JP2010007985A - Cooling apparatus - Google Patents

Cooling apparatus Download PDF

Info

Publication number
JP2010007985A
JP2010007985A JP2008169288A JP2008169288A JP2010007985A JP 2010007985 A JP2010007985 A JP 2010007985A JP 2008169288 A JP2008169288 A JP 2008169288A JP 2008169288 A JP2008169288 A JP 2008169288A JP 2010007985 A JP2010007985 A JP 2010007985A
Authority
JP
Japan
Prior art keywords
heat exchange
refrigerant
primary
heat
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008169288A
Other languages
Japanese (ja)
Other versions
JP2010007985A5 (en
Inventor
Kazuyoshi Seki
和芳 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2008169288A priority Critical patent/JP2010007985A/en
Publication of JP2010007985A publication Critical patent/JP2010007985A/en
Publication of JP2010007985A5 publication Critical patent/JP2010007985A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stably perform heat exchange for a refrigerant in a heat exchange part even if a cooling load changes. <P>SOLUTION: This cooling apparatus includes a secondary circuit 44, which connects a secondary heat exchange part 46 adapted to condense a gas phase secondary refrigerant to make a liquid phase secondary refrigerant, and an evaporator EP adapted to vaporize the liquid phase secondary refrigerant to make a gas phase secondary refrigerant to each other using a liquid pipe 48 and a gas pipe 50, and which circulates the liquid phase secondary refrigerant from the secondary heat exchange part 46 to the evaporator EP through the liquid pipe 48, and circulates the gas phase refrigerant from the evaporator EP to the secondary heat exchange part 46 through the gas pipe 50. In the secondary circuit 44, a gas pipe 50 connecting the evaporator EP and the secondary heat exchange part 46 includes a preliminary heat exchange part 54, which causes the gas phase secondary refrigerant circulating through the pipe to come into contact with a heat exchanger HE to be cooled before flowing into the secondary heat exchange part 46. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、冷媒が自然循環する冷媒回路を備えた冷却装置に関するものである。   The present invention relates to a cooling device including a refrigerant circuit in which a refrigerant circulates naturally.

一次冷媒を機械的に強制循環させる一次回路と、二次冷媒が自然循環する二次回路とを備え、一次冷媒と二次冷媒との間で熱交換するよう構成した冷却装置がある(例えば特許文献1参照)。図8に示すように、冷却装置90の一次回路92は、気相一次冷媒を圧縮する圧縮機CMと、圧縮した一次冷媒を液化する凝縮器CDと、液相一次冷媒の圧力を低下させる膨張弁EVと、熱交換器94に設けられて液相一次冷媒を気化する一次熱交換部96とを配管98で接続して構成される。また二次回路100は、熱交換器94に設けられて気相二次冷媒を液化する二次熱交換部102と、液相二次冷媒を気化する蒸発器EPとを別の配管104,106で接続して構成される。冷却装置90は、熱交換器94において一次冷媒と二次冷媒とが熱交換することで、最終的に蒸発器EPが冷却されるようになっている。そして、冷却装置90を備えた冷凍機器では、一次回路92の構成部材CM,CD,EVおよび熱交換器94を、外気に晒された開放空間に配設すると共に、台板110を介して開放空間の下方に画成した閉鎖空間に二次回路100を構成する蒸発器EPを配設して、閉鎖空間内を冷却するよう構成される。なお、符号108は、二次回路100の内圧上昇を緩衝するために設けられる膨張タンクである。   There is a cooling device that includes a primary circuit that mechanically circulates the primary refrigerant and a secondary circuit that naturally circulates the secondary refrigerant, and is configured to exchange heat between the primary refrigerant and the secondary refrigerant (for example, patents). Reference 1). As shown in FIG. 8, the primary circuit 92 of the cooling device 90 includes a compressor CM that compresses the gas phase primary refrigerant, a condenser CD that liquefies the compressed primary refrigerant, and an expansion that reduces the pressure of the liquid phase primary refrigerant. The valve EV and a primary heat exchange unit 96 that is provided in the heat exchanger 94 and vaporizes the liquid phase primary refrigerant are connected by a pipe 98. In addition, the secondary circuit 100 is provided in a heat exchanger 94 to connect a secondary heat exchange unit 102 for liquefying the gas phase secondary refrigerant and an evaporator EP for vaporizing the liquid phase secondary refrigerant into separate pipes 104 and 106. Connected and configured. The cooling device 90 is configured so that the evaporator EP is finally cooled by heat exchange between the primary refrigerant and the secondary refrigerant in the heat exchanger 94. In the refrigeration equipment provided with the cooling device 90, the constituent members CM, CD, EV and the heat exchanger 94 of the primary circuit 92 are disposed in an open space exposed to the outside air and are opened via the base plate 110. An evaporator EP constituting the secondary circuit 100 is disposed in a closed space defined below the space so as to cool the closed space. Reference numeral 108 denotes an expansion tank provided to buffer the increase in internal pressure of the secondary circuit 100.

前記冷却装置90では、一次回路92において機械的に強制循環された一次冷媒により冷却される熱交換器94で気相二次冷媒を液化することにより、二次回路100において二次冷媒が自然循環するよう構成されている。そして、熱交換器94では、液相二次冷媒が二次熱交換部102の内面全体に亘って環状に流通すると共に、二次熱交換部102の中央に気相二次冷媒が流通する環状流が生じた状態において伝熱面積を最も広く確保でき、一次熱交換部96を流通する一次冷媒との高い熱伝達特性を示すことが判っている。
特開2002−48484号公報
In the cooling device 90, the secondary refrigerant is naturally circulated in the secondary circuit 100 by liquefying the gas phase secondary refrigerant in the heat exchanger 94 cooled by the primary refrigerant mechanically forcedly circulated in the primary circuit 92. It is configured to In the heat exchanger 94, the liquid phase secondary refrigerant circulates in an annular shape over the entire inner surface of the secondary heat exchange unit 102, and the gas phase secondary refrigerant circulates in the center of the secondary heat exchange unit 102. It has been found that the heat transfer area can be secured most widely in the state where the flow is generated, and the heat transfer characteristic with the primary refrigerant flowing through the primary heat exchange unit 96 is high.
JP 2002-48484 A

ところで、前記二次回路100において、二次熱交換部102に流入する気相二次冷媒の乾き度および過熱度が高い状態にあると、該二次熱交換部102で二次冷媒が環状流を形成し難く、二次冷媒の伝熱面積が小さくなり、一次冷媒との熱交換効率が低くなってしまう。また冷却装置90は、周囲温度の変化、蒸発器EPのデフロスト、閉鎖空間を塞ぐ扉の開閉、インバータ方式の圧縮機CMの回転速度制御等により必要とされる冷却能力が刻々と変化し、このような運転状態の変化によって二次熱交換部102において有効に利用されない伝熱面積も変化する。すなわち、蒸発器EPの冷却負荷が低く、二次熱交換部102に流入する二次冷媒の過熱度が小さければ、除去する顕熱が小さいため、二次熱交換部102で比較的早い段階に液相二次冷媒が出現し、環状流を速やかに形成するので伝熱面積の損失が少ない。一方、蒸発器EPの冷却負荷が大きく、二次熱交換部102に流入する二次冷媒の過熱度が大きければ、除去する顕熱が大きいために二次熱交換部102で液相二次冷媒が出現し難く、環状流を形成するまでに多くの伝熱面積を要して伝熱面積の損失が大きくなる。   By the way, in the secondary circuit 100, when the dryness and superheat degree of the gas phase secondary refrigerant flowing into the secondary heat exchange unit 102 are in a high state, the secondary refrigerant flows in the annular heat flow in the secondary heat exchange unit 102. , The heat transfer area of the secondary refrigerant is reduced, and the efficiency of heat exchange with the primary refrigerant is reduced. In addition, the cooling device 90 is constantly changing its cooling capacity required by changes in ambient temperature, defrosting of the evaporator EP, opening / closing of the door that closes the closed space, rotational speed control of the inverter type compressor CM, etc. The heat transfer area that is not effectively used in the secondary heat exchange unit 102 also changes due to such a change in the operating state. That is, if the cooling load of the evaporator EP is low and the degree of superheat of the secondary refrigerant flowing into the secondary heat exchange unit 102 is small, the sensible heat to be removed is small, so that the secondary heat exchange unit 102 is in a relatively early stage. The liquid phase secondary refrigerant appears and forms an annular flow quickly, so there is little loss of heat transfer area. On the other hand, if the cooling load of the evaporator EP is large and the degree of superheat of the secondary refrigerant flowing into the secondary heat exchange unit 102 is large, the sensible heat to be removed is large, so that the secondary heat exchange unit 102 uses the liquid phase secondary refrigerant. Is difficult to appear, and a large heat transfer area is required until an annular flow is formed, resulting in a large loss of heat transfer area.

前記冷却装置90は、冷却負荷が小さい場合に適する設計を行なうと、冷却負荷が増大した場合に熱交換器94における熱交換性能が不足して、冷媒循環効率の低下により冷却不良を起こすおそれがある。しかしながら、冷却装置90は、冷却負荷が大きい場合に適する設計を行なうと、熱交換器94の肥大化による重量、体積、コストの増大を招き、熱交換器94の内容積も増大することから、一次冷媒および二次冷媒の何れも使用量が増加し、一次回路および二次回路の経路が長くなることから、圧力損失が大きくなり、冷媒循環効率が低下する弊害もある。このように、熱交換器94は、変動する冷却負荷に対して最適な設計を行なうことが難しく、冷却負荷の大きい場合と小さい場合の中間の特性に合わせる妥協的な構成とされていた。すなわち、熱交換器94の内容積や形状を変更するだけでは、熱交換器94における一次冷媒と二次冷媒との熱交換効率を向上するのは難しい。   If the cooling device 90 is designed to be suitable when the cooling load is small, the heat exchange performance in the heat exchanger 94 may be insufficient when the cooling load increases, and cooling failure may occur due to a decrease in refrigerant circulation efficiency. is there. However, if the cooling device 90 is designed to be suitable when the cooling load is large, the heat exchanger 94 increases in weight, volume, and cost due to enlargement, and the internal volume of the heat exchanger 94 also increases. Since both the primary refrigerant and the secondary refrigerant are used in an increased amount and the paths of the primary circuit and the secondary circuit are lengthened, there is a problem that the pressure loss is increased and the refrigerant circulation efficiency is lowered. Thus, it is difficult to optimally design the heat exchanger 94 with respect to the changing cooling load, and the heat exchanger 94 has a compromise configuration that matches intermediate characteristics between when the cooling load is large and when the cooling load is small. That is, it is difficult to improve the heat exchange efficiency between the primary refrigerant and the secondary refrigerant in the heat exchanger 94 only by changing the internal volume and shape of the heat exchanger 94.

すなわち本発明は、従来の技術に係る冷却装置に内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、冷却負荷が変動しても熱交換部において冷媒の熱交換を安定して行ない得る冷却装置を提供することを目的とする。   That is, the present invention has been proposed in view of the above-described problems inherent in the cooling device according to the prior art, and has been proposed to suitably solve these problems. An object of the present invention is to provide a cooling device capable of stably performing the above.

前記課題を克服し、所期の目的を達成するため、本願の請求項1に係る発明の冷却装置は、
気相冷媒を凝縮して液相冷媒とする熱交換部と、液相冷媒を気化させて気相冷媒とする蒸発器とを、液配管およびガス配管で接続し、液配管を介して液相冷媒を熱交換部から蒸発器へ流通させると共に、ガス配管を介して気相冷媒を蒸発器から熱交換部へ流通させる冷媒回路が構成された冷却装置において、
前記蒸発器と前記熱交換部とを接続する前記ガス配管に、内部を流通する気相冷媒を該熱交換部に流入させる前に冷却する予備熱交換部を設けたことを特徴とする。
請求項1に係る発明によれば、熱交換部で気相冷媒を液化するのに先立って、予備熱交換部で気相冷媒を冷却して過熱度および乾き度を低下させているので、熱交換部で冷媒の環状流を速やかに形成させて伝熱面積の損失を抑制することができる。すなわち、冷却負荷が変動しても、熱交換部で効率よく熱交換を行なうことができる。
In order to overcome the above-mentioned problems and achieve the intended object, the cooling device of the invention according to claim 1 of the present application includes:
A heat exchange unit that condenses the gas-phase refrigerant to form a liquid-phase refrigerant and an evaporator that vaporizes the liquid-phase refrigerant to form a gas-phase refrigerant are connected by a liquid pipe and a gas pipe. In the cooling device in which the refrigerant circuit configured to distribute the refrigerant from the heat exchanger to the evaporator and to distribute the gas-phase refrigerant from the evaporator to the heat exchanger via the gas pipe is provided.
The gas pipe connecting the evaporator and the heat exchanging part is provided with a preliminary heat exchanging part that cools the gas phase refrigerant flowing through the gas pipe before flowing into the heat exchanging part.
According to the first aspect of the invention, prior to liquefying the gas phase refrigerant in the heat exchange unit, the gas phase refrigerant is cooled in the preliminary heat exchange unit to reduce the degree of superheat and dryness. It is possible to quickly form an annular flow of the refrigerant in the exchange part and suppress the loss of the heat transfer area. That is, even if the cooling load fluctuates, heat exchange can be performed efficiently at the heat exchange section.

請求項2に係る発明では、一次冷媒を圧縮機により機械的に強制循環する一次回路と、
二次冷媒を自然循環する二次回路としての前記冷媒回路と、
前記一次回路の一次熱交換部および前記冷媒回路の熱交換部が設けられ、該一次熱交換部を流通する一次冷媒および熱交換部を流通する二次冷媒の間で熱交換する熱交換器とを備え、
前記予備熱交換部は、前記熱交換器の外面に接触するよう配設されることを要旨とする。
請求項2に係る発明によれば、熱交換器を予備熱交換部の冷却手段として用いることで、放熱損失として失われる可能性のある冷却能力を有効利用することができる。
In the invention according to claim 2, a primary circuit that mechanically forcibly circulates the primary refrigerant by the compressor;
The refrigerant circuit as a secondary circuit for naturally circulating the secondary refrigerant;
A heat exchanger that is provided with a primary heat exchange part of the primary circuit and a heat exchange part of the refrigerant circuit, and exchanges heat between the primary refrigerant that circulates through the primary heat exchange part and the secondary refrigerant that circulates through the heat exchange part; With
The preliminary heat exchanging section is arranged to be in contact with the outer surface of the heat exchanger.
According to the invention which concerns on Claim 2, the cooling capability which may be lost as a heat dissipation loss can be effectively utilized by using a heat exchanger as a cooling means of a preliminary heat exchange part.

請求項3に係る発明では、前記熱交換器は、下端が前記液配管に接続すると共に上端が前記ガス配管に接続する前記熱交換部の外側を、一次冷媒の流通空間をあけて前記一次熱交換部で被覆して構成され、該一次熱交換部が熱交換器の外郭となることを要旨とする。
請求項3に係る発明によれば、一次熱交換部を予備熱交換部の冷却手段として用いることで、放熱損失として失われる可能性のある冷却能力を有効利用することができる。
According to a third aspect of the present invention, the heat exchanger has the primary heat connected to the outside of the heat exchanging portion having a lower end connected to the liquid pipe and an upper end connected to the gas pipe with a primary refrigerant circulation space. The gist is that the heat exchanger is covered with an exchange part, and the primary heat exchange part is an outer shell of the heat exchanger.
According to the invention which concerns on Claim 3, the cooling capability which may be lost as a heat dissipation loss can be effectively utilized by using a primary heat exchange part as a cooling means of a preliminary | backup heat exchange part.

請求項4に係る発明では、一次冷媒を圧縮機により機械的に強制循環する一次回路と、
二次冷媒を自然循環する二次回路としての前記冷媒回路と、
前記一次回路の一次熱交換部および前記冷媒回路の熱交換部が設けられ、該一次熱交換部を流通する一次冷媒および熱交換部を流通する二次冷媒の間で熱交換する熱交換器とを備え、
前記予備熱交換部は、前記一次回路における減圧手段から前記一次熱交換部を介して圧縮機に至るまでの該一次回路の低圧側配管と熱交換するよう構成されることを要旨とする。
請求項4に係る発明によれば、比較的温度の低い一次回路の低圧側配管を予備熱交換部の冷却手段として用いることで、放熱損失として失われる可能性のある冷却能力を有効利用することができる。
In the invention according to claim 4, a primary circuit mechanically forcibly circulating the primary refrigerant by the compressor,
The refrigerant circuit as a secondary circuit for naturally circulating the secondary refrigerant;
A heat exchanger that is provided with a primary heat exchange part of the primary circuit and a heat exchange part of the refrigerant circuit, and exchanges heat between the primary refrigerant that circulates through the primary heat exchange part and the secondary refrigerant that circulates through the heat exchange part; With
The summary is that the preliminary heat exchange section is configured to exchange heat with a low-pressure side pipe of the primary circuit from the decompression means in the primary circuit to the compressor through the primary heat exchange section.
According to the invention of claim 4, by using the low-pressure side pipe of the primary circuit having a relatively low temperature as the cooling means of the preliminary heat exchange section, the cooling capacity that may be lost as a heat dissipation loss is effectively used. Can do.

請求項5に係る発明では、前記予備熱交換部は、該予備熱交換部の流入端と流出端とを結ぶ最短経路より二次冷媒の流通経路が長く延在するよう構成されることを要旨とする。
請求項5に係る発明によれば、予備熱交換部の内容積分だけ冷媒回路の内容積を増やすことができ、この内容積で冷媒回路の圧力上昇を緩衝することができる。
The invention according to claim 5 is characterized in that the preliminary heat exchanging section is configured such that the circulation path of the secondary refrigerant extends longer than the shortest path connecting the inflow end and the outflow end of the preliminary heat exchange section. And
According to the invention which concerns on Claim 5, the internal volume of a refrigerant circuit can be increased only by the content integral of a preliminary | backup heat exchange part, and the pressure rise of a refrigerant circuit can be buffered with this internal volume.

請求項6に係る発明では、前記予備熱交換部は、前記熱交換部が設置される機械室に設けられることを要旨とする。
請求項6に係る発明によれば、予備熱交換部を熱交換部が設置される機械室に配置することで、熱交換部およびガス配管との接続作業が容易になると共に、メンテナンス性を向上し得る。
The gist of the invention according to claim 6 is that the preliminary heat exchange section is provided in a machine room in which the heat exchange section is installed.
According to the invention of claim 6, by arranging the preliminary heat exchange part in the machine room in which the heat exchange part is installed, it is easy to connect the heat exchange part and the gas pipe, and the maintainability is improved. Can do.

請求項7に係る発明では、前記予備熱交換部は、前記液配管と熱交換するよう構成されることを要旨とする。
請求項7に係る発明によれば、液配管を予備熱交換部の冷却手段として用いることで、放熱損失として失われる可能性のある冷却能力を有効利用することができる。
The gist of the invention according to claim 7 is that the preliminary heat exchange section is configured to exchange heat with the liquid pipe.
According to the invention which concerns on Claim 7, the cooling capacity which may be lost as a heat dissipation loss can be effectively utilized by using liquid piping as a cooling means of a preliminary heat exchange part.

本発明に係る冷却装置によれば、冷却負荷が変動しても熱交換部における二次冷媒の熱交換を安定して行ない得る。   The cooling device according to the present invention can stably perform heat exchange of the secondary refrigerant in the heat exchange section even when the cooling load varies.

次に、本発明に係る冷却装置につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。なお、実施例では、店舗等の業務用途に用いられ、野菜や肉等の物品を多量に収納し得る大型の冷蔵庫に設けられる冷却装置を例に挙げて説明する。また、従来技術において説明した部材・構成と同一の部材・構成に関しては、同一の符号を付してある。   Next, the cooling device according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments. In addition, an Example demonstrates and demonstrates the cooling device provided in the large sized refrigerator which can be used for business uses, such as a store, and can accommodate articles, such as vegetables and meat, in large quantities. The same members and structures as those described in the prior art are denoted by the same reference numerals.

図1に示すように、実施例に係る冷蔵庫10は、収納室(閉鎖空間)14を内部画成した断熱構造の箱体12と、この箱体12の上方に設けられ、金属パネル18により外壁を構成したキャビネット16とを備えている。箱体12には、前側に開放して物品の出し入れ口となる開口部12aが収納室14に連通して開設される。また箱体12の前部には、断熱扉22が図示しないヒンジにより回動可能に配設され、断熱扉22を開放することで開口部12aを介して収納室14に対する物品の出し入れが許容されると共に、断熱扉22を閉成することで収納室14を密閉し得るようになっている。   As shown in FIG. 1, a refrigerator 10 according to an embodiment includes a box 12 having a heat insulating structure that internally defines a storage room (closed space) 14, and is provided above the box 12. And a cabinet 16 configured as described above. In the box 12, an opening portion 12 a that opens to the front side and serves as an entry / exit port for goods is opened in communication with the storage chamber 14. Further, a heat insulating door 22 is rotatably disposed at a front portion of the box body 12 by a hinge (not shown), and by opening the heat insulating door 22, an article can be taken into and out of the storage chamber 14 through the opening 12a. In addition, the storage chamber 14 can be sealed by closing the heat insulating door 22.

前記キャビネット16の内部には、収納室14を冷却するための冷却装置32の一部および該冷却装置32を制御する制御用電装箱Cが配設される機械室(開放空間)20が画成される(図2参照)。機械室20の底部には、箱体12の天板12bに載置されて、該機械室20に配設する機器の共通基板となる台板24が設置されている。そして、キャビネット16の外壁をなす金属パネル18には、機械室20に連通する空気流通孔(図示せず)が適宜部位に開設され、この空気流通孔を介して機械室20内の雰囲気と外気とが入替わるようになっている。なお、キャビネット16は、冷蔵庫10の天井となる金属パネル18が設けられず、機械室20の上方が開放されている。   Inside the cabinet 16 is a machine room (open space) 20 in which a part of a cooling device 32 for cooling the storage chamber 14 and a control electrical box C for controlling the cooling device 32 are arranged. (See FIG. 2). At the bottom of the machine room 20, a base plate 24 that is placed on the top plate 12 b of the box 12 and serves as a common substrate for the devices disposed in the machine room 20 is installed. The metal panel 18 forming the outer wall of the cabinet 16 is provided with air circulation holes (not shown) communicating with the machine room 20 at appropriate locations, and the atmosphere in the machine room 20 and the outside air are communicated through the air circulation holes. And are to be replaced. In addition, the cabinet 16 is not provided with the metal panel 18 which becomes the ceiling of the refrigerator 10, and the upper part of the machine room 20 is opened.

前記収納室14の上部には、箱体12における天板12bの下面から所定間隔離間して冷却ダクト26が配設され、この冷却ダクト26と、箱体12の天板12bに開設した切欠口12cを介して収納室14側に臨む台板24との間に冷却室28が画成される。この冷却室28は、冷却ダクト26の底部前側に形成した吸込口26aおよび後側に形成した冷気吹出口26bを介して収納室14に連通して、閉鎖空間としての収納室14の一部を構成している。吸込口26aには送風ファン30が配設され、該送風ファン30を駆動することで、吸込口26aから収納室14の空気を冷却室28に取込み、冷気吹出口26bから冷却室28の冷気が収納室14に送出される。天板12bの切欠口12cは、台板24で気密的に塞がれて、収納室14(冷却室28)と機械室20とは、台板24で区切られて互いに独立した空間となっている(図1参照)。   In the upper part of the storage chamber 14, a cooling duct 26 is disposed at a predetermined distance from the lower surface of the top plate 12b in the box 12, and the cooling duct 26 and a notch formed in the top plate 12b of the box 12 are provided. A cooling chamber 28 is defined between the base plate 24 facing the storage chamber 14 via 12c. The cooling chamber 28 communicates with the storage chamber 14 through a suction port 26a formed on the front side of the bottom of the cooling duct 26 and a cold air outlet 26b formed on the rear side, and a part of the storage chamber 14 as a closed space is formed. It is composed. A blower fan 30 is disposed at the suction port 26a. By driving the blower fan 30, the air in the storage chamber 14 is taken into the cooling chamber 28 from the suction port 26a, and the cool air in the cooling chamber 28 is drawn from the cool air outlet 26b. It is sent to the storage chamber 14. The notch 12c of the top plate 12b is hermetically closed by the base plate 24, and the storage chamber 14 (cooling chamber 28) and the machine room 20 are separated from each other by the base plate 24 and become independent spaces. (See FIG. 1).

図4に示す如く、冷却装置32は、冷媒を強制循環する機械圧縮式の一次回路34と、冷媒が自然対流するサーモサイフォンからなる二次回路(冷媒回路)44との2系統の回路を、熱交換器HEを介して熱交換するように接続(カスケード接続)した二次ループ冷凍回路が採用される。熱交換器HEは、一次回路34を構成する一次熱交換部36と、この一次熱交換部36と別系統に形成されて、二次回路44を構成する二次熱交換部(熱交換部)46とを備え、熱交換器HEは圧縮機CMの直上に位置させて配設されている(図2参照)。すなわち、一次回路34および二次回路44には、独立した冷媒循環経路が夫々形成され、二次回路44を循環する二次冷媒としては、毒性、可燃性および腐食性を有していない安全性の高い二酸化炭素が採用される。これに対し、一次回路34を循環する一次冷媒としては、蒸発熱や飽和圧等の冷媒としての特性に優れているブタンやプロパン等のHC系の冷媒またはアンモニアなどが採用され、実施例ではイソブタンまたはプロパンが用いられている。   As shown in FIG. 4, the cooling device 32 includes two circuits, a mechanical compression primary circuit 34 that forcibly circulates a refrigerant, and a secondary circuit (refrigerant circuit) 44 that includes a thermosiphon that naturally convects the refrigerant. A secondary loop refrigeration circuit connected so as to exchange heat via the heat exchanger HE (cascade connection) is employed. The heat exchanger HE is formed in a separate system from the primary heat exchange unit 36 constituting the primary circuit 34 and the primary heat exchange unit 36, and the secondary heat exchange unit (heat exchange unit) constituting the secondary circuit 44. 46, and the heat exchanger HE is disposed directly above the compressor CM (see FIG. 2). That is, an independent refrigerant circulation path is formed in each of the primary circuit 34 and the secondary circuit 44, and the secondary refrigerant circulating in the secondary circuit 44 has no toxicity, flammability, and corrosive safety. High carbon dioxide is adopted. On the other hand, as the primary refrigerant circulating in the primary circuit 34, an HC refrigerant such as butane or propane having excellent characteristics as a refrigerant such as heat of evaporation or saturation pressure, ammonia, or the like is adopted. In the embodiment, isobutane is used. Or propane is used.

前記一次回路34は、気相一次冷媒を圧縮する圧縮機CMと、圧縮した一次冷媒を液化する凝縮器CDと、液相一次冷媒の圧力を低下させる減圧手段としての膨張弁EVと、液相一次冷媒を気化する熱交換器HEの一次熱交換部36とを冷媒配管38で接続して構成される(図4参照)。ここで、圧縮機CMは、冷却装置32の冷却運転時に連続駆動され、冷却装置32の停止時に停止される。圧縮機CMおよび凝縮器CDは、機械室20において台板24上に共通的に配設され、凝縮器CDを強制冷却する凝縮器ファンFMも、該凝縮器CDに対向して台板24上に配設されている。ここで、凝縮器CDは、キャビネット16の前面をなす金属パネル(フロントパネル)18に近接して機械室20の前側に配置され、該凝縮器CDの後側に凝縮器ファンFMが配置される。また圧縮機CMは、凝縮器ファンFMの後側に配置される(図2参照)。このように機械室20では、凝縮器CD,凝縮器ファンFMおよび圧縮機CMが、機械室20において凝縮器ファン(送風手段)FMにより送出される空気の流通方向に沿って一直線上に並んで配設される。すなわち、凝縮器ファンFMの駆動によりフロントパネル18とキャビネット16との間に設けた空気流通孔(図示せず)から外気が機械室20に取込まれ、この外気が機械室20の前側から後側に流通して凝縮器CDおよび圧縮機CMと熱交換するようになっている。   The primary circuit 34 includes a compressor CM for compressing the gas phase primary refrigerant, a condenser CD for liquefying the compressed primary refrigerant, an expansion valve EV as a pressure reducing means for reducing the pressure of the liquid primary refrigerant, and a liquid phase. The heat exchanger HE that vaporizes the primary refrigerant is connected to the primary heat exchange unit 36 by a refrigerant pipe 38 (see FIG. 4). Here, the compressor CM is continuously driven during the cooling operation of the cooling device 32 and stopped when the cooling device 32 is stopped. The compressor CM and the condenser CD are commonly arranged on the base plate 24 in the machine room 20, and a condenser fan FM for forcibly cooling the condenser CD is also provided on the base plate 24 so as to face the condenser CD. It is arranged. Here, the condenser CD is disposed on the front side of the machine room 20 in the vicinity of the metal panel (front panel) 18 that forms the front surface of the cabinet 16, and the condenser fan FM is disposed on the rear side of the condenser CD. . The compressor CM is disposed on the rear side of the condenser fan FM (see FIG. 2). Thus, in the machine room 20, the condenser CD, the condenser fan FM, and the compressor CM are aligned in a straight line along the flow direction of the air sent out by the condenser fan (blower unit) FM in the machine room 20. Arranged. That is, outside air is taken into the machine room 20 from an air circulation hole (not shown) provided between the front panel 18 and the cabinet 16 by driving the condenser fan FM, and this outside air is moved from the front side of the machine room 20 to the rear side. The heat exchanger exchanges heat with the condenser CD and the compressor CM.

前記一次回路34では、圧縮機CMによる一次冷媒の圧縮により、圧縮機CM、凝縮器CD、膨張弁EV、熱交換器HEの一次熱交換部36および圧縮機CMの順に、一次冷媒が強制循環され、各機器の作用下に一次熱交換部36において所要の冷却を行なうようになっている(図4参照)。なお、前述した制御用電装箱Cは、機械室20において凝縮器ファンFMによる空気の流れを阻害しない位置(実施例では機械室20の側部)で台板24上に配設されている。   In the primary circuit 34, the primary refrigerant is forcibly circulated in the order of the compressor CM, the condenser CD, the expansion valve EV, the primary heat exchange section 36 of the heat exchanger HE, and the compressor CM by the compression of the primary refrigerant by the compressor CM. The required cooling is performed in the primary heat exchange section 36 under the action of each device (see FIG. 4). The control electrical box C described above is disposed on the base plate 24 at a position that does not obstruct the air flow by the condenser fan FM in the machine room 20 (side of the machine room 20 in the embodiment). .

前記二次回路44は、気相二次冷媒(気化冷媒)を液化する熱交換器HEの二次熱交換部46と、液相二次冷媒(液化冷媒)を気化する蒸発器EPとを備え、二次熱交換部46と蒸発器EPとが1対1の関係で対応している(図4参照)。また二次回路44は、二次熱交換部46と蒸発器EPとを接続する液配管48およびガス配管50を備え、液配管48を介して二次熱交換部46から蒸発器EPへ重力の作用下に液相二次冷媒を供給し、ガス配管50を介して蒸発器EPから二次熱交換部46へ気相二次冷媒を還流させるようになっている。更に二次回路44は、ガス配管50に後述する予備熱交換部54が設けられている。前述した如く、二次熱交換部46は、機械室20に配設される一方、蒸発器EPは、当該機械室20の下方に位置する冷却室28に配設され、台板24を挟んで二次熱交換部46より下方に蒸発器EPが配置される。   The secondary circuit 44 includes a secondary heat exchange unit 46 of the heat exchanger HE that liquefies the gas phase secondary refrigerant (vaporized refrigerant) and an evaporator EP that vaporizes the liquid phase secondary refrigerant (liquefied refrigerant). The secondary heat exchange unit 46 and the evaporator EP correspond to each other in a one-to-one relationship (see FIG. 4). Further, the secondary circuit 44 includes a liquid pipe 48 and a gas pipe 50 that connect the secondary heat exchange unit 46 and the evaporator EP, and gravity is transferred from the secondary heat exchange unit 46 to the evaporator EP via the liquid pipe 48. Under the action, the liquid phase secondary refrigerant is supplied, and the gas phase secondary refrigerant is recirculated from the evaporator EP to the secondary heat exchange section 46 via the gas pipe 50. Further, the secondary circuit 44 is provided with a preliminary heat exchanging section 54 described later in the gas pipe 50. As described above, the secondary heat exchange unit 46 is disposed in the machine room 20, while the evaporator EP is disposed in the cooling chamber 28 located below the machine room 20 and sandwiches the base plate 24. An evaporator EP is disposed below the secondary heat exchange unit 46.

前記二次熱交換部46には、凝縮経路47が、並列して複数(実施例2では3本)設けられている。また蒸発器EPには、蒸発管(蒸発経路)52が、並列して複数(実施例では3本)設けられている。図4では、凝縮経路47をガス配管50に接続する流入端から液配管48に接続する流出端まで直線的な経路で表わすと共に、蒸発管52を液配管48に接続する流入端からガス配管50に接続する流出端まで直線的な経路で表わしているが、凝縮経路47および蒸発管52を蛇行させても、直線状に形成してもよい。ここで、二次回路44では、複数の凝縮経路47、複数の蒸発管52、複数の液配管48および複数のガス配管50が同数に設定されている。液配管48は、上端(始端)を二次熱交換部46における凝縮経路47の流出端に接続して台板24を貫通して配管され、冷却室28側に位置する下端(終端)が蒸発器EPにおける蒸発管52の流入端に接続される。そして、ガス配管50は、冷却室28側に位置する下端(始端)が蒸発器EPにおける蒸発管52の流出端に接続して台板24を貫通して配管され、機械室20側に位置する上端(終端)が、予備熱交換部54を介して二次熱交換部46における凝縮経路47の流入端に接続される。なお、液配管48およびガス配管50における台板24の貫通部位は、シール等により気密的に封止されている。   The secondary heat exchange unit 46 is provided with a plurality of condensation paths 47 (three in the second embodiment) in parallel. The evaporator EP is provided with a plurality of (three in the embodiment) evaporation pipes (evaporation paths) 52 in parallel. In FIG. 4, the condensing path 47 is represented by a straight path from the inflow end connecting to the gas pipe 50 to the outflow end connecting to the liquid pipe 48, and from the inflow end connecting the evaporation pipe 52 to the liquid pipe 48 to the gas pipe 50. However, the condensation path 47 and the evaporation pipe 52 may be meandered or may be formed in a straight line. Here, in the secondary circuit 44, the plurality of condensation paths 47, the plurality of evaporation pipes 52, the plurality of liquid pipes 48, and the plurality of gas pipes 50 are set to the same number. The liquid pipe 48 is piped through the base plate 24 by connecting the upper end (starting end) to the outflow end of the condensation path 47 in the secondary heat exchange section 46, and the lower end (end) located on the cooling chamber 28 side evaporates. It is connected to the inflow end of the evaporation pipe 52 in the vessel EP. The gas pipe 50 has a lower end (starting end) located on the cooling chamber 28 side connected to the outflow end of the evaporation pipe 52 in the evaporator EP and is piped through the base plate 24 and is located on the machine room 20 side. The upper end (termination) is connected to the inflow end of the condensation path 47 in the secondary heat exchange unit 46 via the preliminary heat exchange unit 54. In addition, the penetration site | part of the base plate 24 in the liquid piping 48 and the gas piping 50 is airtightly sealed with the seal | sticker etc. FIG.

前記二次回路44では、凝縮経路47の流出端に接続する液配管48を、当該凝縮経路47の流入端に連結したガス配管50が接続している蒸発管52と別の蒸発管52に接続するよう構成される。また二次回路44では、蒸発管52の流出端に接続するガス配管50を、当該蒸発管52の流入端に連結した液配管48が接続している凝縮経路47と別の凝縮経路47に接続している。このように、二次回路44には、複数の凝縮経路47、複数の蒸発管52、複数の液配管48および複数のガス配管50によって擬似的に並列する複数(実施例では3つ)のパスが形成されるが、これらのパスはシリアル接続されて全体として1つの回路が構成されている。そして、二次回路44には、強制冷却される一次熱交換部36との熱交換により冷却される二次熱交換部46と蒸発器EPとの間に温度勾配が形成され、二次冷媒が二次熱交換部46、液配管48、蒸発器EPおよびガス配管50を自然対流して二次熱交換部46に再び戻る冷媒の循環サイクルが形成される。ここで、予備熱交換部54は、二次熱交換部46における複数の凝縮経路47に対応して、各凝縮経路47に接続するガス配管50に夫々設けられている。なお、符号74は、二次回路44に冷媒を充填するために設けられた冷媒チャージポートであって、実施例の二次回路44は、単一の回路で構成されるから、冷媒チャージポート74および安全弁(図示せず)等の付帯設備が1組で足りる。   In the secondary circuit 44, the liquid pipe 48 connected to the outflow end of the condensation path 47 is connected to the evaporation pipe 52 connected to the gas pipe 50 connected to the inflow end of the condensation path 47 and another evaporation pipe 52. Configured to do. In the secondary circuit 44, the gas pipe 50 connected to the outflow end of the evaporation pipe 52 is connected to the condensation path 47 connected to the liquid pipe 48 connected to the inflow end of the evaporation pipe 52 and another condensation path 47. is doing. As described above, the secondary circuit 44 includes a plurality of (three in the embodiment) paths that are pseudo-parallel by the plurality of condensation paths 47, the plurality of evaporation pipes 52, the plurality of liquid pipes 48, and the plurality of gas pipes 50. However, these paths are serially connected to form one circuit as a whole. In the secondary circuit 44, a temperature gradient is formed between the secondary heat exchange unit 46 cooled by heat exchange with the primary heat exchange unit 36 that is forcibly cooled and the evaporator EP, and the secondary refrigerant is A refrigerant circulation cycle is formed in which the secondary heat exchange section 46, the liquid pipe 48, the evaporator EP, and the gas pipe 50 are naturally convected and returned to the secondary heat exchange section 46 again. Here, the preliminary heat exchange units 54 are respectively provided in the gas pipes 50 connected to the respective condensation paths 47 corresponding to the plurality of condensation paths 47 in the secondary heat exchange unit 46. Reference numeral 74 denotes a refrigerant charge port provided for charging the secondary circuit 44 with the refrigerant. Since the secondary circuit 44 of the embodiment is configured by a single circuit, the refrigerant charge port 74 is provided. A single set of incidental facilities such as a safety valve (not shown) is sufficient.

前記蒸発器EPは、管路を蛇行させた蒸発管52と、この蒸発管52に設けられたフィン53とから構成されている。蒸発管52は、液配管48の下端に接続する流入端が、蒸発器EPの下部に配置されると共に、ガス配管50の下端に接続する蒸発管52の流出端が、蒸発器EPの上部に配置され、蒸発管52の流入端が流出端より下方に位置するように構成される(図4参照)。また蒸発管52の管路は、流入端と流出端との上下位置の間で延在して、蒸発管52に流入した液相二次冷媒を、該液相二次冷媒の蒸発による作用下に管路に沿って流出端52b側まで拡散させるように導くようになっている。   The evaporator EP is composed of an evaporation pipe 52 having meandering pipe lines and fins 53 provided on the evaporation pipe 52. The evaporating pipe 52 has an inflow end connected to the lower end of the liquid pipe 48 disposed below the evaporator EP, and an outflow end of the evaporating pipe 52 connected to the lower end of the gas pipe 50 located above the evaporator EP. It arrange | positions and it is comprised so that the inflow end of the evaporation pipe | tube 52 may be located below an outflow end (refer FIG. 4). The pipe of the evaporation pipe 52 extends between the upper and lower positions of the inflow end and the outflow end, and the liquid secondary refrigerant flowing into the evaporation pipe 52 is subjected to the action of evaporation of the liquid phase secondary refrigerant. It is guided so as to be diffused along the pipe line to the outflow end 52b side.

実施例の熱交換器HEについて具体的に説明する。図3または図5に示すように、熱交換器HEは、熱伝導性に優れた金属材料からなる管状の二次熱交換部46を内管とし、この二次熱交換部46の外側を一次冷媒の流通空間をあけて被覆する一次熱交換部36を外管とする二重管式熱交換器であって、並列する3本の凝縮経路47をまとめて一次熱交換部36で覆うよう構成される。なお、一次熱交換部36は、金属材料で構成される。また熱交換器HEは、並列するよう配置された二次熱交換部46の凝縮経路47が、上下方向を軸とする螺旋状に延在するよう配設され、これら凝縮経路47の外側を覆って一次熱交換部36が二次熱交換部46と同様に螺旋状に延在するよう構成される。すなわち、熱交換器HEは、平面に環を描くように構成された螺旋状の管状体であって(図2参照)、二次熱交換部46における各凝縮経路47の上端に予備熱交換部54を介してガス配管50が接続され、各凝縮経路47の下端に液配管48が接続されて、各凝縮経路47を二次冷媒が螺旋形状に沿って渦巻きながら上方から下方に流通するようになっている。これに対して、一次熱交換部36は、下端に膨張弁EVに接続する流入側の冷媒配管38が接続され、上端に圧縮機CMに接続する流出側の冷媒配管38が接続されて、該一次熱交換部36の流通空間を一次冷媒が螺旋形状に沿って渦巻きながら下方から上方に流通するようになっている。すなわち、熱交換器HEは、二次熱交換部46の各凝縮経路47を流通する二次冷媒の流通方向と一次熱交換部36を流通する一次冷媒の流通方向とが反対向きの対向流になるよう構成される。   The heat exchanger HE of the embodiment will be specifically described. As shown in FIG. 3 or FIG. 5, the heat exchanger HE has a tubular secondary heat exchange portion 46 made of a metal material having excellent heat conductivity as an inner tube, and the outside of the secondary heat exchange portion 46 is primary. A double-pipe heat exchanger having an outer pipe serving as a primary heat exchanging portion 36 that covers a refrigerant circulation space, and is configured to cover three condensing paths 47 in parallel with the primary heat exchanging portion 36. Is done. In addition, the primary heat exchange part 36 is comprised with a metal material. Further, the heat exchanger HE is arranged such that the condensation path 47 of the secondary heat exchange unit 46 arranged in parallel extends in a spiral shape with the vertical direction as an axis, and covers the outside of the condensation path 47. The primary heat exchanging part 36 is configured to extend in a spiral manner like the secondary heat exchanging part 46. That is, the heat exchanger HE is a spiral tubular body configured so as to draw a ring on a plane (see FIG. 2), and a preliminary heat exchange section is provided at the upper end of each condensation path 47 in the secondary heat exchange section 46. A gas pipe 50 is connected via 54, and a liquid pipe 48 is connected to the lower end of each condensing path 47 so that the secondary refrigerant flows through the condensing path 47 from above to below while spiraling along a spiral shape. It has become. On the other hand, the primary heat exchange unit 36 has an inflow side refrigerant pipe 38 connected to the expansion valve EV connected to the lower end, and an outflow side refrigerant pipe 38 connected to the compressor CM connected to the upper end. The primary refrigerant circulates in the circulation space of the primary heat exchange section 36 from below to above while spiraling along the spiral shape. That is, in the heat exchanger HE, the flow direction of the secondary refrigerant flowing through each condensation path 47 of the secondary heat exchange unit 46 and the flow direction of the primary refrigerant flowing through the primary heat exchange unit 36 are opposed to each other. Configured to be.

前記熱交換器HEは、機械室20において圧縮機CMの上側に配設され、該熱交換器HEのなす環の中に圧縮機CMが臨むように配置されている(図1または図2参照)。また熱交換器HEは、機械室20において、圧縮機CMより背が高い凝縮器CDの頂部より低い位置に配置され、機械室20からはみ出さないようになっている。更に熱交換器HEは、凝縮器ファンFMにより送出される空気の流通方向下流側に配置されて、凝縮器ファンFMにより送出される空気流の経路上に位置している。そして、熱交換器HEは、螺旋状に形成して横方向に冷媒が流通する経路を長くとり、上下の重なり方向の寸法を小さくして、全体として横長の形状とされている。   The heat exchanger HE is disposed above the compressor CM in the machine room 20, and is disposed so that the compressor CM faces the ring formed by the heat exchanger HE (see FIG. 1 or FIG. 2). ). The heat exchanger HE is disposed in the machine room 20 at a position lower than the top of the condenser CD, which is taller than the compressor CM, and does not protrude from the machine room 20. Further, the heat exchanger HE is arranged on the downstream side in the flow direction of the air sent by the condenser fan FM, and is located on the path of the air flow sent by the condenser fan FM. The heat exchanger HE is formed in a spiral shape and has a long path through which the refrigerant flows in the lateral direction, and the dimension in the upper and lower overlapping directions is reduced to form a horizontally elongated shape as a whole.

図4に示すように、二次回路44には、予備熱交換部54がガス配管50に設けられ、この予備熱交換部54は、一次回路34または該二次回路44においてガス配管50を流通する気相二次冷媒より温度が低い部位に対して接触して冷却されるよう構成される。実施例の予備熱交換部54は、熱交換器HEの外郭を構成する一次熱交換部36に接触するよう配置され、一次回路34の各機器の作動下に冷却される一次熱交換部36を冷却手段としている。すなわち、予備熱交換部54は、内部に流通する気相二次冷媒を、熱交換器HEの二次熱交換部46に流入する前に冷却し得るようになっている。   As shown in FIG. 4, the secondary circuit 44 is provided with a preliminary heat exchange section 54 in the gas pipe 50, and the preliminary heat exchange section 54 circulates through the gas pipe 50 in the primary circuit 34 or the secondary circuit 44. It is configured to be cooled by contacting with a part having a temperature lower than that of the gas phase secondary refrigerant. The preliminary heat exchanging portion 54 of the embodiment is arranged so as to contact the primary heat exchanging portion 36 that constitutes the outline of the heat exchanger HE, and the primary heat exchanging portion 36 that is cooled under the operation of each device of the primary circuit 34. As a cooling means. That is, the preliminary heat exchange unit 54 can cool the gas phase secondary refrigerant flowing therein before flowing into the secondary heat exchange unit 46 of the heat exchanger HE.

前記予備熱交換部54は、熱伝導性に優れた金属材料からなる管状体であって、螺旋状に延在する一次熱交換部36に沿って併設して、一次熱交換部36に接触させて配置されている。なお、予備熱交換部54の二次冷媒の流通方向は、一次熱交換部36を流通する一次冷媒と反対向きの対向流となっている。実施例の二次回路44では、3つのパスに対応して予備熱交換部54が夫々設けられ、3本の予備熱交換部54を並列させて上下方向を軸とする螺旋状に延在するよう構成される。すなわち、実施例の冷却装置32では、予備熱交換部54が熱交換器HEと同様に、凝縮器CDの頂部より低く位置させて圧縮機CMの上側に配置され、予備熱交換部54で形成される環の中に圧縮機CMが臨むようになっている。そして、予備熱交換部54は、流通する一次冷媒により冷却される一次熱交換部36との接触下に冷却され、内部を流通する気相二次冷媒から顕熱を奪うようになっている。また、予備熱交換部54は、流入端と流出端とを結ぶ最短距離より、該予備熱交換部における二次冷媒の流通経路が長く延在するように構成され、ガス配管50に予備熱交換部54を設けない場合と比べて予備熱交換部54の容積分だけ二次回路44の内容積が大きくなっている。なお、熱交換器HEおよび予備熱交換部54は、外方に露出する部分が断熱材(図示せず)で被覆されて断熱措置が施されている。   The preliminary heat exchanging part 54 is a tubular body made of a metal material having excellent heat conductivity, and is provided along the primary heat exchanging part 36 extending spirally so as to be brought into contact with the primary heat exchanging part 36. Are arranged. Note that the flow direction of the secondary refrigerant in the preliminary heat exchange unit 54 is an opposite flow in the opposite direction to the primary refrigerant flowing through the primary heat exchange unit 36. In the secondary circuit 44 of the embodiment, the preliminary heat exchange sections 54 are provided corresponding to the three paths, respectively, and the three preliminary heat exchange sections 54 are arranged in parallel and extend in a spiral shape with the vertical direction as an axis. It is configured as follows. That is, in the cooling device 32 of the embodiment, the preliminary heat exchanging portion 54 is located lower than the top of the condenser CD and is disposed on the upper side of the compressor CM like the heat exchanger HE, and is formed by the preliminary heat exchanging portion 54. The compressor CM faces the ring. The preliminary heat exchange unit 54 is cooled in contact with the primary heat exchange unit 36 that is cooled by the circulating primary refrigerant, and takes sensible heat from the gas phase secondary refrigerant that circulates inside. Further, the preliminary heat exchange unit 54 is configured such that the flow path of the secondary refrigerant in the preliminary heat exchange unit extends longer than the shortest distance connecting the inflow end and the outflow end, and the preliminary heat exchange with the gas pipe 50 is performed. Compared to the case where the portion 54 is not provided, the internal volume of the secondary circuit 44 is increased by the volume of the preliminary heat exchange portion 54. In addition, the heat exchanger HE and the preliminary heat exchange part 54 are covered with a heat insulating material (not shown) in a portion exposed to the outside, and heat insulation measures are taken.

前記熱交換器HEでは、一次熱交換部36を流通する一次冷媒が二次熱交換部46の各凝縮経路47に直接接触する構成であるので、熱交換効率に優れている。これに対して、予備熱交換部54は、熱交換器HEの外郭を構成する一次熱交換部36の外面に対して該予備熱交換部54の外面が接触する構成であり、一次熱交換部36を流通する一次冷媒により冷却された一次熱交換部36と予備熱交換部54とが接触伝熱により熱交換し、更に予備熱交換部54と該予備熱交換部54を流通する気相二次冷媒とが熱交換するようになっている。ここで、予備熱交換部54では、熱交換器HE(一次熱交換部36)との接触により気相二次冷媒を冷却するものの、その冷却度合いが二次冷媒の顕熱を奪うことを目的とし、潜熱による熱交換を伴わず二次冷媒の相変化を起こさないように設定されている。すなわち、予備熱交換部54は、冷却手段となる一次熱交換部36の冷却性能に応じて、一次熱交換部36との接触面積、予備熱交換部の材質や厚みの選択による熱伝導性等の条件が適宜調節される。   In the heat exchanger HE, the primary refrigerant flowing through the primary heat exchange unit 36 is in direct contact with each condensation path 47 of the secondary heat exchange unit 46, and thus has excellent heat exchange efficiency. On the other hand, the preliminary heat exchanging unit 54 is configured such that the outer surface of the preliminary heat exchanging unit 54 contacts the outer surface of the primary heat exchanging unit 36 constituting the outline of the heat exchanger HE. The primary heat exchanging part 36 and the preliminary heat exchanging part 54 cooled by the primary refrigerant that circulates 36 exchange heat by contact heat transfer, and further, the gas phase two that circulates between the preliminary heat exchanging part 54 and the preliminary heat exchanging part 54. The secondary refrigerant exchanges heat. Here, although the preliminary heat exchange unit 54 cools the gas phase secondary refrigerant by contact with the heat exchanger HE (primary heat exchange unit 36), the purpose of the cooling degree is to deprive the sensible heat of the secondary refrigerant. The phase change of the secondary refrigerant is not caused without heat exchange due to latent heat. That is, the preliminary heat exchanging unit 54 has a thermal conductivity by selecting a contact area with the primary heat exchanging unit 36, a material and a thickness of the preliminary heat exchanging unit, etc. according to the cooling performance of the primary heat exchanging unit 36 serving as a cooling means. These conditions are adjusted as appropriate.

〔実施例の作用〕
次に、実施例に係る冷却装置32の作用について説明する。冷却装置32では、冷却運転を開始すると、一次回路34および二次回路44の夫々で冷媒の循環が開始される。先ず、一次回路34について説明すると、圧縮機CMおよび凝縮器ファンFMが駆動され、圧縮機CMで気相一次冷媒が圧縮されて、この一次冷媒を冷媒配管38を介して凝縮器CDに供給して、凝縮器ファンFMによる強制冷却により凝縮液化することで液相とする。液相一次冷媒は、膨張弁EVで減圧され、熱交換器HEの一次熱交換部36において二次熱交換部46を流通する二次冷媒から熱を奪って(吸熱)一挙に膨張気化する。このように一次回路34は、熱交換器HEにおいて、一次熱交換部36により二次熱交換部46を強制冷却するように機能している。そして、一次熱交換部36で気化した気相一次冷媒は、冷媒配管38を経て圧縮機CMに帰還する強制循環サイクルを繰返す。
(Effects of Example)
Next, the operation of the cooling device 32 according to the embodiment will be described. In the cooling device 32, when the cooling operation is started, circulation of the refrigerant is started in each of the primary circuit 34 and the secondary circuit 44. First, the primary circuit 34 will be described. The compressor CM and the condenser fan FM are driven, the gas-phase primary refrigerant is compressed by the compressor CM, and this primary refrigerant is supplied to the condenser CD via the refrigerant pipe 38. The liquid phase is obtained by condensing and liquefying by forced cooling by the condenser fan FM. The liquid phase primary refrigerant is decompressed by the expansion valve EV, and in the primary heat exchanging portion 36 of the heat exchanger HE, heat is taken from the secondary refrigerant flowing through the secondary heat exchanging portion 46 (heat absorption) and is vaporized at once. Thus, the primary circuit 34 functions to forcibly cool the secondary heat exchange unit 46 by the primary heat exchange unit 36 in the heat exchanger HE. Then, the gas phase primary refrigerant vaporized in the primary heat exchange unit 36 repeats the forced circulation cycle that returns to the compressor CM through the refrigerant pipe 38.

前記二次回路44では、二次熱交換部46が一次熱交換部36により冷却されているから、二次熱交換部46で気相二次冷媒が放熱して凝縮し、気相から液相に状態変化することで比重が増加することから、重力の作用下に二次熱交換部46に沿って液相二次冷媒が流下する。二次回路44では、二次熱交換部46を機械室20に配置する一方、蒸発器EPを機械室20の下方に位置する冷却室28に配設することで、二次熱交換部46と蒸発器EPとの間に落差を設けてある。すなわち、液相二次冷媒を、二次熱交換部46の下部に接続した液配管48を介して、蒸発器EPへ向けて重力の作用下に自然流下させることができる。液相二次冷媒は、蒸発器EPの蒸発管52を流通する過程で該蒸発器EPの周囲雰囲気から熱を奪って気化して気相に移行する。気相二次冷媒は、ガス配管50および予備熱交換部54を介して蒸発器EPから二次熱交換部46へ還流し、二次回路44ではポンプやモータ等の動力を用いることなく、簡単な構成で二次冷媒が自然循環するサイクルが繰返される。   In the secondary circuit 44, since the secondary heat exchange unit 46 is cooled by the primary heat exchange unit 36, the secondary heat exchange unit 46 radiates and condenses the gas phase secondary refrigerant, and the liquid phase from the gas phase Since the specific gravity increases due to the state change, the liquid secondary refrigerant flows down along the secondary heat exchange section 46 under the action of gravity. In the secondary circuit 44, the secondary heat exchange unit 46 is arranged in the machine room 20, while the evaporator EP is arranged in the cooling chamber 28 located below the machine room 20, so that the secondary heat exchange unit 46 and A head is provided with the evaporator EP. That is, the liquid phase secondary refrigerant can be naturally flowed under the action of gravity toward the evaporator EP via the liquid pipe 48 connected to the lower portion of the secondary heat exchange section 46. The liquid secondary refrigerant is vaporized by taking heat from the ambient atmosphere of the evaporator EP in the process of flowing through the evaporation pipe 52 of the evaporator EP, and is transferred to the gas phase. The gas phase secondary refrigerant flows back from the evaporator EP to the secondary heat exchange unit 46 via the gas pipe 50 and the preliminary heat exchange unit 54, and the secondary circuit 44 is simple without using power from a pump, a motor, or the like. A cycle in which the secondary refrigerant naturally circulates in a simple configuration is repeated.

前記送風ファン30により吸込口26aから冷却室28に吸引された収納室14の空気を、冷却された蒸発器EPに吹付けることで、蒸発器EPと熱交換した空気が冷気となる。そして冷気を、冷却室28から冷気吹出口26bを介して収納室14に送出することで、収納室14が冷却される。冷気は、収納室14の内部を循環して、吸込口26aを介して再び冷却室28内に戻るサイクルを反復する。   By blowing the air in the storage chamber 14 sucked into the cooling chamber 28 from the suction port 26a by the blower fan 30 onto the cooled evaporator EP, the air heat-exchanged with the evaporator EP becomes cold air. The storage chamber 14 is cooled by sending the cool air from the cooling chamber 28 to the storage chamber 14 via the cool air outlet 26b. The cold air circulates inside the storage chamber 14 and repeats a cycle of returning to the cooling chamber 28 again through the suction port 26a.

前記冷却装置32では、二次回路44において、ガス配管50に設けた予備熱交換部54で該予備熱交換部54を流通する気相二次冷媒を一次熱交換部36との熱交換により冷却することで、気相二次冷媒を蒸発器EPから流出した時点と比べて過熱度および乾き度が低下された飽和状態としている。そして、二次熱交換部46の各凝縮経路47に流入する気相二次冷媒は、予備熱交換部54で過熱度および乾き度が予め低下されているので、該凝縮経路47の流入端側から直ちに環状流を形成させることができ、伝熱面積の損失を抑制することができる。すなわち、熱交換器HEにおいて、一次熱交換部36と二次熱交換部46との伝熱面積を最大限に有効利用して、一次熱交換部36と二次熱交換部46との全体に亘って効率よく熱交換を行なうことができる。冷却装置32は、冷却負荷が大きい場合であっても、予備熱交換部54で気相二次冷媒を予備冷却して気相二次冷媒の過熱度を予め低減しているので、二次熱交換部46に流入する気相二次冷媒が冷却負荷の増加によって変動する過熱度の上昇幅を狭くすることができる。このように、冷却装置32は、冷却負荷が変動しても熱交換器HEにおける熱交換効率の変動を抑えることができ、熱交換器HEを冷却負荷に対応させることによる肥大化や、重量、体積およびコストの増大を招くことなく、システムを安定化することができる。   In the cooling device 32, in the secondary circuit 44, the gas phase secondary refrigerant flowing through the preliminary heat exchange unit 54 is cooled by heat exchange with the primary heat exchange unit 36 in the preliminary heat exchange unit 54 provided in the gas pipe 50. By doing so, it is in a saturated state in which the degree of superheat and the degree of dryness are reduced as compared with the time when the gas phase secondary refrigerant flows out of the evaporator EP. Further, since the superheat degree and the dryness of the gas phase secondary refrigerant flowing into each condensation path 47 of the secondary heat exchange unit 46 are previously reduced in the preliminary heat exchange part 54, the inflow end side of the condensation path 47 From this, an annular flow can be formed immediately, and loss of heat transfer area can be suppressed. That is, in the heat exchanger HE, the heat transfer area between the primary heat exchange unit 36 and the secondary heat exchange unit 46 is utilized to the maximum extent, and the entire primary heat exchange unit 36 and the secondary heat exchange unit 46 are used. Thus, heat exchange can be performed efficiently. Even when the cooling load is large, the cooling device 32 preliminarily cools the gas phase secondary refrigerant by the preliminary heat exchange unit 54 and reduces the superheat degree of the gas phase secondary refrigerant in advance. It is possible to narrow the increase in the degree of superheat that the gas-phase secondary refrigerant flowing into the exchange unit 46 fluctuates due to an increase in the cooling load. Thus, the cooling device 32 can suppress fluctuations in the heat exchange efficiency in the heat exchanger HE even if the cooling load fluctuates, and enlarges the weight by making the heat exchanger HE correspond to the cooling load, weight, The system can be stabilized without increasing volume and cost.

前記熱交換器HEは、一次熱交換部36の内部を流通する一次冷媒により冷却されて周囲温度よりも低温となるため、冷却能力の放熱損失を低減させる目的で前述の如く断熱材で被覆される構成である。冷却装置32では、予備熱交換部54を冷却する冷却手段として、熱交換器HEの外郭を構成する一次熱交換部36を用いて、熱交換器HEにおいて放熱損失を防ぐために断熱されるべき冷却能力を予備熱交換部54の冷却源としている。すなわち、冷却装置32は、熱交換器HEの放熱損失として失われる可能性のある冷却能力を冷媒循環サイクル中に回収することができ、熱交換器HEにおける熱交換効率を一層向上することができる。しかも、熱交換器HE(一次熱交換部36)の表面と周囲温度との差が小さくなるので、断熱材の厚みや種類等の断熱措置を簡素化することが可能となる。   The heat exchanger HE is cooled by the primary refrigerant flowing inside the primary heat exchanging section 36 and becomes cooler than the ambient temperature. Therefore, the heat exchanger HE is covered with the heat insulating material as described above for the purpose of reducing the heat dissipation loss of the cooling capacity. This is a configuration. In the cooling device 32, as the cooling means for cooling the preliminary heat exchanging portion 54, the primary heat exchanging portion 36 that constitutes the outline of the heat exchanger HE is used, and cooling to be insulated in order to prevent heat dissipation loss in the heat exchanger HE. The capacity is used as a cooling source for the preliminary heat exchanger 54. That is, the cooling device 32 can recover the cooling capacity that may be lost as a heat dissipation loss of the heat exchanger HE during the refrigerant circulation cycle, and can further improve the heat exchange efficiency in the heat exchanger HE. . In addition, since the difference between the surface of the heat exchanger HE (primary heat exchanging portion 36) and the ambient temperature becomes small, it is possible to simplify heat insulation measures such as the thickness and type of the heat insulating material.

前記冷却装置32の運転停止等により圧縮機CMが停止されると、一次冷媒による熱交換器HEでの熱交換が停止される。この際、二次回路44は、蒸発器EPにおいて液相二次冷媒が気化して気相二次冷媒が発生する一方で、熱交換器HEにおいて気相二次冷媒が液化されなくなることから、二次回路44中の気相二次冷媒量が増加して、二次回路44の内圧が上昇する。ここで、予備熱交換部54は、一次熱交換部36との接触面積を稼ぐため、該予備熱交換部54の流入端と流出端とを結んだ最短距離より該予備熱交換部54の流通経路が長く延在するよう設定されているので、ガス配管50を二次熱交換部46に直接接続する場合と比較して二次回路44の内容積が予備熱交換部54の分だけ大きくなっている。また、予備熱交換部54では、該予備熱交換部54の外面と一次熱交換部36の外面とが接触する接触伝熱として、一次熱交換部36との熱交換量が熱交換器HEより小さくなるよう調節してあり、二次冷媒が完全に凝縮液化されない。   When the compressor CM is stopped due to the operation stop of the cooling device 32 or the like, heat exchange in the heat exchanger HE by the primary refrigerant is stopped. At this time, in the secondary circuit 44, the liquid phase secondary refrigerant is vaporized in the evaporator EP to generate the gas phase secondary refrigerant, while the gas phase secondary refrigerant is not liquefied in the heat exchanger HE. The amount of the gas phase secondary refrigerant in the secondary circuit 44 increases, and the internal pressure of the secondary circuit 44 increases. Here, in order to increase the contact area with the primary heat exchange unit 36, the preliminary heat exchange unit 54 circulates the preliminary heat exchange unit 54 from the shortest distance connecting the inflow end and the outflow end of the preliminary heat exchange unit 54. Since the path is set to extend long, the internal volume of the secondary circuit 44 is increased by the amount of the preliminary heat exchange unit 54 as compared with the case where the gas pipe 50 is directly connected to the secondary heat exchange unit 46. ing. Further, in the preliminary heat exchange unit 54, the amount of heat exchange with the primary heat exchange unit 36 from the heat exchanger HE is the contact heat transfer between the outer surface of the preliminary heat exchange unit 54 and the outer surface of the primary heat exchange unit 36. The secondary refrigerant is adjusted to be small and the secondary refrigerant is not completely condensed and liquefied.

ところで、膨張タンクの機能は、二次回路44における二次冷媒の高い圧力を容積によって緩衝することであるが、これは膨張タンクが存在することによって増加する二次回路44の容積と、その容積中を二次冷媒で満たすために追加で必要となる二次冷媒量のバランスによって機能の有効性が決定される。例えば、膨張タンク中の冷媒密度が大きく、それが存在することによって増加する冷媒量が多量であると、二酸化炭素冷媒量の増加によって緩衝しなければならない圧力値が増加し、膨張タンクの設置によって追加される容積では圧力増加分を吸収できなくなり、耐圧設計の要求値はより高くなる。この場合、膨張タンクの設置は圧力緩衝にとって逆効果となる。すなわち、冷却装置32運転中の膨張タンク中の冷媒密度が小さいことが、膨張タンクとしての機能を発現させる要件である。予備熱交換部54の経路中の二次冷媒の状態は、経路中の熱交換量が比較的少量であるため、前述の如く完全に液化凝縮することはない。すなわち、予備熱交換部54の経路中の冷媒密度は低い状態である。このことは、予備熱交換部54の容積が追加されたことによって、追加で必要となる冷媒量に由来する追加圧力上昇よりも、容積が追加されたことによって圧力値が緩衝される程度が大きくなることを示している。つまり、予備熱交換部54は、内部の二次冷媒の密度の低さ故に膨張タンクとして機能する。従って、予備熱交換部54を設けることで、膨張タンクが不要となったり(実施例)、膨張タンクの容積を減少して膨張タンクを小型化することができる。   By the way, the function of the expansion tank is to buffer the high pressure of the secondary refrigerant in the secondary circuit 44 by the volume. This is because the volume of the secondary circuit 44 increases due to the presence of the expansion tank, and its volume. The effectiveness of the function is determined by the balance of the amount of secondary refrigerant that is additionally required to fill the interior with the secondary refrigerant. For example, if the refrigerant density in the expansion tank is large and the amount of refrigerant that increases due to the presence of the refrigerant is large, the pressure value that must be buffered by the increase in the amount of carbon dioxide refrigerant increases. With the added volume, the pressure increase cannot be absorbed, and the required value of the pressure resistance design becomes higher. In this case, the installation of the expansion tank has an adverse effect on the pressure buffering. That is, a low refrigerant density in the expansion tank during operation of the cooling device 32 is a requirement for developing the function as the expansion tank. The state of the secondary refrigerant in the path of the preliminary heat exchanger 54 is not completely liquefied and condensed as described above because the heat exchange amount in the path is relatively small. That is, the refrigerant density in the path of the preliminary heat exchange unit 54 is low. This is because the pressure value is buffered by adding the volume more than the increase in additional pressure derived from the amount of refrigerant additionally required due to the addition of the volume of the preliminary heat exchanging portion 54. It shows that it becomes. That is, the preliminary heat exchange unit 54 functions as an expansion tank because of the low density of the internal secondary refrigerant. Therefore, by providing the preliminary heat exchange section 54, the expansion tank is not required (Example), or the expansion tank can be reduced in size by reducing the volume of the expansion tank.

前記冷却装置32において、凝縮器ファンFMは、必要とされる風量によって回転翼の径が決定されて、凝縮器CDの大きさは、凝縮器ファンFMによって取り込まれる空気流と効率よく熱交換させるために回転翼の径と略同一に設定される。これに対して、圧縮機CMは、凝縮器ファンFMや凝縮器CDとは関わりなく適宜決定され、圧縮機CMは凝縮器ファンFMや凝縮器CDと比べて一般的に小型であって、その高さも凝縮器ファンFMや凝縮器CDより低い。すなわち、機械室20の高さは、凝縮器ファンFMおよび凝縮器CDの高さによって決定され、圧縮機CMの上側にはスペースを確保し得る。実施例の冷却装置32は、圧縮機CMの上側のスペースに熱交換器HEおよび予備熱交換部54を配置しているので、当該スペースを有効利用して機械室20をコンパクトにし得る。   In the cooling device 32, the condenser fan FM has the rotor blade diameter determined by the required air volume, and the size of the condenser CD efficiently exchanges heat with the air flow taken in by the condenser fan FM. Therefore, it is set to be approximately the same as the diameter of the rotor blade. On the other hand, the compressor CM is appropriately determined irrespective of the condenser fan FM and the condenser CD, and the compressor CM is generally smaller than the condenser fan FM and the condenser CD, The height is also lower than the condenser fan FM and the condenser CD. That is, the height of the machine room 20 is determined by the heights of the condenser fan FM and the condenser CD, and a space can be secured above the compressor CM. In the cooling device 32 of the embodiment, the heat exchanger HE and the preliminary heat exchanging unit 54 are arranged in the space above the compressor CM. Therefore, the machine room 20 can be made compact by effectively using the space.

また二次回路44は、前述の如く二次熱交換部46で液化した二次冷媒を重力の作用下に液配管48を介して蒸発器EPに流下させる構成であるから、熱交換器HEの二次熱交換部46と蒸発器EPとの落差を確保する必要がある。冷却装置32では、熱交換器HEを圧縮機の上側に配置することで、熱交換器HEが機械室20の上側に位置することになるから、機械室20の下方に設けられた冷却室28に配置された蒸発器EPとの落差を大きく確保し得る。これにより、二次熱交換部46では、二次冷媒を蒸発器EPへ向けて自然流下させる駆動力の一つである位置エネルギーが大きくなり、二次冷媒を二次回路44において円滑に循環させて冷却能力を向上させることができる。更に熱交換器HEは、凝縮器ファンFMにより送出される空気の流通方向下流側に配置されて、凝縮器ファンFMにより送出される空気流の経路上に位置しているので、凝縮器ファンFMの駆動により凝縮器CDとの熱交換して昇温した空気流が接触するので、熱交換器HEにおける結露や霜付きを抑制できると共に、断熱措置を軽減することができる。しかも、熱交換器HEに対する液配管48および予備熱交換部54の接続作業や予備熱交換部54に対するガス配管50の接続作業が行ない易く、また熱交換器HEおよび予備熱交換部54のメンテナンス性を向上し得る。   The secondary circuit 44 is configured to cause the secondary refrigerant liquefied by the secondary heat exchange unit 46 to flow down to the evaporator EP via the liquid pipe 48 under the action of gravity, as described above. It is necessary to ensure a drop between the secondary heat exchange unit 46 and the evaporator EP. In the cooling device 32, the heat exchanger HE is positioned above the machine room 20 by disposing the heat exchanger HE on the upper side of the compressor. Therefore, the cooling chamber 28 provided below the machine room 20. It is possible to ensure a large drop with respect to the evaporator EP arranged in the. As a result, in the secondary heat exchanging section 46, the potential energy, which is one of the driving forces that cause the secondary refrigerant to naturally flow down toward the evaporator EP, increases, and the secondary refrigerant is smoothly circulated in the secondary circuit 44. Cooling capacity can be improved. Furthermore, the heat exchanger HE is disposed on the downstream side in the flow direction of the air sent by the condenser fan FM and is located on the path of the air flow sent by the condenser fan FM. Since the air flow heated by exchanging heat with the condenser CD is brought into contact with the drive, dew condensation and frost formation in the heat exchanger HE can be suppressed, and heat insulation measures can be reduced. Moreover, it is easy to connect the liquid pipe 48 and the preliminary heat exchanging portion 54 to the heat exchanger HE and the gas pipe 50 to the preliminary heat exchanging portion 54, and maintainability of the heat exchanger HE and the preliminary heat exchanging portion 54. Can improve.

(変更例)
本発明に係る冷却装置としては、前述した実施例のものに限られるものではなく、種々の変更が可能である。
(Example of change)
The cooling device according to the present invention is not limited to the above-described embodiment, and various modifications can be made.

(1)図6は、変更例に係る冷蔵庫を示す側断面図である。変更例の冷蔵庫11は、凝縮器CD、凝縮器ファンFM、圧縮機CM、減圧手段としての膨張弁EV、熱交換器HEが設置される機械室20の側方に、蒸発器EPおよび送風ファン30が設置される冷却室28を設ける構成である。変更例の冷蔵庫であっても、実施例と同様に熱交換器HEを圧縮機CMの上側に配置する構成とすることで、蒸発器EPを機械室20の側方に配置しても熱交換器HEと蒸発器EPとの間の落差を確保し得る。なお、図6において実施例で説明した部材・構成と同一の部材・構成に関しては、同一の符号を付してある。 (1) FIG. 6 is a side sectional view showing a refrigerator according to a modified example. The refrigerator 11 of the modified example includes a condenser CD, a condenser fan FM, a compressor CM, an expansion valve EV as a decompression means, and an evaporator EP and a blower fan on the side of the machine room 20 where the heat exchanger HE is installed. The cooling chamber 28 in which 30 is installed is provided. Even in the refrigerator of the modified example, the heat exchanger HE is arranged on the upper side of the compressor CM as in the embodiment, so that the heat exchange is performed even if the evaporator EP is arranged on the side of the machine room 20. The head between the evaporator HE and the evaporator EP can be ensured. In FIG. 6, the same members and structures as those described in the embodiment are denoted by the same reference numerals.

(2)予備熱交換部を冷却する冷却手段としては、熱交換器(一次熱交換部)に限定されず、一次回路および二次回路の適宜部位を採用することができる。例えば、図7(a)に示すように、一次回路34における一次熱交換部36と圧縮機CMとを接続する冷媒配管38を予備熱交換部54に接触させて冷却手段として用いる構成や、図7(b)に示すように、一次回路34における減圧手段としての膨張弁EVと一次熱交換部36とを接続する冷媒配管38を予備熱交換部54に接触させて冷却手段として用いる構成であってもよい。また図7(c)に示すように、二次回路44の液配管48を予備熱交換部54に接触させて冷却手段として用いる構成であってもよい。そして、予備熱交換部54を冷却する冷却手段として、熱交換器HE、一次熱交換部36、一次回路34の低圧側配管および二次回路44の液配管48を併用してもよい。また一次回路に、凝縮器と膨張弁とを接続する冷媒配管から分岐して別の減圧手段を介して圧縮機に接続するバイパス管を設け、このバイパス管を予備熱交換部に接触させる構成であってもよい。なお、図7において実施例で説明した部材・構成と同一の部材・構成に関しては、同一の符号を付してある。また図7において斜線部は予備熱交換部54と冷却手段との熱交換部位を示す。 (2) The cooling means for cooling the preliminary heat exchange unit is not limited to the heat exchanger (primary heat exchange unit), and appropriate parts of the primary circuit and the secondary circuit can be adopted. For example, as shown in FIG. 7A, a refrigerant pipe 38 that connects the primary heat exchange unit 36 and the compressor CM in the primary circuit 34 is brought into contact with the preliminary heat exchange unit 54 and used as a cooling means. 7 (b), the refrigerant pipe 38 connecting the expansion valve EV as the pressure reducing means in the primary circuit 34 and the primary heat exchanging section 36 is brought into contact with the preliminary heat exchanging section 54 and used as the cooling means. May be. Moreover, as shown in FIG.7 (c), the structure which makes the liquid piping 48 of the secondary circuit 44 contact the preliminary | backup heat exchange part 54, and uses it as a cooling means may be sufficient. As a cooling means for cooling the preliminary heat exchange unit 54, the heat exchanger HE, the primary heat exchange unit 36, the low-pressure side pipe of the primary circuit 34, and the liquid pipe 48 of the secondary circuit 44 may be used in combination. In addition, the primary circuit is provided with a bypass pipe that branches from the refrigerant pipe connecting the condenser and the expansion valve and is connected to the compressor via another decompression means, and this bypass pipe is in contact with the preliminary heat exchange section. There may be. In FIG. 7, the same members and structures as those described in the embodiment are denoted by the same reference numerals. In FIG. 7, the hatched portion indicates the heat exchange site between the preliminary heat exchange unit 54 and the cooling means.

(3)熱交換器は、実施例の如く二重管式熱交換器に限定されず、スパイラル式熱交換器、プレート式熱交換器、多管円筒式熱交換器、多重円管式熱交換器、渦巻管式熱交換器、渦巻板式熱交換器、タンクコイル式熱交換器およびタンクジャケット式熱交換器等を採用することができる。
(4)実施例では、冷却装置を冷蔵庫に採用する場合を例にして説明したが、冷凍庫、冷凍・冷蔵庫、ショーケースおよびプレハブ庫等の所謂貯蔵庫、その他空調機器等にも適用可能である。
(5)実施例では、機械室に配設する機器の共通基板となる台板により、機械室と収納室との間で空気の流通がないように収納室と機械室とを区切る構成であるが、機械室と収納室とを箱体の天板で区切る構成であってもよい。
(6)実施例では、一次回路の減圧手段として膨張弁を用いたが、キャピラリーチューブやその他の手段を採用することができる。
(3) The heat exchanger is not limited to the double tube heat exchanger as in the embodiment, but is a spiral heat exchanger, a plate heat exchanger, a multi-tube cylindrical heat exchanger, a multi-tube heat exchanger. A heat exchanger, a spiral tube heat exchanger, a spiral plate heat exchanger, a tank coil heat exchanger, a tank jacket heat exchanger, and the like can be employed.
(4) In the embodiment, the case where the cooling device is employed in the refrigerator has been described as an example.
(5) In the embodiment, the storage chamber and the machine room are separated from each other by a base plate serving as a common substrate for equipment disposed in the machine room so that there is no air flow between the machine room and the storage room. However, the machine room and the storage room may be separated by a box top plate.
(6) In the embodiment, the expansion valve is used as the pressure reducing means of the primary circuit, but a capillary tube or other means can be adopted.

本発明の実施例に係る冷却装置により冷却される冷蔵庫を示す側断面図である。It is side sectional drawing which shows the refrigerator cooled with the cooling device which concerns on the Example of this invention. 実施例に係る冷蔵庫における機械室を示す平面図である。It is a top view which shows the machine room in the refrigerator which concerns on an Example. 実施例に係る熱交換器を一部破断して示す側面図である。It is a side view which shows the heat exchanger which concerns on an Example partially broken. 実施例に係る冷却装置を示す概略回路図である。It is a schematic circuit diagram which shows the cooling device which concerns on an Example. 図2のA−A線断面斜視図である。It is the sectional view on the AA line of FIG. 変更例の冷蔵庫を示す側断面図である。It is a sectional side view which shows the refrigerator of the example of a change. 変更例の冷却装置を示す概略回路図である。It is a schematic circuit diagram which shows the cooling device of the example of a change. 従来の冷却装置を示す概略回路図である。It is a schematic circuit diagram which shows the conventional cooling device.

符号の説明Explanation of symbols

20 機械室,34 一次回路,36 一次熱交換部,44 二次回路(冷媒回路),
46 二次熱交換部(熱交換部),48 液配管,50 ガス配管,54 予備熱交換部,
CM 圧縮機,EV 膨張弁(減圧手段),EP 蒸発器,HE 熱交換器
20 machine room, 34 primary circuit, 36 primary heat exchange section, 44 secondary circuit (refrigerant circuit),
46 Secondary heat exchange section (heat exchange section), 48 liquid piping, 50 gas piping, 54 preliminary heat exchange section,
CM compressor, EV expansion valve (pressure reduction means), EP evaporator, HE heat exchanger

Claims (7)

気相冷媒を凝縮して液相冷媒とする熱交換部(46)と、液相冷媒を気化させて気相冷媒とする蒸発器(EP)とを、液配管(48)およびガス配管(50)で接続し、液配管(48)を介して液相冷媒を熱交換部(46)から蒸発器(EP)へ流通させると共に、ガス配管(50)を介して気相冷媒を蒸発器(EP)から熱交換部(46)へ流通させる冷媒回路(44)が構成された冷却装置において、
前記蒸発器(EP)と前記熱交換部(46)とを接続する前記ガス配管(50)に、内部を流通する気相冷媒を該熱交換部(46)に流入させる前に冷却する予備熱交換部(54)を設けた
ことを特徴とする冷却装置。
A heat exchange section (46) that condenses the gas-phase refrigerant to form a liquid-phase refrigerant, and an evaporator (EP) that vaporizes the liquid-phase refrigerant to form a gas-phase refrigerant include a liquid pipe (48) and a gas pipe (50 ), The liquid phase refrigerant is circulated from the heat exchange section (46) to the evaporator (EP) through the liquid pipe (48), and the vapor phase refrigerant is circulated through the gas pipe (50). ) In the cooling device configured with the refrigerant circuit (44) that circulates from the heat exchange section (46),
Preliminary heat for cooling the gas pipe (50) connecting the evaporator (EP) and the heat exchanging section (46) before flowing the gas-phase refrigerant flowing therethrough into the heat exchanging section (46). A cooling device provided with an exchange part (54).
一次冷媒を圧縮機(CM)により機械的に強制循環する一次回路(34)と、
二次冷媒を自然循環する二次回路としての前記冷媒回路(44)と、
前記一次回路(34)の一次熱交換部(36)および前記冷媒回路(44)の熱交換部(46)が設けられ、該一次熱交換部(36)を流通する一次冷媒および熱交換部(46)を流通する二次冷媒の間で熱交換する熱交換器(HE)とを備え、
前記予備熱交換部(54)は、前記熱交換器(HE)の外面に接触するよう配設される請求項1記載の冷却装置。
A primary circuit (34) forcibly circulating a primary refrigerant mechanically by a compressor (CM);
The refrigerant circuit (44) as a secondary circuit for naturally circulating the secondary refrigerant;
A primary heat exchange section (36) of the primary circuit (34) and a heat exchange section (46) of the refrigerant circuit (44) are provided, and a primary refrigerant and a heat exchange section (circulating through the primary heat exchange section (36)) ( 46) and a heat exchanger (HE) for exchanging heat between secondary refrigerants flowing through
The cooling device according to claim 1, wherein the preliminary heat exchange section (54) is disposed so as to contact an outer surface of the heat exchanger (HE).
前記熱交換器(HE)は、下端が前記液配管(48)に接続すると共に上端が前記ガス配管(50)に接続する前記熱交換部(46)の外側を、一次冷媒の流通空間をあけて前記一次熱交換部(36)で被覆して構成され、該一次熱交換部(36)が熱交換器(HE)の外郭となる請求項2記載の冷却装置。   The heat exchanger (HE) opens a circulation space for primary refrigerant outside the heat exchange section (46) whose lower end is connected to the liquid pipe (48) and whose upper end is connected to the gas pipe (50). The cooling device according to claim 2, wherein the primary heat exchanging portion (36) is covered with the primary heat exchanging portion (36), and the primary heat exchanging portion (36) is an outer shell of the heat exchanger (HE). 一次冷媒を圧縮機(CM)により機械的に強制循環する一次回路(34)と、
二次冷媒を自然循環する二次回路としての前記冷媒回路(44)と、
前記一次回路(34)の一次熱交換部(36)および前記冷媒回路(44)の熱交換部(46)が設けられ、該一次熱交換部(36)を流通する一次冷媒および熱交換部(46)を流通する二次冷媒の間で熱交換する熱交換器(HE)とを備え、
前記予備熱交換部(54)は、前記一次回路(34)における減圧手段(EV)から前記一次熱交換部(36)を介して圧縮機(CM)に至るまでの該一次回路(34)の低圧側配管と熱交換するよう構成される請求項1記載の冷却装置。
A primary circuit (34) forcibly circulating a primary refrigerant mechanically by a compressor (CM);
The refrigerant circuit (44) as a secondary circuit for naturally circulating the secondary refrigerant;
A primary heat exchange section (36) of the primary circuit (34) and a heat exchange section (46) of the refrigerant circuit (44) are provided, and a primary refrigerant and a heat exchange section (circulating through the primary heat exchange section (36)) ( 46) and a heat exchanger (HE) for exchanging heat between secondary refrigerants flowing through
The preliminary heat exchange section (54) is a part of the primary circuit (34) from the decompression means (EV) in the primary circuit (34) to the compressor (CM) via the primary heat exchange section (36). The cooling device according to claim 1, wherein the cooling device is configured to exchange heat with a low-pressure side pipe.
前記予備熱交換部(54)は、該予備熱交換部(54)の流入端と流出端とを結ぶ最短経路より二次冷媒の流通経路が長く延在するよう構成される請求項1〜4の何れか一項に記載の冷却装置。   The preliminary heat exchanging section (54) is configured such that a flow path of the secondary refrigerant extends longer than a shortest path connecting the inflow end and the outflow end of the preliminary heat exchange section (54). The cooling device according to any one of the above. 前記予備熱交換部(54)は、前記熱交換部(46)が設置される機械室(20)に設けられる請求項1〜5の何れか一項に記載の冷却装置。   The said preliminary heat exchange part (54) is a cooling device as described in any one of Claims 1-5 provided in the machine room (20) in which the said heat exchange part (46) is installed. 前記予備熱交換部(54)は、前記液配管(48)と熱交換するよう構成される請求項1〜6の何れか一項に記載の冷却装置。   The cooling device according to any one of claims 1 to 6, wherein the preliminary heat exchange section (54) is configured to exchange heat with the liquid pipe (48).
JP2008169288A 2008-06-27 2008-06-27 Cooling apparatus Pending JP2010007985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008169288A JP2010007985A (en) 2008-06-27 2008-06-27 Cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008169288A JP2010007985A (en) 2008-06-27 2008-06-27 Cooling apparatus

Publications (2)

Publication Number Publication Date
JP2010007985A true JP2010007985A (en) 2010-01-14
JP2010007985A5 JP2010007985A5 (en) 2011-03-03

Family

ID=41588701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008169288A Pending JP2010007985A (en) 2008-06-27 2008-06-27 Cooling apparatus

Country Status (1)

Country Link
JP (1) JP2010007985A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313657U (en) * 1976-07-15 1978-02-04
JPH0547756U (en) * 1991-11-27 1993-06-25 株式会社日立製作所 Automotive air conditioner
JPH09243186A (en) * 1996-03-11 1997-09-16 Toshiba Corp Air conditioner
JP2005249258A (en) * 2004-03-03 2005-09-15 Mitsubishi Electric Corp Cooling system
JP2007046810A (en) * 2005-08-08 2007-02-22 Sanden Corp Brine type cooling system
JP2008096084A (en) * 2006-10-16 2008-04-24 Hoshizaki Electric Co Ltd Thermosiphon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313657U (en) * 1976-07-15 1978-02-04
JPH0547756U (en) * 1991-11-27 1993-06-25 株式会社日立製作所 Automotive air conditioner
JPH09243186A (en) * 1996-03-11 1997-09-16 Toshiba Corp Air conditioner
JP2005249258A (en) * 2004-03-03 2005-09-15 Mitsubishi Electric Corp Cooling system
JP2007046810A (en) * 2005-08-08 2007-02-22 Sanden Corp Brine type cooling system
JP2008096084A (en) * 2006-10-16 2008-04-24 Hoshizaki Electric Co Ltd Thermosiphon

Similar Documents

Publication Publication Date Title
JP5275929B2 (en) Cooling system
JP5405015B2 (en) Cooling system
JP2007218459A (en) Refrigerating cycle device and cool box
JP2005326138A (en) Cooling device and vending machine with it
JP4945713B2 (en) Cooling system
JP4945712B2 (en) Thermosiphon
JP2014048030A (en) Cooling warehouse
TWI440806B (en) Cooling unit and method of making the same
JP2007093112A (en) Cooling storage
JP5270523B2 (en) Freezer refrigerator
JP5405058B2 (en) Cooling system
JP5219657B2 (en) Cooling device and manufacturing method thereof
WO2009157318A1 (en) Cooling device
JP4720510B2 (en) Refrigerant cycle equipment
JP2010249444A (en) Freezer-refrigerator
JP2010007985A (en) Cooling apparatus
JP2017161164A (en) Air-conditioning hot water supply system
JP5071083B2 (en) vending machine
JP2009168288A (en) Cooling device
JP2007187370A (en) Refrigerant cycle device
JP2006125789A (en) Cooling device and automatic vending machine therewith
JP2009168337A (en) Cooling device
JP2009085453A (en) Cooling device
JP2005090811A (en) Refrigerator
JP4341492B2 (en) Refrigerant cooling circuit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008