wherein each of the slit lights is irradiated so as to be distinguishable from each other. ワークに対して略平行でワークの長手方向に沿って複数配置されると共に、ワークの非同一ライン上に各スリット光を互いに識別可能に照射する各投光器と、ワークからの各反射光をそれぞれ識別して受光する受光器とを備えた計測ユニットをワークの長手方向に沿って順次移動させて、ワーク全体の断面形状を計測することを特徴とするワークの断面形状計測方法。
A plurality of projectors arranged substantially parallel to the workpiece and along the longitudinal direction of the workpiece, and each projector that irradiates each slit light on a non-identical line of the workpiece so as to be distinguishable from each other, and each reflected light from the workpiece is identified. A cross-sectional shape measurement method for a workpiece, comprising: measuring a cross-sectional shape of the entire workpiece by sequentially moving a measurement unit including a light receiver for receiving light along the longitudinal direction of the workpiece.
JP2007026885A 2007-02-06 2007-02-06 Method of measuring cross sectional shape of workpiece Pending JP2008191040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026885A JP2008191040A (en) 2007-02-06 2007-02-06 Method of measuring cross sectional shape of workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026885A JP2008191040A (en) 2007-02-06 2007-02-06 Method of measuring cross sectional shape of workpiece

Publications (1)

Publication Number Publication Date
JP2008191040A true JP2008191040A (en) 2008-08-21

Family

ID=39751268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026885A Pending JP2008191040A (en) 2007-02-06 2007-02-06 Method of measuring cross sectional shape of workpiece

Country Status (1)

Country Link
JP (1) JP2008191040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014505A (en) * 2008-07-03 2010-01-21 Nikon Corp Three-dimensional shape measuring apparatus and three-dimensional shape measurement method
JP2017026585A (en) * 2015-07-28 2017-02-02 ブラザー工業株式会社 Three-dimensional shape measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014505A (en) * 2008-07-03 2010-01-21 Nikon Corp Three-dimensional shape measuring apparatus and three-dimensional shape measurement method
JP2017026585A (en) * 2015-07-28 2017-02-02 ブラザー工業株式会社 Three-dimensional shape measurement device

Similar Documents

Publication Publication Date Title
KR102056076B1 (en) Apparatus for weld bead detecting and method for detecting welding defects of the same
JP2009041934A (en) Apparatus and method for shape measurement
WO2012144430A1 (en) Tire surface shape measuring device and tire surface shape measuring method
JP5438475B2 (en) Gap step measurement device, gap step measurement method, and program thereof
TW201534953A (en) Distance measuring apparatus
JP6116710B2 (en) Appearance inspection apparatus and appearance inspection method
JP2013213733A (en) Apparatus and method for inspecting object to be inspected
JP5170622B2 (en) Shape measuring method, program, and shape measuring apparatus
JP5686012B2 (en) Surface defect inspection apparatus and method
JP2008191040A (en) Method of measuring cross sectional shape of workpiece
JP2017062154A (en) Defect detection device and defect detection method
JP2009139285A (en) Solder ball inspection device, its inspection method, and shape inspection device
JP4784396B2 (en) 3D shape measurement method and 3D shape measurement apparatus using the same
JP2017053793A (en) Measurement device, and manufacturing method of article
JP2016024067A (en) Measurement method and measurement device
JP4430680B2 (en) 3D dimension measuring apparatus and 3D dimension measuring program
JP2018179654A (en) Imaging device for detecting abnormality of distance image
JP2008164338A (en) Position sensor
JP5604967B2 (en) Defect detection method and defect detection apparatus
US20210072019A1 (en) Image analysis device, analyis device, shape measurement device, image analysis method, measurement condition determination method, shape measurement method, and program
JP2006258649A (en) Surface inspection device
JP2009069063A (en) Measurement method, shape measurement method, measuring device, and shape measuring apparatus
JP6358884B2 (en) Inspection device
JP2006078421A (en) Pattern defect detector, and method of detecting pattern defect
JP6507067B2 (en) Measuring method, measuring device and manufacturing method using the same