JP4339165B2 - Light receiving center detection method, distance measuring device, angle measuring device, and optical measuring device - Google Patents

Light receiving center detection method, distance measuring device, angle measuring device, and optical measuring device Download PDF

Info

Publication number
JP4339165B2
JP4339165B2 JP2004107844A JP2004107844A JP4339165B2 JP 4339165 B2 JP4339165 B2 JP 4339165B2 JP 2004107844 A JP2004107844 A JP 2004107844A JP 2004107844 A JP2004107844 A JP 2004107844A JP 4339165 B2 JP4339165 B2 JP 4339165B2
Authority
JP
Japan
Prior art keywords
light
imaging
light receiving
distance
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004107844A
Other languages
Japanese (ja)
Other versions
JP2005291938A (en
Inventor
正隆 林
敦郎 戸田
敦也 高瀬
Original Assignee
サンクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンクス株式会社 filed Critical サンクス株式会社
Priority to JP2004107844A priority Critical patent/JP4339165B2/en
Publication of JP2005291938A publication Critical patent/JP2005291938A/en
Application granted granted Critical
Publication of JP4339165B2 publication Critical patent/JP4339165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、受光中心検出方法、距離測定装置、角度測定装置及び光学測定装置に関する。   The present invention relates to a light receiving center detection method, a distance measuring device, an angle measuring device, and an optical measuring device.

従来から知られている光学測定装置として三角測距の原理を用いて被測定物体の距離及び傾き角度を測定するものであり、距離測定用光学系と角度測定用光学系とを備えている。距離測定用光学系では、レンズにより収束された投光素子からの光を被測定物体に対して斜めから投射し、その反射光をレンズにより収束して撮像手段の撮像面に結像する構成とされている。そして、その撮像手段から出力される各画素毎の受光量に応じた撮像信号に基づき撮像面における反射光のスポットの受光中心位置を求め、当該受光中心位置の位置変位に基づいて被測定物体の距離を測定するようになっている。   As a conventionally known optical measuring apparatus, it measures the distance and tilt angle of an object to be measured using the principle of triangulation, and includes a distance measuring optical system and an angle measuring optical system. In the distance measuring optical system, the light from the light projecting element converged by the lens is projected obliquely onto the object to be measured, and the reflected light is converged by the lens to form an image on the imaging surface of the imaging means. Has been. Then, the light receiving center position of the spot of the reflected light on the imaging surface is obtained based on the imaging signal corresponding to the received light amount for each pixel output from the imaging means, and based on the position displacement of the light receiving center position, The distance is to be measured.

また、角度測定用光学系は、レンズにより平行光とされた投光素子からの光を被測定物体に対して斜めから投射し、その反射光をレンズにより収束して撮像手段の撮像面に結像する構成とされている。そして、やはり、その撮像手段から出力される各画素毎の受光量に応じた撮像信号に基づき撮像面における反射光のスポットの受光中心位置を検出し、当該受光中心位置の位置変位に基づいて被測定物体の傾き角度を測定するようになっている。
特開平8−240408号公報
In addition, the angle measuring optical system projects light from the light projecting element, which has been collimated by the lens, obliquely onto the object to be measured, and the reflected light is converged by the lens to be connected to the imaging surface of the imaging means. It is configured to image. Then, the light receiving center position of the spot of the reflected light on the imaging surface is detected based on the image pickup signal corresponding to the amount of light received for each pixel output from the image pickup means, and the light receiving center position is detected based on the position displacement of the light receiving center position. The tilt angle of the measurement object is measured.
JP-A-8-240408

ここで、従来の光学測定装置における受光中心位置検出方法には、いわゆるサブピクセル法や、重心法(体積重心法、面積重心法)などがある。サブピクセル法は、撮像手段からの撮像信号に基づき最も受光量レベルが高い画素を特定し、その画素の位置を受光中心位置として決定する方法である。体積重心法は、撮像手段からの撮像信号のうち所定の一閾値以上の受光量レベルを示す撮像信号について次の式を適用して算出された体積重心位置を受光中心位置として決定する方法である。   Here, there are a so-called sub-pixel method, a center of gravity method (volume center of gravity method, area center of gravity method) and the like as a light receiving center position detecting method in a conventional optical measuring apparatus. The sub-pixel method is a method in which a pixel having the highest received light amount level is specified based on an imaging signal from an imaging unit, and the position of the pixel is determined as a light receiving center position. The volume centroid method is a method of determining a volume centroid position calculated by applying the following formula to an imaging signal indicating a received light amount level equal to or greater than a predetermined threshold among imaging signals from the imaging means as a light receiving center position. .

<式1>
体積重心位置={Σ(mI)/Σm}
I:上記面積重心位置の場合と同じ
m:上記各画素の受光量レベルに応じた係数
<Formula 1>
Volume centroid position = {Σ (mI) / Σm}
I: Same as in the case of the area centroid position m: Coefficient according to the light reception level of each pixel

ところで、光学測定装置では、例えば、外部からの振動により投光素子からの投光光軸がぶれたり、投光素子に対するAPC(Auto Power Control)制御の動作により投光状態が変動したり、被測定物体の位置変位により反射状態が変動したりすることがある。そして、これらの要因によって撮像手段の撮像面上に撮像される反射光のスポット(以下、「受光スポット」)にぶれ・揺らぎ(例えば受光スポットの形状や受光量分布が変動)が生じることがある。従って、従来の構成のように、サブピクセル法や、1つの閾値に基づく重心法では、受光スポットの形状等が変動に応じて、同じ距離や傾き角度の被測定物体に対して測定結果が異なってしまうおそれがあった。特に、光学測定装置は、微小な距離変位や傾き角度変位を測定するために用いられるため、スポットの形状等の変動は測定に大きく影響してしまう。   By the way, in the optical measuring apparatus, for example, the light projection optical axis from the light projecting element is shaken due to vibration from the outside, the light projection state is changed by the operation of APC (Auto Power Control) for the light projecting element, The reflection state may change due to the displacement of the position of the measurement object. Due to these factors, the spot of reflected light (hereinafter referred to as “light receiving spot”) imaged on the imaging surface of the imaging means may be shaken or fluctuated (for example, the shape of the light receiving spot or the distribution of received light amount varies). . Therefore, as in the conventional configuration, in the sub-pixel method or the center-of-gravity method based on one threshold value, the measurement result differs for the object to be measured having the same distance and inclination angle according to the variation in the shape of the light receiving spot. There was a risk of it. In particular, since the optical measurement device is used to measure a minute distance displacement and tilt angle displacement, variations in the spot shape and the like greatly affect the measurement.

本発明は上記のような事情に基づいて完成されたものであって、受光スポットのぶれ・揺らぎが生じる場合であっても、より正確な測定結果を得ることが可能な受光中心検出方法、距離測定装置、角度測定装置及び光学測定装置を提供することを目的とする。   The present invention has been completed based on the above circumstances, and a light receiving center detection method, distance, and distance that can obtain a more accurate measurement result even when the light receiving spot is shaken or fluctuated. An object is to provide a measuring device, an angle measuring device, and an optical measuring device.

上記の目的を達成するための手段として、請求項1の発明に係る受光中心検出方法は、投光手段から出射された光を撮像手段の撮像面に受光させ、その撮像手段から出力され前記撮像面上の各画素毎の受光量に応じた撮像信号に基づいて前記撮像面上での受光中心位置を検出する受光中心検出方法であって、前記撮像手段からの撮像信号に基づき前記各画素での受光量レベルを、互いにレベルの異なる複数の閾値それぞれと比較し、それらの各閾値毎に、当該閾値以上の受光量レベルであった画素群を抽出する抽出処理と、前記抽出処理において前記各閾値によって抽出された前記各画素群の受光量レベルに基づいて重心位置(面積重心位置または体積重心位置)をそれぞれ検出する重心位置検出処理と、前記重心位置検出処理によって検出された複数の前記重心位置を平均化した中心位置を前記受光中心位置として決定する決定処理と、を行うことを特徴とする。 As a means for achieving the above object, the light receiving center detecting method according to the first aspect of the present invention causes the light emitted from the light projecting means to be received by the imaging surface of the imaging means, and is output from the imaging means to output the imaging. A light receiving center detection method for detecting a light receiving center position on the imaging surface based on an imaging signal corresponding to an amount of light received for each pixel on the surface, wherein each pixel is detected based on an imaging signal from the imaging means. The received light amount level is compared with each of a plurality of thresholds having different levels, and for each of the threshold values, an extraction process for extracting a pixel group having a received light amount level equal to or greater than the threshold value, and the center of gravity position detection process of detecting the center of gravity position (centroid position or volume barycentric position), respectively, based the extracted by the threshold to the amount of received light level of the pixel groups, detected by the gravity center position detection processing And performing the determination process for determining a plurality of averaged center position of the center of gravity position as the light receiving center position as a.

請求項2の発明に係る距離測定装置は、被測定物体に光を投光する距離測定用投光手段と、その距離測定用投光手段から投光され前記被測定物体で拡散反射または正反射した反射光を収束させる収束レンズと、前記収束レンズを通過した光を撮像面で受光し、その撮像面上の各画像毎の受光量に応じた撮像信号を出力する距離測定用撮像手段と、前記距離測定用撮像手段から出力された撮像信号に基づいて、前記撮像面上における前記反射光の受光中心位置を検出する受光中心検出手段とを備えるとともに、前記距離測定用投光手段から被測定物体までの投光光路と、前記被測定物体から前記距離測定用撮像手段までの反射光路とが所定の角度をなすよう構成され、前記受光中心検出手段で検出された受光中心位置に基づいて前記被測定物体の距離を測定する距離測定装置において、前記受光中心検出手段は、前記距離測定用撮像手段からの撮像信号に基づき前記各画素での受光量レベルを、互いにレベルの異なる複数の閾値それぞれと比較し、それらの各閾値毎に、当該閾値以上の受光量レベルであった画素群を抽出する抽出手段と、前記抽出手段において前記各閾値によって抽出された前記各画素群の受光量レベルに基づいて重心位置(面積重心位置または体積重心位置)をそれぞれ検出する重心位置検出手段と、前記重心位置検出手段によって検出された複数の前記重心位置を平均化した中心位置を前記受光中心位置として決定する決定手段と、を備えて構成されていることを特徴とする。 A distance measuring device according to a second aspect of the present invention is a distance measuring light projecting means for projecting light on a measured object, and light reflected from the distance measuring light projecting means and diffusely reflected or specularly reflected by the measured object. A converging lens that converges the reflected light, and a distance measuring imaging unit that receives light passing through the converging lens on an imaging surface and outputs an imaging signal corresponding to the amount of received light for each image on the imaging surface; A light receiving center detecting means for detecting a light receiving center position of the reflected light on the image pickup surface based on an image pickup signal output from the distance measuring image pickup means, and from the distance measuring light projecting means to be measured. The light projecting optical path to the object and the reflected light path from the object to be measured to the distance measuring imaging unit are configured to form a predetermined angle, and based on the light receiving center position detected by the light receiving center detecting unit Object to be measured In the distance measuring device for measuring a distance, the light receiving center detecting means compares the received light amount level at each pixel with a plurality of thresholds having different levels from each other based on an imaging signal from the distance measuring imaging means, for each of these thresholds, an extraction means for extracting a pixel group at the threshold value or more in the amount of received light level, the center of gravity position based the on the light receiving amount level of the pixel groups extracted by the threshold values in the extraction unit Centroid position detection means for detecting (area centroid position or volume centroid position), and determination means for determining a center position obtained by averaging the plurality of centroid positions detected by the centroid position detection means as the light receiving center position. Are characterized by comprising the above.

請求項3の発明は、請求項2に記載の距離測定装置において、前記複数の閾値が、前記距離測定用撮像手段にて検知可能な最低受光量レベル以上であって、前記距離測定用撮像手段の撮像面上における最大受光量レベルより低いレベル以下の範囲で設定される閾値設定手段が設けられていることを特徴とする。 The invention according to claim 3, in the distance measuring apparatus according to claim 2, wherein the plurality of threshold values, there is the distance detectable minimum light receiving quantity level or at the measuring pickup means, said distance measuring image pickup means Threshold value setting means for setting in a range lower than the maximum received light amount level on the imaging surface is provided.

請求項4の発明に係る角度測定装置は、被測定物体に光を投光する角度測定用投光手段と、その角度測定用投光手段から投光され前記被測定物体で正反射した反射光を収束させる収束レンズと、前記収束レンズを通過した光を撮像面で受光し、その撮像面上の各画像毎の受光量に応じた撮像信号を出力する角度測定用撮像手段と、前記角度測定用撮像手段から出力された撮像信号に基づいて、前記撮像面上における前記反射光の受光中心位置を検出する受光中心検出手段とを備え、前記受光中心検出手段で検出された受光中心位置に基づいて前記被測定物体の傾き角度を測定する角度測定装置において、前記受光中心検出手段は、前記角度測定用撮像手段からの撮像信号に基づき前記各画素での受光量レベルを、互いにレベルの異なる複数の閾値それぞれと比較し、それらの各閾値毎に、当該閾値以上の受光量レベルであった画素群を抽出する抽出手段と、前記抽出手段において前記各閾値によって抽出された前記各画素の受光量レベルに基づいて重心位置(面積重心位置または体積重心位置)をそれぞれ検出する重心位置検出手段と、前記重心位置検出手段によって検出された複数の前記重心位置を平均化した中心位置を前記受光中心位置として決定する決定手段と、を備えて構成されていることを特徴とする。 An angle measuring apparatus according to a fourth aspect of the invention includes an angle measuring light projecting unit that projects light onto a measured object, and reflected light that is projected from the angle measuring light projecting unit and regularly reflected by the measured object. A converging lens that converges the light, light that has passed through the converging lens is received by the imaging surface, and an imaging device for angle measurement that outputs an imaging signal corresponding to the amount of light received for each image on the imaging surface, and the angle measurement A light receiving center detecting means for detecting a light receiving center position of the reflected light on the imaging surface based on an imaging signal output from the image pickup means, and based on the light receiving center position detected by the light receiving center detecting means. In the angle measuring device for measuring the tilt angle of the object to be measured, the light receiving center detecting means sets the received light amount level at each pixel based on the imaging signal from the angle measuring imaging means. of Compared with the values respectively for each of those thresholds, and extracting means for extracting a pixel group was the threshold value or more in the amount of received light level, the light receiving amount of each pixel group the extracted by the threshold values in the extraction unit A center-of-gravity position detection unit that detects a center-of-gravity position (area center-of-gravity position or volume center-of-gravity position) based on the level, and a center position obtained by averaging the plurality of center-of-gravity positions detected by the center-of-gravity position detection unit And determining means for determining as a feature.

請求項5の発明は、請求項4に記載の角度測定装置において、前記複数の閾値が、前記角度測定用撮像手段にて検知可能な最低受光量レベル以上であって、前記角度測定用撮像手段の撮像面上における最大受光量レベルより低いレベル以下の範囲で設定される閾値設定手段が設けられていることを特徴とする。 A fifth aspect of the present invention, the angle measuring device according to claim 4, wherein the plurality of threshold values, the there is at an angle measuring imaging means capable of detecting a minimum received light quantity level above, the angle measuring image pickup means Threshold value setting means for setting in a range lower than the maximum received light amount level on the imaging surface is provided.

請求項6の発明に係る光学測定装置は、被測定物体に光を照射しその反射光に基づいて前記被測定物体の傾き角度及び距離を測定する光学測定装置であって、前記被測定物体に向けて略平行光としての光を照射する角度測定用投光手段と、その角度測定用投光手段から投光され前記被測定物体で正反射した角度測定用反射光を収束させる収束レンズと、その収束レンズを通過した光を撮像面で受光し、その撮像面上の各画像毎の受光量に応じた撮像信号を出力する撮像手段と、前記角度測定用投光手段からの光の照射方向に対して所定角度傾いた方向から略平行光としての光を前記被測定物体に照射するよう配された距離測定用投光手段と、その距離測定用投光手段から投光され前記被測定物体で拡散反射または正反射した距離測定用反射光を収束させる収束レンズと、その収束レンズを通過した光を撮像面で受光し、その撮像面上の各画像毎の受光量に応じた撮像信号を出力する撮像手段と、前記撮像手段から出力された撮像信号に基づいて、前記撮像面上における前記角度測定用反射光及び前記距離測定用反射光それぞれの受光中心位置を検出する受光中心検出手段と、を備え、前記受光中心検出手段で検出された受光中心位置に基づいて前記被測定物体の傾き角度及び距離を測定する光学測定装置において、前記受光中心検出手段は、前記角度測定用反射光及び前記距離測定用反射光それぞれについて、前記撮像手段からの撮像信号に基づき前記各画素での受光量レベルを、互いにレベルの異なる複数の閾値それぞれと比較し、それらの各閾値毎に、当該閾値以上の受光量レベルであった画素群を抽出する抽出手段と、前記抽出手段において前記各閾値によって抽出された前記各画素群の受光量レベルに基づいて重心位置(面積重心位置または体積重心位置)をそれぞれ検出する重心位置検出手段と、前記重心位置検出手段によって検出された複数の前記重心位置を平均化した中心位置を前記受光中心位置として決定する決定手段と、を備えて構成されていることを特徴とする。 An optical measuring apparatus according to a sixth aspect of the present invention is an optical measuring apparatus that irradiates a measured object with light and measures the tilt angle and distance of the measured object based on the reflected light. An angle measurement light projecting unit that irradiates light as substantially parallel light toward the light, and a converging lens that converges the reflected light for angle measurement that is projected from the angle measurement light projecting unit and regularly reflected by the measured object; An imaging unit that receives light passing through the convergent lens on an imaging surface and outputs an imaging signal corresponding to the amount of light received for each image on the imaging surface, and an irradiation direction of light from the angle measuring light projecting unit A distance measuring light projecting means arranged to irradiate the object to be measured with light as substantially parallel light from a direction inclined at a predetermined angle with respect to the object, and the object to be measured projected from the distance measuring light projecting means Reflected light for distance measurement diffusely or specularly reflected by A converging lens for converging, an imaging unit that receives light that has passed through the converging lens on an imaging surface, and outputs an imaging signal corresponding to the amount of light received for each image on the imaging surface, and is output from the imaging unit A light receiving center detecting means for detecting a light receiving center position of each of the reflected light for angle measurement and the reflected light for distance measurement on the imaging surface based on an imaging signal, and detected by the light receiving center detecting means. In the optical measuring device that measures the tilt angle and distance of the object to be measured based on the light receiving center position, the light receiving center detecting unit is configured to detect the angle measuring reflected light and the distance measuring reflected light from the imaging unit. The received light level at each pixel is compared with each of a plurality of thresholds having different levels based on the imaging signal, and the received light amount level equal to or higher than the threshold is determined for each threshold. Extraction means for extracting a group of pixels were Le, respectively detected gravity center position (the centroid position or volume centroid position) based the light-receiving amount level of the pixel groups extracted by the threshold values in the extraction unit The center of gravity position detecting means, and a determining means for determining, as the light receiving center position, a center position obtained by averaging the plurality of center of gravity positions detected by the center of gravity position detecting means. .

なお、請求項6の構成において上記「収束レンズ」「撮像手段」「受光中心検出手段」は、角度測定用と距離測定用とで別であっても共通であってもよい。   In the configuration of claim 6, the “converging lens”, “imaging unit”, and “light receiving center detection unit” may be different for angle measurement and distance measurement, or may be common.

また、請求項6の構成には次のものが含まれる。
<構成A>「被測定物体に光を照射しその反射光に基づいてこの被測定物体の傾き及び距離を測定する光学測定装置であって、
角度測定に用いる角度測定用投光手段と、
距離測定に用いる距離測定用投光手段と、
前記角度測定用投光手段及び前記距離測定用投光手段からの光を略平行光に変えるコリメータレンズと、
前記コリメータレンズよりも前記角度測定用投光手段及び距離測定用投光手段側、又は、前記被測定物体側に配され、前記角度測定用投光手段及び距離測定用投光手段からの光を前記被測定物体の方向に導くとともに、前記被測定物体からの正反射光を前記角度測定用投光手段及び距離測定用投光手段側とは異なる方向に分岐させる分岐手段と、
前記正反射光を収束させる収束レンズと、
前記収束レンズにより収束された前記正反射光のうち前記角度測定用投光手段からの光による正反射光(角度測定用正反射光)を撮像面で受光し、その撮像面上の各画素毎の受光量に応じた撮像信号を出力する角度測定用撮像手段と、
前記収束レンズにより収束された前記正反射光のうち前記距離測定用投光手段からの光による正反射光(距離測定用正反射光)を撮像面で受光し、その撮像面上の各画素毎の受光量に応じた撮像信号を出力する距離測定用正反射光を照射させる距離測定用撮像手段と、
前記角度測定用撮像手段から出力された撮像信号に基づいて、その撮像面上における前記角度測定用反射光の受光中心位置を検出する角度測定用受光中心検出手段と、
前記距離測定用撮像手段から出力された撮像信号に基づいて、その撮像面上における前記距離測定用反射光の受光中心位置を検出する距離測定用受光中心検出手段と、
前記角度測定用受光中心検出手段で検出された受光中心位置に基づいて前記被測定物体の傾き角度を測定するとともに、前記角度測定用受光中心検出手段及び前記距離測定用受光中心検出手段によってそれぞれ検出された受光中心位置に基づいて前記被測定物体までの距離を測定する測定手段と、を備え、
前記距離測定用投光手段から前記被測定物体までの光路が基線軸に対して所定の角度を有するように配された光学測定装置であって、
前記角度測定用受光中心検出手段及び前記距離測定用受光中心検出手段は、それに対応する前記反射光(角度測定用反射光、前記距離測定用反射光)について、前記撮像手段(角度測定用撮像手段、距離測定用撮像手段)からの撮像信号に基づき前記各画素での受光量レベルを、互いにレベルの異なる複数の閾値それぞれと比較し、それらの各閾値毎に、当該閾値以上の受光量レベルであった画素群を抽出する抽出手段と、
前記抽出手段において前記各閾値によって抽出された各画素群の受光量レベルに基づいて重心位置(面積重心位置または体積重心位置)をそれぞれ検出する重心位置検出手段と、
前記重心位置検出手段によって検出された複数の前記重心位置を平均化した中心位置を前記受光中心位置として決定する決定手段と、を備えて構成されていることを特徴とする光学測定装置。」
Further, the configuration of claim 6 includes the following.
<Configuration A> “An optical measurement device that irradiates light to an object to be measured and measures the tilt and distance of the object to be measured based on the reflected light,
A light projection means for angle measurement used for angle measurement;
A distance measuring projection means used for distance measurement;
A collimator lens that changes light from the angle measurement light projecting means and the distance measurement light projecting means into substantially parallel light;
Light from the angle measuring light projecting means and the distance measuring light projecting means, which is arranged closer to the angle measuring light projecting means and the distance measuring light projecting means than the collimator lens. A branching unit that guides the reflected light from the measured object in a direction different from the angle measuring light projecting unit and the distance measuring light projecting unit side while guiding the measured object in the direction;
A converging lens for converging the specularly reflected light;
The regular reflection light (angle measurement regular reflection light) by the light from the angle measurement light projecting means out of the regular reflection light converged by the convergent lens is received by the imaging surface, and each pixel on the imaging surface is received. Imaging means for angle measurement that outputs an imaging signal corresponding to the amount of received light;
Of the specularly reflected light converged by the converging lens, specularly reflected light (distance measuring specularly reflected light) from the distance measuring light projecting means is received by the imaging surface, and each pixel on the imaging surface is received. Distance measuring imaging means for irradiating distance measuring regular reflection light for outputting an imaging signal corresponding to the amount of received light;
Based on the imaging signal output from the angle measurement imaging means, an angle measurement light receiving center detection means for detecting a light reception center position of the angle measurement reflected light on the imaging surface;
Based on the imaging signal output from the distance measuring imaging means, a distance measuring light receiving center detecting means for detecting a light receiving center position of the distance measuring reflected light on the imaging surface;
The tilt angle of the object to be measured is measured based on the light receiving center position detected by the angle measuring light receiving center detecting means, and detected by the angle measuring light receiving center detecting means and the distance measuring light receiving center detecting means, respectively. Measuring means for measuring the distance to the object to be measured based on the received light receiving center position,
An optical measuring device arranged such that an optical path from the distance measuring light projecting means to the object to be measured has a predetermined angle with respect to a base axis,
The angle measuring light receiving center detecting means and the distance measuring light receiving center detecting means are configured to detect the reflected light (angle measuring reflected light and distance measuring reflected light) corresponding to the reflected light (angle measuring imaging means). The received light amount level at each pixel is compared with each of a plurality of threshold values having different levels based on the image pickup signal from the distance measuring image pickup means), and the received light amount level is equal to or higher than the threshold value for each threshold value. An extraction means for extracting the pixel group that was present;
Centroid position detection means for detecting a centroid position (area centroid position or volume centroid position) based on the received light amount level of each pixel group extracted by each threshold in the extraction means;
An optical measuring apparatus comprising: a determining unit that determines a center position obtained by averaging the plurality of barycentric positions detected by the barycentric position detecting unit as the light receiving center position. "

請求項7の発明は、請求項6に記載の光学測定装置において、前記複数の閾値が、前記撮像手段にて検知可能な最低受光量レベル以上であって、前記撮像手段の撮像面上における最大受光量レベルよりレベル以下の範囲で設定される閾値設定手段が設けられていることを特徴とする。   A seventh aspect of the present invention is the optical measurement apparatus according to the sixth aspect, wherein the plurality of threshold values are equal to or higher than a minimum received light amount level that can be detected by the imaging unit, and are the maximum on the imaging surface of the imaging unit. Threshold setting means for setting in a range below the received light level is provided.

<請求項1,2,4,6の発明>
本構成によれば、撮像素子の撮像面上の各画素での受光量レベルを、互いにレベルの異なる複数の閾値それぞれと比較し、それらの各閾値毎に、当該閾値以上の受光量レベルであった画素群を抽出し、各画素群について重心位置(面積重心位置または体積重心位置)をそれぞれ検出し、これら複数の重心位置を平均化した中心位置を撮像面上における受光スポットの受光中心位置として決定する。
このように、互いにレベルの異なる複数の閾値に基づく複数の重心位置から平均化した中心位置を求めることで、受光スポットにぶれ・揺らぎによる測定誤差を抑えて、正確な測定結果を得ることができる。
<Invention of Claims 1, 2, 4 and 6>
According to this configuration, the received light amount level at each pixel on the imaging surface of the image sensor is compared with each of a plurality of threshold values having different levels, and the received light amount level is equal to or higher than the threshold value for each threshold value. The center of gravity of each pixel group (area centroid position or volume centroid position) is detected, and the center position obtained by averaging these centroid positions is used as the light receiving center position of the light receiving spot on the imaging surface. decide.
In this way, by obtaining a center position averaged from a plurality of barycentric positions based on a plurality of thresholds having different levels, it is possible to obtain an accurate measurement result by suppressing measurement errors due to shaking and fluctuations in the light receiving spot. .

<請求項3,5,7の発明>
本構成によれば、閾値設定手段によって、複数の閾値を、撮像手段にて検知可能な最低受光量レベル以上であって、撮像手段の撮像面上における最大受光量レベルよりレベル以下の範囲で自由に変更することができ、受光スポットのぶれ・揺らぎの特性に対して適切な閾値を設定することが可能となる。
<Invention of Claims 3, 5 and 7>
According to this configuration, the plurality of threshold values can be freely set by the threshold setting unit within a range that is equal to or higher than the minimum light reception level that can be detected by the imaging unit and lower than the maximum light reception level on the imaging surface of the imaging unit. Therefore, it is possible to set an appropriate threshold value for the characteristics of shaking and fluctuation of the light receiving spot.

<実施形態1>
本発明の請求項1〜3に対応する実施形態1について図1ないし図4を参照して説明する。
<Embodiment 1>
A first embodiment corresponding to claims 1 to 3 of the present invention will be described with reference to FIGS.

1.本実施形態の構成
(1)全体構成
符号20は距離測定用レーザ光源であって、これにはレーザ駆動回路21が接続されている。このレーザ駆動回路21は、CPU11からの制御信号Saに基づいて距離測定用レーザ光源20に駆動電流Ibを供給し点灯動作を行わせる。なお、距離測定用レーザ光源20は間欠的または連続的に駆動することができる。
1. Configuration of the present embodiment (1) Overall configuration Reference numeral 20 denotes a laser light source for distance measurement, to which a laser drive circuit 21 is connected. The laser driving circuit 21 supplies a driving current Ib to the distance measuring laser light source 20 based on a control signal Sa from the CPU 11 to perform a lighting operation. The distance measuring laser light source 20 can be driven intermittently or continuously.

距離測定用レーザ光源20から出射された距離測定用レーザ光Lは、コリメータレンズ22を介して平行光とされる(距離測定用レーザ光源20及びコリメータレンズ22が本発明の「投光手段」、「距離測定用投光手段」を構成している。)。そして、当該平行光が基準姿勢にある被測定物体Wの表面に斜めから入光するよう距離測定用レーザ光源20及びコリメータレンズ22の配置位置が調整されている。つまり、距離測定用レーザ光Lは入射角θ度(>0度)で入光する(これによって、「距離測定用投光手段から被測定対象物までの投光光路と、前記被測定対象物から距離測定用受光手段までの反射光路とは所定角度をなす」構成とされる)。   The distance measurement laser light L emitted from the distance measurement laser light source 20 is converted into parallel light through the collimator lens 22 (the distance measurement laser light source 20 and the collimator lens 22 are the “light projection means” of the present invention, It constitutes "distance measuring light projecting means"). The arrangement positions of the distance measuring laser light source 20 and the collimator lens 22 are adjusted so that the parallel light is incident on the surface of the measured object W in the reference posture from an oblique direction. That is, the distance measuring laser beam L is incident at an incident angle θ degree (> 0 degree) (therefore, “the light projecting optical path from the distance measuring projecting means to the object to be measured and the object to be measured” To the reflected light path from the distance measuring light receiving means to form a predetermined angle ”).

ワークW(被測定物体)の表面における距離測定用レーザ光Lの正反射光L’は、コリメータレンズ22と線対称の位置に配された収束レンズ23によって収束され、撮像素子24(撮像手段、距離測定用撮像手段)の撮像面上に照射される。以下、この正反射光L’の照射像を、「受光スポット」という。   The specularly reflected light L ′ of the distance measuring laser light L on the surface of the workpiece W (object to be measured) is converged by a converging lens 23 arranged in a line-symmetrical position with respect to the collimator lens 22, and an image sensor 24 (imaging means, Irradiated on the imaging surface of the distance measuring imaging means). Hereinafter, the irradiation image of the regular reflection light L ′ is referred to as a “light receiving spot”.

また、収束レンズ23は、これを透過した正反射光L’の焦点位置Fが撮像素子24の撮像面の前方に位置するように配置されている。ここで、正反射光L’の集光位置を撮像素子24の撮像面上に一致させなかった理由は、ワークWの距離に応じて正反射光L’の撮像面上における受光スポットの位置を変化させて、後述するように、この受光スポットの受光中心位置からワークWの距離を算出するためである。従って、正反射光L’の集光位置Fが撮像素子24の撮像面の後方に位置するように構成してもよい。
なお、収束レンズ23を正反射光L’の光路に沿って移動させるか、或いは収束レンズ23を特性が異なる他の収束レンズに交換することで正反射光L’の集光位置を調整することができる。
The converging lens 23 is arranged so that the focal position F of the regular reflection light L ′ that has passed through the converging lens 23 is located in front of the imaging surface of the imaging device 24. Here, the reason why the condensing position of the regular reflection light L ′ is not matched with the imaging surface of the image sensor 24 is that the position of the light receiving spot of the regular reflection light L ′ on the imaging surface according to the distance of the work W is determined. This is because the distance of the workpiece W is calculated from the light receiving center position of the light receiving spot as will be described later. Therefore, the condensing position F of the regular reflection light L ′ may be configured to be located behind the imaging surface of the imaging device 24.
The focusing position of the regular reflection light L ′ is adjusted by moving the convergence lens 23 along the optical path of the regular reflection light L ′ or by replacing the convergence lens 23 with another convergence lens having different characteristics. Can do.

(2)距離測定のCPUにおける処理
撮像素子24は撮像面上に形成される正反射光L’の受光スポットに応じたデジタル信号列からなる撮像信号SbをCPU11に送信する。CPU11は、前述したレーザ駆動回路21に制御信号Saを与えて距離測定用レーザ光源20をパルス点灯させる。また、CPU11は、制御信号Saの送信に同期して撮像素子24からの撮像信号Sbを取り込んでこれに基づき距離測定用正反射光L’の撮像面上における受光スポットの受光中心位置Nを検出し例えば収束レンズ23からワークWまでの距離測定を行う。この受光中心検出処理については後で詳説する。
(2) Processing in CPU for Distance Measurement The imaging element 24 transmits to the CPU 11 an imaging signal Sb composed of a digital signal sequence corresponding to the light receiving spot of the regular reflection light L ′ formed on the imaging surface. The CPU 11 supplies the control signal Sa to the laser drive circuit 21 described above to turn on the distance measuring laser light source 20 in pulses. Further, the CPU 11 captures the imaging signal Sb from the imaging device 24 in synchronization with the transmission of the control signal Sa, and detects the light receiving center position N of the light receiving spot on the imaging surface of the regular reflection light L ′ for distance measurement based on this. For example, the distance from the convergent lens 23 to the workpiece W is measured. This light receiving center detection process will be described in detail later.

(3)距離測定
本実施形態では、三角測距の原理を利用してワークWの距離を測定する。
まず、距離測定用レーザ光源20の点灯動作に同期して撮像素子24から送信された撮像信号Sbに基づき、後述する受光中心検出処理によって受光中心位置Nを検出する。そして受光中心位置Nと撮像素子24における基準位置Oとの離間間隔からワークWの距離を測定する。
(3) Distance measurement In this embodiment, the distance of the workpiece W is measured using the principle of triangulation.
First, based on the imaging signal Sb transmitted from the imaging device 24 in synchronization with the lighting operation of the distance measuring laser light source 20, the light receiving center position N is detected by a light receiving center detection process described later. Then, the distance of the workpiece W is measured from the separation interval between the light receiving center position N and the reference position O in the image sensor 24.

以下、より具体的に説明する。
例えば、被測定物体Wが図1中のAの位置(距離d1)にある場合には、距離測定用レーザ光源20の点灯動作時に撮像素子24の撮像面上に形成される受光中心位置N1は基準位置Oからd1'(図中では受光中心位置N1と基準位置Oとが一致しているため図示せず)離れていることから、これに基づいて距離d1が測定される。
More specific description will be given below.
For example, when in the position of A in 1 measured object W in FIG. (Distance d1), the light receiving center position is formed on the imaging surface of the image sensor 24 at the time of lighting operation of the distance measuring laser light source 20 N1 Is away from the reference position O by d1 ′ (not shown in the figure because the light receiving center position N1 and the reference position O coincide with each other), and based on this, the distance d1 is measured.

被測定物体Wが図1中のBの位置(距離d2)にある場合には(詳しくは図2,4参照)、距離測定用レーザ光源20の点灯動作時に撮像素子24の撮像面上に形成される受光中心位置Nは基準位置Oからd2'離れていることから、これにより、距離d2と測定される。
ワークWが図1中のCの位置(距離d3、傾き角度θ1度)にある場合には(詳しくは図3,4参照)、距離測定用レーザ光源20の点灯動作時に撮像素子24の撮像面上に形成される受光中心位置Nは基準位置Oからd3'離れていることから、これにより、距離d3と測定される。
When the object to be measured W is at the position B (distance d2) in FIG. 1 (refer to FIGS. 2 and 4 for details), it is formed on the imaging surface of the image sensor 24 when the distance measuring laser light source 20 is turned on. Since the received light receiving center position N is separated from the reference position O by d2 ′, this is measured as the distance d2.
When the workpiece W is at the position C (distance d3, tilt angle θ1 degree) in FIG. 1 (see FIGS. 3 and 4 for details), the imaging surface of the image sensor 24 is turned on when the distance measuring laser light source 20 is turned on. Since the light receiving center position N formed on the upper side is separated from the reference position O by d3 ′, the distance is measured as d3.

2.受光中心検出処理
さて、前述したように、外部からの振動により投光素子からの投光光軸がぶれたり、投光素子に対するAPC(Auto Power Control)制御の動作により投光状態が変動したり、被測定物体の位置変位により反射状態が変動したりすることがある。そして、これらの要因によって撮像手段の撮像面上の受光スポットにぶれ・揺らぎ(例えば受光スポットの形状や受光量分布が変動)が生じることがある(図5の左図参照)。本実施形態は、このような問題に対処するために、CP11は、図6のフローチャートに示す受光中心検出処理を実行する。
2. Light receiving center detection process As described above, the light projecting optical axis from the light projecting element is shaken due to external vibration, or the light projecting state is changed by the operation of APC (Auto Power Control) for the light projecting element. The reflection state may change due to the displacement of the position of the object to be measured. Due to these factors, the light receiving spot on the imaging surface of the imaging means may be shaken or fluctuated (for example, the shape of the light receiving spot or the distribution of received light amount varies) (see the left figure in FIG. 5). This embodiment, in order to cope with such problems, CP U 11 executes a receiving center detection process shown in the flowchart of FIG.

CPU11は、撮像素子24からの撮像信号Sbを取り込むと、図6に示す制御を実行する。まず、ステップS1で、第1閾値Th1以上の受光量レベルを示す画素群(以下、「第1画素群G1」)を抽出する。次いで、ステップS2で、第1閾値よりも小さい第2閾値Th2以上の受光量レベルを示す画素群(以下、「第2画素群G2」)を抽出する。更に、ステップS3で、第2閾値よりも更に小さい第3閾値Th3以上の受光量レベルを示す画素群(以下、「第3画素群G3」)を抽出する。従って、このときCPU11は本発明の「抽出手段」として機能する。   When the CPU 11 takes in the image signal Sb from the image sensor 24, the CPU 11 executes the control shown in FIG. First, in step S1, a pixel group (hereinafter referred to as “first pixel group G1”) indicating a received light amount level equal to or higher than the first threshold Th1 is extracted. Next, in step S2, a pixel group (hereinafter referred to as “second pixel group G2”) indicating a received light amount level equal to or higher than a second threshold Th2 smaller than the first threshold is extracted. Further, in step S3, a pixel group (hereinafter referred to as “third pixel group G3”) having a light reception amount level equal to or higher than a third threshold Th3 that is smaller than the second threshold is extracted. Therefore, at this time, the CPU 11 functions as the “extraction means” of the present invention.

次に、ステップS4で、第1画素群G1、第2画素群G2、第3画素群G3それぞれについて、次に示す式2を適用して面積重心位置P1,P2,P3を算出する。従って、このときCPU11は本発明の「重心位置検出手段」として機能する。   Next, in step S4, the area centroid positions P1, P2, and P3 are calculated by applying the following Expression 2 to each of the first pixel group G1, the second pixel group G2, and the third pixel group G3. Accordingly, at this time, the CPU 11 functions as the “center of gravity position detecting means” of the present invention.

<式2>
面積重心位置={Σ(MI)/ΣM}
I:第K(閾値の数K=1,2,3)画素群の各画素の位置ベクトル
M:第K画素群の数
<Formula 2>
Area centroid position = {Σ (MI) / ΣM}
I: Position vector of each pixel in the Kth (threshold number K = 1, 2, 3) pixel group M: Number of the Kth pixel group

そして、ステップS5で、面積重心位置P1(x1,y1),P2(x2,y2),P3(x3,y3)を次に示す式3を適用して平均化した中心位置(X,Y)を算出し、この中心位置(X,Y)を受光スポットの受光中心位置Nと決定する。従って、このときCPU11は本発明の「決定手段」として機能する。   In step S5, the center position (X, Y) obtained by averaging the area centroid positions P1 (x1, y1), P2 (x2, y2), and P3 (x3, y3) by applying Expression 3 shown below. The center position (X, Y) is calculated and determined as the light receiving center position N of the light receiving spot. Therefore, at this time, the CPU 11 functions as the “determination means” of the present invention.

<式3>
中心位置(X,Y)
X=(x1+x2+x3+・・・)/K
Y=(y1+y2+y3+・・・)/K
なお、第1画素群G1、第2画素群G2、第3画素群G3それぞれについて、次に示す式4を適用して体積重心位置P1,P2,P3を算出する構成であってもよい(図7参照)
<Formula 3>
Center position (X, Y)
X = (x1 + x2 + x3 + ...) / K
Y = (y1 + y2 + y3 + ...) / K
Note that, for each of the first pixel group G1, the second pixel group G2, and the third pixel group G3, the following formula 4 may be applied to calculate the volume centroid positions P1, P2, and P3 (see FIG. 7) .

<式4>
体積重心位置={Σ(mI)/Σm}
I:式2と同じ
m:上記各画素の受光量レベルに応じた係数
<Formula 4>
Volume centroid position = {Σ (mI) / Σm}
I: Same as Equation 2 m: Coefficient according to the light reception level of each pixel

式4による体積重心法の法がより正確に各画素群での重心位置を算出することができるが、例えばワークWが鏡面反射体である場合には、受光スポット内の画素の受光量レベルにはほぼ均一であり、式3による面積重心法であっても式4による体積重心法と同等の精度で重心位置を算出することができる。従って、このような場合には、式3による面積重心法を採用することで受光中心検出処理の処理負担を軽減し高速を処理を図ることができる。   The volume centroid method according to Equation 4 can calculate the centroid position in each pixel group more accurately. For example, when the workpiece W is a specular reflector, the received light amount level of the pixels in the light receiving spot is set. Is almost uniform, and even the area centroid method according to Equation 3 can calculate the centroid position with the same accuracy as the volume centroid method according to Equation 4. Therefore, in such a case, by adopting the area centroid method according to Equation 3, it is possible to reduce the processing load of the light receiving center detection processing and to achieve high speed processing.

また、上記第1〜3の各閾値Th1,Th2,Th3は、CPU11に連なる閾値設定部12(図1のみ図示)において、撮像素子24にて検知可能な最低受光量レベル(ダークカットレベル)以上であって、撮像素子24の撮像面上における最大受光量レベルより低いレベル以下の範囲で変更可能に設定することができるようになっている。なお、この最大受光量レベルより低いレベルは、本実施形態では、最大受光量レベルに対して予め定められた割合(%)分だけ低いレベルとなっている。従って、閾値設定前に距離測定装置を起動させて撮像素子24からの撮像信号Sbに基づき最大受光量レベルを取得することで、上記最大受光量レベルより低いレベルを設定することができる。また、閾値設定部12において、閾値の数も変えることもできる。   Each of the first to third threshold values Th1, Th2, Th3 is equal to or higher than the minimum received light amount level (dark cut level) that can be detected by the image sensor 24 in the threshold setting unit 12 (shown only in FIG. 1) connected to the CPU 11. Thus, it can be set to be changeable within a range that is lower than the maximum received light amount level on the imaging surface of the imaging device 24. In the present embodiment, the level lower than the maximum received light amount level is lower than the maximum received light amount level by a predetermined percentage (%). Therefore, by starting the distance measuring device and setting the maximum received light amount level based on the imaging signal Sb from the image sensor 24 before setting the threshold, a level lower than the maximum received light amount level can be set. In the threshold setting unit 12, the number of thresholds can also be changed.

3.本実施形態の効果
(1)図5の左図に、受光スポットにぶれ・揺らぎにより2パターンの受光量レベル分布1,2が示されている。ここで、従来のように1つの閾値、例えば第1閾値Th1によって面積重心位置を算出し、これを受光スポットの受光中心位置とした場合には、図5の右図に示すように、上記2パターンにおいて受光中心位置がP1(x1,y1),P1'(x1',y1')と大きくずれてしまうことがある。また、上述したサブピクセル法によっても同様に大きくずれてしまうことがある。
これに対して、本実施形態では、第1〜3の各閾値Th1,Th2,Th3に基づき面積重心位置P1,P2,P3(P1',P2',P3')をそれぞれ算出し、これらを平均化した中心位置を受光中心位置N(N')として決定する構成になっている。従って、受光スポットにぶれ・揺らぎによる受光中心位置Nの位置ずれを極力抑えることができ、正確な距離測定を行うことが可能となる。

3. Advantages of the present embodiment (1) The left diagram of FIG. 5 shows two patterns of received light amount level distributions V 1 and V 2 due to blurring and fluctuations in the light receiving spot. Here, when the area centroid position is calculated by one threshold value, for example, the first threshold value Th1, as in the prior art, and this is used as the light receiving center position of the light receiving spot, as shown in the right diagram of FIG. In the pattern, the light receiving center position may deviate greatly from P1 (x1, y1) and P1 ′ (x1 ′, y1 ′). Similarly, the above-described subpixel method may cause a large shift.
On the other hand, in the present embodiment, the area gravity center positions P1, P2, and P3 (P1 ′, P2 ′, and P3 ′) are calculated based on the first to third threshold values Th1, Th2, and Th3, respectively, and these are averaged. The center position thus obtained is determined as the light receiving center position N (N ′). Therefore, it is possible to suppress the positional deviation of the light receiving center position N due to the shake or fluctuation of the light receiving spot as much as possible, and it is possible to perform accurate distance measurement.

(2)更に、本実施形態では、閾値設定部12によって、撮像素子24にて検知可能な最低受光量レベル(ダークカットレベル)以上であって、撮像素子24の撮像面上における最大受光量レベルより低いレベル以下の範囲で自由に変更することができる。従って、受光スポットのぶれ・揺らぎの特性に対して適切な閾値を設定することが可能となる。   (2) Further, in the present embodiment, the threshold level setting unit 12 is at least the minimum received light amount level (dark cut level) that can be detected by the image sensor 24 and is the maximum received light amount level on the imaging surface of the image sensor 24. It can be changed freely within the range below the lower level. Therefore, it is possible to set an appropriate threshold value for the characteristics of shaking / fluctuation of the light receiving spot.

<実施形態2>
距離測定装置の実施形態2について図8ないし図11を参照して説明する。尚、実施形態1と同一の部分については同一の符号を付して重複する説明を省略する。
本実施形態は、距離測定用レーザ光源20からの光をコリメータレンズ22により平行光に変換した後、当該平行光をワークWに照射し、ワークWの表面における拡散反射光LDを収束レンズ23にて集光して撮像素子24の撮像面に照射させる構成となっている。
また、上記撮像素子24は収束レンズ23を通過して収束光に変換された拡散反射光の集光位置Pよりも後側に配されており、収束レンズ23を透過し、発散した光を当該撮像素子24の撮像面に照射させるようになっている。
<Embodiment 2>
A second embodiment of the distance measuring device will be described with reference to FIGS. In addition, about the part same as Embodiment 1, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
In the present embodiment, after the light from the distance measuring laser light source 20 is converted into parallel light by the collimator lens 22, the parallel light is irradiated onto the work W, and the diffuse reflected light LD on the surface of the work W is applied to the convergence lens 23. Thus, the light is condensed and irradiated onto the image pickup surface of the image pickup device 24.
The imaging element 24 is disposed behind the condensing position P of the diffusely reflected light that has passed through the converging lens 23 and converted into converging light, and transmits the diverging light through the converging lens 23. The imaging surface of the imaging element 24 is irradiated.

図8から図11に示すように、撮像素子24の撮像面における拡散反射光LDの照射位置は、撮像素子24を反射光LDの光路において反射光LDの集光位置と一致する位置に配した場合と比べて、反射光路と交差する方向においてずれた位置となっている。また、そのずれ方向は反射光路を中心として、この光軸から離れる方向とされている。要するに、撮像素子24を拡散反射光LDの集光位置よりも反射光路に沿って後方に配置することで、照射位置のずれ量を増幅させている。このように構成することで、距離測定における分解能(測定精度)を向上させることができるのである。   As shown in FIG. 8 to FIG. 11, the irradiation position of the diffuse reflected light LD on the imaging surface of the image sensor 24 is arranged at a position that matches the condensing position of the reflected light LD in the optical path of the reflected light LD. Compared to the case, the position is shifted in the direction intersecting the reflected light path. Further, the direction of deviation is a direction away from the optical axis with the reflected light path as the center. In short, by disposing the image pickup device 24 behind the condensing position of the diffusely reflected light LD along the reflected light path, the amount of deviation of the irradiation position is amplified. With this configuration, the resolution (measurement accuracy) in distance measurement can be improved.

このような構成においても、受光中心検出について実施形態1の受光中心検出処理(図6)を適用することで実施形態1と同様の効果を得ることができる。   Even in such a configuration, the same effect as that of the first embodiment can be obtained by applying the light receiving center detection process (FIG. 6) of the first embodiment to the detection of the light receiving center.

<実施形態3>
請求項1,4,5に係る角度測定装置の実施形態を図12を参照して説明する。
本実施形態の角度測定装置50は、オートコリメータ法を用いてワークWの傾き角度を測定するものである。
投光素子51(角度測定用投光手段)からの光をコリメータレンズ52により平行光に変換し、この平行光をハーフミラー53で反射させて、光軸LC上に位置するワークWの方向へ導く。ワークWに照射された平行光は正反射してハーフミラー53を透過し、収束レンズ54によって撮像素子55(角度測定用撮像手段)の撮像面55A上に集光されるように構成されている。そして、撮像素子55からの撮像信号SaはCPU56に出力されるようになっている。
<Embodiment 3>
An embodiment of an angle measuring device according to claims 1, 4 and 5 will be described with reference to FIG.
The angle measuring device 50 according to the present embodiment measures the tilt angle of the workpiece W using an autocollimator method.
The light from the light projecting element 51 (angle measuring light projecting means) is converted into parallel light by the collimator lens 52, and this parallel light is reflected by the half mirror 53 to the direction of the workpiece W located on the optical axis LC. Lead. The parallel light irradiated to the workpiece W is regularly reflected and transmitted through the half mirror 53, and is condensed by the converging lens 54 onto the imaging surface 55A of the imaging element 55 (angle measuring imaging means). . The image signal Sa from the image sensor 55 is output to the CPU 56.

CPU56は、投光素子51に制御信号Sbを与えて発光させるとともに、それに同期したタイミングで撮像素子55に制御信号Scを与えて駆動させて上記撮像信号Saを受ける。そして、CPU56は、受けた撮像信号Saに基づき、ワークW上で正反射した正反射光Lの、撮像面55A上における照射像(受光スポット)の受光中心位置Nを検出する。この受光中心位置NはワークWの傾き角度変化に応じて変位するから、当該受光中心位置Nと、例えば撮像面55Aの中央の原点Oとの位置偏差からワークWの傾き角度を測定することが可能となるのである。なお、本実施形態も、実施形態1の閾値設定部12と同様の閾値設定部57が設けられている。   The CPU 56 gives the control signal Sb to the light projecting element 51 to emit light, and gives the control signal Sc to the image pickup element 55 and drives it at a timing synchronized therewith to receive the image pickup signal Sa. Then, the CPU 56 detects the light receiving center position N of the irradiated image (light receiving spot) on the imaging surface 55A of the regular reflection light L specularly reflected on the workpiece W, based on the received imaging signal Sa. Since the light receiving center position N is displaced according to the change in the tilt angle of the work W, the tilt angle of the work W can be measured from the positional deviation between the light receiving center position N and the origin O at the center of the imaging surface 55A, for example. It becomes possible. Note that the present embodiment also includes a threshold setting unit 57 similar to the threshold setting unit 12 of the first embodiment.

ここで、本実施形態についても受光中心位置の検出にあたり、上記実施形態1で説明した受光中心検出処理(図6参照)を適用することにより実施形態1と同様の効果を得ることができる。   Here, also in the present embodiment, the same effect as that of the first embodiment can be obtained by applying the light receiving center detection process (see FIG. 6) described in the first embodiment in detecting the light receiving center position.

<実施形態4>
本発明の請求項1,6(前述した構成A),7に係る光学測定装置の実施形態4を図13ないし図17を参照して説明する。
<Embodiment 4>
Embodiment 4 of the optical measuring device according to claims 1 and 6 (configuration A described above) and 7 of the present invention will be described with reference to FIGS.

1.光学測定装置の構成
本実施形態は、ワークWの傾斜角度及び距離を測定するものであり、その構成は、図13に示す通りである。角度測定用レーザ光源111及び距離測定用レーザ光源121から出射された光をダイクロイックミラー131(光合流手段)、ビームスプリッタ132及びコリメータレンズ133(コリメータレンズ及び収束レンズに相当)を介してワークW(被測定物体)に両者の光を照射し、正反射光をコリメータレンズ133、ビームスプリッタ132及びダイクロイックミラー134(光分岐用ダイクロイックミラー)を介して例えば2次元CCDからなる角度測定用撮像素子112(角度測定用撮像手段)及び同じく2次元CCDからなる距離測定用撮像素子122(距離測定用撮像手段)の撮像面に照射し、その照射位置(受光中心位置)に基づいてCPU104によりワークWの傾き及び距離が算出されるようになっている。尚、ワークWの表面は鏡面であっても非鏡面であってもよい。
1. Configuration of Optical Measuring Device In the present embodiment, the tilt angle and distance of the workpiece W are measured, and the configuration is as shown in FIG. Light emitted from the angle measuring laser light source 111 and the distance measuring laser light source 121 is transmitted through a dichroic mirror 131 (light converging means), a beam splitter 132 and a collimator lens 133 (corresponding to a collimator lens and a converging lens). The object to be measured) is irradiated with both lights, and the specularly reflected light is passed through a collimator lens 133, a beam splitter 132, and a dichroic mirror 134 (light splitting dichroic mirror), for example, an angle measuring image pickup device 112 (for example, a two-dimensional CCD). (Illumination means for angle measurement) and an image pickup surface of a distance measurement image pickup element 122 (distance measurement image pickup means) that is also a two-dimensional CCD, and the CPU 104 tilts the workpiece W based on the irradiation position (light receiving center position). And the distance are calculated. The surface of the workpiece W may be a mirror surface or a non-mirror surface.

両レーザ光源111,121はそれぞれ波長の異なる光を照射するようになっており、例えば、角度測定用レーザ光源111は波長λ1のレーザ光を出射するものとされており、一方、距離測定用レーザ光源121は波長λ2のレーザ光を出射するものとされている。また、両レーザ光源111,121にはそれぞれレーザ駆動回路113,123が接続されており,CPU104からの制御信号Sa,Sbに基づいてそれぞれのレーザ光源111,121に駆動電流Ia,Ibを供給する(角度測定用レーザ光源111及びレーザ駆動回路113により角度測定用投光手段を構成し、距離測定用レーザ光源121及びレーザ駆動回路123により距離測定用投光手段を構成している)。なお、レーザ光源111,121は間欠的又は連続的に駆動することができる。   Both laser light sources 111 and 121 emit light having different wavelengths, for example, the angle measuring laser light source 111 emits laser light having a wavelength λ1, while the distance measuring laser. The light source 121 emits laser light having a wavelength λ2. Laser drive circuits 113 and 123 are connected to the laser light sources 111 and 121, respectively, and drive currents Ia and Ib are supplied to the laser light sources 111 and 121 based on control signals Sa and Sb from the CPU 104, respectively. (An angle measuring light source 111 and a laser driving circuit 113 constitute an angle measuring light projecting means, and a distance measuring laser light source 121 and a laser driving circuit 123 constitute a distance measuring light projecting means). The laser light sources 111 and 121 can be driven intermittently or continuously.

ダイクロイックミラー131は、波長λ1の光を透過させ、波長λ2の光を反射させるように構成されており、これによって、角度測定用レーザ光源111のレーザ光はこのダイクロイックミラー131を透過してビームスプリッタ132に向かうとともに、距離測定用レーザ光源121からの光はこのダイクロイックミラー131を反射してビームスプリッタ132に向かう。   The dichroic mirror 131 is configured to transmit light having a wavelength λ1 and reflect light having a wavelength λ2, so that the laser light of the angle measuring laser light source 111 passes through the dichroic mirror 131 and is beam splitter. The light from the distance measuring laser light source 121 is reflected by the dichroic mirror 131 and travels toward the beam splitter 132.

また、角度測定用レーザ光源111からのレーザ光はダイクロイックミラー131の入射面に垂直に入射させており、距離測定用レーザ光源121からのレーザ光はダイクロイックミラー131の入射面に対して斜めに入射させるように構成している(前記距離測定用投光手段からの光が前記被測定物体に対して斜めに照射されるように前記距離測定用投光手段が配する構成に相当)。これによって、角度測定用レーザ光源111の光線軸は光学系の光軸(基線軸)LC(L´C´)と平行とされるとともに、距離測定用レーザ光源121の光線軸は光学系の光軸LC(L´C´)に対して傾いた状態とされる。   Further, the laser light from the angle measuring laser light source 111 is incident on the incident surface of the dichroic mirror 131 perpendicularly, and the laser light from the distance measuring laser light source 121 is incident obliquely on the incident surface of the dichroic mirror 131. (Corresponding to a configuration in which the distance measuring light projecting unit is arranged so that light from the distance measuring light projecting unit is obliquely irradiated to the object to be measured). Thus, the light axis of the angle measuring laser light source 111 is made parallel to the optical axis (base line axis) LC (L′ C ′) of the optical system, and the light axis of the distance measuring laser light source 121 is the light of the optical system. The state is inclined with respect to the axis LC (L′ C ′).

ビームスプリッタ132を反射したレーザ光はコリメータレンズ133により平行光とされて、ワークWに照射される。このとき、角度測定用レーザ光源111からのレーザ光はワークWが傾きのない姿勢とされているときには、ワークWの表面に対して垂直に光が照射されているのに対して、距離測定用レーザ光源121からのレーザ光は光学系の光軸LC(L´C´)に対して傾いているので、ワークWの表面に対して斜めから光が照射されている。また、ワークWに照射されたレーザ光のスポット径はレーザ光源111のレーザ光よりもレーザ光源121のレーザ光のほうが小さくされており、かつ、レーザ光源121のレーザ光はレーザ光源111のレーザ光の照射範囲内に照射されるようになっている。   The laser light reflected from the beam splitter 132 is converted into parallel light by the collimator lens 133 and is irradiated onto the workpiece W. At this time, the laser beam from the angle measurement laser light source 111 is irradiated perpendicularly to the surface of the workpiece W when the workpiece W is in an attitude without tilting, whereas the laser beam for distance measurement is used. Since the laser light from the laser light source 121 is inclined with respect to the optical axis LC (L′ C ′) of the optical system, the light is irradiated obliquely onto the surface of the workpiece W. The spot diameter of the laser light irradiated onto the workpiece W is smaller in the laser light from the laser light source 121 than in the laser light from the laser light source 111, and the laser light from the laser light source 121 is the laser light from the laser light source 111. Irradiation is within the irradiation range.

ワークWからの正反射光はそれぞれ、コリメータレンズ133により集光され、上記ダイクロイックミラー131と同様の特性を有するダイクロイックミラー134により、角度測定用レーザ光源111による正反射光(角度測定用正反射光)は角度測定用撮像素子112の撮像面に結像して受光スポットが形成される。また、距離測定用レーザ光源121による正反射光(距離測定用正反射光)はダイクロイックミラー134を反射して距離測定用撮像素子122の撮像面に照射される。この距離測定用撮像素子122の撮像面は正反射光の焦点位置Fよりも後方に配置されているため、撮像面上には所定の大きさの光像が形成される。ここで、距離測定用撮像素子122の撮像面を焦点位置Fに一致させなかったのは、ワークWの距離に応じて焦点位置Fに至るまでの光路が変化するので、その光像の位置からワークWの距離が算出できるからである。   The specularly reflected light from the workpiece W is collected by the collimator lens 133, and is specularly reflected by the angle measuring laser light source 111 (the specularly reflected light for angle measurement) by the dichroic mirror 134 having the same characteristics as the dichroic mirror 131. ) Forms an image on the imaging surface of the angle measurement imaging device 112 to form a light receiving spot. Further, the regular reflection light (distance measurement regular reflection light) from the distance measurement laser light source 121 is reflected by the dichroic mirror 134 and applied to the imaging surface of the distance measurement image sensor 122. Since the imaging surface of the distance measuring image sensor 122 is disposed behind the focal position F of the specularly reflected light, a light image having a predetermined size is formed on the imaging surface. Here, the reason why the imaging surface of the distance measuring image sensor 122 is not coincident with the focal position F is that the optical path to the focal position F changes according to the distance of the workpiece W. This is because the distance of the workpiece W can be calculated.

角度測定用撮像素子112及び距離測定用撮像素子122は撮像面上に形成されている各受光スポットの位置に応じたディジタル信号列からなる撮像信号Sc,SdをCPU104に送信する。   The angle measuring image sensor 112 and the distance measuring image sensor 122 transmit to the CPU 104 image signals Sc and Sd that are digital signal sequences corresponding to the positions of the respective light receiving spots formed on the imaging surface.

CPU104は、前述したレーザ駆動回路13,23に制御信号Sa,Sbを送信するとともに、制御信号Saの送信に同期して角度測定用撮像素子112からの撮像信号Scを取り込み、制御信号Sbの送信に同期して距離測定用撮像素子122からの撮像信号Sdを取り込む。そして、撮像信号Sc,Sdに基づいてワークWの傾きとコリメータレンズ133からワークWまでの距離とを測定する。なお、本実施形態も、実施形態1の閾値設定部12と同様の閾値設定部136が設けられている。   The CPU 104 transmits the control signals Sa and Sb to the laser drive circuits 13 and 23 described above, captures the imaging signal Sc from the angle measurement imaging device 112 in synchronization with the transmission of the control signal Sa, and transmits the control signal Sb. The image pickup signal Sd from the distance measuring image pickup element 122 is captured in synchronization with the above. Then, the inclination of the workpiece W and the distance from the collimator lens 133 to the workpiece W are measured based on the imaging signals Sc and Sd. Note that this embodiment also includes a threshold setting unit 136 similar to the threshold setting unit 12 of the first embodiment.

2.本実施形態の動作
本実施形態の構成は以上であり、続いてその動作について説明する。
(1)傾き検出
本実施形態では周知のオートコリメーション法を用いて傾き測定を行なう構成とされており、ここでは、上記実施形態1で説明した図6の受光中心検出処理を実行し、受光中心位置を検出し、この受光中心位置によってワークWの傾きの方向と傾き角とを算出する。
2. Operation of the present embodiment The configuration of the present embodiment is as described above. Next, the operation will be described.
(1) Inclination detection In this embodiment, the inclination is measured by using a well-known autocollimation method. Here, the light reception center detection process of FIG. The position is detected, and the tilt direction and tilt angle of the workpiece W are calculated based on the light receiving center position.

(2)距離測定
距離測定では、まず上記の傾き測定により、ワークWの角度を検出する。そして、距離測定用撮像素子122からの撮像信号Sdに基づいて実施形態1で説明した図6に示す処理を実行して受光中心位置(重心位置)を検出する。そして、傾き測定で算出された傾きに基づいて補正を行ない、上記重心位置と基準位置との距離及び方向からワークWの距離を算出する。
(2) Distance measurement In the distance measurement, first, the angle of the workpiece W is detected by the above-described inclination measurement. Then, based on the imaging signal Sd from the distance measuring imaging element 122, the process shown in FIG. 6 described in the first embodiment is executed to detect the light receiving center position (center of gravity position). And it correct | amends based on the inclination calculated by inclination measurement, and calculates the distance of the workpiece | work W from the distance and direction of the said gravity center position and a reference | standard position.

例えば、ワークWが図13中の(1)の位置(距離d1、傾き角0)にある場合には(詳しくは図14参照)、角度測定用撮像素子112の撮像面に形成される受光スポットの位置S1は基準位置Raと一致するから、傾き角は0°と測定される。また、距離測定用撮像素子122の撮像面における光像L1は基準位置Rbからd1’離れていることから、これに基づいて距離d1が測定される。   For example, when the workpiece W is at the position (1) (distance d1, inclination angle 0) in FIG. 13 (see FIG. 14 for details), the light receiving spot formed on the imaging surface of the angle measuring image sensor 112. Since the position S1 coincides with the reference position Ra, the inclination angle is measured as 0 °. Further, since the optical image L1 on the imaging surface of the distance measuring image sensor 122 is d1 'away from the reference position Rb, the distance d1 is measured based on this.

ワークWが図13中の(2)の位置(距離d2、傾き角0)にある場合には(詳しくは図15参照)、角度測定用撮像素子112の撮像面に形成される集光スポット(受光スポット)の位置S2は基準位置Raと一致するから、傾き角は0°と測定される。また、距離測定用撮像素子122の撮像面における光像L2は基準位置Rbからd2’離れていることから、これにより、距離d2と測定される。   When the workpiece W is at the position (2) (distance d2, inclination angle 0) in FIG. 13 (see FIG. 15 for details), the condensing spot (on the imaging surface of the angle measuring image sensor 112) ( Since the position S2 of the light receiving spot) coincides with the reference position Ra, the inclination angle is measured as 0 °. Further, since the optical image L2 on the imaging surface of the distance measuring image sensor 122 is d2 'away from the reference position Rb, this is measured as the distance d2.

ワークWが図13中の(3)の位置(距離d2、傾き角θ1)にある場合には(詳しくは図16参照)、角度測定用撮像素子112の撮像面に形成される受光スポットの位置S3は基準位置Raから距離dだけ離れているから、これに基づいて、傾き角θ1が測定される。また、距離測定用撮像素子122の撮像面における光像L3は基準位置Rbからd3’だけ離れている。ここで、(3)の位置ではワークWが傾いているために距離測定用撮像素子122の撮像面に形成される光像L3が(2)の位置の場合の光像L2と異なる位置に形成される。従って、CPU104では、傾き角θ1の基づいて補正を行うことで距離を算出するから、結局、距離はd2と測定される。   When the workpiece W is at the position (3) in FIG. 13 (distance d2, inclination angle θ1) (see FIG. 16 for details), the position of the light receiving spot formed on the imaging surface of the angle measuring image sensor 112. Since S3 is separated from the reference position Ra by the distance d, the inclination angle θ1 is measured based on this distance. Further, the optical image L3 on the imaging surface of the distance measuring image sensor 122 is separated from the reference position Rb by d3 '. Here, since the workpiece W is inclined at the position (3), the optical image L3 formed on the imaging surface of the distance measuring image sensor 122 is formed at a position different from the optical image L2 at the position (2). Is done. Accordingly, since the CPU 104 calculates the distance by performing correction based on the inclination angle θ1, the distance is eventually measured as d2.

本実施形態によれば、ワークWからの正反射光に基づいて、距離及び傾きの測定を行なうように構成しているから、鏡面体または非鏡面体に拘わらずワークWの傾きおよび距離の測定を行うことができる。また、両レーザ光源111,121でそれぞれ異なる波長の光を出射するように構成し、ダイクロイックミラー131,134によりレーザ光を分離してそれぞれの撮像素子112,122の撮像面に照射されるように構成しているから、レーザ光が誤照射されることがない。   According to the present embodiment, since the distance and the inclination are measured based on the regular reflection light from the work W, the inclination and the distance of the work W are measured regardless of the specular body or the non-specular body. It can be performed. In addition, the laser light sources 111 and 121 are configured to emit light having different wavelengths, and the laser light is separated by the dichroic mirrors 131 and 134 so that the imaging surfaces of the imaging elements 112 and 122 are irradiated. Since it is configured, laser light is not erroneously irradiated.

なお、本実施形態では、ワークWに照射されたレーザ光のスポット径はレーザ光源111のレーザ光よりもレーザ光源121のレーザ光121のレーザ光のほうを小さくし、かつ、レーザ光源121のレーザ光はレーザ光源111のレーザ光の照射範囲内に照射されるように構成したことで、ワークWの距離及び傾きに拘わらず実質的にワークWに対するレーザ光の照射位置(測定位置)を一定にすることができる。   In the present embodiment, the spot diameter of the laser light applied to the workpiece W is set so that the laser light 121 of the laser light source 121 is smaller than the laser light of the laser light source 111, and the laser of the laser light source 121 is used. The configuration is such that the light is irradiated within the laser light irradiation range of the laser light source 111, so that the irradiation position (measurement position) of the laser light on the workpiece W is substantially constant regardless of the distance and inclination of the workpiece W. can do.

また、上記構成において、両レーザ光源111,121から同一波長のレーザ光を出射する構成とすることもできる。この場合には、それぞれのレーザ光源111,121交互にパルス点灯させるようにCPU104から制御信号Sa,Sbをレーザ駆動回路113,123に供給し、ダイクロイックミラー131,134に代わって例えばビームスプリッタを配置するようにすればよい。また、CPU104は前述したようにレーザ駆動回路113,123に制御信号Sa,Sbを送信するとともに、制御信号Saの送信に同期して角度測定用撮像素子112からの撮像信号Scを取り込み、制御信号Sbの送信に同期して距離測定用撮像素子122からの撮像信号Sdを取り込む。そして、撮像信号Sc,Sdに基づいてワークWの傾き及びコリメータレンズ133からワークWまでの距離を測定する構成とする。このようにすると、例えばレーザ光は交互に出射されることとなり、光の干渉が抑制され、測定精度が向上するという効果が得られる。   In the above configuration, a laser beam having the same wavelength may be emitted from both laser light sources 111 and 121. In this case, the control signals Sa and Sb are supplied from the CPU 104 to the laser drive circuits 113 and 123 so that the laser light sources 111 and 121 are alternately turned on, and a beam splitter is disposed in place of the dichroic mirrors 131 and 134, for example. You just have to do it. Further, as described above, the CPU 104 transmits the control signals Sa and Sb to the laser drive circuits 113 and 123, and captures the image pickup signal Sc from the angle measurement image pickup device 112 in synchronization with the transmission of the control signal Sa. The imaging signal Sd from the distance measuring image sensor 122 is captured in synchronization with the transmission of Sb. The tilt of the workpiece W and the distance from the collimator lens 133 to the workpiece W are measured based on the imaging signals Sc and Sd. If it does in this way, for example, a laser beam will be radiate | emitted alternately, interference of light will be suppressed and the effect that a measurement precision improves will be acquired.

さらに、図17に示すように、距離測定用撮像素子122の手前に発散レンズ135を配し、一旦集光したワークWからの正反射光を発散させるような構成としても良い。このようにすれば、撮像面に形成される光像がより大きくされるから、ワークWが変位したときの光像の移動量が大きくなり、結果として分解能が向上して高精度な測定を行うことができる。また、正反射光は発散レンズ135の周縁部に照射させることがより望ましい。これは、レンズ135の中心部分よりも周縁部分の方が収差が大きいために、正反射光がより一層発散されることで極めて高精度に測定することができる。   Further, as shown in FIG. 17, a configuration may be adopted in which a diverging lens 135 is disposed in front of the distance measuring image pickup element 122 so that specularly reflected light from the work W once condensed is diverged. In this way, since the optical image formed on the imaging surface is made larger, the amount of movement of the optical image when the workpiece W is displaced is increased, resulting in improved resolution and high-precision measurement. be able to. Further, it is more desirable to irradiate the peripheral portion of the diverging lens 135 with the regular reflection light. This is because the aberration is larger in the peripheral portion than in the central portion of the lens 135, and the specularly reflected light is further diverged, so that it can be measured with extremely high accuracy.

このような構成においても、受光中心検出について実施形態1の受光中心検出処理(図6)を適用することで実施形態1と同様の効果を得ることができる。   Even in such a configuration, the same effect as that of the first embodiment can be obtained by applying the light receiving center detection process (FIG. 6) of the first embodiment to the detection of the light receiving center.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、要旨を逸脱しない範囲内で種々変更して実施することができる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings, and various modifications can be made without departing from the scope of the invention.

実施形態1に係る距離測定装置の全体構成を示した模式図The schematic diagram which showed the whole structure of the distance measuring device which concerns on Embodiment 1. FIG. ワークの位置と反射光の光路を示した概略図Schematic showing work position and reflected light path ワークの位置と反射光の光路を示した概略図Schematic showing work position and reflected light path ワークの位置と反射光の光路を示した概略図Schematic showing work position and reflected light path 受光量レベル分布と面積重心法による重心位置の関係を示した模式図Schematic diagram showing the relationship between received light level distribution and barycentric position by area barycentric method 受光中心検出処理を示すフローチャートFlow chart showing light receiving center detection processing 受光量レベル分布と体積重心法による重心位置の関係を示した模式図Schematic diagram showing the relationship between the received light level distribution and the center of gravity position by the volume center of gravity method 実施形態2に係る距離測定装置の全体構成を示した模式図The schematic diagram which showed the whole structure of the distance measuring device which concerns on Embodiment 2. FIG. ワークの位置と反射光の光路を示した概略図Schematic showing work position and reflected light path ワークの位置と反射光の光路を示した概略図Schematic showing work position and reflected light path ワークの位置と反射光の光路を示した概略図Schematic showing work position and reflected light path 実施形態3に係る角度測定装置の全体構成を示した模式図The schematic diagram which showed the whole structure of the angle measuring device which concerns on Embodiment 3. FIG. 実施形態4に係る光学測定装置の全体構成を示した模式図The schematic diagram which showed the whole structure of the optical measuring device which concerns on Embodiment 4. FIG. ワークの位置と反射光の光路を示した概略図Schematic showing work position and reflected light path ワークの位置と反射光の光路を示した概略図Schematic showing work position and reflected light path ワークの位置と反射光の光路を示した概略図Schematic showing work position and reflected light path 実施形態4の変形例を示した模式図Schematic diagram showing a modification of the fourth embodiment

符号の説明Explanation of symbols

12,57,136…閾値設定部(閾値設定手段
13,23…レーザ駆動回路
20,121…距離測定用レーザ光源
21…レーザ駆動回路
23,54…収束レンズ
24…撮像素子(撮像手段、距離測定用撮像手段)
50…角度測定装置
51,111…投光素子(角度測定用投光手段)
53…ハーフミラー(分岐手段)
55…撮像素子(撮像手段、角度測定用撮像手段)
55A…撮像面
112…角度測定用撮像素子(角度測定用撮像手段)
113,123…レーザ駆動回路
131,134…ダイクロイックミラー(分岐手段)
122…距離測定用撮像素子(距離測定用撮像手段)
132…ビームスプリッタ(分岐手段)
133…コリメータレンズ
134…ダイクロイックミラー
104…CPU(受光中心検出手段、抽出手段、重心位置検出手段、決定手段)
G1〜G3…画素群
N…受光中心位置
W…ワーク(被測定物体)
12, 57, 136... Threshold setting unit (threshold setting means 13, 23... Laser driving circuit 20, 121... Distance measuring laser light source 21... Laser driving circuit 23, 54. Imaging means)
50 ... Angle measuring device 51, 111 ... Projecting element (angle measuring light projecting means)
53. Half mirror (branching means)
55... Imaging device (imaging means, imaging means for angle measurement)
55A ... Imaging surface 112 ... Angle measurement imaging device (angle measurement imaging means)
113, 123 ... laser drive circuit 131, 134 ... dichroic mirror (branching means)
122. Image sensor for distance measurement (image sensor for distance measurement)
132 ... Beam splitter (branching means)
133 ... Collimator lens 134 ... Dichroic mirror 104 ... CPU (light receiving center detecting means, extracting means, barycentric position detecting means, determining means)
G1 to G3: Pixel group N: Light receiving center position W: Workpiece (object to be measured)

Claims (7)

投光手段から出射された光を撮像手段の撮像面に受光させ、その撮像手段から出力され前記撮像面上の各画素毎の受光量に応じた撮像信号に基づいて前記撮像面上での受光中心位置を検出する受光中心検出方法であって、
前記撮像手段からの撮像信号に基づき前記各画素での受光量レベルを、互いにレベルの異なる複数の閾値それぞれと比較し、それらの各閾値毎に、当該閾値以上の受光量レベルであった画素群を抽出する抽出処理と、
前記抽出処理において前記各閾値によって抽出された前記各画素群の受光量レベルに基づいて重心位置をそれぞれ検出する重心位置検出処理と、
前記重心位置検出処理によって検出された複数の前記重心位置を平均化した中心位置を前記受光中心位置として決定する決定処理と、を行うことを特徴とする受光中心検出方法。
The light emitted from the light projecting means is received on the imaging surface of the imaging means, and the light receiving on the imaging surface is output based on the imaging signal output from the imaging means and corresponding to the amount of light received for each pixel on the imaging surface. A light receiving center detection method for detecting a center position,
A pixel group in which the received light level at each pixel is compared with each of a plurality of thresholds having different levels based on an imaging signal from the imaging means, and the received light level is equal to or higher than the threshold for each of the thresholds. Extraction process to extract
And the center of gravity position detection process of detecting each position of the center of gravity based the on the light receiving amount level of the pixel groups extracted by the threshold values in the extraction process,
And a determination process of determining a center position obtained by averaging a plurality of the gravity center positions detected by the gravity center position detection process as the light reception center position.
被測定物体に光を投光する距離測定用投光手段と、
その距離測定用投光手段から投光され前記被測定物体で拡散反射または正反射した反射光を収束させる収束レンズと、
前記収束レンズを通過した光を撮像面で受光し、その撮像面上の各画像毎の受光量に応じた撮像信号を出力する距離測定用撮像手段と、
前記距離測定用撮像手段から出力された撮像信号に基づいて、前記撮像面上における前記反射光の受光中心位置を検出する受光中心検出手段とを備えるとともに、前記距離測定用投光手段から被測定物体までの投光光路と、前記被測定物体から前記距離測定用撮像手段までの反射光路とが所定の角度をなすよう構成され、
前記受光中心検出手段で検出された受光中心位置に基づいて前記被測定物体の距離を測定する距離測定装置において、
前記受光中心検出手段は、前記距離測定用撮像手段からの撮像信号に基づき前記各画素での受光量レベルを、互いにレベルの異なる複数の閾値それぞれと比較し、それらの各閾値毎に、当該閾値以上の受光量レベルであった画素群を抽出する抽出手段と、
前記抽出手段において前記各閾値によって抽出された前記各画素群の受光量レベルに基づいて重心位置をそれぞれ検出する重心位置検出手段と、
前記重心位置検出手段によって検出された複数の前記重心位置を平均化した中心位置を前記受光中心位置として決定する決定手段と、を備えて構成されていることを特徴とする距離測定装置。
Distance measuring light projecting means for projecting light on the object to be measured;
A converging lens that converges reflected light that is projected from the distance measuring light projecting means and diffusely or specularly reflected by the measured object;
Distance measuring imaging means for receiving light that has passed through the convergent lens on an imaging surface and outputting an imaging signal corresponding to the amount of light received for each image on the imaging surface;
A light receiving center detecting means for detecting a light receiving center position of the reflected light on the image pickup surface based on an image pickup signal output from the distance measuring image pickup means, and from the distance measuring light projecting means to be measured. A light projecting optical path to an object and a reflected light path from the object to be measured to the distance measuring imaging means are configured to form a predetermined angle,
In the distance measuring device for measuring the distance of the object to be measured based on the light receiving center position detected by the light receiving center detecting means,
The light receiving center detecting unit compares the received light amount level at each pixel with a plurality of thresholds having different levels based on an imaging signal from the distance measuring imaging unit, and for each threshold, the threshold Extraction means for extracting a pixel group having the above received light amount level;
A center-of-gravity position detecting means for detecting each position of the center of gravity based the on the light receiving amount level of the pixel groups extracted by the threshold values in the extraction means,
A distance measuring device comprising: determining means for determining, as the light receiving center position, a center position obtained by averaging a plurality of the gravity center positions detected by the gravity center position detecting means.
前記複数の閾値が、前記距離測定用撮像手段にて検知可能な最低受光量レベル以上であって、前記距離測定用撮像手段の撮像面上における最大受光量レベルより低いレベル以下の範囲で設定される閾値設定手段が設けられていることを特徴とする請求項2に記載の距離測定装置。 Wherein the plurality of threshold values, the distance A is detectable minimum light receiving quantity level or at the measuring pickup means, is set at a low level the range from the maximum received light quantity level on the imaging surface of the distance measuring image pickup means The distance measuring device according to claim 2, further comprising a threshold setting unit. 被測定物体に光を投光する角度測定用投光手段と、
その角度測定用投光手段から投光され前記被測定物体で正反射した反射光を収束させる収束レンズと、
前記収束レンズを通過した光を撮像面で受光し、その撮像面上の各画像毎の受光量に応じた撮像信号を出力する角度測定用撮像手段と、
前記角度測定用撮像手段から出力された撮像信号に基づいて、前記撮像面上における前記反射光の受光中心位置を検出する受光中心検出手段とを備え、
前記受光中心検出手段で検出された受光中心位置に基づいて前記被測定物体の傾き角度を測定する角度測定装置において、
前記受光中心検出手段は、前記角度測定用撮像手段からの撮像信号に基づき前記各画素での受光量レベルを、互いにレベルの異なる複数の閾値それぞれと比較し、それらの各閾値毎に、当該閾値以上の受光量レベルであった画素群を抽出する抽出手段と、
前記抽出手段において前記各閾値によって抽出された前記各画素の受光量レベルに基づいて重心位置をそれぞれ検出する重心位置検出手段と、
前記重心位置検出手段によって検出された複数の前記重心位置を平均化した中心位置を前記受光中心位置として決定する決定手段と、を備えて構成されていることを特徴とする角度測定装置。
Angle measuring light projecting means for projecting light on the object to be measured;
A converging lens that converges the reflected light projected from the angle measuring light projecting means and regularly reflected by the measured object;
An angle measuring imaging unit that receives light passing through the convergent lens on an imaging surface and outputs an imaging signal corresponding to the amount of light received for each image on the imaging surface;
A light receiving center detecting means for detecting a light receiving center position of the reflected light on the imaging surface based on an imaging signal output from the angle measuring imaging means;
In the angle measuring device for measuring the tilt angle of the object to be measured based on the light receiving center position detected by the light receiving center detecting means,
The light receiving center detecting means compares the received light amount level at each pixel with a plurality of thresholds having different levels based on the imaging signal from the angle measuring imaging means, and for each threshold value, the threshold value Extraction means for extracting a pixel group having the above received light amount level;
A center-of-gravity position detecting means for detecting each position of the center of gravity based the on the light receiving amount level of the pixel groups extracted by the threshold values in the extraction means,
An angle measuring apparatus comprising: a determining unit configured to determine, as the light receiving center position, a center position obtained by averaging a plurality of the barycentric positions detected by the barycentric position detecting unit.
前記複数の閾値が、前記角度測定用撮像手段にて検知可能な最低受光量レベル以上であって、前記角度測定用撮像手段の撮像面上における最大受光量レベルより低いレベル以下の範囲で設定される閾値設定手段が設けられていることを特徴とする請求項4に記載の角度測定装置。 Wherein the plurality of threshold values, the there is detectable minimum light receiving quantity level or at an angle measuring image pickup means is set at a lower level below the range from the maximum received light quantity level on the imaging surface of the angle measuring image pickup means The angle measuring apparatus according to claim 4, further comprising a threshold setting unit. 被測定物体に光を照射しその反射光に基づいて前記被測定物体の傾き角度及び距離を測定する光学測定装置であって、
前記被測定物体に向けて略平行光としての光を照射する角度測定用投光手段と、
その角度測定用投光手段から投光され前記被測定物体で正反射した角度測定用反射光を収束させる収束レンズと、
その収束レンズを通過した光を撮像面で受光し、その撮像面上の各画像毎の受光量に応じた撮像信号を出力する撮像手段と、
前記角度測定用投光手段からの光の照射方向に対して所定角度傾いた方向から略平行光としての光を前記被測定物体に照射するよう配された距離測定用投光手段と、
その距離測定用投光手段から投光され前記被測定物体で拡散反射または正反射した距離測定用反射光を収束させる収束レンズと、
その収束レンズを通過した光を撮像面で受光し、その撮像面上の各画像毎の受光量に応じた撮像信号を出力する撮像手段と、
前記撮像手段から出力された撮像信号に基づいて、前記撮像面上における前記角度測定用反射光及び前記距離測定用反射光それぞれの受光中心位置を検出する受光中心検出手段と、を備え、
前記受光中心検出手段で検出された受光中心位置に基づいて前記被測定物体の傾き角度及び距離を測定する光学測定装置において、
前記受光中心検出手段は、前記角度測定用反射光及び前記距離測定用反射光それぞれについて、前記撮像手段からの撮像信号に基づき前記各画素での受光量レベルを、互いにレベルの異なる複数の閾値それぞれと比較し、それらの各閾値毎に、当該閾値以上の受光量レベルであった画素群を抽出する抽出手段と、
前記抽出手段において前記各閾値によって抽出された前記各画素群の受光量レベルに基づいて重心位置をそれぞれ検出する重心位置検出手段と、
前記重心位置検出手段によって検出された複数の前記重心位置を平均化した中心位置を前記受光中心位置として決定する決定手段と、を備えて構成されていることを特徴とする光学測定装置。
An optical measuring device that irradiates a measured object with light and measures the tilt angle and distance of the measured object based on the reflected light,
Angle measuring light projecting means for irradiating light as substantially parallel light toward the object to be measured;
A converging lens that converges the reflected light for angle measurement projected from the angle measurement light projecting means and specularly reflected by the measured object;
Imaging means for receiving light that has passed through the converging lens on the imaging surface and outputting an imaging signal corresponding to the amount of light received for each image on the imaging surface;
Distance measuring light projecting means arranged to irradiate the object to be measured with light as substantially parallel light from a direction inclined by a predetermined angle with respect to the light irradiation direction from the angle measuring light projecting means;
A converging lens that converges the distance measurement reflected light that is projected from the distance measurement light projecting means and diffusely or specularly reflected by the measured object;
Imaging means for receiving light that has passed through the converging lens on the imaging surface and outputting an imaging signal corresponding to the amount of light received for each image on the imaging surface;
A light receiving center detecting means for detecting a light receiving center position of each of the reflected light for angle measurement and the reflected light for distance measurement on the imaging surface based on an imaging signal output from the imaging means,
In the optical measuring device that measures the tilt angle and distance of the object to be measured based on the light receiving center position detected by the light receiving center detecting means,
The light receiving center detecting means sets the received light amount level at each pixel for each of the angle measurement reflected light and the distance measurement reflected light based on an imaging signal from the imaging means, and a plurality of thresholds having different levels from each other. And for each of those threshold values, an extraction means for extracting a pixel group having a light reception amount level equal to or higher than the threshold value;
A center-of-gravity position detecting means for detecting each position of the center of gravity based the on the light receiving amount level of the pixel groups extracted by the threshold values in the extraction means,
An optical measuring apparatus comprising: a determining unit that determines a center position obtained by averaging the plurality of barycentric positions detected by the barycentric position detecting unit as the light receiving center position.
前記複数の閾値が、前記撮像手段にて検知可能な最低受光量レベル以上であって、前記撮像手段の撮像面上における最大受光量レベルよりレベル以下の範囲で設定される閾値設定手段が設けられていることを特徴とする請求項6に記載の光学測定装置。 Threshold setting means is provided in which the plurality of threshold values are equal to or higher than a minimum received light amount level that can be detected by the imaging means and set to a level lower than the maximum received light amount level on the imaging surface of the imaging means. The optical measuring device according to claim 6, wherein
JP2004107844A 2004-03-31 2004-03-31 Light receiving center detection method, distance measuring device, angle measuring device, and optical measuring device Expired - Fee Related JP4339165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004107844A JP4339165B2 (en) 2004-03-31 2004-03-31 Light receiving center detection method, distance measuring device, angle measuring device, and optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004107844A JP4339165B2 (en) 2004-03-31 2004-03-31 Light receiving center detection method, distance measuring device, angle measuring device, and optical measuring device

Publications (2)

Publication Number Publication Date
JP2005291938A JP2005291938A (en) 2005-10-20
JP4339165B2 true JP4339165B2 (en) 2009-10-07

Family

ID=35325023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004107844A Expired - Fee Related JP4339165B2 (en) 2004-03-31 2004-03-31 Light receiving center detection method, distance measuring device, angle measuring device, and optical measuring device

Country Status (1)

Country Link
JP (1) JP4339165B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545814B2 (en) 2006-03-30 2010-09-15 京セラ株式会社 Portable electronic device and geomagnetic sensor calibration method
US8266808B2 (en) 2006-03-30 2012-09-18 Kyocera Corporation Portable electronic apparatus and geomagnetism sensor calibration method
JP2008249521A (en) * 2007-03-30 2008-10-16 Konica Minolta Sensing Inc Apparatus and method for measuring optical characteristics
JP5330114B2 (en) * 2008-06-13 2013-10-30 株式会社カツラ・オプト・システムズ Displacement tilt sensor
JP6131649B2 (en) * 2013-03-15 2017-05-24 株式会社リコー Imaging unit, color measuring device, image forming apparatus, and color measuring system
JP2014194380A (en) * 2013-03-29 2014-10-09 Denso Wave Inc Laser measurement apparatus
JP2015052573A (en) * 2013-09-09 2015-03-19 株式会社東芝 Pattern measuring device, and pattern measuring method

Also Published As

Publication number Publication date
JP2005291938A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
US7800643B2 (en) Image obtaining apparatus
US8675209B2 (en) Optical displacement meter
US7723657B2 (en) Focus detection apparatus having extended detection range
TWI406025B (en) Automatic focusing apparatus and method
KR101891182B1 (en) Apparatus for controlling auto focus
US11490068B2 (en) Adaptive 3D-scanner with variable measuring range
JP4500097B2 (en) Optical measuring device and distance calculating method in optical measuring device
JP4339165B2 (en) Light receiving center detection method, distance measuring device, angle measuring device, and optical measuring device
JP2007093412A (en) Three-dimensional shape measuring device
JP6056798B2 (en) Edge detection device
JP5789010B2 (en) Surface shape measuring device and machine tool provided with the same
JP2015108582A (en) Three-dimensional measurement method and device
US8441652B2 (en) Profile measuring apparatus, method for measuring profile, and method for manufacturing product
JP2010014505A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measurement method
JP4589648B2 (en) Optical measuring device and distance measuring method thereof
US7345745B2 (en) Optical device for measuring the displacement velocity of a first moving element with respect to a second element
KR101487251B1 (en) Optical tracking system and method for tracking using the same
JP2005017257A (en) Optical measuring device
JP4339166B2 (en) Angle measuring device and tilt angle measuring method thereof
JP2005315573A (en) Angle measuring instrument, angle adjuster, and optical measuring instrument
JP3945120B2 (en) Ranging sensor and adjustment method thereof
JP2002139311A (en) Light beam irradiation measuring device
JP2005300478A (en) Optical measuring apparatus
JP2004085442A (en) Displacement measuring apparatus
JP2006189390A (en) Optical displacement measuring method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090611

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees