JP4341492B2 - Refrigerant cooling circuit - Google Patents

Refrigerant cooling circuit Download PDF

Info

Publication number
JP4341492B2
JP4341492B2 JP2004201654A JP2004201654A JP4341492B2 JP 4341492 B2 JP4341492 B2 JP 4341492B2 JP 2004201654 A JP2004201654 A JP 2004201654A JP 2004201654 A JP2004201654 A JP 2004201654A JP 4341492 B2 JP4341492 B2 JP 4341492B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
cooling circuit
carbon dioxide
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004201654A
Other languages
Japanese (ja)
Other versions
JP2006023027A (en
Inventor
裕一 高橋
喜代輝 文野
浩司 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2004201654A priority Critical patent/JP4341492B2/en
Publication of JP2006023027A publication Critical patent/JP2006023027A/en
Application granted granted Critical
Publication of JP4341492B2 publication Critical patent/JP4341492B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)

Description

本発明は、例えば断熱筐体の庫内の冷却を行うための冷媒循環経路を形成する冷媒冷却回路に関するものである。   The present invention relates to a refrigerant cooling circuit that forms a refrigerant circulation path for cooling, for example, an interior of a heat insulating housing.

従来、例えば自動販売機、冷蔵庫、冷凍ショーケース・冷蔵ショーケース、あるいは飲料ディスペンサなどの断熱筐体の冷却庫内を冷却するための冷媒冷却回路が知られている。冷媒冷却回路は、主に圧縮機、放熱器、絞り部、蒸発器を経て冷媒を循環する冷媒循環経路を形成してある。そして、冷媒冷却回路を循環する冷媒としては、地球環境に対する影響の少ない冷媒が使用してある。例えば、不燃性、安全性、不腐食性を有し、さらにオゾン層への影響が少ないなどの点で、二酸化炭素を冷媒として使用してある(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, for example, a refrigerant cooling circuit for cooling the inside of a refrigerator of a heat insulating housing such as a vending machine, a refrigerator, a freezer showcase / refrigerated showcase, or a beverage dispenser is known. The refrigerant cooling circuit forms a refrigerant circulation path for circulating the refrigerant mainly through the compressor, the radiator, the throttle unit, and the evaporator. As the refrigerant circulating in the refrigerant cooling circuit, a refrigerant having little influence on the global environment is used. For example, carbon dioxide is used as a refrigerant in that it has nonflammability, safety, and non-corrosion properties and has little influence on the ozone layer (see, for example, Patent Document 1).

また、上記冷媒冷却回路では、蒸発器が断熱筐体の冷却庫に配置してあり、冷媒循環経路への冷媒の循環運転時に伴って結露水などが排水として発生する。この排水は、冷却庫の外部の蒸発皿に導かれる。蒸発皿には、蒸発パイプが設けてある。蒸発パイプは、圧縮機と放熱器との間の経路に設けてある。そして、蒸発皿に導かれた排水は、高温高圧の二酸化炭素が通過する蒸発パイプによって加熱されて蒸発する。このとき、蒸発パイプでは、排水によって蒸発パイプに通過する二酸化炭素を予冷する。   Further, in the refrigerant cooling circuit, the evaporator is disposed in the cooler of the heat insulating housing, and condensed water or the like is generated as drainage during the refrigerant circulation operation to the refrigerant circulation path. This drainage is led to an evaporating dish outside the refrigerator. The evaporating dish is provided with an evaporating pipe. The evaporation pipe is provided in the path between the compressor and the radiator. And the waste_water | drain guide | induced to the evaporating dish is heated and evaporated by the evaporation pipe through which a high-temperature / high-pressure carbon dioxide passes. At this time, in the evaporation pipe, carbon dioxide passing through the evaporation pipe is drained by drainage.

特開2004−53070号公報JP 2004-53070 A

ところで、冷媒冷却回路の冷媒として二酸化炭素を使用すると、当該二酸化炭素の臨界温度が約31℃と低いことから、従前の冷媒(例えばHFC冷媒(ハイドロフルオロカーボン))を使用したときと比較してはるかに圧力が高くなる。このため、圧縮機の内部における摩擦、冷媒漏れなどを防止する冷凍機油には粘度の高いものが使用される。しかし、圧縮機では、その内部に冷凍機油を完全に封止することが困難であり、冷媒循環経路の循環運転時に圧縮機から冷凍機油が吐出されることになる。すなわち、圧縮機から吐出した冷凍機油を、放熱器、絞り部、蒸発器を介して再び圧縮機に戻すことになる。   By the way, when carbon dioxide is used as the refrigerant in the refrigerant cooling circuit, the critical temperature of the carbon dioxide is as low as about 31 ° C., so that it is far more than when a conventional refrigerant (for example, HFC refrigerant (hydrofluorocarbon)) is used. Pressure increases. For this reason, the thing with a high viscosity is used for the refrigerating machine oil which prevents the friction in a compressor, a refrigerant | coolant leak, etc. However, in the compressor, it is difficult to completely seal the refrigerating machine oil therein, and the refrigerating machine oil is discharged from the compressor during the circulation operation of the refrigerant circulation path. That is, the refrigerating machine oil discharged from the compressor is returned to the compressor again through the radiator, the throttle unit, and the evaporator.

しかしながら、従来の冷媒冷却回路では、蒸発パイプにおいて冷凍機油が滞留するため、圧縮機から吐出した冷凍機油を冷媒循環経路に循環させて圧縮機に戻すことが難しい。これは、二酸化炭素と冷凍機油との相溶性が悪く、かつ、上述したように粘度の高い冷凍機油が使用されていることによる。蒸発パイプは、従前では内径がφ4.75mmであるため粘度の高い冷凍機油では流速が遅く送りが悪くなる。また、従前の蒸発パイプでは、側方に向かって螺旋形状をなして形成してあるため、この螺旋形状の複数の下部が冷凍機油を滞留するトラップとなって冷凍機油の送りが悪くなる。   However, in the conventional refrigerant cooling circuit, since the refrigeration oil stays in the evaporation pipe, it is difficult to circulate the refrigeration oil discharged from the compressor through the refrigerant circulation path and return it to the compressor. This is because the compatibility between the carbon dioxide and the refrigerating machine oil is poor and the refrigerating machine oil having a high viscosity is used as described above. Conventionally, the inner diameter of the evaporating pipe is φ4.75 mm, so that the flow rate is slow and the feeding is poor with a refrigerating machine oil having a high viscosity. Further, since the conventional evaporation pipe is formed in a spiral shape toward the side, a plurality of lower portions of the spiral shape serve as traps for retaining the refrigerating machine oil, and the refrigerating machine oil is poorly fed.

本発明は、上記実情に鑑みて、蒸発パイプに関して冷凍機油の送りを向上することができる冷媒冷却回路を提供することを目的とする。   An object of this invention is to provide the refrigerant | coolant cooling circuit which can improve the feed of refrigeration oil regarding an evaporation pipe in view of the said situation.

上記の目的を達成するために、本発明の請求項1に係る冷媒冷却回路は、冷媒を圧縮する圧縮機と、前記圧縮機から吐出された冷媒を冷却する放熱器と、前記放熱器から供給され冷媒の圧力を減圧する減圧部と、前記減圧部から供給され冷媒蒸発する蒸発器と、前記蒸発器において結露した結露水が導かれる蒸発皿と、前記圧縮機と前記放熱器との間に設けられるとともに、前記蒸発皿に収容され、前記蒸発皿に導かれた結露水を蒸発させる蒸発パイプとを備えた冷媒冷却回路において、前記蒸発パイプは、上方から下方に向けて漸次低くなるように螺旋状に旋回して設けられ、上方から下方に向けて冷媒が流れる螺旋状部と、前記螺旋上部に連なり、かつ、下方から上方に向けて真っ直ぐに設けられ、下方から上方に向けて冷媒が吐出する直上部とを有したことを特徴とする。 In order to achieve the above object, a refrigerant cooling circuit according to claim 1 of the present invention includes a compressor that compresses refrigerant, a radiator that cools refrigerant discharged from the compressor, and a supply from the radiator. a pressure reducing unit for reducing the pressure of the refrigerant, an evaporator refrigerant supplied from the pressure reducing unit is evaporated, the evaporation dish condensation water is led to the condensation in the evaporator, and the radiator and the compressor And an evaporation pipe that is stored in the evaporating dish and evaporates the condensed water led to the evaporating dish , wherein the evaporating pipe is gradually lowered from above to below. The spiral part is provided so as to be spirally swung so that the refrigerant flows from the upper side to the lower side, and is connected to the upper part of the helix and is provided straight from the lower side to the upper side. The refrigerant is discharged Characterized in that and a straight upper to.

本発明の請求項2に係る冷媒冷却回路は、上記請求項1において、前記減圧部が、電子膨張弁であることを特徴とする。 A refrigerant cooling circuit according to a second aspect of the present invention is the refrigerant cooling circuit according to the first aspect, wherein the pressure reducing unit is an electronic expansion valve.

本発明の請求項に係る冷媒冷却回路は、上記請求項またはにおいて、前記直上部が、50mmの高低差を有することを特徴とする。 The refrigerant cooling circuit according to a third aspect of the present invention is characterized in that, in the first or second aspect , the immediately upper portion has a height difference of 50 mm.

本発明の請求項に係る冷媒冷却回路は、上記請求項1〜のいずれか一つにおいて、前記圧縮機は、1段階目の圧縮を行う第1圧縮機と、前記第1圧縮機で圧縮した冷媒をさらに圧縮する第2圧縮機とを備えたことを特徴とする。 The refrigerant cooling circuit according to a fourth aspect of the present invention is the refrigerant cooling circuit according to any one of the first to third aspects, wherein the compressor includes a first compressor that performs first-stage compression, and the first compressor. characterized in that a second compressor to further compress the compressed refrigerant.

本発明の請求項に係る冷媒冷却回路は、上記請求項1〜のいずれか一つにおいて、前記冷媒が二酸化炭素であることを特徴とする。 A refrigerant cooling circuit according to a fifth aspect of the present invention is the refrigerant cooling circuit according to any one of the first to fourth aspects, wherein the refrigerant is carbon dioxide.

本発明に係る冷媒冷却回路は、蒸発皿に収容され、蒸発皿に導かれた結露水を蒸発させる蒸発パイプが、上方から下方に向けて漸次低くなるように螺旋状に旋回して設けられ、上方から下方に向けて冷媒が流れる螺旋状部と、螺旋状部に連なり、かつ、下方から上方に向けて冷媒が吐出する直上部を有している。このため、圧縮機から冷媒とともに冷凍機油が吐出されても、冷凍機油が蒸発パイプ(特に螺旋状部)の複数箇所にわたって滞留することはない。この意味において、この蒸発パイプは冷凍機油の滞留箇所(トラップ)を一つだけに制限できる。換言すれば、この蒸発パイプは、圧縮機から冷凍機油が吐出されても、冷凍機油の滞留を抑制できる。 The refrigerant cooling circuit according to the present invention is accommodated in the evaporating dish, and an evaporating pipe for evaporating the condensed water led to the evaporating dish is provided by spirally turning so as to gradually become lower from the upper side to the lower side, It has a spiral part in which the refrigerant flows from the upper side to the lower side, and an upper part connected to the spiral part and discharging the refrigerant from the lower side to the upper side. For this reason, even if refrigeration oil is discharged with a refrigerant | coolant from a compressor, refrigeration oil does not stay over several places of an evaporation pipe (especially helical part). In this sense, this evaporating pipe can limit the number of refrigerating machine oil retention points (traps) to only one. In other words, the evaporation pipe can suppress the stagnation of the refrigerating machine oil even when the refrigerating machine oil is discharged from the compressor.

特に、本発明の蒸発パイプは、冷媒として二酸化炭素を用いて冷媒冷却回路が比較的高圧状態になる冷媒冷却回路に有用である。 In particular, the evaporation pipe of the present invention is useful for a refrigerant cooling circuit in which the refrigerant cooling circuit is in a relatively high pressure state using carbon dioxide as the refrigerant .

以下に添付図面を参照して、本発明に係る冷媒冷却回路の好適な実施例を詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Exemplary embodiments of a refrigerant cooling circuit according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

図1は本発明に係る冷媒冷却回路の一実施例を示す概略図である。図1に示すように、本実施例における冷媒冷却回路は、主に、圧縮機1、ガスクーラー(放熱器)2、電子膨張弁(絞り部)3、蒸発器4を接続して、冷媒を循環可能な冷媒循環経路を形成したものである。また、冷媒は、本実施例では、例えば二酸化炭素を使用してある。二酸化炭素は、不燃性、安全性、不腐食性を有し、さらにオゾン層への影響が少ない冷媒である。   FIG. 1 is a schematic view showing an embodiment of a refrigerant cooling circuit according to the present invention. As shown in FIG. 1, the refrigerant cooling circuit in this embodiment mainly includes a compressor 1, a gas cooler (heat radiator) 2, an electronic expansion valve (throttle portion) 3, and an evaporator 4 to connect refrigerant. A circulating refrigerant circulation path is formed. In the present embodiment, for example, carbon dioxide is used as the refrigerant. Carbon dioxide is a refrigerant that has non-flammability, safety, and non-corrosion properties, and has little influence on the ozone layer.

圧縮機1は、蒸発器4から帰還される二酸化炭素を圧縮して高温高圧の状態とするものである。圧縮機1は、本実施例では、中間熱交換器10を使用して2段階の圧縮動作を実行する。具体的に、圧縮機1は、2段階の圧縮動作において、1段階目の圧縮動作を行う第1圧縮機1aと、2段階目の圧縮動作を行う第2圧縮機1bとの間に中間熱交換器10を設けてある。そして、中間熱交換器10は、第1圧縮機1aによる1段階目の圧縮動作の後に、第1圧縮機1aが圧縮した状態の二酸化炭素を冷却して第2圧縮機1bに戻す。このように、圧縮機1は、中間熱交換器10を介して2段階の圧縮動作を実行することで、低消費電力で高圧縮効率を得て二酸化炭素を所望とする高温高圧の状態に圧縮することが可能になる。なお、本実施例では、第1圧縮機1aでの1段階目の圧縮によって二酸化炭素を約6MPaに圧縮し、第2圧縮機1bでの2段階目の圧縮によって二酸化炭素を約9MPa(6〜12MPa)に圧縮する。   The compressor 1 compresses the carbon dioxide returned from the evaporator 4 to bring it into a high temperature and high pressure state. In the present embodiment, the compressor 1 uses the intermediate heat exchanger 10 to perform a two-stage compression operation. Specifically, in the two-stage compression operation, the compressor 1 has an intermediate heat between the first compressor 1a that performs the first-stage compression operation and the second compressor 1b that performs the second-stage compression operation. An exchanger 10 is provided. Then, after the first stage compression operation by the first compressor 1a, the intermediate heat exchanger 10 cools the carbon dioxide compressed by the first compressor 1a and returns it to the second compressor 1b. In this way, the compressor 1 performs a two-stage compression operation via the intermediate heat exchanger 10, thereby obtaining high compression efficiency with low power consumption and compressing carbon dioxide to a desired high temperature and high pressure state. It becomes possible to do. In this embodiment, carbon dioxide is compressed to about 6 MPa by the first stage compression by the first compressor 1a, and carbon dioxide is about 9 MPa (6 to 6 by the second stage compression by the second compressor 1b. To 12 MPa).

また、圧縮機1には、オイルセパレータ11が接続してある。オイルセパレータ11は、圧縮機1から吐出した冷凍機油を冷媒循環経路の高圧側から低圧側に戻すためのものである。冷媒循環経路の高圧側とは、圧縮機1の出口側からガスクーラー2を経て電子膨張弁3の入口側までの間である。また、冷媒循環経路の低圧側とは、電子膨張弁3の出口側から蒸発器4を経て圧縮機1の入口側までの間である。冷凍機油は、圧縮機1の内部における摩擦、冷媒漏れなどを防止するが、この冷凍機油を圧縮機1の内部で完全に封止することが困難である。特に、上記のごとく圧縮機1によって二酸化炭素を高圧に圧縮しており、この圧力が従前の冷媒(例えばHFC冷媒(ハイドロフルオロカーボン))を使用したときと比較してはるかに高圧であるので、圧縮機1からの冷凍機油の吐出量は多くなる。そこで、本実施例では、圧縮機1において、第2圧縮機1bの出口側と、第1圧縮機1aの入口側との間にオイルセパレータ11を接続しており、第2圧縮機1bから吐出した冷凍機油を第1圧縮機1aに戻している。また、本実施例では、二酸化炭素の圧力が高圧であるため、圧縮機1の内部における摩擦、冷媒漏れなどを極力防ぐ目的で粘度指数が略100(40℃,0Wt%)の冷凍機油を採用してある。   An oil separator 11 is connected to the compressor 1. The oil separator 11 is for returning the refrigeration oil discharged from the compressor 1 from the high pressure side to the low pressure side of the refrigerant circulation path. The high pressure side of the refrigerant circulation path is from the outlet side of the compressor 1 to the inlet side of the electronic expansion valve 3 through the gas cooler 2. The low pressure side of the refrigerant circulation path is from the outlet side of the electronic expansion valve 3 to the inlet side of the compressor 1 through the evaporator 4. The refrigerating machine oil prevents friction and refrigerant leakage in the compressor 1, but it is difficult to completely seal the refrigerating machine oil inside the compressor 1. In particular, the compressor 1 compresses carbon dioxide to a high pressure as described above, and this pressure is much higher than when a conventional refrigerant (for example, HFC refrigerant (hydrofluorocarbon)) is used. The amount of refrigeration oil discharged from the machine 1 increases. Therefore, in the present embodiment, in the compressor 1, the oil separator 11 is connected between the outlet side of the second compressor 1b and the inlet side of the first compressor 1a, and discharged from the second compressor 1b. The refrigerating machine oil thus returned is returned to the first compressor 1a. In this embodiment, since the pressure of carbon dioxide is high, a refrigerating machine oil having a viscosity index of approximately 100 (40 ° C., 0 Wt%) is employed for the purpose of preventing friction and refrigerant leakage inside the compressor 1 as much as possible. It is.

なお、圧縮機1としては、レシプロ圧縮機、ロータリー圧縮機、スクロール圧縮機、或いは、これらの圧縮能力を調整可能なインバータ圧縮機などがある。そして、冷媒冷却回路を配設する対象、環境、あるいは、冷媒冷却回路のコストなどに見合う圧縮機を適宜適用すればよい。   The compressor 1 includes a reciprocating compressor, a rotary compressor, a scroll compressor, or an inverter compressor that can adjust the compression capacity thereof. And what is necessary is just to apply suitably the compressor corresponding to the object which arrange | positions a refrigerant | coolant cooling circuit, an environment, or the cost of a refrigerant | coolant cooling circuit.

ガスクーラー2は、圧縮機1から供給される高温高圧の二酸化炭素を、放熱させて二酸化炭素を液化するためのものである。本実施例におけるガスクーラー2は、例えば銅管とアルミフィンとで構成したフィンチューブタイプのものを使用してある。このガスクーラー2には、ファン21が設けてある。ファン21は、ガスクーラー2を送風するためのものであり、ファンモータ22によって駆動される。   The gas cooler 2 is for liquefying carbon dioxide by releasing heat from high-temperature and high-pressure carbon dioxide supplied from the compressor 1. The gas cooler 2 in the present embodiment uses a fin tube type composed of, for example, a copper tube and an aluminum fin. The gas cooler 2 is provided with a fan 21. The fan 21 is for blowing the gas cooler 2 and is driven by a fan motor 22.

電子膨張弁3は、ガスクーラー2から供給される二酸化炭素を減圧し、蒸発温度および流量を制御するためのものである。   The electronic expansion valve 3 is for reducing the pressure of carbon dioxide supplied from the gas cooler 2 and controlling the evaporation temperature and flow rate.

蒸発器4は、電子膨張弁3から供給される液体の二酸化炭素が蒸発したとき、周囲の熱を吸収することによって周囲温度を冷却するためのものである。本実施例における蒸発器4は、例えば銅管とアルミフィンとで構成したフィンチューブタイプのものを使用してある。この蒸発器4には、ファン41が設けてある。ファン41は、蒸発器4を送風するためのものであり、ファンモータ42によって駆動される。   The evaporator 4 is for cooling the ambient temperature by absorbing ambient heat when the liquid carbon dioxide supplied from the electronic expansion valve 3 evaporates. The evaporator 4 in the present embodiment uses a fin tube type composed of, for example, a copper tube and an aluminum fin. The evaporator 4 is provided with a fan 41. The fan 41 is for blowing the evaporator 4 and is driven by a fan motor 42.

蒸発器4は、例えば自動販売機、冷蔵庫、冷凍ショーケース・冷蔵ショーケース、あるいは飲料ディスペンサなどにおける断熱筐体の冷却庫の内部に配置してある。特に、本実施例では、例えば自動販売機において、複数(実施例では3室)の冷却庫(商品収納庫)をそれぞれ独立して冷却するために、各冷却庫内に蒸発器4(4a,4b,4c)をそれぞれ配置してある。すなわち、蒸発器4a,4b,4cは、電子膨張弁3から3方に分岐したそれぞれの経路に接続してある。また、前記各経路において各蒸発器4a,4b,4cの入口側には、各電磁弁12a,12b,12cがそれぞれ設けてある。そして、各電磁弁12a,12b,12cを選択的に開放することで、各蒸発器4a,4b,4cに電子膨張弁3からの二酸化炭素が供給される。また、各蒸発器4a,4b,4cの出口側の経路は、互いに集合して圧縮機1の第1圧縮機1aに接続してある。なお、本実施例における電磁弁12a,12b,12cは、その入口側と出口側との圧力差(例えば入口側が高圧で出力側が低圧)、およびバネ弾性力を利用することによって弁体を弁座に当接させるよう助勢して閉鎖状態になり、この状態から電磁コイル部に通電されると弁体が弁座から離間されて開放状態になる構成のものが採用してある。   The evaporator 4 is arrange | positioned inside the refrigerator of the heat insulation housing | casing in a vending machine, a refrigerator, a freezer showcase, a refrigerated showcase, or a drink dispenser etc., for example. In particular, in this embodiment, for example, in an automatic vending machine, in order to cool a plurality of (three rooms in the embodiment) refrigerators (product storage units) independently, the evaporators 4 (4a, 4a, 4b, 4c) are arranged respectively. That is, the evaporators 4a, 4b, and 4c are connected to respective paths branched from the electronic expansion valve 3 in three directions. Further, electromagnetic valves 12a, 12b, and 12c are provided on the inlet sides of the evaporators 4a, 4b, and 4c in the respective paths. And carbon dioxide from the electronic expansion valve 3 is supplied to each evaporator 4a, 4b, 4c by selectively open | releasing each solenoid valve 12a, 12b, 12c. Further, the paths on the outlet side of the evaporators 4a, 4b, and 4c are gathered together and connected to the first compressor 1a of the compressor 1. The solenoid valves 12a, 12b, and 12c in the present embodiment are configured so that the valve body is seated by utilizing a pressure difference between the inlet side and the outlet side (for example, the inlet side is high pressure and the output side is low pressure) and spring elastic force. A configuration is adopted in which the valve body is separated from the valve seat and opened when the electromagnetic coil portion is energized from this state to assist in contact with the valve.

また、電子膨張弁3から各蒸発器4a,4b,4cに至る各経路であって、各電磁弁12a,12b,12cと各蒸発器4a,4b,4cとの間には、それぞれ減圧手段13a,13b,13cが設けてある。減圧手段13a,13b,13cは、電磁弁12a,12b,12cと蒸発器4a,4b,4cとの間の経路中に圧力抵抗を付与する絞りとして作用する。本実施例における減圧手段13a,13b,13cは、前記各経路中に設けたオリフィスとして形成してある。なお、減圧手段13a,13b,13cは、経路中に圧力抵抗を付与する絞りとして作用するものであればオリフィスに限定されない。   The decompression means 13a is connected to each of the evaporators 4a, 4b, and 4c from the electronic expansion valve 3 and between each of the solenoid valves 12a, 12b, and 12c and each of the evaporators 4a, 4b, and 4c. , 13b, 13c are provided. The decompression means 13a, 13b, and 13c act as throttles that provide pressure resistance in the path between the electromagnetic valves 12a, 12b, and 12c and the evaporators 4a, 4b, and 4c. The decompression means 13a, 13b, and 13c in the present embodiment are formed as orifices provided in the respective paths. The decompression means 13a, 13b, and 13c are not limited to orifices as long as they function as a throttle that provides pressure resistance in the path.

なお、蒸発器4の周辺部の温度は、蒸発器4が周辺部の熱を吸収することによって低下する。冷凍サイクルとしては、蒸発器4で吸収した蒸発熱を捨てる必要があるが、蒸発器4を設けた断熱筐体の庫内は、外部の気温よりかなり低い温度になっており、低温部から奪った熱を高温の外部へ直接捨てることができない。そこで、圧縮機1は、蒸発器4の蒸発熱を外部の気温より高い温度にして捨てるため、蒸発器4から供給される二酸化炭素を高温高圧の蒸気に変換する役目を担っている。   Note that the temperature at the periphery of the evaporator 4 decreases as the evaporator 4 absorbs the heat at the periphery. As the refrigeration cycle, it is necessary to throw away the heat of evaporation absorbed by the evaporator 4, but the inside of the heat-insulating housing provided with the evaporator 4 is considerably lower than the outside temperature, and is taken away from the low temperature part. Heat cannot be thrown away directly to the hot outside. Therefore, the compressor 1 plays the role of converting carbon dioxide supplied from the evaporator 4 into high-temperature and high-pressure steam in order to discard the evaporation heat of the evaporator 4 at a temperature higher than the outside air temperature.

また、二酸化炭素を冷媒として使用したとき、外気温が高温となる夏場などでは、ガスクーラー2の温度が二酸化炭素の臨界温度(約31℃)を越える場合がある。この場合、ガスクーラー2において二酸化炭素が気化したままで液化しなくなる超臨界圧力の状態となる。一方、蒸発器4を通過した二酸化炭素は、全て気化していることが望ましい。蒸発器4を通過した二酸化炭素が一部液化したままで圧縮機1に供給されると、圧縮機1は液圧縮を起こしてシリンダーを破損してしまうおそれがある。   Further, when carbon dioxide is used as a refrigerant, the temperature of the gas cooler 2 may exceed the critical temperature of carbon dioxide (about 31 ° C.) in summer when the outside air temperature becomes high. In this case, the gas cooler 2 is in a supercritical pressure state in which carbon dioxide is not vaporized while being vaporized. On the other hand, it is desirable that all the carbon dioxide that has passed through the evaporator 4 is vaporized. If the carbon dioxide that has passed through the evaporator 4 is supplied to the compressor 1 while being partially liquefied, the compressor 1 may cause liquid compression and damage the cylinder.

そこで、ガスクーラー2と電子膨張弁3との間、蒸発器4と圧縮機1(第1圧縮機1a)との間に内部熱交換器14を設けてある。図には明示しないが、内部熱交換器14の内部では、ガスクーラー2と電子膨張弁3との間の冷媒管路と、蒸発器4と圧縮機1との間の冷媒管路とが、互いに熱交換可能な距離を有して非接触向流するように配設してある。これにより、ガスクーラー2から得られる二酸化炭素は、液化しやすくなる。一方、圧縮機1には、蒸発器4から気化した二酸化炭素が供給される。   Therefore, an internal heat exchanger 14 is provided between the gas cooler 2 and the electronic expansion valve 3 and between the evaporator 4 and the compressor 1 (first compressor 1a). Although not clearly shown in the figure, inside the internal heat exchanger 14, a refrigerant line between the gas cooler 2 and the electronic expansion valve 3 and a refrigerant line between the evaporator 4 and the compressor 1 are They are arranged so as to have non-contact countercurrent with a distance allowing heat exchange with each other. Thereby, the carbon dioxide obtained from the gas cooler 2 becomes easy to liquefy. On the other hand, the carbon dioxide vaporized from the evaporator 4 is supplied to the compressor 1.

また、断熱筐体の冷却庫の内部に設けた蒸発器4に関し、冷媒循環経路への冷媒の循環運転時に伴って結露水などが排水として発生する。そして、排水は、冷却庫の外部であって圧縮機1およびガスクーラー2などを配した部位にある蒸発手段15に導かれる。この蒸発手段15は、圧縮機1(第2圧縮機1b)とガスクーラー2との間であって、オイルセパレータ11の出口側からガスクーラー2の入口側の間の経路に設けてある。   Further, with respect to the evaporator 4 provided inside the cooler of the heat insulating housing, dew condensation water or the like is generated as drainage during the refrigerant circulation operation to the refrigerant circulation path. Then, the waste water is led to the evaporation means 15 located outside the cooler and provided with the compressor 1, the gas cooler 2, and the like. The evaporation means 15 is provided between the compressor 1 (second compressor 1 b) and the gas cooler 2 and in a path between the outlet side of the oil separator 11 and the inlet side of the gas cooler 2.

図2に示すように蒸発手段15は、排水を導かれる蒸発皿151と、蒸発皿151内に配置した蒸発パイプ152と、蒸発パイプ152に関わる吸水性の蒸発シート(図示せず)とを有している。蒸発パイプ152は、オイルセパレータ11の出口側からガスクーラー2の入口側の間の経路に接続してあって、圧縮機1から吐出した高温高圧の二酸化炭素が通過する。すなわち、蒸発皿151に導かれた排水は、高温高圧の二酸化炭素が通過する蒸発パイプ152によって加熱され、蒸発シートに吸収されて蒸発する。このとき、排水によって蒸発パイプ152に通過する二酸化炭素を予冷する。   As shown in FIG. 2, the evaporating means 15 has an evaporating dish 151 through which waste water is guided, an evaporating pipe 152 disposed in the evaporating dish 151, and a water-absorbing evaporating sheet (not shown) related to the evaporating pipe 152. is doing. The evaporation pipe 152 is connected to a path between the outlet side of the oil separator 11 and the inlet side of the gas cooler 2, and high-temperature and high-pressure carbon dioxide discharged from the compressor 1 passes therethrough. That is, the wastewater led to the evaporating dish 151 is heated by the evaporating pipe 152 through which high-temperature and high-pressure carbon dioxide passes, and is absorbed by the evaporating sheet and evaporates. At this time, carbon dioxide passing through the evaporation pipe 152 is precooled by drainage.

本実施例における蒸発パイプ152は、外径がφ4.76mmであって内径がφ3.16mmとしてある。ここで、高圧側の圧力を略7MPaとするために、例えば圧縮機1の圧縮容積を1.5ccとしてインバータの周波数を55Hzとしたとき、二酸化炭素は、1秒あたり約70cc吐出されることになる。このとき、蒸発パイプ152の内径がφ3.16mmである場合では、当該蒸発パイプ152を通過する二酸化炭素の流速が約892cm/秒となる。これに対し、二酸化炭素が1秒あたり約70cc吐出されるとき、蒸発パイプ152の内径が従前のφ4.75mmである場合では、当該蒸発パイプ152を通過する二酸化炭素の流速が約395cm/秒となる。このように、本実施例における蒸発パイプ152は、内径をφ3.16mmとしてあることによって二酸化炭素の流速が従前と比較して増すことになる。   The evaporation pipe 152 in the present embodiment has an outer diameter of φ4.76 mm and an inner diameter of φ3.16 mm. Here, in order to set the pressure on the high pressure side to approximately 7 MPa, for example, when the compression volume of the compressor 1 is 1.5 cc and the frequency of the inverter is 55 Hz, carbon dioxide is discharged at about 70 cc per second. Become. At this time, when the inner diameter of the evaporation pipe 152 is 3.16 mm, the flow rate of carbon dioxide passing through the evaporation pipe 152 is about 892 cm / second. On the other hand, when about 70 cc of carbon dioxide is discharged per second, when the inner diameter of the evaporation pipe 152 is φ4.75 mm, the flow rate of carbon dioxide passing through the evaporation pipe 152 is about 395 cm / second. Become. As described above, the evaporation pipe 152 in the present embodiment has an inner diameter of φ3.16 mm, so that the flow rate of carbon dioxide is increased compared to the conventional case.

また、図2に示すように本実施例における蒸発パイプ152は、導通部152aと、滞留部152bとで形成してある。導通部152aは、上方から下方に向けて螺旋状に設けてある。滞留部152bは、導通部152aの下端部に連なって下方から上方に向けて唯一設けてある。本実施例において、蒸発パイプ152の全長は、略2000mmとしてあり、滞留部152bは、略50mmの高低差Hで設けてある。そして、導通部152aには、上方から下方に向けて二酸化炭素が通過し、滞留部152bには、下方から上方に向けて二酸化炭素が通過することになる。   Further, as shown in FIG. 2, the evaporation pipe 152 in the present embodiment is formed of a conduction portion 152a and a staying portion 152b. The conducting portion 152a is provided in a spiral shape from above to below. The staying part 152b is provided only from the lower part to the upper part, continuing from the lower end part of the conducting part 152a. In this embodiment, the total length of the evaporation pipe 152 is approximately 2000 mm, and the staying portion 152b is provided with a height difference H of approximately 50 mm. Then, carbon dioxide passes through the conduction portion 152a from the top to the bottom, and carbon dioxide passes through the stay portion 152b from the bottom to the top.

以下、二酸化炭素を冷媒として使用する本発明の冷媒冷却回路の動作について説明する。なお、冷媒冷却回路の以下の動作において、電磁弁12aのみが開放状態で、他の電磁弁12b,12cが閉塞状態であることとする。   Hereinafter, the operation of the refrigerant cooling circuit of the present invention using carbon dioxide as the refrigerant will be described. In the following operation of the refrigerant cooling circuit, only the electromagnetic valve 12a is open, and the other electromagnetic valves 12b and 12c are closed.

冷却庫にある蒸発器4aから帰還された二酸化炭素は、内部熱交換器14を介して第1圧縮機1aに吸引されて低圧圧縮(約6MPaに圧縮)される。第1圧縮機1aから吐出された二酸化炭素は、中間熱交換器10を経て冷却された後に第2圧縮機1bに吸引されて高圧圧縮(約9MPaに圧縮)される。このとき、第2圧縮機1bから二酸化炭素と共に吐出された冷凍機油は、オイルセパレータ11によって第1圧縮機1aの入口側に戻される。   The carbon dioxide returned from the evaporator 4a in the refrigerator is sucked into the first compressor 1a via the internal heat exchanger 14 and compressed at a low pressure (compressed to about 6 MPa). The carbon dioxide discharged from the first compressor 1a is cooled through the intermediate heat exchanger 10, and then sucked into the second compressor 1b and compressed at a high pressure (compressed to about 9 MPa). At this time, the refrigerating machine oil discharged together with carbon dioxide from the second compressor 1b is returned to the inlet side of the first compressor 1a by the oil separator 11.

次いで、第2圧縮機1bから吐出された二酸化炭素は、蒸発手段15で予冷されて、ガスクーラー2に送られる。ガスクーラー2に送られた二酸化炭素は、放熱されて液化して、内部熱交換器14を介して電子膨張弁3に至る。   Next, the carbon dioxide discharged from the second compressor 1 b is pre-cooled by the evaporation means 15 and sent to the gas cooler 2. The carbon dioxide sent to the gas cooler 2 is radiated and liquefied, and reaches the electronic expansion valve 3 via the internal heat exchanger 14.

次いで、電子膨張弁3において、二酸化炭素は、減圧されて蒸発温度および流量を制御される。その後、二酸化炭素は、開放状態にある電磁弁12aを経て、減圧手段13aを介して蒸発器4aに至る。   Next, in the electronic expansion valve 3, the carbon dioxide is depressurized and the evaporation temperature and flow rate are controlled. Thereafter, the carbon dioxide passes through the electromagnetic valve 12a in the open state and reaches the evaporator 4a through the decompression means 13a.

最後に、蒸発器4aに供給された二酸化炭素は、吸熱して加熱蒸気として気化される。二酸化炭素の吸熱によって蒸発器4aを設けた冷却庫の内部が独立して冷却されることになる。そして、二酸化炭素は、蒸発器4aから内部熱交換器14を介して第1圧縮機1aに吸引されて帰還して循環運転が行われる。   Finally, the carbon dioxide supplied to the evaporator 4a absorbs heat and is vaporized as heated steam. The inside of the refrigerator provided with the evaporator 4a is cooled independently by the absorption of carbon dioxide. The carbon dioxide is sucked from the evaporator 4a through the internal heat exchanger 14 to the first compressor 1a and returned to be circulated.

上記二酸化炭素の循環運転において、蒸発手段15の蒸発パイプ152には、オイルセパレータ11で圧縮機1に戻しきれない冷凍機油が到達する。この冷凍機油は、粘度指数が略100であるために蒸発パイプ152内に滞留しようとする。しかし、本実施例における蒸発手段15では、蒸発パイプ152の内径をφ3.16mmとしてあることによって当該蒸発パイプ152を通過する二酸化炭素の流速が従前と比較して増すことになる。この結果、蒸発手段15では、蒸発パイプ152に到達した冷凍機油を二酸化炭素によって圧送させるので、冷凍機油を蒸発パイプ152内に滞留させず通過させることが可能になる。   In the carbon dioxide circulation operation, refrigeration oil that cannot be returned to the compressor 1 by the oil separator 11 reaches the evaporation pipe 152 of the evaporation means 15. The refrigerating machine oil tends to stay in the evaporation pipe 152 because the viscosity index is approximately 100. However, in the evaporation means 15 in the present embodiment, the inner diameter of the evaporation pipe 152 is set to φ3.16 mm, so that the flow rate of carbon dioxide passing through the evaporation pipe 152 is increased as compared with the prior art. As a result, since the refrigerating machine oil that has reached the evaporating pipe 152 is pumped by carbon dioxide in the evaporating means 15, the refrigerating machine oil can be passed through without being retained in the evaporating pipe 152.

また、本実施例における蒸発手段15では、上方から下方に向けて螺旋状に設けた導通部152aと、導通部152aの下端部に連なって下方から上方に向けて唯一設けた滞留部152bとで蒸発パイプ152を形成してある。そして、蒸発パイプ152では、到達した冷凍機油を、導通部152aで上方から下方に向けて導き、唯一の滞留部152bに滞留させる。滞留部152bは、唯一設けてあるため、冷凍機油は、滞留部152bに一時的に滞留した後に高圧の二酸化炭素によって流動する。すなわち、滞留部152bは、蒸発手段15における唯一のトラップとなる。この結果、蒸発手段15では、蒸発パイプ152に到達した冷凍機油を導通部152aで上方から下方に導いた後に、滞留部152bに一端滞留させて二酸化炭素によって圧送させるので、冷凍機油を蒸発パイプ152内に滞留させずに通過させることが可能になる。   Further, in the evaporation means 15 in the present embodiment, a conduction portion 152a provided in a spiral shape from above to below and a staying portion 152b provided only from the bottom to the top connected to the lower end portion of the conduction portion 152a. An evaporation pipe 152 is formed. In the evaporation pipe 152, the reached refrigerating machine oil is guided from the upper side to the lower side by the conduction part 152a and is retained in the only staying part 152b. Since the staying part 152b is provided only, the refrigerating machine oil flows by high-pressure carbon dioxide after temporarily staying in the staying part 152b. That is, the staying part 152 b is the only trap in the evaporation means 15. As a result, in the evaporating means 15, the refrigerating machine oil that has reached the evaporating pipe 152 is guided from the upper side to the lower side by the conducting part 152 a, and then once accumulated in the staying part 152 b and pumped by carbon dioxide. It is possible to pass through without staying inside.

なお、上記二酸化炭素の循環運転において、閉鎖状態にしてある電磁弁12b,12cを有した経路に設けた蒸発器4b,4cは、上記循環運転が実行されている冷媒循環経路の蒸発器4aと出口側が集合してある。このため、従前では電磁弁12aのみが開放状態である場合に、閉塞状態の電磁弁12b,12cの入口側と出口側との圧力差がほぼ等しくなる。しかし、本実施例では、各電磁弁12a,12b,12cと、各蒸発器4a,4b,4cとの間の経路に減圧手段13a,13b,13cがそれぞれ設けてある。このため、閉鎖状態の電磁弁12b,12cを有した経路では、減圧手段13b,13cが経路中に圧力抵抗を付与する絞りとして作用するため、閉鎖状態の電磁弁12b,12cの出口側が低圧になり入口側が高圧になる。これにより、閉鎖状態にある電磁弁12b,12cの入口側と出口側との間に圧力差が生じ、入口側と出口側との圧力差によって電磁弁12b,12cの閉塞状態が助勢されるので、当該電磁弁12b,12cの閉鎖状態が維持される。   Note that, in the carbon dioxide circulation operation, the evaporators 4b and 4c provided in the path having the solenoid valves 12b and 12c in the closed state are the same as the evaporator 4a in the refrigerant circulation path in which the circulation operation is performed. The exit side is gathered. For this reason, conventionally, when only the solenoid valve 12a is in an open state, the pressure difference between the inlet side and the outlet side of the solenoid valves 12b and 12c in the closed state becomes substantially equal. However, in this embodiment, decompression means 13a, 13b, and 13c are provided in the paths between the electromagnetic valves 12a, 12b, and 12c and the evaporators 4a, 4b, and 4c, respectively. For this reason, in the path having the closed solenoid valves 12b and 12c, the decompression means 13b and 13c act as a throttle for applying pressure resistance in the path, so that the outlet side of the closed solenoid valves 12b and 12c has a low pressure. The inlet side becomes high pressure. Accordingly, a pressure difference is generated between the inlet side and the outlet side of the electromagnetic valves 12b and 12c in the closed state, and the closed state of the electromagnetic valves 12b and 12c is assisted by the pressure difference between the inlet side and the outlet side. The closed state of the electromagnetic valves 12b and 12c is maintained.

なお、上述した蒸発パイプ152の内径φ3.16mmは、特に高圧側の圧力が略7MPaであって冷凍機油の粘度指数が略100である場合に好適であり、高圧側の圧力が6〜12MPaであって冷凍機油の粘度指数が76〜100である場合であっても、蒸発パイプの内径をφ3〜3.16mmの範囲に設定すれば上記効果を得ることができる。   The inner diameter φ 3.16 mm of the evaporation pipe 152 described above is particularly suitable when the pressure on the high pressure side is approximately 7 MPa and the viscosity index of the refrigerating machine oil is approximately 100, and the pressure on the high pressure side is 6 to 12 MPa. Even if the viscosity index of the refrigerating machine oil is 76 to 100, the above effect can be obtained if the inner diameter of the evaporation pipe is set in the range of φ3 to 3.16 mm.

また、上方から下方に向けて螺旋状に設けた導通部152aと、導通部152aの下端部に連なって下方から上方に向けて唯一設けた滞留部152bとで形成した蒸発パイプ152は、特に高圧側の圧力が略7MPaであって冷凍機油の粘度指数が略100である場合に好適であり、高圧側の圧力が6〜12MPaであって冷凍機油の粘度指数が76〜100である場合であっても上記効果を得ることができる。   Further, the evaporation pipe 152 formed by the conductive portion 152a provided in a spiral shape from the upper side to the lower side and the staying portion 152b provided only from the lower side to the upper side connected to the lower end portion of the conductive portion 152a has a particularly high pressure. This is suitable when the pressure on the side is about 7 MPa and the viscosity index of the refrigerating machine oil is about 100, and when the pressure on the high pressure side is 6 to 12 MPa and the viscosity index of the refrigerating machine oil is 76 to 100. However, the above effect can be obtained.

本発明に係る冷媒冷却回路の一実施例を示す概略図である。It is the schematic which shows one Example of the refrigerant cooling circuit which concerns on this invention. 蒸発手段を示す側面図である。It is a side view which shows an evaporation means. 蒸発パイプを示す斜視図である。It is a perspective view which shows an evaporation pipe.

符号の説明Explanation of symbols

1 圧縮機
1a 第1圧縮機
1b 第2圧縮機
2 ガスクーラー(放熱器)
21 ファン
22 ファンモータ
3 電子膨張弁(絞り部)
4(4a,4b,4c) 蒸発器
41 ファン
42 ファンモータ
10 中間熱交換器
11 オイルセパレータ
12a,12b,12c 電磁弁
13a,13b,13c 減圧手段
14 内部熱交換器
15 蒸発手段
151 蒸発皿
152 蒸発パイプ
152a 導通部
152b 滞留部
DESCRIPTION OF SYMBOLS 1 Compressor 1a 1st compressor 1b 2nd compressor 2 Gas cooler (heat radiator)
21 Fan 22 Fan motor 3 Electronic expansion valve (throttle part)
4 (4a, 4b, 4c) Evaporator 41 Fan 42 Fan motor 10 Intermediate heat exchanger 11 Oil separator 12a, 12b, 12c Solenoid valve 13a, 13b, 13c Pressure reducing means 14 Internal heat exchanger 15 Evaporating means 151 Evaporating dish 152 Evaporating Pipe 152a Conducting part 152b Staying part

Claims (5)

冷媒を圧縮する圧縮機と、前記圧縮機から吐出された冷媒を冷却する放熱器と、前記放熱器から供給され冷媒の圧力を減圧する減圧部と、前記減圧部から供給され冷媒蒸発する蒸発器と、前記蒸発器において結露した結露水が導かれる蒸発皿と、前記圧縮機と前記放熱器との間に設けられるとともに、前記蒸発皿に収容され、前記蒸発皿に導かれた結露水を蒸発させる蒸発パイプとを備えた冷媒冷却回路において、
前記蒸発パイプは、
上方から下方に向けて漸次低くなるように螺旋状に旋回して設けられ、上方から下方に向けて冷媒が流れる螺旋状部と、
前記螺旋状部に連なり、かつ、下方から上方に向けて真っ直ぐに設けられ、下方から上方に向けて冷媒が吐出する直上部と
を有したことを特徴とする冷媒冷却回路。
A compressor for compressing refrigerant, said a radiator of refrigerant discharged from the compressor for cooling, the pressure reducing portion for reducing the pressure of the refrigerant supplied from the radiator, the refrigerant supplied from the pressure reducing unit evaporation The evaporator, the evaporation tray to which the condensed water condensed in the evaporator is guided, and the condensation that is provided between the compressor and the radiator and is accommodated in the evaporation tray and guided to the evaporation tray. In a refrigerant cooling circuit comprising an evaporation pipe for evaporating water ,
The evaporation pipe is
A spiral part that is spirally swiveled so as to gradually decrease from above to below, and through which the refrigerant flows from above to below,
A straight upper portion connected to the spiral portion and provided straight from the bottom to the top and from which the refrigerant is discharged from the bottom to the top;
Refrigerant cooling circuit, characterized in that it has a.
前記減圧部は、電子膨張弁であることを特徴とする請求項1に記載の冷媒冷却回路。The refrigerant cooling circuit according to claim 1, wherein the decompression unit is an electronic expansion valve. 前記直上部は、50mmの高低差を有することを特徴とする請求項1または2に記載の冷媒冷却回路。The refrigerant cooling circuit according to claim 1, wherein the immediately upper portion has a height difference of 50 mm. 前記圧縮機は、1段階目の圧縮を行う第1圧縮機と、前記第1圧縮機で圧縮した冷媒をさらに圧縮する第2圧縮機とを備えたことを特徴とする請求項1〜3のいずれか一つに記載の冷媒冷却回路。 The compressor includes a first compressor for compressing the first stage, according to claim 1, characterized in that a second compressor to further compress the compressed refrigerant in the first compressor The refrigerant cooling circuit according to any one of the above. 前記冷媒は、二酸化炭素であることを特徴とする請求項1〜のいずれか1つに記載の冷媒冷却回路。 The refrigerant, the refrigerant cooling circuit according to any one of claims 1-4, characterized in that the carbon dioxide.
JP2004201654A 2004-07-08 2004-07-08 Refrigerant cooling circuit Expired - Fee Related JP4341492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004201654A JP4341492B2 (en) 2004-07-08 2004-07-08 Refrigerant cooling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004201654A JP4341492B2 (en) 2004-07-08 2004-07-08 Refrigerant cooling circuit

Publications (2)

Publication Number Publication Date
JP2006023027A JP2006023027A (en) 2006-01-26
JP4341492B2 true JP4341492B2 (en) 2009-10-07

Family

ID=35796418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201654A Expired - Fee Related JP4341492B2 (en) 2004-07-08 2004-07-08 Refrigerant cooling circuit

Country Status (1)

Country Link
JP (1) JP4341492B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588397B (en) * 2014-10-22 2017-12-29 青岛海尔股份有限公司 Evaporating dish component

Also Published As

Publication number Publication date
JP2006023027A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
WO2010119591A1 (en) Freezer-refrigerator and cooling storage unit
US8408022B2 (en) Hybrid cascade vapor compression refrigeration system
JP2005337700A (en) Refrigerant cooling circuit
JP2007218459A (en) Refrigerating cycle device and cool box
JP2005326138A (en) Cooling device and vending machine with it
US20070214823A1 (en) Heat exchanging device for refrigerator
KR20150076775A (en) Dual refrigerating system
JP2009300000A (en) Refrigerator-freezer and cooling storage
JP2007001485A (en) Refrigerating cycle device for vehicle
WO2014038028A1 (en) Refrigerating device
JP2007093112A (en) Cooling storage
JP2021011985A (en) Two-stage refrigerator
JP2015218911A (en) Refrigeration device
JP2008025902A (en) Heat exchanger and method of manufacturing heat exchanger
JP4289237B2 (en) Refrigerant cooling circuit
KR100666920B1 (en) Heat exchanging device
JP4720510B2 (en) Refrigerant cycle equipment
JP5430598B2 (en) Refrigeration cycle equipment
JP4385999B2 (en) Internal heat exchanger
JP2008175436A (en) Refrigerating device
JP2005257149A (en) Refrigerator
JP4341492B2 (en) Refrigerant cooling circuit
JP2004324902A (en) Freezing refrigerator
JP2007051788A (en) Refrigerating device
JP2010060146A (en) Refrigerator-freezer and cooling storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees