JP5219657B2 - Cooling device and manufacturing method thereof - Google Patents

Cooling device and manufacturing method thereof Download PDF

Info

Publication number
JP5219657B2
JP5219657B2 JP2008170673A JP2008170673A JP5219657B2 JP 5219657 B2 JP5219657 B2 JP 5219657B2 JP 2008170673 A JP2008170673 A JP 2008170673A JP 2008170673 A JP2008170673 A JP 2008170673A JP 5219657 B2 JP5219657 B2 JP 5219657B2
Authority
JP
Japan
Prior art keywords
heat exchanger
primary
refrigerant
cooling device
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008170673A
Other languages
Japanese (ja)
Other versions
JP2009063283A (en
Inventor
和芳 関
明彦 平野
進一 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2008170673A priority Critical patent/JP5219657B2/en
Priority to PCT/JP2009/055336 priority patent/WO2010001643A1/en
Priority to TW98109041A priority patent/TWI440806B/en
Publication of JP2009063283A publication Critical patent/JP2009063283A/en
Application granted granted Critical
Publication of JP5219657B2 publication Critical patent/JP5219657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷却装置に関し、更に詳細には、一次冷媒を機械的に強制循環する一次回路と二次冷媒を自然循環する二次回路と、一次熱交換部および二次熱交換部の熱交換を行なう熱交換器とを備える冷却装置に関するものである。   The present invention relates to a cooling device, and more particularly, a primary circuit that mechanically circulates a primary refrigerant, a secondary circuit that naturally circulates a secondary refrigerant, and heat exchange between a primary heat exchange unit and a secondary heat exchange unit. It is related with a cooling device provided with the heat exchanger which performs.

一次冷媒を機械的に強制循環させる一次回路と、二次冷媒が自然循環する二次回路とを備え、一次冷媒と二次冷媒との間で熱交換するよう構成した冷却装置がある(例えば特許文献1参照)。このような冷却装置90の一次回路94は、図16に示すように、気相一次冷媒を圧縮する圧縮機CMと、圧縮した一次冷媒を液化する凝縮器CDと、液相一次冷媒の圧力を低下させる膨張弁EVと、プレート式熱交換器110に設けられて液相一次冷媒を気化する一次熱交換部96とを配管98で接続して構成されると共に、二次回路104は、プレート式熱交換器110に設けられて気相二次冷媒を液化する二次熱交換部106と、液相二次冷媒を気化する蒸発器EPとを別の配管108で接続して構成されて、プレート式熱交換器110において一次冷媒と二次冷媒とが熱交換することで、最終的に二次回路104の蒸発器EPを冷却するようになっている。そして、このような冷却装置90を備えた冷凍機器では、一次回路94の構成部材CM,CD,EVおよびプレート式熱交換器110を、外気に晒された開放空間に配設すると共に、台板112を介して開放空間の下方に画成した閉鎖空間に二次回路104を構成する蒸発器EPを配設して、閉鎖空間内を冷却するよう構成される。
特開2002−48484号公報
There is a cooling device that includes a primary circuit that mechanically circulates the primary refrigerant and a secondary circuit that naturally circulates the secondary refrigerant, and is configured to exchange heat between the primary refrigerant and the secondary refrigerant (for example, patents). Reference 1). As shown in FIG. 16, the primary circuit 94 of such a cooling device 90 includes a compressor CM that compresses the gas-phase primary refrigerant, a condenser CD that liquefies the compressed primary refrigerant, and the pressure of the liquid-phase primary refrigerant. The expansion valve EV to be lowered and the primary heat exchanging part 96 that is provided in the plate heat exchanger 110 and vaporizes the liquid phase primary refrigerant are connected by a pipe 98, and the secondary circuit 104 has a plate type. A plate formed by connecting a secondary heat exchange unit 106 provided in the heat exchanger 110 for liquefying the gas phase secondary refrigerant and an evaporator EP for vaporizing the liquid phase secondary refrigerant through another pipe 108. In the heat exchanger 110, the primary refrigerant and the secondary refrigerant exchange heat to finally cool the evaporator EP of the secondary circuit 104. In the refrigeration equipment provided with such a cooling device 90, the constituent members CM, CD, EV of the primary circuit 94 and the plate heat exchanger 110 are disposed in an open space exposed to the outside air, and a base plate. An evaporator EP that constitutes the secondary circuit 104 is disposed in a closed space defined below the open space via 112 to cool the inside of the closed space.
JP 2002-48484 A

ところで、前述した自然循環タイプの冷凍回路(二次回路104)を備えた冷却装置90では、プレート式熱交換器110で凝縮された液相二次冷媒を重力により蒸発器EPへ自然流下させることで二次冷媒の循環方向を決定づけるようになっている。従って、前記冷却装置90では、二次冷媒を一定方向に自然流下させ得るようプレート式熱交換器110を直立状態(プレートの重ね合わせ方向が水平方向となる姿勢)で設置し、該プレート式熱交換器110の上端部側に気相二次冷媒の流入口を設けると共に、プレート式熱交換器110の下端部側に液相二次冷媒の流出口を設けるよう構成される。一方で、プレート式熱交換器110での一次冷媒および二次冷媒間の熱交換効率を高めるために、一次冷媒と二次冷媒との流通方向が逆方向となるよう構成される。すなわち、前記冷却装置90では、一次回路94側の一次冷媒が流入する流入口をプレート式熱交換器110の下端側に設けると共に、プレート式熱交換器110の上端側に一次冷媒の流出口が形成されて、一次回路94では、一次冷媒は重力に逆らってプレート式熱交換器110を流通することになる。ここで、プレート式熱交換器110における一次冷媒と二次冷媒との熱交換効率の向上を図るためには、一次熱交換部96の経路において一次冷媒の伝熱面積を有効に使用するため、該一次熱交換部96の経路は一次冷媒で満たされていることが望ましい。従来の冷却装置90では、プレート式熱交換器110において重力に逆らって一次冷媒が流通することから、一次冷媒の上昇過程において冷媒密度が増加して一次熱交換部96の経路内の滞留冷媒量が増加して、冷媒の使用量増加といった問題を招来し、またコストが嵩む欠点が指摘される。   By the way, in the cooling device 90 provided with the above-described natural circulation type refrigeration circuit (secondary circuit 104), the liquid phase secondary refrigerant condensed in the plate heat exchanger 110 is naturally flowed down to the evaporator EP by gravity. Thus, the circulation direction of the secondary refrigerant is determined. Therefore, in the cooling device 90, the plate heat exchanger 110 is installed in an upright state (an attitude in which the overlapping direction of the plates is in the horizontal direction) so that the secondary refrigerant can naturally flow down in a certain direction. A gas phase secondary refrigerant inlet is provided on the upper end side of the exchanger 110, and a liquid phase secondary refrigerant outlet is provided on the lower end side of the plate heat exchanger 110. On the other hand, in order to increase the heat exchange efficiency between the primary refrigerant and the secondary refrigerant in the plate heat exchanger 110, the flow direction of the primary refrigerant and the secondary refrigerant is configured to be opposite. That is, in the cooling device 90, an inlet through which the primary refrigerant flows into the primary circuit 94 side is provided at the lower end side of the plate heat exchanger 110, and an outlet of the primary refrigerant is provided at the upper end side of the plate heat exchanger 110. Thus, in the primary circuit 94, the primary refrigerant flows through the plate heat exchanger 110 against gravity. Here, in order to improve the heat exchange efficiency between the primary refrigerant and the secondary refrigerant in the plate heat exchanger 110, in order to effectively use the heat transfer area of the primary refrigerant in the path of the primary heat exchange unit 96, The path of the primary heat exchange unit 96 is preferably filled with a primary refrigerant. In the conventional cooling device 90, the primary refrigerant flows against the gravity in the plate heat exchanger 110, so that the refrigerant density increases in the rising process of the primary refrigerant, and the amount of refrigerant staying in the path of the primary heat exchange unit 96 Increases the amount of refrigerant used, leading to problems such as increased costs.

また、例えば冷蔵庫等のように内部に収納室(前記閉鎖空間に相当する)が内部画成される機器では、機器自体の大きさを変更することなく収納室容積を大きくする要請が高い。しかしながら、前述のように二次回路104では、プレート式熱交換器110における二次冷媒の流入口と流出口との高低差を利用して二次冷媒の循環方向を決定づける関係上、プレート式熱交換器110が台板112上に直立状態で設置されるため、台板112の下方に位置する収納室容積を圧迫する要因となっていた。   In addition, in a device such as a refrigerator in which a storage chamber (corresponding to the closed space) is internally defined, there is a high demand for increasing the storage chamber volume without changing the size of the device itself. However, as described above, the secondary circuit 104 determines the circulation direction of the secondary refrigerant by using the difference in level between the inlet and outlet of the secondary refrigerant in the plate heat exchanger 110. Since the exchanger 110 is installed on the base plate 112 in an upright state, the storage chamber volume located below the base plate 112 is pressed.

そこで、本発明は、熱交換器での熱交換効率を低下することなく一次冷媒の使用量を削減し得ると共に、該熱交換器の高さ寸法を抑制したコンパクトな冷却装置およびその製造方法を提供することを目的とする。   Therefore, the present invention provides a compact cooling device that can reduce the amount of primary refrigerant used without reducing the heat exchange efficiency in the heat exchanger, and that suppresses the height of the heat exchanger, and a method for manufacturing the same. The purpose is to provide.

前記課題を克服し、所期の目的を達成するため、本発明に係る冷却装置は、
一次冷媒を機械的に強制循環する一次回路と、二次冷媒を自然循環する二次回路と、一次冷媒および二次冷媒の間で熱交換する熱交換器とを備えた冷却装置において、
前記一次回路は、一次冷媒を圧縮する圧縮機と、該圧縮機で圧縮された一次冷媒を凝縮する凝縮器と、該凝縮器で凝縮した一次冷媒を減圧する減圧手段と、前記熱交換器に形成されて凝縮器で凝縮した一次冷媒を蒸発する一次熱交換部とを備え、凝縮器と一次熱交換部とを減圧手段を介して接続する一次液配管を前記熱交換器の一方の端側に接続すると共に、前記圧縮機と一次熱交換部とを接続する一次ガス配管を該熱交換器の他方の端側に接続するよう構成され、
前記二次回路は、前記熱交換器に形成されて二次冷媒を凝縮する二次熱交換部と、前記二次熱交換部で凝縮した二次冷媒を蒸発する蒸発器とを備え、前記二次熱交換部と蒸発器とを接続する二次液配管を、前記熱交換器における前記一次液配管の接続端側に接続すると共に、該二次熱交換部と蒸発器とを接続する二次ガス配管を、該熱交換器における前記一次ガス配管の接続端側に接続するよう構成され、
前記一次回路が配設される開放空間と前記二次回路の前記蒸発器が配設される閉鎖空間とを、断熱壁部により区切り、
前記断熱壁部を構成する一対の外郭部材間に前記熱交換器が配置され、
前記熱交換器は、前記一次熱交換部の冷媒流通径路が水平方向または水平面に対して傾斜して延在するよう、水平姿勢または水平面に対して傾斜する姿勢で配置されることを特徴とする。
In order to overcome the above-mentioned problems and achieve the intended purpose, a cooling device according to the present invention includes:
In a cooling device comprising a primary circuit that mechanically circulates a primary refrigerant, a secondary circuit that naturally circulates a secondary refrigerant, and a heat exchanger that exchanges heat between the primary refrigerant and the secondary refrigerant,
The primary circuit includes a compressor that compresses the primary refrigerant, a condenser that condenses the primary refrigerant compressed by the compressor, a decompression unit that decompresses the primary refrigerant condensed by the condenser, and a heat exchanger. A primary heat exchange part for evaporating the primary refrigerant formed and condensed in the condenser, and a primary liquid pipe for connecting the condenser and the primary heat exchange part via a decompression means on one end side of the heat exchanger And a primary gas pipe connecting the compressor and the primary heat exchange unit is connected to the other end side of the heat exchanger,
The secondary circuit includes a secondary heat exchange unit that is formed in the heat exchanger and condenses the secondary refrigerant, and an evaporator that evaporates the secondary refrigerant condensed in the secondary heat exchange unit, A secondary liquid pipe that connects the secondary heat exchange section and the evaporator is connected to a connection end side of the primary liquid pipe in the heat exchanger, and a secondary pipe that connects the secondary heat exchange section and the evaporator. The gas pipe is configured to be connected to a connection end side of the primary gas pipe in the heat exchanger,
An open space in which the primary circuit is disposed and a closed space in which the evaporator of the secondary circuit is disposed are separated by a heat insulating wall,
The heat exchanger is disposed between a pair of outer members constituting the heat insulating wall,
The heat exchanger is arranged in a horizontal posture or a posture inclined with respect to a horizontal plane so that a refrigerant flow path of the primary heat exchange section extends in a horizontal direction or with respect to a horizontal plane. .

すなわち、一次熱交換部の冷媒流通経路が水平面に対して傾斜するよう熱交換器を水平面に対して傾斜させたことにより、一次熱交換部における一次液配管の接続部位と一次ガス配管の接続部位との高低差を小さくでき、重力に抵抗して上昇する垂直成分が減少し、熱交換器内の一次冷媒密度の増加割合が軽減され、これにより滞留冷媒量の増加割合も軽減されるため、一次回路での一次冷媒の使用量を減少し得る。このとき、熱交換器においては、一次回路を流通する一次冷媒と二次回路を流通する二次冷媒との間で、比較的熱伝達率の大きい潜熱同士による熱交換が行なわれるから、該熱交換器内の滞留冷媒量が減少しても熱交換効率を損なうことはない。また、熱交換器を水平面に対して傾斜することで、該熱交換器の上下の高さ寸法を抑制することができ、冷却装置をコンパクトにし得る。断熱壁部内に熱交換器を配設することで、該熱交換器を別途断熱材で覆う必要がない。 That is, by connecting the heat exchanger with respect to the horizontal plane so that the refrigerant flow path of the primary heat exchange section is inclined with respect to the horizontal plane, the connection site of the primary liquid pipe and the connection site of the primary gas pipe in the primary heat exchange unit The vertical component that rises against gravity is reduced, the rate of increase in the primary refrigerant density in the heat exchanger is reduced, and this also reduces the rate of increase in the amount of accumulated refrigerant. The amount of primary refrigerant used in the primary circuit can be reduced. At this time, in the heat exchanger, heat exchange is performed between the primary refrigerant flowing through the primary circuit and the secondary refrigerant flowing through the secondary circuit by latent heat having a relatively large heat transfer coefficient. Even if the amount of refrigerant staying in the exchanger decreases, the heat exchange efficiency is not impaired. In addition, by tilting the heat exchanger with respect to the horizontal plane, the vertical height of the heat exchanger can be suppressed, and the cooling device can be made compact. By disposing the heat exchanger in the heat insulating wall, it is not necessary to cover the heat exchanger with a separate heat insulating material.

請求項に係る発明は、前記熱交換器は、プレート式熱交換器であって、該プレート式熱交換器は水平姿勢または水平面に対して傾斜する姿勢で配置されることを要旨とする。 The gist of the invention according to claim 6 is that the heat exchanger is a plate heat exchanger, and the plate heat exchanger is arranged in a horizontal posture or a posture inclined with respect to a horizontal plane.

すなわち、プレート式熱交換器は、能力の変更が行ない易い。   That is, the plate type heat exchanger is easy to change the capacity.

請求項に係る発明は、前記熱交換器は、前記一次熱交換部または前記二次熱交換部の何れか一方をなす外管と、該外管の内部に挿通され、前記一次熱交換部または前記二次熱交換部の何れか他方をなす内管とから構成されることを要旨とする。 The invention according to claim 7 is characterized in that the heat exchanger is inserted into the outer tube that forms either the primary heat exchange unit or the secondary heat exchange unit, and the primary heat exchange unit. Or it makes it a summary to comprise from the inner pipe | tube which makes any one of the said secondary heat exchange parts.

すなわち、熱交換器として外管と内管とからなる所謂二重管式を用いることで、形状の自由度が高く、スペースを有効に利用し得る。   That is, by using a so-called double tube type composed of an outer tube and an inner tube as a heat exchanger, the degree of freedom of shape is high and a space can be used effectively.

請求項に係る発明は、前記熱交換器と水平面とのなす角θは、前記液配管の接続端側を基準として、前記ガス配管の接続端側に向けて上方傾斜する姿勢を正の値とした場合に、−4°<θ≦45°の範囲に設定されることを要旨とする。 In the invention according to claim 8 , the angle θ formed by the heat exchanger and the horizontal plane is a positive value that is inclined upward toward the connection end side of the gas pipe with respect to the connection end side of the liquid pipe. In this case, the gist is that it is set in a range of −4 ° <θ ≦ 45 °.

このように熱交換器と水平面とのなす角θを−4°<θ≦45°の範囲に設定した場合には、熱交換器における二次冷媒を二次ガス配管から二次液配管へ向けて流通させることができ、冷却能力の低下を招来することはない。また開放空間と閉鎖空間とを区切る断熱壁部内への熱交換器の設置が可能となる。   When the angle θ between the heat exchanger and the horizontal plane is set in the range of −4 ° <θ ≦ 45 ° in this way, the secondary refrigerant in the heat exchanger is directed from the secondary gas pipe to the secondary liquid pipe. The cooling capacity is not reduced. In addition, it is possible to install a heat exchanger in the heat insulating wall that separates the open space and the closed space.

請求項に係る発明は、前記熱交換器と水平面とのなす角θは、前記液配管の接続端側を基準として、前記ガス配管の接続端側に向けて上方傾斜する姿勢を正の値とした場合に、4°≦θ≦45°の範囲に設定されることを要旨とする。 In the invention according to claim 9 , the angle θ formed by the heat exchanger and the horizontal plane is a positive value that is inclined upward toward the connection end side of the gas pipe with respect to the connection end side of the liquid pipe. In this case, the gist is that the angle is set in a range of 4 ° ≦ θ ≦ 45 °.

このように熱交換器と水平面とのなす角θを4°≦θ≦45°の範囲に設定した場合には、熱交換器における二次冷媒の自然循環方向を重力作用により決定づけることができる。   Thus, when the angle θ formed by the heat exchanger and the horizontal plane is set in the range of 4 ° ≦ θ ≦ 45 °, the natural circulation direction of the secondary refrigerant in the heat exchanger can be determined by the gravity action.

請求項10に係る発明は、前記熱交換器と水平面とのなす角θは、前記液配管の接続端側を基準として、前記ガス配管の接続端側に向けて上方傾斜する姿勢を正の値とした場合に、−4°<θ<4°の範囲に設定されることを要旨とする。 In the invention according to claim 10 , the angle θ formed by the heat exchanger and the horizontal plane is a positive value that is inclined upward toward the connection end side of the gas pipe with respect to the connection end side of the liquid pipe. In this case, the gist is that it is set in a range of −4 ° <θ <4 °.

このように、熱交換器と水平面とのなす角θを−4°<θ<4°の範囲に設定した場合には、熱交換器における温度勾配の存在により二次冷媒を自然循環させ得る。すなわち、傾斜角θが−4°<θ<4°となる水平に近い状態で熱交換器を設置し得るから、設計における冗長性が確保される。   Thus, when the angle θ formed by the heat exchanger and the horizontal plane is set in a range of −4 ° <θ <4 °, the secondary refrigerant can be naturally circulated due to the presence of the temperature gradient in the heat exchanger. That is, since the heat exchanger can be installed in a nearly horizontal state where the inclination angle θ is −4 ° <θ <4 °, redundancy in design is ensured.

請求項11に係る発明は、前記二次回路における蒸発器は、前記二次液配管に接続する流入端が前記二次ガス配管に接続する流出端より上部に位置するよう構成されたことを要旨とする。 The invention according to claim 11 is characterized in that the evaporator in the secondary circuit is configured such that an inflow end connected to the secondary liquid pipe is located above an outflow end connected to the secondary gas pipe. And

傾斜角θが−4°<θ<4°となる範囲で熱交換器を配設した場合には、冷凍負荷の減少により二次冷媒の循環方向の逆転が起こり得る。このとき、二次液配管に接続する流入端を蒸発器の上部に配置すると共に、二次ガス配管に接続する流出端を蒸発器の下部に配置することで、蒸発器における二次冷媒の伝熱面積を減少することができ、自動的に冷却能力を抑制することが可能となる。   When the heat exchanger is disposed in the range where the inclination angle θ is −4 ° <θ <4 °, the reversal of the circulation direction of the secondary refrigerant may occur due to a decrease in the refrigeration load. At this time, the inflow end connected to the secondary liquid pipe is arranged at the upper part of the evaporator, and the outflow end connected to the secondary gas pipe is arranged at the lower part of the evaporator, thereby transferring the secondary refrigerant in the evaporator. The heat area can be reduced, and the cooling capacity can be automatically suppressed.

請求項に係る発明は、前記熱交換器は、該熱交換器または外郭部材に形成された突起部により水平面に対して傾斜角θで傾斜するよう構成されたことを要旨とする。 The invention according to claim 2, the pre-Symbol heat exchanger, and summarized in that configured to inclined at an inclination angle θ relative to the horizontal plane by a projection formed on the heat exchanger or outer member.

このように、熱交換器または外郭部材に突起部を形成して熱交換器を傾斜角θに位置決めするから、簡単な作業で正確に熱交換器を傾斜角θで配設することができる。 Thus, since the protrusion is formed on the heat exchanger or the outer member and the heat exchanger is positioned at the inclination angle θ, the heat exchanger can be accurately arranged at the inclination angle θ by a simple operation.

請求項に係る発明は、前記突起部は、断熱性能を有する部材により形成されることを要旨とする。 The gist of the invention according to claim 3 is that the protrusion is formed of a member having heat insulation performance.

このように、断熱性能を有する部材により前記突起部を形成することで、断熱壁部の断熱性能を損なうことはない。   Thus, the heat insulation performance of a heat insulation wall part is not impaired by forming the said projection part with the member which has heat insulation performance.

請求項に係る発明は、前記外郭部材に形成されて水平面に対して傾斜角θとなる傾斜面に、前記熱交換器を設置することで該熱交換器が水平面に対して傾斜角θで傾斜するよう構成されたことを要旨とする。 The invention according to claim 4, before the inclined surface as the inclined angle θ with respect to formed horizontal plane Kigaikaku member, the inclination angle θ heat exchanger with respect to a horizontal plane by installing the heat exchanger The gist is that it is configured so as to be inclined.

このように、外郭部材に形成した傾斜面に熱交換器を設置するだけで該熱交換器を傾斜角θに位置決めし得るから、簡単な作業で正確に熱交換器を配設することができる。 Thus, it is because in addition to installing the heat exchanger to the inclined surface formed on the outer Guo member may position the heat exchanger in the inclination angle theta, arranged exactly heat exchanger with a simple task it can.

請求項に係る発明は、前記外郭部材を水平面に対して傾斜させることで、前記熱交換器が水平面に対して傾斜角θで傾斜するよう構成されたことを要旨とする。 The invention according to claim 5, before Kigaikaku member that is inclined relative to the horizontal plane, and summarized in that the heat exchanger is configured to be inclined at an inclination angle θ relative to the horizontal plane.

このように、熱交換器を配設した断熱壁部を、水平面に対して外郭部材が傾斜角θで傾斜するよう設置することにより、該熱交換器を傾斜角θとし得るから、簡単な作業で正確に熱交換器を配設することができる。 In this way, by installing the heat insulating wall portion provided with the heat exchanger so that the outer member is inclined at the inclination angle θ with respect to the horizontal plane , the heat exchanger can be set at the inclination angle θ, so that the simple work Thus, the heat exchanger can be accurately arranged.

請求項12に係る発明は、前記断熱壁部を構成する一対の外郭部材間に前記熱交換器を配置するよう構成された請求項1〜11の何れか一項に記載の冷却装置を製造する方法であって、
前記一対の外郭部材間に前記熱交換器を配置すると共に、前記一次回路および熱交換器を接続する配管と、前記二次回路および熱交換器を接続する配管とを拘束治具により保持した状態で、一対の外郭部材間に発泡材を充填するようにしたことを要旨とする。
The invention which concerns on Claim 12 manufactures the cooling device as described in any one of Claims 1-11 comprised so that the said heat exchanger may be arrange | positioned between a pair of outer shell members which comprise the said heat insulation wall part. A method,
A state in which the heat exchanger is disposed between the pair of outer members, and a pipe connecting the primary circuit and the heat exchanger and a pipe connecting the secondary circuit and the heat exchanger are held by a restraining jig The gist is that the foam material is filled between the pair of outer members.

このように、前記熱交換器を断熱壁部内に配設するに際し、該熱交換器に接続する各配管を拘束治具で保持することにより、一対の外郭部材間に発泡材を充填した際に当該熱交換器が位置ズレするのを防止し得る。また、熱交換器に接続する各配管を拘束治具で保持することで、該熱交換器を水平面に対して傾斜角θで傾斜保持し得るから、簡単な作業で熱交換器を傾斜させ得ると共に、熱交換器が傾斜角θで正確に傾斜した冷却装置を製造し得る。   As described above, when the heat exchanger is disposed in the heat insulating wall, each pipe connected to the heat exchanger is held by a restraining jig, so that the foam material is filled between the pair of outer members. It is possible to prevent the heat exchanger from being displaced. Also, by holding each pipe connected to the heat exchanger with a restraining jig, the heat exchanger can be held at an inclination angle θ with respect to the horizontal plane, so that the heat exchanger can be tilted with a simple operation. At the same time, a cooling device in which the heat exchanger is accurately inclined at the inclination angle θ can be manufactured.

すなわち、本発明に係る冷却装置およびその製造方法よれば、熱交換器での熱交換効率を低下することなく一次冷媒の使用量を削減し得ると共に、該熱交換器の高さ寸法を抑制して装置自体をコンパクトにできる。   That is, according to the cooling device and the manufacturing method thereof according to the present invention, the amount of primary refrigerant used can be reduced without reducing the heat exchange efficiency in the heat exchanger, and the height dimension of the heat exchanger can be suppressed. The device itself can be made compact.

次に、本発明に係る冷却装置およびその製造方法につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。実施例では、店舗等の業務用途に用いられ、野菜や肉等の物品を多量に収納し得る大型の冷蔵庫に設けられる冷却装置を例に挙げて説明する。なお、従来技術において説明した部材・構成と同一の部材・構成に関しては、同一の符号を付してある。   Next, preferred embodiments of the cooling device and the manufacturing method thereof according to the present invention will be described below with reference to the accompanying drawings. In the embodiment, a cooling device provided for a large refrigerator that can be used for business purposes such as a store and can store a large amount of articles such as vegetables and meat will be described as an example. In addition, the same code | symbol is attached | subjected about the same member and structure as the member and structure demonstrated in the prior art.

図1に示すように、実施例1に係る冷蔵庫10は、収納室(閉鎖空間)14を内部画成した断熱構造の箱体12と、この箱体12の上方に設けられ、金属パネル18により外壁を構成したキャビネット16とを備えている。箱体12には、前側に開放して物品の出し入れ口となる開口部12aが収納室14に連通して開設される。また箱体12の前部には、断熱扉22が図示しないヒンジにより回動可能に配設され、断熱扉22を開放することで開口部12aを介して収納室14に対する物品の出し入れが許容されると共に、断熱扉22を閉成することで収納室14を密閉し得るようになっている。   As shown in FIG. 1, the refrigerator 10 according to the first embodiment includes a box 12 having a heat insulating structure that internally defines a storage chamber (closed space) 14, and a metal panel 18 provided above the box 12. And a cabinet 16 constituting an outer wall. In the box 12, an opening portion 12 a that opens to the front side and serves as an entry / exit port for goods is opened in communication with the storage chamber 14. Further, a heat insulating door 22 is rotatably disposed at a front portion of the box body 12 by a hinge (not shown), and by opening the heat insulating door 22, an article can be taken into and out of the storage chamber 14 through the opening 12a. In addition, the storage chamber 14 can be sealed by closing the heat insulating door 22.

前記キャビネット16の内部には、収納室14を冷却するための冷却装置32の一部および該冷却装置32を制御する制御用電装箱(図示せず)が配設される機械室(開放空間)20が画成される(図2参照)。機械室20の底部には、箱体12の天板12bに載置されて、該機械室20に配設する機器の共通基板となる台板(断熱壁部)24が設置されている。そして、キャビネット16の外壁をなす金属パネル18には、機械室20に連通する空気流通孔(図示せず)が適宜部位に開設され、この空気流通孔を介して機械室20内の雰囲気と外気とが入替わるようになっている。   Inside the cabinet 16, a machine room (open space) in which a part of a cooling device 32 for cooling the storage chamber 14 and a control electrical box (not shown) for controlling the cooling device 32 are arranged. ) 20 is defined (see FIG. 2). At the bottom of the machine room 20, a base plate (heat insulating wall part) 24 that is placed on the top plate 12 b of the box 12 and serves as a common substrate for the devices disposed in the machine room 20 is installed. The metal panel 18 forming the outer wall of the cabinet 16 is provided with air circulation holes (not shown) communicating with the machine room 20 at appropriate locations, and the atmosphere in the machine room 20 and the outside air are communicated through the air circulation holes. And are to be replaced.

前記収納室14の上部には、箱体12における天板12bの下面から所定間隔離間して冷却ダクト26が配設され、この冷却ダクト26と、箱体12の天板12bに開設した切欠口12cを介して収納室14側に臨む台板24との間に冷却室28が画成される。この冷却室28は、冷却ダクト26の底部前側に形成した吸込口26aおよび後側に形成した冷気吹出口26bを介して収納室14に連通して、閉鎖空間としての収納室14の一部を構成している。吸込口26aには送風ファン30が配設され、該送風ファン30を駆動することで、吸込口26aから収納室14の空気を冷却室28に取込み、冷気吹出口26bから冷却室28の冷気が収納室14に送出される。天板12bの切欠口12cは、台板24で気密的に塞がれて、収納室14(冷却室28)と機械室20とは、台板24で区切られて互いに独立した空間となっている(図1参照)。   In the upper part of the storage chamber 14, a cooling duct 26 is disposed at a predetermined distance from the lower surface of the top plate 12b in the box 12, and the cooling duct 26 and a notch formed in the top plate 12b of the box 12 are provided. A cooling chamber 28 is defined between the base plate 24 facing the storage chamber 14 via 12c. The cooling chamber 28 communicates with the storage chamber 14 through a suction port 26a formed on the front side of the bottom of the cooling duct 26 and a cold air outlet 26b formed on the rear side, and a part of the storage chamber 14 as a closed space is formed. It is composed. A blower fan 30 is disposed at the suction port 26a. By driving the blower fan 30, the air in the storage chamber 14 is taken into the cooling chamber 28 from the suction port 26a, and the cool air in the cooling chamber 28 is drawn from the cool air outlet 26b. It is sent to the storage chamber 14. The notch 12c of the top plate 12b is hermetically closed by the base plate 24, and the storage chamber 14 (cooling chamber 28) and the machine room 20 are separated from each other by the base plate 24 and become independent spaces. (See FIG. 1).

図2に示す如く、冷却装置32は、一次冷媒を強制循環する機械圧縮式の一次回路34と、二次冷媒が自然対流するサーモサイフォンからなる二次回路44との2系統の回路を、傾斜配置されたプレート式熱交換器HEを介して接続(カスケード接続)した二次ループ冷凍回路が採用される。プレート式熱交換器HEは、一次回路34を構成する一次熱交換部36と、この一次熱交換部36とは別系統に形成されて、二次回路44を構成する二次熱交換部46とを備え、収納室14と機械室20とを区画する台板24内に配設されている(図1参照)。すなわち、一次回路34および二次回路44には、独立した冷媒循環経路が夫々形成されている。また、一次回路34を循環する一次冷媒としては、蒸発熱や飽和圧等の冷媒としての特性に優れているブタンやプロパン等のHC系の冷媒またはアンモニアなどが採用され、二次回路44を循環する二次冷媒としては、毒性、可燃性および腐食性を有していない安全性の高い二酸化炭素が採用される。   As shown in FIG. 2, the cooling device 32 tilts two systems of circuits, a mechanical compression primary circuit 34 forcibly circulating the primary refrigerant and a secondary circuit 44 composed of a thermosiphon in which the secondary refrigerant naturally convects. A secondary loop refrigeration circuit connected (cascade connection) via the arranged plate heat exchanger HE is employed. The plate heat exchanger HE includes a primary heat exchange unit 36 that constitutes the primary circuit 34, and a secondary heat exchange unit 46 that is formed in a separate system from the primary heat exchange unit 36 and constitutes the secondary circuit 44. And disposed in a base plate 24 that divides the storage chamber 14 and the machine chamber 20 (see FIG. 1). That is, independent refrigerant circulation paths are formed in the primary circuit 34 and the secondary circuit 44, respectively. Further, as the primary refrigerant circulating in the primary circuit 34, HC refrigerant such as butane or propane having excellent characteristics as a refrigerant such as heat of evaporation and saturation pressure, ammonia, or the like is adopted and circulated in the secondary circuit 44. As the secondary refrigerant, carbon dioxide having high safety that does not have toxicity, flammability, and corrosivity is employed.

(一次回路)
前記一次回路34は、気相一次冷媒を圧縮する圧縮機CMと、圧縮した一次冷媒を液化する凝縮器CDと、液相一次冷媒の圧力を低下させる膨張弁EVと、前記プレート式熱交換器HEに設けられて液相一次冷媒を蒸発させる一次熱交換部36とを備える。そして、一次回路34においては、凝縮器CD,膨張弁EVおよび一次熱交換部36を、液相一次冷媒が流通する一次液配管38で接続し、一次熱交換部36,圧縮機CMおよび凝縮器CDを、気相一次冷媒が流通する一次ガス配管40で接続している(図2参照)。すなわち、一次回路34では、圧縮機CMによる一次冷媒の圧縮により、圧縮機CM、凝縮器CD、膨張弁EV、一次熱交換部36(プレート式熱交換器HE)および圧縮機CMの順に一次冷媒が強制循環し、一次熱交換部36において液相一次冷媒が気化することでプレート式熱交換器HEを冷却する(図3参照)。
(Primary circuit)
The primary circuit 34 includes a compressor CM for compressing the gas phase primary refrigerant, a condenser CD for liquefying the compressed primary refrigerant, an expansion valve EV for reducing the pressure of the liquid primary refrigerant, and the plate heat exchanger. And a primary heat exchange unit 36 provided in the HE to evaporate the liquid phase primary refrigerant. In the primary circuit 34, the condenser CD, the expansion valve EV, and the primary heat exchange unit 36 are connected by a primary liquid pipe 38 through which the liquid phase primary refrigerant flows, and the primary heat exchange unit 36, the compressor CM, and the condenser are connected. CDs are connected by a primary gas pipe 40 through which a gas phase primary refrigerant flows (see FIG. 2). That is, in the primary circuit 34, the primary refrigerant is compressed in the order of the compressor CM, the condenser CD, the expansion valve EV, the primary heat exchanger 36 (plate heat exchanger HE), and the compressor CM by the compression of the primary refrigerant by the compressor CM. Is forcedly circulated, and the liquid phase primary refrigerant is vaporized in the primary heat exchanging section 36 to cool the plate heat exchanger HE (see FIG. 3).

また、前記圧縮機CMおよび凝縮器CDは、機械室20において台板24上に共通的に配設され、凝縮器CDを強制冷却する凝縮器ファンFMも、該凝縮器CDに対向して台板24上に配設される。すなわち、凝縮器ファンFMの駆動により金属パネル18に開設した空気流通孔から外気が機械室20に取込まれて、凝縮器CDおよび圧縮機CMと熱交換するようになっている。なお、前述した制御用電装箱は、機械室20において凝縮器ファンFMによる空気の流れを阻害しない位置(実施例1では機械室20の側部)で台板24上に配設されている。   The compressor CM and the condenser CD are commonly disposed on the base plate 24 in the machine room 20, and a condenser fan FM for forcibly cooling the condenser CD is also placed on the stage facing the condenser CD. Arranged on the plate 24. That is, outside air is taken into the machine room 20 from the air circulation hole opened in the metal panel 18 by driving the condenser fan FM, and heat exchange is performed with the condenser CD and the compressor CM. The control electrical box described above is disposed on the base plate 24 at a position that does not obstruct the air flow by the condenser fan FM in the machine room 20 (side of the machine room 20 in the first embodiment). .

(二次回路)
前記二次回路44は、前記プレート式熱交換器HEに設けられて気相二次冷媒を液化する二次熱交換部46と、液相二次冷媒を気化する蒸発器EPとを備えている(図2参照)。そして、二次回路44は、二次熱交換部46と蒸発器EPとを接続する配管として、二次熱交換部46から蒸発器EPへ重力の作用下に液相二次冷媒を導く二次液配管48と、蒸発器EPから二次熱交換部46へ気相二次冷媒を導く二次ガス配管50とを有している。ここで、蒸発器EPは台板24の下方に画成される冷却室28に配設されて、台板24内に配設される二次熱交換部46(プレート式熱交換器HE)より下方に蒸発器EPが位置するよう構成されている。すなわち、蒸発器EPが二次熱交換部46(プレート式熱交換器HE)より下方に配置された二次回路44では、前記一次回路34における圧縮機CMの動作により強制冷却されるプレート式熱交換器HE(二次熱交換部46)において凝縮された液相二次冷媒が重力作用下に蒸発器EPへ流下し、流下した液相二次冷媒が蒸発器EPにおいて冷却室28(収納室14)内の空気と熱交換して蒸発することで二次熱交換部46に再び戻る冷媒循環サイクルを構成している。なお、前記二次回路44には、二次ガス配管50の途中に膨張タンク54が接続されており、冷却装置32の停止時に常温では液化しない二次冷媒の圧力上昇を抑制するようになっている(図2参照)。
(Secondary circuit)
The secondary circuit 44 includes a secondary heat exchange unit 46 that is provided in the plate heat exchanger HE and liquefies the gas phase secondary refrigerant, and an evaporator EP that vaporizes the liquid phase secondary refrigerant. (See Figure 2). The secondary circuit 44 is a pipe that connects the secondary heat exchange unit 46 and the evaporator EP, and leads the secondary secondary refrigerant from the secondary heat exchange unit 46 to the evaporator EP under the action of gravity. It has a liquid pipe 48 and a secondary gas pipe 50 that guides the gas phase secondary refrigerant from the evaporator EP to the secondary heat exchange unit 46. Here, the evaporator EP is disposed in the cooling chamber 28 defined below the base plate 24, and from a secondary heat exchange section 46 (plate type heat exchanger HE) disposed in the base plate 24. The evaporator EP is configured to be positioned below. That is, in the secondary circuit 44 in which the evaporator EP is disposed below the secondary heat exchanger 46 (plate heat exchanger HE), the plate heat that is forcibly cooled by the operation of the compressor CM in the primary circuit 34. The liquid phase secondary refrigerant condensed in the exchanger HE (secondary heat exchange section 46) flows down to the evaporator EP under the action of gravity, and the liquid phase secondary refrigerant that has flowed down flows into the cooling chamber 28 (storage chamber) in the evaporator EP. 14) It constitutes a refrigerant circulation cycle that returns to the secondary heat exchange section 46 by exchanging heat with the air inside and evaporating. An expansion tank 54 is connected to the secondary circuit 44 in the middle of the secondary gas pipe 50 so as to suppress an increase in the pressure of the secondary refrigerant that does not liquefy at room temperature when the cooling device 32 is stopped. (See FIG. 2).

ここで、前記蒸発器EPは、管路を蛇行させた蒸発管(冷媒経路)52を有し、前記二次液配管48に接続する蒸発管52の流入端52aが、蒸発器EPの上部に設けられると共に、前記二次ガス配管50に接続する蒸発管52の流出端52bが、蒸発器EPの下部に設けられている(図2参照)。すなわち、前記蒸発器EPは、蒸発管52の流入端52aが流出端52bより上方に位置するようになっている。また蒸発管52は、流入端52aと流出端52bとの上下幅の間に延在するよう形成され、蒸発管52に流入した液相二次冷媒を、重力の作用下に流出端52b側まで拡散させるように導くようになっている。より具体的には、蒸発管52は、傾斜する直線部分が上下の関係で葛折り状態で折り重なると共に、屈曲部分が横方向に離間した蛇行形状に管路が形成され、この管路が流入端52a側から流出端52b側に向かうにつれて下り勾配となるよう構成されている。   Here, the evaporator EP has an evaporation pipe (refrigerant path) 52 having a meandering pipe line, and an inflow end 52a of the evaporation pipe 52 connected to the secondary liquid pipe 48 is formed above the evaporator EP. In addition, an outflow end 52b of the evaporation pipe 52 connected to the secondary gas pipe 50 is provided at the lower part of the evaporator EP (see FIG. 2). That is, the evaporator EP is configured such that the inflow end 52a of the evaporation pipe 52 is located above the outflow end 52b. The evaporation pipe 52 is formed so as to extend between the upper and lower widths of the inflow end 52a and the outflow end 52b, and the liquid-phase secondary refrigerant that has flowed into the evaporation pipe 52 is moved to the outflow end 52b side under the action of gravity. Guided to diffuse. More specifically, the evaporating pipe 52 is formed in a meandering shape in which the inclined straight part is folded in a distorted state in an up-and-down relationship, and the bent part is laterally spaced, and this pipe line is formed at the inflow end. It is comprised so that it may become a downward slope as it goes to the outflow end 52b side from 52a side.

(プレート式熱交換器)
前記プレート式熱交換器HEは、図3に示すように、複数のプレート60を所要間隔離間するように並列に対向配置して構成され、対向するプレート60,60の間に、前記一次回路34の一次熱交換部36を構成する第1の流路60aと、前記二次回路44の二次熱交換部46を構成する第2の流路60bとが並列に複数形成される。ここで、前記第1の流路60aと、第2の流路60bとは、前記プレート60の重ね合わせ方向に交互に位置するよう独立して形成されて、前記一次液配管38および一次ガス配管40の夫々が各第1の流路60aに連通するよう構成されると共に、前記二次液配管48および二次ガス配管50の夫々が各第2の流路60bに連通するよう構成される。すなわち、プレート式熱交換器HEでは、隣接する第1および第2の流路60a,60bに一次冷媒および二次冷媒を独立して流通させることで、各プレート60を介して一次冷媒および二次冷媒間で熱交換を図るようになっている。なお、プレート式熱交換器は、能力の変更が行ない易い利点がある。
(Plate heat exchanger)
As shown in FIG. 3, the plate heat exchanger HE is configured by arranging a plurality of plates 60 facing each other in parallel so as to be spaced apart from each other, and the primary circuit 34 is disposed between the opposed plates 60, 60. A plurality of first flow paths 60a constituting the primary heat exchange section 36 and a plurality of second flow paths 60b constituting the secondary heat exchange section 46 of the secondary circuit 44 are formed in parallel. Here, the first flow path 60a and the second flow path 60b are independently formed so as to be alternately positioned in the overlapping direction of the plates 60, and the primary liquid pipe 38 and the primary gas pipe. Each of 40 is configured to communicate with each first flow path 60a, and each of the secondary liquid piping 48 and the secondary gas piping 50 is configured to communicate with each second flow path 60b. That is, in the plate heat exchanger HE, the primary refrigerant and the secondary refrigerant are allowed to flow independently through the respective plates 60 by allowing the primary refrigerant and the secondary refrigerant to flow independently through the adjacent first and second flow paths 60a and 60b. Heat is exchanged between the refrigerants. The plate heat exchanger has an advantage that the capacity can be easily changed.

ここで、図3に示すように、前記プレート式熱交換器HEは、前記第1および第2の流路60a,60bが水平面に対して所要の傾斜角θで交差するよう前記台板24内に配設される(図4参照)。そして、プレート式熱交換器HEにおける機械室20に対向する面側(傾斜上面側)に前記一次液配管38および一次ガス配管40を接続し、プレート式熱交換器HEにおける収納室14に対向する面側(傾斜下面側)に前記二次液配管48および二次ガス配管50を接続するよう構成されている。また、前記一次液配管38および二次液配管48は、前記プレート式熱交換器HEの同一端部側(図3または図4では傾斜下端部側)で各対応の熱交換部36,46に接続されると共に、前記一次ガス配管40および二次ガス配管50は、プレート式熱交換器HEにおける一次液配管38および二次液配管48から離間する端部側(図3または図4では傾斜上端部側)で各対応の熱交換部36,46に接続されている。   Here, as shown in FIG. 3, the plate-type heat exchanger HE is arranged in the base plate 24 so that the first and second flow paths 60a and 60b intersect the horizontal plane at a required inclination angle θ. (See FIG. 4). The primary liquid pipe 38 and the primary gas pipe 40 are connected to the surface side (inclined upper surface side) facing the machine chamber 20 in the plate heat exchanger HE, and face the storage chamber 14 in the plate heat exchanger HE. The secondary liquid pipe 48 and the secondary gas pipe 50 are connected to the surface side (inclined lower surface side). Further, the primary liquid pipe 38 and the secondary liquid pipe 48 are connected to the corresponding heat exchanging portions 36 and 46 on the same end side (inclined lower end side in FIG. 3 or FIG. 4) of the plate heat exchanger HE. In addition, the primary gas pipe 40 and the secondary gas pipe 50 are connected to the end side away from the primary liquid pipe 38 and the secondary liquid pipe 48 in the plate heat exchanger HE (in FIG. 3 or FIG. Are connected to the corresponding heat exchanging parts 36, 46 on the part side).

なお、以下の説明では、前記プレート式熱交換器HEにおける液配管38,48を接続した端部側を基準として、プレート式熱交換器HEと水平面とがなす角を傾斜角θとして表わすものとする。また、一次液配管38および二次液配管48から一次ガス配管40および二次ガス配管50へ向けてプレート式熱交換器HEが上方傾斜する場合における傾斜角θを正の値とし、該プレート式熱交換器HEが下方傾斜する場合における傾斜角θを負の値とする。   In the following description, the angle between the plate heat exchanger HE and the horizontal plane is expressed as an inclination angle θ with reference to the end portion side where the liquid pipes 38 and 48 are connected in the plate heat exchanger HE. To do. Further, when the plate type heat exchanger HE is inclined upward from the primary liquid pipe 38 and the secondary liquid pipe 48 to the primary gas pipe 40 and the secondary gas pipe 50, the inclination angle θ is set to a positive value. The inclination angle θ when the heat exchanger HE is inclined downward is a negative value.

ここで、前記プレート式熱交換器HEは、傾斜角θが−4°<θ≦45°の範囲となるよう前記台板24に配設される。前記傾斜角45°<θに設定した場合には、傾斜配設したプレート式熱交換器HEの高さ寸法が大きくなり過ぎ、該プレート式熱交換器HEの台板24内への配設が困難となる。また、前記プレート式熱交換器HEの傾斜角θを−4°<θに設定することで、前記二次回路44の二次熱交換部46において二次冷媒を二次ガス配管50から二次液配管48へ自然循環させて所要の冷凍能力を発揮し得る一方で、該傾斜角θをθ≦−4°に設定した場合には、二次熱交換部46において二次冷媒が二次液配管48から二次ガス配管50へ循環して冷凍能力の低下を招来する。なお、二次熱交換部46における二次ガス配管50から二次液配管48への二次冷媒の循環を正循環と指称し、二次液配管48から二次ガス配管50への二次冷媒の循環を逆循環と指称する。また、前記二次熱交換部46で二次冷媒を正循環させつつ、プレート式熱交換器HEを台板24内に配設するには、傾斜角θを−4°<θ≦8°に設定するのが好適である。傾斜角θを8°<θに設定すると、収納室14と機械室20との断熱を図るのに必要な厚み寸法以上に台板24が厚くなる。   Here, the plate heat exchanger HE is disposed on the base plate 24 so that the inclination angle θ is in the range of −4 ° <θ ≦ 45 °. When the inclination angle is set to 45 ° <θ, the height of the inclined plate heat exchanger HE becomes too large, and the plate heat exchanger HE is disposed in the base plate 24. It becomes difficult. Further, by setting the inclination angle θ of the plate heat exchanger HE to −4 ° <θ, the secondary refrigerant is supplied from the secondary gas pipe 50 to the secondary in the secondary heat exchange section 46 of the secondary circuit 44. While the required refrigeration capacity can be exhibited by natural circulation to the liquid pipe 48, the secondary refrigerant is converted into the secondary liquid in the secondary heat exchange unit 46 when the inclination angle θ is set to θ ≦ −4 °. The refrigerant is circulated from the pipe 48 to the secondary gas pipe 50 to cause a reduction in refrigeration capacity. The circulation of the secondary refrigerant from the secondary gas pipe 50 to the secondary liquid pipe 48 in the secondary heat exchange unit 46 is referred to as normal circulation, and the secondary refrigerant from the secondary liquid pipe 48 to the secondary gas pipe 50 is called. This circulation is referred to as reverse circulation. In order to arrange the plate heat exchanger HE in the base plate 24 while the secondary refrigerant is normally circulated in the secondary heat exchange section 46, the inclination angle θ is set to −4 ° <θ ≦ 8 °. It is preferable to set. When the inclination angle θ is set to 8 ° <θ, the base plate 24 becomes thicker than the thickness dimension necessary for heat insulation between the storage chamber 14 and the machine chamber 20.

また、前記プレート式熱交換器HEは、前記第2の流路60bにおいて対向するプレート60,60の間が例えば1mm程度の狭小な関係に設定されて、液相二次冷媒の粘性力や表面張力等が作用して、二次回路44側の第2の流路60b(二次熱交換部46)の下部が液相二次冷媒で塞がれる所謂液封が生じるように構成されている(図3参照)。実施例1では、液相二次冷媒の流通により二次熱交換部46の第2の流路60bに生じる液封部62(図3参照)が、気相二次冷媒に対する抵抗部として機能し、蒸発器EPで蒸発した気相二次冷媒が逆流するのを防止している。   Further, the plate heat exchanger HE has a narrow relationship of about 1 mm between the opposing plates 60, 60 in the second flow path 60b, for example, so that the viscous force or surface of the liquid phase secondary refrigerant is reduced. The lower part of the second flow path 60b (secondary heat exchanging portion 46) on the secondary circuit 44 side is configured so as to cause a so-called liquid sealing in which the lower portion of the second flow path 60b (secondary heat exchanging portion 46) is closed with the liquid phase secondary refrigerant. (See Figure 3). In the first embodiment, the liquid sealing portion 62 (see FIG. 3) generated in the second flow path 60b of the secondary heat exchange portion 46 due to the circulation of the liquid phase secondary refrigerant functions as a resistance portion with respect to the gas phase secondary refrigerant. The vapor phase secondary refrigerant evaporated in the evaporator EP is prevented from flowing backward.

次に、前述したプレート式熱交換器HEを水平面に対して傾斜角θとなるよう配設する配設方法につき説明する。実施例1では、図8に示すように、前記台板24の外面を構成する外郭部材24a,24aと、前記プレート式熱交換器HEの傾斜上端側との間に突起部25を設けて、該外郭部材24aに対してプレート式熱交換器HEが所定の傾斜角θで位置決めされるよう構成されている。ここで、前記突起部25は、前記台板24の外郭部材24a,24aまたはプレート式熱交換器HEの何れかに設けられる。また、前記突起部25は、発泡スチロール等の断熱性能を有する部材により形成される。なお、前記外郭部材24a,24aには、プレート式熱交換器HEに接続する各配管38,48,40,50を挿通する通孔(図示せず)が対応的に開設されており、目地材(図示せず)により各配管38,48,40,50と通孔との隙間が封止される。   Next, an arrangement method for arranging the plate heat exchanger HE described above at an inclination angle θ with respect to a horizontal plane will be described. In Example 1, as shown in FIG. 8, a protrusion 25 is provided between outer members 24a and 24a constituting the outer surface of the base plate 24 and the inclined upper end side of the plate heat exchanger HE, A plate heat exchanger HE is positioned with respect to the outer member 24a at a predetermined inclination angle θ. Here, the protrusion 25 is provided on either the outer members 24a, 24a of the base plate 24 or the plate heat exchanger HE. Moreover, the said protrusion part 25 is formed with the member which has heat insulation performances, such as a polystyrene foam. The outer members 24a and 24a have correspondingly formed through holes (not shown) through which the pipes 38, 48, 40 and 50 connected to the plate heat exchanger HE are inserted. A gap between each pipe 38, 48, 40, 50 and the through hole is sealed by (not shown).

そして、プレート式熱交換器HEを台板24の外郭部材24aに対して傾斜させた状態で、各外郭部材24aの外側を所定の発泡治具72,72で固定すると共に、プレート式熱交換器HEに接続する一次液配管38および一次ガス配管40を第1拘束治具74で固定し、また二次液配管48および二次ガス配管50の夫々を第2拘束治具76で固定する。この状態で、前記外郭部材24a,24a間に発泡材を充填して硬化させ、発泡材が硬化した後に各治具72,74,76の夫々を取り外すことにより、台板24内にプレート式熱交換器HEが傾斜状態で配設される。その後、前記冷蔵庫10における箱体12の天板12bに、前記台板24を水平に設置することにより、台板24内に配設された前記プレート式熱交換器HEが水平面に対して傾斜角θで傾斜するようになっている。   The plate-type heat exchanger HE is inclined with respect to the outer member 24a of the base plate 24, and the outer sides of the outer members 24a are fixed by predetermined foaming jigs 72 and 72, and the plate-type heat exchanger The primary liquid pipe 38 and the primary gas pipe 40 connected to the HE are fixed by a first restraining jig 74, and the secondary liquid pipe 48 and the secondary gas pipe 50 are each fixed by a second restraining jig 76. In this state, the outer shell members 24a and 24a are filled with a foaming material and cured, and after the foaming material is cured, the jigs 72, 74, and 76 are removed, so that the plate-type heat is placed in the base plate 24. The exchanger HE is arranged in an inclined state. Thereafter, the plate plate 24 is horizontally installed on the top plate 12b of the box 12 in the refrigerator 10, so that the plate heat exchanger HE disposed in the plate 24 is inclined with respect to the horizontal plane. It is inclined at θ.

〔実施例1の作用〕
次に、実施例1に係る冷却装置の作用について説明する。
[Operation of Example 1]
Next, the operation of the cooling device according to the first embodiment will be described.

先ず、プレート式熱交換器HEが4°≦θ≦45°の傾斜角θで配設された場合について説明する。冷却装置32では、冷却運転を開始すると、一次回路34および二次回路44の夫々で冷媒の循環が開始される。このとき、一次回路34では、圧縮機CDおよび凝縮器ファンFMが駆動され、圧縮機CMで圧縮された気相一次冷媒が一次ガス配管40を介して凝縮器CDに供給され、凝縮器ファンFMによる強制冷却により凝縮液化することで液相一次冷媒が得られる。この液相一次冷媒は、一次液配管38を介して膨張弁EVで減圧され、プレート式熱交換器HEの一次熱交換部36において二次熱交換部46を流通する二次冷媒から熱を奪って(吸熱)一挙に膨張気化する。すなわち、一次回路34は、プレート式熱交換器HE(二次熱交換部46)を強制冷却するように機能する。そして、一次熱交換部36で蒸発した気相一次冷媒は、一次ガス配管40を経て圧縮機CMに帰還する強制循環サイクルを繰返す。   First, the case where the plate heat exchanger HE is disposed at an inclination angle θ of 4 ° ≦ θ ≦ 45 ° will be described. In the cooling device 32, when the cooling operation is started, circulation of the refrigerant is started in each of the primary circuit 34 and the secondary circuit 44. At this time, in the primary circuit 34, the compressor CD and the condenser fan FM are driven, and the gas phase primary refrigerant compressed by the compressor CM is supplied to the condenser CD through the primary gas pipe 40, and the condenser fan FM. A liquid phase primary refrigerant is obtained by condensing and liquefying by forced cooling. The liquid phase primary refrigerant is decompressed by the expansion valve EV via the primary liquid pipe 38 and takes heat from the secondary refrigerant flowing through the secondary heat exchange unit 46 in the primary heat exchange unit 36 of the plate heat exchanger HE. (Endothermic) expands and vaporizes all at once. That is, the primary circuit 34 functions to forcibly cool the plate heat exchanger HE (secondary heat exchange unit 46). Then, the gas phase primary refrigerant evaporated in the primary heat exchange unit 36 repeats the forced circulation cycle that returns to the compressor CM through the primary gas pipe 40.

一方、前記二次回路44では、一次回路34を循環する一次冷媒により二次熱交換部46(プレート式熱交換器HE)が冷却されているから、該二次熱交換部46においては気相二次冷媒が凝縮して液相二次冷媒に相変化する。ここで、プレート式熱交換器HEを4°≦θ≦45°の傾斜角θで傾斜させた状態では、二次熱交換部46(プレート式熱交換器HE)における二次液配管48の接続部位が二次ガス配管50の接続部位より下方に位置している。すなわち、二次液配管48の接続部位と二次ガス配管50の接続部位との間に生ずる高低差(ヘッド差)により、気相から液相に変化することで比重が増加した液相二次冷媒が二次熱交換部46の第2の流路60bに沿って重力の作用下に自然流下する。更に、二次回路44では、二次熱交換部46を台板24内に配置する一方、蒸発器EPを台板24の下方に位置する冷却室28に配設することで、二次熱交換部46と蒸発器EPとの間に落差を設けてある。このため、二次熱交換部46に接続した二次液配管48を介して、液相二次冷媒が蒸発器EPへ向けて重力の作用下に自然流下する。液相二次冷媒は、蒸発器EPの蒸発管52を流通する過程で冷却室28内の空気と熱交換して蒸発し、気相二次冷媒に状態変化する。そして、気相二次冷媒は、二次ガス配管50を介して蒸発器EPから二次熱交換部46へ還流し、二次回路44ではポンプやモータ等の動力を用いることなく、簡単な構成で二次冷媒が自然循環するサイクルが繰返される。   On the other hand, in the secondary circuit 44, the secondary heat exchange unit 46 (plate heat exchanger HE) is cooled by the primary refrigerant circulating in the primary circuit 34. The secondary refrigerant condenses and changes into a liquid phase secondary refrigerant. Here, in a state where the plate heat exchanger HE is inclined at an inclination angle θ of 4 ° ≦ θ ≦ 45 °, the connection of the secondary liquid piping 48 in the secondary heat exchange section 46 (plate heat exchanger HE) is performed. The part is located below the connection part of the secondary gas pipe 50. That is, the liquid phase secondary whose specific gravity is increased by changing from the gas phase to the liquid phase due to the height difference (head difference) generated between the connection portion of the secondary liquid pipe 48 and the connection portion of the secondary gas pipe 50. The refrigerant naturally flows under the action of gravity along the second flow path 60b of the secondary heat exchange unit 46. Further, in the secondary circuit 44, the secondary heat exchange unit 46 is disposed in the base plate 24, while the evaporator EP is disposed in the cooling chamber 28 located below the base plate 24, thereby performing secondary heat exchange. A head is provided between the portion 46 and the evaporator EP. For this reason, the liquid phase secondary refrigerant naturally flows under the action of gravity toward the evaporator EP via the secondary liquid pipe 48 connected to the secondary heat exchange unit 46. The liquid phase secondary refrigerant evaporates by exchanging heat with the air in the cooling chamber 28 in the process of flowing through the evaporation pipe 52 of the evaporator EP, and changes its state to a gas phase secondary refrigerant. Then, the gas phase secondary refrigerant is refluxed from the evaporator EP to the secondary heat exchange unit 46 via the secondary gas pipe 50, and the secondary circuit 44 has a simple configuration without using power from a pump, a motor, or the like. The cycle in which the secondary refrigerant naturally circulates is repeated.

そして、前記送風ファン30により吸込口26aから冷却室28に吸引された収納室14の空気を、冷却された蒸発器EPに吹付けて蒸発器EPと熱交換し、蒸発器EPと熱交換した冷気を冷却室28から冷気吹出口26bを介して収納室14に送出することで、収納室14が冷却される。更に、収納室14を冷却して温度上昇した空気が吸込口26aを介して再び冷却室28内に戻るサイクルを反復することで、収納室14内が所定温度まで冷却される。   Then, the air in the storage chamber 14 sucked into the cooling chamber 28 from the suction port 26a by the blower fan 30 is blown onto the cooled evaporator EP to exchange heat with the evaporator EP, and to exchange heat with the evaporator EP. The storage chamber 14 is cooled by sending the cold air from the cooling chamber 28 to the storage chamber 14 via the cold air outlet 26b. Furthermore, the inside of the storage chamber 14 is cooled to a predetermined temperature by repeating a cycle in which the air whose temperature has increased by cooling the storage chamber 14 returns to the cooling chamber 28 again through the suction port 26a.

このように、前記冷却装置32では、一次回路34と二次回路44とをプレート式熱交換器HEで接続したことで、このプレート式熱交換器HEの一次熱交換部36および二次熱交換部46において、一次回路34の一次冷媒と二次回路44の二次冷媒とが蒸発および凝縮作用下に熱交換を行なう。すなわち、実施例1のプレート式熱交換器HEでは、一次熱交換部36の一次冷媒と二次熱交換部46の二次冷媒との間で、相互の潜熱を利用して熱交換するよう構成され、顕熱による熱交換と比べて効率的な熱交換を行なうことができる。   Thus, in the cooling device 32, the primary circuit 34 and the secondary circuit 44 are connected by the plate heat exchanger HE, so that the primary heat exchange unit 36 and the secondary heat exchange of the plate heat exchanger HE are performed. In the part 46, the primary refrigerant of the primary circuit 34 and the secondary refrigerant of the secondary circuit 44 exchange heat under the action of evaporation and condensation. That is, the plate heat exchanger HE according to the first embodiment is configured to perform heat exchange between the primary refrigerant of the primary heat exchange unit 36 and the secondary refrigerant of the secondary heat exchange unit 46 using mutual latent heat. As a result, heat exchange can be performed more efficiently than heat exchange by sensible heat.

ここで、前記プレート式熱交換器HEを傾斜配置したことで、プレート式熱交換器HEを直立状態で設置する場合に較べて、一次液配管38と一次ガス配管40との高低差を小さくでき、重力に逆らって流通しつつ蒸発する一次冷媒の密度の上昇割合が抑えられる。このため、プレート式熱交換器HEを直立状態で設置する形態に較べて、一次回路34での一次冷媒の使用量を減少することができる。前記一次回路34に必要とされる一次冷媒量を減少することで、法令等で規定された冷媒の使用上限量を上回るのを回避することができ、また一次冷媒として使用する冷媒の種類についての選択肢の幅が広がる。   Here, by arranging the plate heat exchanger HE in an inclined manner, the difference in height between the primary liquid pipe 38 and the primary gas pipe 40 can be reduced as compared with the case where the plate heat exchanger HE is installed in an upright state. The rate of increase in the density of the primary refrigerant that evaporates while circulating against gravity is suppressed. For this reason, compared with the form which installs plate type heat exchanger HE in an upright state, the usage-amount of the primary refrigerant | coolant in the primary circuit 34 can be reduced. By reducing the amount of primary refrigerant required for the primary circuit 34, it is possible to avoid exceeding the use upper limit amount of the refrigerant stipulated by laws and regulations, etc., and the type of refrigerant used as the primary refrigerant A wider range of options.

また、前記プレート式熱交換器HEを傾斜配置する場合には、二次液配管48と二次ガス配管50との高低差も小さくなるため、重力作用による二次冷媒の流通量が低下する。このため、熱伝達率の低い顕熱による熱交換を行なう形態では、一次冷媒と二次冷媒との間の熱交換効率の低下を招来して冷却能力が低下する要因となるため、通常は採用し得ない。これに対して、実施例1に係る冷却装置32は、一次回路34と二次回路44とをプレート式熱交換器HEで接続し、この熱交換器HEにおいて一次回路34の一次冷媒と二次回路44の二次冷媒とを蒸発および凝縮作用下に熱交換を行なうよう構成されている。すなわち、顕熱に比べて非常に高い熱伝達率を持つ潜熱同士による熱交換がプレート式熱交換器HEで行なわれるから、プレート式熱交換器HEを傾斜配置することにより二次冷媒の重力による自然流下量が減少したとしても、熱交換器HEにおける熱交換量が低下するのを防止でき、冷却装置32の冷却能力を損なうことはない。   Further, when the plate heat exchanger HE is inclined, the difference in height between the secondary liquid pipe 48 and the secondary gas pipe 50 is also reduced, so that the flow rate of the secondary refrigerant due to the gravity action is reduced. For this reason, in the form of heat exchange by sensible heat with a low heat transfer coefficient, it is usually adopted because it causes a decrease in the heat exchange efficiency between the primary refrigerant and the secondary refrigerant and the cooling capacity decreases. I can't. On the other hand, in the cooling device 32 according to the first embodiment, the primary circuit 34 and the secondary circuit 44 are connected by the plate heat exchanger HE, and the primary refrigerant and the secondary refrigerant of the primary circuit 34 are connected to the heat exchanger HE. The secondary refrigerant of the circuit 44 is configured to exchange heat under the action of evaporation and condensation. That is, since the heat exchange between the latent heats having a very high heat transfer rate compared to the sensible heat is performed in the plate heat exchanger HE, the plate heat exchanger HE is inclined and arranged due to the gravity of the secondary refrigerant. Even if the natural flow rate decreases, it is possible to prevent the heat exchange amount in the heat exchanger HE from decreasing, and the cooling capacity of the cooling device 32 is not impaired.

次に、プレート式熱交換器HEが−4°<θ<4°の傾斜角θで配設された場合について説明する。この場合であっても一次回路34側における一次冷媒の流通過程は、プレート式熱交換器HEを4°≦θ≦45°の傾斜角θで配設する場合と同様である。すなわち、プレート式熱交換器HEを直立状態で設置する場合に較べて、一次液配管38と一次ガス配管40との高低差を小さくできるから、一次冷媒の使用量低減が図られる。   Next, the case where the plate heat exchanger HE is disposed at an inclination angle θ of −4 ° <θ <4 ° will be described. Even in this case, the flow of the primary refrigerant on the primary circuit 34 side is the same as the case where the plate heat exchanger HE is disposed at an inclination angle θ of 4 ° ≦ θ ≦ 45 °. That is, as compared with the case where the plate heat exchanger HE is installed in an upright state, the difference in height between the primary liquid pipe 38 and the primary gas pipe 40 can be reduced, so that the amount of primary refrigerant used can be reduced.

一方で、プレート式熱交換器HEを、傾斜角θが−4°<θ<4°の範囲となるまで傾斜させると、二次熱交換部46における二次液配管48の接続部位と二次ガス配管50の接続部位との間に生ずる高低差(ヘッド差)が小さくなり、重力作用による二次冷媒の循環方向が決定し得なくなることから、冷却装置32の冷凍能力が低下することも考えられる。ここで、プレート式熱交換器HEを傾斜角θが−4°<θ<4°の範囲となるまで傾斜させた状態では、前記一次冷媒は蒸発を伴って状態変化することから、一次熱交換部36は、気相一次冷媒の流出側の温度に較べて液相一次冷媒の流入側の温度が低くなる(図5(a)参照)。すなわち、二次熱交換部46では、二次ガス配管50側の温度に較べて二次液配管48側の温度の方が低くなる。一方、二次熱交換部46においては、気相二次冷媒が凝縮して液相二次冷媒に相変化することから、凝縮作用の高い低温側(すなわち二次液配管48側)に液相二次冷媒が集約され(冷媒集約作用)、二次液配管48を介して液相二次冷媒を蒸発器EPへ流下させ得る。このように、プレート式熱交換器HEを傾斜角θが−4°<θ<4°の範囲となるまで傾斜させて設置したとしても、二次熱交換部46における冷媒集約作用により、二次冷媒が正循環するよう循環方向を決定づけ得るから、冷却装置32の冷凍能力を維持し得る(図5(a)参照)。なお、プレート式熱交換器HEの傾斜角θをθ≦−4°となるまでプレート式熱交換器HEを傾斜させると、二次熱交換部46の温度差による二次液配管48側への液相二次冷媒の集約作用より、ヘッド差に起因して液相二次冷媒が二次液配管48側から二次ガス配管50側へ流下する重力作用が上回るようになり、循環方向の逆転を招来する可能性が高くなる。   On the other hand, when the plate-type heat exchanger HE is inclined until the inclination angle θ is in the range of −4 ° <θ <4 °, the secondary liquid piping 48 in the secondary heat exchange section 46 is connected to the secondary portion. The difference in height (head difference) generated between the gas pipe 50 and the connected portion is reduced, and the circulation direction of the secondary refrigerant due to the gravitational action cannot be determined, so that the cooling capacity of the cooling device 32 may be reduced. It is done. Here, in the state in which the plate heat exchanger HE is inclined until the inclination angle θ is in the range of −4 ° <θ <4 °, the primary refrigerant changes its state with evaporation. The temperature of the inflow side of the liquid phase primary refrigerant is lower in the portion 36 than the temperature of the outflow side of the gas phase primary refrigerant (see FIG. 5A). That is, in the secondary heat exchange section 46, the temperature on the secondary liquid pipe 48 side is lower than the temperature on the secondary gas pipe 50 side. On the other hand, in the secondary heat exchange section 46, the gas phase secondary refrigerant condenses and changes into a liquid phase secondary refrigerant, so that the liquid phase is placed on the low temperature side (that is, the secondary liquid piping 48 side) with high condensing action. The secondary refrigerant is collected (refrigerant collecting action), and the liquid phase secondary refrigerant can flow down to the evaporator EP via the secondary liquid pipe 48. Thus, even if the plate-type heat exchanger HE is installed so as to be inclined until the inclination angle θ is in the range of −4 ° <θ <4 °, the secondary heat exchange unit 46 causes the secondary heat exchanging effect to cause the secondary heat exchange. Since the circulation direction can be determined so that the refrigerant circulates normally, the refrigeration capacity of the cooling device 32 can be maintained (see FIG. 5A). If the plate heat exchanger HE is tilted until the tilt angle θ of the plate heat exchanger HE becomes θ ≦ −4 °, the temperature of the secondary heat exchange section 46 is increased to the secondary liquid pipe 48 side. The concentration effect of the liquid phase secondary refrigerant is greater than the gravity effect of the liquid phase secondary refrigerant flowing down from the secondary liquid pipe 48 side to the secondary gas pipe 50 side due to the head difference, and the circulation direction is reversed. Is more likely to be invited.

ところで、収納室14(冷却室28)の冷却が充分に進行して、収納室14(冷却室28)内の空気と二次冷媒との間の熱交換量が減少すると、一次冷媒と二次冷媒との間の熱交換量も減少する(すなわち冷凍負荷が減少する)。冷凍負荷が減少すると、液相一次冷媒が一次熱交換部36の流出側(一次ガス配管40側)まで飽和状態となる。この場合一次熱交換部36での圧力損失の影響により温度グライドが生ずるため、一次熱交換部36の流出側(一次ガス配管40側)の温度が流入側(一次液配管38側)の温度より低くなり温度勾配の逆転減少が現れる(図5(b)参照)。この場合には、二次回路44における二次冷媒は、凝縮作用の高い低温側(すなわち二次ガス配管50側)に集約されることになるため、二次冷媒の循環方向が逆転する。   By the way, when the cooling of the storage chamber 14 (cooling chamber 28) sufficiently proceeds and the amount of heat exchange between the air in the storage chamber 14 (cooling chamber 28) and the secondary refrigerant decreases, the primary refrigerant and the secondary refrigerant The amount of heat exchange with the refrigerant also decreases (that is, the refrigeration load decreases). When the refrigeration load is reduced, the liquid phase primary refrigerant is saturated up to the outflow side (primary gas pipe 40 side) of the primary heat exchange unit 36. In this case, temperature glide is generated due to the pressure loss in the primary heat exchange section 36, so the temperature on the outflow side (primary gas pipe 40 side) of the primary heat exchange section 36 is higher than the temperature on the inflow side (primary liquid pipe 38 side). It becomes lower and the reverse decrease of the temperature gradient appears (see FIG. 5 (b)). In this case, the secondary refrigerant in the secondary circuit 44 is concentrated on the low temperature side (that is, the secondary gas pipe 50 side) having a high condensing action, so that the circulation direction of the secondary refrigerant is reversed.

ここで、実施例1に係るプレート式熱交換器HEでは、一次回路34における一次液配管38と二次回路44における二次液配管48とを同一端部側に設けると共に、一次回路34における一次ガス配管40と二次回路44における二次ガス配管50とを同一端部側に設けるよう構成してあるから、通常の運転時には、プレート式熱交換器HEにおける一次冷媒と二次冷媒とは対向流をなし、一次冷媒と二次冷媒との間で効率的な熱交換が行なわれる。一方で、冷却装置32の冷凍負荷が減少して二次冷媒の流通方向が逆転した場合には、プレート式熱交換器HEにおける一次冷媒と二次冷媒とは平行流をなすため、対向流よりも流体間の温度差が増大して一次冷媒と二次冷媒との間の熱交換効率が低下する。すなわち、実施例1に係る冷却装置32では、収納室14内が冷却されて冷却装置32の冷却能力が過剰になる状況では、二次冷媒の循環方向が逆転することで自動的に冷却能力を抑制し得る。従って、収納室14の温度に応じて冷却装置32の冷凍能力を制御する電磁弁等の特別な部品を設ける必要がなく、部品点数の削減によるコスト低減を図り得ると共に、故障等の不具合が発生し難くなることから、冷却装置32の動作に対する信頼性が向上する。   Here, in the plate heat exchanger HE according to the first embodiment, the primary liquid pipe 38 in the primary circuit 34 and the secondary liquid pipe 48 in the secondary circuit 44 are provided on the same end side, and the primary in the primary circuit 34. Since the gas pipe 40 and the secondary gas pipe 50 in the secondary circuit 44 are provided on the same end side, the primary refrigerant and the secondary refrigerant in the plate heat exchanger HE are opposed to each other during normal operation. A flow is made and efficient heat exchange is performed between the primary refrigerant and the secondary refrigerant. On the other hand, when the refrigeration load of the cooling device 32 decreases and the flow direction of the secondary refrigerant is reversed, the primary refrigerant and the secondary refrigerant in the plate heat exchanger HE form a parallel flow, so that the counter flow However, the temperature difference between the fluids increases and the heat exchange efficiency between the primary refrigerant and the secondary refrigerant decreases. That is, in the cooling device 32 according to the first embodiment, in the situation where the inside of the storage chamber 14 is cooled and the cooling capacity of the cooling device 32 becomes excessive, the cooling capacity is automatically increased by reversing the circulation direction of the secondary refrigerant. Can be suppressed. Accordingly, it is not necessary to provide a special part such as a solenoid valve for controlling the refrigeration capacity of the cooling device 32 according to the temperature of the storage chamber 14, and the cost can be reduced by reducing the number of parts, and troubles such as failure occur Therefore, the reliability of the operation of the cooling device 32 is improved.

ところで、実施例1に係る冷却装置32の二次回路44では、蒸発器EPにおける蒸発管52の流入端52a(二次液配管48との接続部)を蒸発器EPの上部に設けると共に、流出端52b(二次ガス配管50との接続部)を蒸発器EPの下部に設けることで、流入端52aを流出端52bより上方に位置させて、流入端52aと流出端52bとの間に落差が生ずるよう構成されている。しかも、蒸発管52は、流出端52bと流入端52aとの間において、直線部分が上下の関係で折り重なった蛇行形状とすると共に、流入端52a側から流出端52b側に向かうにつれて下方傾斜するように管路を形成している。すなわち、蒸発管52は、二次冷媒が正循環する状況においては、全体として二次冷媒の循環方向前側に向けて下り勾配となるから、流入端52a(二次液配管48)から蒸発管52に流入した液相二次冷媒を、重力の作用下に管路に沿って流出端52b(二次ガス配管50)側に誘導しつつ蒸発させることができる。従って、冷却装置32の通常運転時には、蒸発器EPにおいて、蒸発管52の流入端52a近傍で液相二次冷媒が留まって当該流入端52a近傍で優先的に蒸発するのではなく、二次冷媒が管路に沿って流出端52b側に自然に拡散することにより、伝熱面積を広く確保して蒸発器EPの熱交換効率を向上し得る(図6参照)。   By the way, in the secondary circuit 44 of the cooling device 32 according to the first embodiment, the inflow end 52a of the evaporator pipe 52 in the evaporator EP (connecting portion with the secondary liquid pipe 48) is provided at the upper part of the evaporator EP and the outflow is performed. By providing the end 52b (connection portion with the secondary gas pipe 50) at the lower part of the evaporator EP, the inflow end 52a is positioned above the outflow end 52b, and there is a drop between the inflow end 52a and the outflow end 52b. Is configured to occur. In addition, the evaporation pipe 52 has a meandering shape in which the linear portion is folded up and down between the outflow end 52b and the inflow end 52a, and is inclined downward from the inflow end 52a toward the outflow end 52b. A pipe line is formed. That is, the evaporation pipe 52 is inclined downward toward the front side in the circulation direction of the secondary refrigerant as a whole in a situation where the secondary refrigerant is normally circulated, and therefore, the evaporation pipe 52 from the inflow end 52a (secondary liquid pipe 48). The liquid phase secondary refrigerant that has flowed into the pipe can be evaporated while being guided to the outflow end 52b (secondary gas pipe 50) side along the pipe line under the action of gravity. Therefore, during normal operation of the cooling device 32, in the evaporator EP, the liquid phase secondary refrigerant stays in the vicinity of the inflow end 52a of the evaporation pipe 52 and does not preferentially evaporate in the vicinity of the inflow end 52a. Is naturally diffused along the conduit toward the outflow end 52b, so that a wide heat transfer area can be secured and the heat exchange efficiency of the evaporator EP can be improved (see FIG. 6).

一方で、冷却装置32の冷凍負荷が減少して二次冷媒の流通方向が逆転した場合には、液相二次冷媒は二次ガス配管50側(すなわち流出端52b側)から前記蒸発器EPに流入し、蒸発器EPで蒸発した気相二次冷媒は二次液配管48(すなわち流入端52a側)から流出する。すなわち、二次冷媒の流通方向が逆転すると、蒸発器EPでは、二次回路における二次冷媒の循環方向前側に向けて上り勾配となるから、蒸発管52に流入した液相二次冷媒は、重力作用により蒸発管52の流出端52b近傍に留まって優先的に蒸発し、通常運転時とは反対に伝熱面積が小さくなるため、蒸発器EPの熱交換効率が低下する(図7参照)。すなわち、実施例1に係る冷却装置32では、収納室14内が冷却されて冷却装置32の冷却能力が過剰になる状況では、一次冷媒および二次冷媒間での熱交換効率を低下するだけでなく、蒸発器EPでの熱交換効率をも低下させて自動的に冷却能力を抑制し得る。   On the other hand, when the refrigeration load of the cooling device 32 is reduced and the flow direction of the secondary refrigerant is reversed, the liquid phase secondary refrigerant flows from the secondary gas pipe 50 side (that is, the outflow end 52b side) to the evaporator EP. The gas phase secondary refrigerant that has flowed into the evaporator and evaporated in the evaporator EP flows out from the secondary liquid pipe 48 (that is, the inflow end 52a side). That is, when the flow direction of the secondary refrigerant is reversed, the evaporator EP has an upward gradient toward the front side in the circulation direction of the secondary refrigerant in the secondary circuit. Therefore, the liquid phase secondary refrigerant flowing into the evaporation pipe 52 is Gravity action preferentially evaporates by staying in the vicinity of the outflow end 52b of the evaporation pipe 52, and the heat transfer area becomes smaller as opposed to normal operation, so that the heat exchange efficiency of the evaporator EP decreases (see FIG. 7). . That is, in the cooling device 32 according to the first embodiment, in a situation where the inside of the storage chamber 14 is cooled and the cooling capacity of the cooling device 32 becomes excessive, only the heat exchange efficiency between the primary refrigerant and the secondary refrigerant is reduced. In addition, the cooling capacity can be automatically suppressed by reducing the heat exchange efficiency in the evaporator EP.

また、実施例1に係るプレート式熱交換器HEでは、前記台板24の外郭部材24a,24aまたはプレート式熱交換器HEに突起部25を設けて、当該プレート式熱交換器HEを外郭部材24a上に配設することにより、所定の傾斜角θでプレート式熱交換器HEを傾斜させ、この状態で外郭部材24a,24aの間に発泡材を充填・硬化するよう構成されている。すなわち、前記突起部25を設けるだけでプレート式熱交換器HEを傾斜角θで傾斜させ得るから、プレート式熱交換器HEの位置決めを簡潔に行ない得る。また、外郭部材24a,24aの間に発泡材を充填するに先立って、プレート式熱交換器HEに接続する一次液配管38および一次ガス配管40を第1拘束治具74で固定すると共に、二次液配管48および二次ガス配管50の夫々を第2拘束治具76で固定するよう構成してあるから、発泡材の充填・硬化時にプレート式熱交換器HEが位置ズレするのを防止でき、プレート式熱交換器HEを所定の傾斜角θで確実に保持することが可能となる。   Further, in the plate heat exchanger HE according to the first embodiment, the protrusions 25 are provided on the outer members 24a and 24a of the base plate 24 or the plate heat exchanger HE, and the plate heat exchanger HE is used as the outer member. By being disposed on 24a, the plate heat exchanger HE is inclined at a predetermined inclination angle θ, and in this state, the foam material is filled and cured between the outer members 24a, 24a. That is, since the plate heat exchanger HE can be inclined at the inclination angle θ simply by providing the projection 25, the plate heat exchanger HE can be simply positioned. Prior to filling the foam material between the outer members 24a, 24a, the primary liquid pipe 38 and the primary gas pipe 40 connected to the plate heat exchanger HE are fixed by the first restraining jig 74, Since each of the secondary liquid pipe 48 and the secondary gas pipe 50 is configured to be fixed by the second restraining jig 76, it is possible to prevent the plate heat exchanger HE from being displaced during filling and curing of the foam material. The plate heat exchanger HE can be reliably held at a predetermined inclination angle θ.

また、収納室14と機械室20とを断熱する台板24内にプレート式熱交換器HEを埋め込むよう構成することで、該プレート式熱交換器HEの熱損失を防止して一次冷媒と二次冷媒との熱交換効率の向上を図ることができるから、プレート式熱交換器HEの外周を別途設けた断熱材で覆う必要がなく、部品点数削減によるコスト低減と共に、製造工程の簡略化が図られる。特に、収納室14と機械室20との断熱を図る台板24には、断熱性能の高い発泡材が利用されることから、プレート式熱交換器HEに別途断熱材を取り付ける場合に比して断熱性能の向上が図られ、熱損失の低減を効果的に図り得る利点もある。   Further, by configuring the plate heat exchanger HE to be embedded in the base plate 24 that insulates the storage chamber 14 and the machine chamber 20, heat loss of the plate heat exchanger HE is prevented, and the primary refrigerant and Since it is possible to improve the efficiency of heat exchange with the secondary refrigerant, there is no need to cover the outer periphery of the plate heat exchanger HE with a separate heat insulating material, which reduces costs by reducing the number of parts and simplifies the manufacturing process. Figured. In particular, the base plate 24 for heat insulation between the storage chamber 14 and the machine room 20 uses a foam material having high heat insulation performance, so that compared to a case where a separate heat insulation material is attached to the plate heat exchanger HE. There is an advantage that the heat insulation performance can be improved and the heat loss can be effectively reduced.

また、プレート式熱交換器HEを台板24に埋め込むことにより、前記収納室14(冷却室28)とプレート式熱交換器HEとを接続する二次液配管48および二次ガス配管50の夫々を低温域にのみ配管することができ、プレート式熱交換器HEを機械室20に配設して二次液配管48および二次ガス配管50を機械室20内に配管する従来の構成に較べて熱損失の大幅な低減を図り得る。また、二次液配管48および二次ガス配管50は低温域(冷却室28)にのみ配管されるから、これら配管48,50を断熱する断熱材を設ける必要がなく、コスト低減を図り得る利点もある。更に、前記プレート式熱交換器HEが台板24の発泡材で支持されることで、該プレート式熱交換器HEを支持する支持部材を別途設ける必要がなく、構造の簡略化や部品点数削減によるコスト低減を図り得る。   Further, by embedding the plate heat exchanger HE in the base plate 24, each of the secondary liquid pipe 48 and the secondary gas pipe 50 that connect the storage chamber 14 (cooling chamber 28) and the plate heat exchanger HE. Compared to the conventional configuration in which the plate type heat exchanger HE is disposed in the machine room 20 and the secondary liquid pipe 48 and the secondary gas pipe 50 are piped in the machine room 20. Heat loss can be greatly reduced. Further, since the secondary liquid pipe 48 and the secondary gas pipe 50 are piped only in the low temperature region (cooling chamber 28), there is no need to provide a heat insulating material for insulating the pipes 48, 50, and the cost can be reduced. There is also. Further, since the plate heat exchanger HE is supported by the foam material of the base plate 24, it is not necessary to separately provide a support member for supporting the plate heat exchanger HE, and the structure is simplified and the number of parts is reduced. The cost can be reduced.

更に、プレート式熱交換器HEを台板24内に埋め込むことで、機械室20に空きスペースを確保でき、機械室20に配設される凝縮器CD、凝縮器ファンFM、圧縮機CD、膨張タンク54、その他部材の配置の自由度が向上する。また、実施例1に係る冷却装置32では、凝縮器ファンFMの駆動によりキャビネット16の前側から機械室20に取込まれて凝縮器CDおよび圧縮機CMと熱交換した空気が膨張タンク54に吹付けられて、膨張タンク54が昇温する。ここで、膨張タンク54に滞留する二次冷媒の量は、圧力および温度に応じて変化する値であり、この圧力は、一次回路34において運転条件等で決定される蒸発温度に依存するので変化させることができない。そこで、膨張タンク54を一次回路34の排熱により昇温することで、膨張タンク54内の二次冷媒密度が低下するので、膨張タンク54に滞留する二次冷媒の量を減少させることができる。膨張タンク54に滞留する二次冷媒の量を減少させると、二次回路44における二次冷媒量を低減できるメリットがある。   Further, by embedding the plate heat exchanger HE in the base plate 24, an empty space can be secured in the machine room 20, and the condenser CD, the condenser fan FM, the compressor CD, and the expansion provided in the machine room 20 are expanded. The degree of freedom in arranging the tank 54 and other members is improved. Further, in the cooling device 32 according to the first embodiment, the air taken into the machine room 20 from the front side of the cabinet 16 and exchanging heat with the condenser CD and the compressor CM is blown to the expansion tank 54 by driving the condenser fan FM. In addition, the expansion tank 54 is heated. Here, the amount of the secondary refrigerant staying in the expansion tank 54 is a value that changes according to the pressure and temperature, and this pressure changes because it depends on the evaporation temperature determined by operating conditions and the like in the primary circuit 34. I can't let you. Therefore, by raising the temperature of the expansion tank 54 by the exhaust heat of the primary circuit 34, the secondary refrigerant density in the expansion tank 54 is reduced, so that the amount of the secondary refrigerant staying in the expansion tank 54 can be reduced. . If the amount of the secondary refrigerant staying in the expansion tank 54 is reduced, there is an advantage that the amount of secondary refrigerant in the secondary circuit 44 can be reduced.

次に、実施例2に係る冷却装置につき説明する。但し、実施例2に係る冷却装置は、実施例1で説明した冷却装置32と基本的に同一構成であり、同一の機能を有する部材・構成には同一の符号を付して詳細な説明を省略する。   Next, a cooling device according to the second embodiment will be described. However, the cooling device according to the second embodiment is basically the same in configuration as the cooling device 32 described in the first embodiment, and members / configurations having the same functions are denoted by the same reference numerals and detailed explanations are given. Omitted.

実施例2に係る冷却装置32では、一次回路34の一次液配管38における凝縮器CDと一次熱交換部36との間に設けられる膨張弁EVとして、流通する液相一次冷媒の温度を検知して絞り度を変更可能な温度検知型の膨張弁が設けられている。具体的には、前記膨張弁EVは、一次液配管38を流通する液相一次冷媒の温度が所定温度以上に上昇した場合に、絞り度を小さくして一次熱交換部36へ流通する液相一次冷媒量を減少するよう調整する。   In the cooling device 32 according to the second embodiment, the temperature of the circulating liquid phase primary refrigerant is detected as an expansion valve EV provided between the condenser CD and the primary heat exchange unit 36 in the primary liquid pipe 38 of the primary circuit 34. In addition, a temperature detection type expansion valve that can change the throttle degree is provided. Specifically, the expansion valve EV is configured such that when the temperature of the liquid phase primary refrigerant flowing through the primary liquid pipe 38 rises to a predetermined temperature or more, the expansion degree EV is reduced and the liquid phase flowing to the primary heat exchange unit 36 is reduced. Adjust to reduce the amount of primary refrigerant.

すなわち、前述したようにプレート式熱交換器HEを−4°<θ<4°の傾斜角θで配設した状態においては、収納室14(冷却室28)内の空気と二次冷媒との間の熱交換量が減少して冷凍負荷が減少すると、液相一次冷媒が一次熱交換部36の流出側(一次ガス配管40側)まで飽和状態となり、一次熱交換部36での圧力損失の影響により温度グライドが生ずる。実施例2に係る冷却装置32では、一次熱交換部36において温度グライドが生じ、液相一次冷媒が所定温度に昇温すると、前記一次熱交換部36へ流通する液相一次冷媒量を減少するよう前記膨張弁EVが絞り度を調整する。すなわち、前記膨張弁EVにより一次熱交換部36へ流通する液相一次冷媒量が減少することで、一次熱交換部36における温度グライドの発生が防止でき、一次熱交換部36における流入側(一次液配管38側)の温度が、流出側(一次ガス配管40側)の温度より低温に維持される。このため、二次回路44では、凝縮作用の高い低温側(すなわち二次液配管48側)に液相二次冷媒を集約し得るから、二次冷媒の循環方向の逆転現象を防止し得る。また、前記プレート式熱交換器HEにおける一次熱交換部36を流通する一次冷媒量が減少することにより、一次冷媒と二次冷媒との間の熱交換量が減少するから、収納室14内が冷却されて冷却装置32の冷却能力が過剰になる状況では、二次冷媒の循環方向を逆転することなく自動的に冷却能力を抑制し得る。   That is, as described above, in the state in which the plate heat exchanger HE is disposed at the inclination angle θ of −4 ° <θ <4 °, the air in the storage chamber 14 (cooling chamber 28) and the secondary refrigerant When the amount of heat exchange between them decreases and the refrigeration load decreases, the liquid phase primary refrigerant becomes saturated up to the outflow side (primary gas pipe 40 side) of the primary heat exchange unit 36, and the pressure loss in the primary heat exchange unit 36 is reduced. Temperature glide occurs due to the influence. In the cooling device 32 according to the second embodiment, when temperature glide occurs in the primary heat exchange unit 36 and the liquid phase primary refrigerant is heated to a predetermined temperature, the amount of liquid phase primary refrigerant flowing to the primary heat exchange unit 36 is reduced. The expansion valve EV adjusts the degree of throttling. That is, by reducing the amount of the liquid phase primary refrigerant flowing to the primary heat exchange unit 36 by the expansion valve EV, generation of temperature glide in the primary heat exchange unit 36 can be prevented, and the inflow side (primary The temperature of the liquid pipe 38 side) is maintained at a lower temperature than the temperature of the outflow side (primary gas pipe 40 side). For this reason, in the secondary circuit 44, since the liquid phase secondary refrigerant can be concentrated on the low temperature side (that is, the secondary liquid pipe 48 side) having a high condensing action, the reverse phenomenon of the circulation direction of the secondary refrigerant can be prevented. In addition, since the amount of primary refrigerant flowing through the primary heat exchange unit 36 in the plate heat exchanger HE is reduced, the amount of heat exchange between the primary refrigerant and the secondary refrigerant is reduced. In a situation where the cooling capacity of the cooling device 32 becomes excessive due to cooling, the cooling capacity can be automatically suppressed without reversing the circulation direction of the secondary refrigerant.

このように、実施例2に係る冷却装置32では、温度検知型の膨張弁EVを設けることにより、プレート式熱交換器HEを−4°<θ<4°の傾斜角θで配設した状態においても二次冷媒の自然循環方向を一定に維持し得ると共に、冷却装置32の冷却能力の制御が可能となる。また、実施例2では、一次回路34に温度検知型の膨張弁EVを設けるようにしたが、プレート式熱交換器HEにおける一次熱交換部36の容量を大きくしたり、一次回路34を流通する一次冷媒量を減少することによっても、冷凍負荷が減少する局面において一次熱交換部36の温度勾配を一定に維持することができ、二次回路44における二次冷媒の循環方向を一定に保ち得る。   Thus, in the cooling device 32 according to the second embodiment, by providing the temperature detection type expansion valve EV, the plate-type heat exchanger HE is disposed at an inclination angle θ of −4 ° <θ <4 °. In this case, the natural circulation direction of the secondary refrigerant can be kept constant, and the cooling capacity of the cooling device 32 can be controlled. In the second embodiment, the temperature detection type expansion valve EV is provided in the primary circuit 34. However, the capacity of the primary heat exchange unit 36 in the plate heat exchanger HE is increased, or the primary circuit 34 is distributed. By reducing the amount of primary refrigerant, the temperature gradient of the primary heat exchange unit 36 can be kept constant in a phase where the refrigeration load is reduced, and the circulation direction of the secondary refrigerant in the secondary circuit 44 can be kept constant. .

次に、実施例3に係る冷却装置につき説明する。但し、実施例3に係る冷却装置は、実施例1で説明した冷却装置32と基本的に同一構成であり、同一の機能を有する部材・構成には同一の符号を付して詳細な説明を省略する。   Next, a cooling device according to Embodiment 3 will be described. However, the cooling device according to the third embodiment is basically the same in configuration as the cooling device 32 described in the first embodiment, and members / configurations having the same functions are denoted by the same reference numerals and detailed description is given. Omitted.

実施例3では、プレート式熱交換器HEを水平面に対して傾斜角θとなるよう配設する別の製造方法につき説明する。実施例3に係る冷却装置32では、図9に示すように、台板24を構成する外郭部材24aに、水平面に対する傾斜角度がθとなる傾斜面80が形成されており、この傾斜面80に前記プレート式熱交換器HEを設置することで、プレート式熱交換器HEが水平面に対して傾斜角θで位置決めされるようになっている。そして、プレート式熱交換器HEを台板24の外郭部材24aに対して傾斜させた状態で、各外郭部材24aの外側を所定の発泡治具72,72で固定すると共に、プレート式熱交換器HEに接続する一次液配管38および一次ガス配管40を第1拘束治具74で固定し、また二次液配管48および二次ガス配管50の夫々を第2拘束治具76で固定する。この状態で、前記外郭部材24a,24a間に発泡材を充填して硬化させ、発泡材が硬化した後に各治具72,74,76の夫々を取り外すことにより、台板24内にプレート式熱交換器HEが傾斜状態で配設される。その後、前記冷蔵庫10における箱体12の天板12bに、前記台板24を水平に設置することにより、台板24内に配設された前記プレート式熱交換器HEが水平面に対して傾斜角θで傾斜するよう構成される。   In the third embodiment, another manufacturing method in which the plate heat exchanger HE is disposed at an inclination angle θ with respect to the horizontal plane will be described. In the cooling device 32 according to the third embodiment, as illustrated in FIG. 9, an inclined surface 80 having an inclination angle θ with respect to a horizontal plane is formed on the outer member 24 a configuring the base plate 24. By installing the plate heat exchanger HE, the plate heat exchanger HE is positioned at an inclination angle θ with respect to the horizontal plane. The plate-type heat exchanger HE is inclined with respect to the outer member 24a of the base plate 24, and the outer sides of the outer members 24a are fixed by predetermined foaming jigs 72 and 72, and the plate-type heat exchanger The primary liquid pipe 38 and the primary gas pipe 40 connected to the HE are fixed by a first restraining jig 74, and the secondary liquid pipe 48 and the secondary gas pipe 50 are each fixed by a second restraining jig 76. In this state, the outer shell members 24a and 24a are filled with a foaming material and cured, and after the foaming material is cured, the jigs 72, 74, and 76 are removed, so that the plate-type heat is placed in the base plate 24. The exchanger HE is arranged in an inclined state. Thereafter, the plate plate 24 is horizontally installed on the top plate 12b of the box 12 in the refrigerator 10, so that the plate heat exchanger HE disposed in the plate 24 is inclined with respect to the horizontal plane. It is configured to tilt at θ.

すなわち、実施例3に係る冷却装置32では、前記台板24の外郭部材24aに傾斜面80を設けて、当該プレート式熱交換器HEを傾斜面80上に配設することにより、所定の傾斜角θでプレート式熱交換器HEを傾斜させ得るから、プレート式熱交換器HEの位置決めを簡潔に行ない得る。また、前述と同様に、外郭部材24a,24aの間に発泡材を充填するに先立って、プレート式熱交換器HEに接続する一次液配管38および一次ガス配管40を第1拘束治具74で固定すると共に、二次液配管48および二次ガス配管50の夫々を第2拘束治具76で固定するよう構成してあるから、発泡材の充填・硬化時にプレート式熱交換器HEが位置ズレするのを防止でき、プレート式熱交換器HEを所定の傾斜角θで確実に保持することが可能となる。   That is, in the cooling device 32 according to the third embodiment, the outer surface member 24a of the base plate 24 is provided with the inclined surface 80, and the plate heat exchanger HE is disposed on the inclined surface 80, thereby providing a predetermined inclination. Since the plate heat exchanger HE can be inclined at the angle θ, the positioning of the plate heat exchanger HE can be performed simply. Similarly to the above, the primary liquid pipe 38 and the primary gas pipe 40 connected to the plate heat exchanger HE are connected by the first restraining jig 74 prior to filling the foam material between the outer members 24a and 24a. Since the secondary liquid pipe 48 and the secondary gas pipe 50 are each fixed by the second restraining jig 76, the plate heat exchanger HE is displaced when the foam material is filled and cured. Therefore, the plate heat exchanger HE can be reliably held at a predetermined inclination angle θ.

次に、実施例4に係る冷却装置につき説明する。但し、実施例4に係る冷却装置は、実施例1で説明した冷却装置32と基本的に同一構成であり、同一の機能を有する部材・構成には同一の符号を付して詳細な説明を省略する。   Next, a cooling device according to Embodiment 4 will be described. However, the cooling device according to the fourth embodiment has basically the same configuration as the cooling device 32 described in the first embodiment, and members and configurations having the same functions are denoted by the same reference numerals and detailed description thereof is omitted. Omitted.

実施例4では、プレート式熱交換器HEを水平面に対して傾斜角θとなるよう配設する更に別の製造方法につき説明する。実施例4に係る冷却装置32では、図10に示すように、台板24を構成する外郭部材24aに対して前記プレート式熱交換器HE(一次熱交換部36および二次熱交換部46)が平行になるよう設置される。そして、各外郭部材24aの外側を所定の発泡治具72,72で固定すると共に、プレート式熱交換器HEに接続する一次液配管38および一次ガス配管40を第1拘束治具74で固定し、また二次液配管48および二次ガス配管50の夫々を第2拘束治具76で固定する。この状態で、前記外郭部材24a,24a間に発泡材を充填して硬化させ、発泡材が硬化した後に各治具72,74,76の夫々を取り外すことにより、台板24と平行になる姿勢でプレート式熱交換器HEが配設される。その後、前記冷蔵庫10における箱体12の天板12bに、前記台板24を傾斜角θで傾斜するよう設置することにより、台板24内に配設された前記プレート式熱交換器HEが水平面に対して傾斜角θで傾斜するよう構成される。   In the fourth embodiment, another manufacturing method in which the plate heat exchanger HE is disposed at an inclination angle θ with respect to the horizontal plane will be described. In the cooling device 32 according to the fourth embodiment, as shown in FIG. 10, the plate heat exchanger HE (the primary heat exchanging unit 36 and the secondary heat exchanging unit 46) with respect to the outer member 24 a constituting the base plate 24. Are installed in parallel. Then, the outside of each outer member 24a is fixed by predetermined foaming jigs 72, 72, and the primary liquid pipe 38 and the primary gas pipe 40 connected to the plate heat exchanger HE are fixed by the first restraining jig 74. Further, each of the secondary liquid pipe 48 and the secondary gas pipe 50 is fixed by the second restraining jig 76. In this state, the foam member is filled and cured between the outer members 24a and 24a, and after the foam material is cured, the jigs 72, 74, and 76 are removed to be parallel to the base plate 24. A plate type heat exchanger HE is arranged. Thereafter, the plate heat exchanger HE disposed in the base plate 24 is placed on the top plate 12b of the box 12 in the refrigerator 10 so that the base plate 24 is inclined at an inclination angle θ. Is inclined at an inclination angle θ.

ここで、外郭部材24aを水平面に対して傾斜角θで傾斜するよう台板24を箱体12に設置するには、図11(a)に示すように、箱体12における前記台板24を設置する部位に高低差を設けることで、該箱体12に台板24を設置した際に、箱体12の高低差により台板24を傾斜角θで傾斜させることができる。また、図11(b)に示すように、台板24の一端部に下方に垂下する支持部82を形成すれば、台板24を箱体12に設置した際に、支持部82により台板24を傾斜角θで傾斜させることが可能となる。   Here, in order to install the base plate 24 in the box 12 so that the outer member 24a is inclined at an inclination angle θ with respect to the horizontal plane, as shown in FIG. By providing a height difference in the installation site, when the base plate 24 is installed in the box 12, the base plate 24 can be inclined at an inclination angle θ due to the height difference of the box 12. Further, as shown in FIG. 11 (b), if a support portion 82 that hangs downward is formed at one end of the base plate 24, the base plate 24 is supported by the support portion 82 when the base plate 24 is installed on the box 12. 24 can be tilted at the tilt angle θ.

このように、実施例4に係る冷却装置32では、プレート式熱交換器HEを平行に埋め込んだ台板24を、水平面に対して傾斜角θで傾斜するよう箱体12に配設することにより、プレート式熱交換器HEも水平面に対して傾斜角θで傾斜させ得る。すなわち、プレート式熱交換器HEを台板24に配設する際に、該プレート式熱交換器HE自体の傾斜角θを調整する必要がないから、製造工程の簡略化を図り得る。また台板24の傾斜により水平面に対するプレート式熱交換器HEの傾斜角θを調整し得るから、台板24内にプレート式熱交換器HEを傾斜配設する構成に較べて、プレート式熱交換器HEの傾斜角θの調整を容易に行ない得る利点がある。また、前述と同様に、外郭部材24a,24aの間に発泡材を充填するに先立って、プレート式熱交換器HEに接続する一次液配管38および一次ガス配管40を第1拘束治具74で固定すると共に、二次液配管48および二次ガス配管50の夫々を第2拘束治具76で固定するよう構成してあるから、発泡材の充填・硬化時にプレート式熱交換器HEが位置ズレするのを防止できる。   As described above, in the cooling device 32 according to the fourth embodiment, the base plate 24 in which the plate heat exchanger HE is embedded in parallel is disposed in the box body 12 so as to be inclined at the inclination angle θ with respect to the horizontal plane. The plate heat exchanger HE can also be inclined at an inclination angle θ with respect to the horizontal plane. That is, when the plate heat exchanger HE is disposed on the base plate 24, it is not necessary to adjust the inclination angle θ of the plate heat exchanger HE itself, so that the manufacturing process can be simplified. In addition, since the inclination angle θ of the plate heat exchanger HE with respect to the horizontal plane can be adjusted by the inclination of the base plate 24, the plate type heat exchange is compared with the configuration in which the plate type heat exchanger HE is inclined in the base plate 24. There is an advantage that the inclination angle θ of the vessel HE can be easily adjusted. Similarly to the above, the primary liquid pipe 38 and the primary gas pipe 40 connected to the plate heat exchanger HE are connected by the first restraining jig 74 prior to filling the foam material between the outer members 24a and 24a. Since the secondary liquid pipe 48 and the secondary gas pipe 50 are each fixed by the second restraining jig 76, the plate heat exchanger HE is displaced when the foam material is filled and cured. Can be prevented.

次に、実施例5に係る冷却装置につき説明する。但し、実施例5に係る冷却装置は、実施例1で説明した冷却装置32と基本的に同一構成であり、同一の機能を有する部材・構成には同一の符号を付して詳細な説明を省略する。なお、前記実施例1〜4で説明した熱交換器の傾斜角θや配設構造や配設位置等の構成や冷却装置32の製造方法を実施例5にも適宜適用可能である。   Next, a cooling device according to Embodiment 5 will be described. However, the cooling device according to the fifth embodiment is basically the same in configuration as the cooling device 32 described in the first embodiment, and members / configurations having the same functions are denoted by the same reference numerals and detailed description is given. Omitted. In addition, the structure of the inclination angle θ of the heat exchanger, the arrangement structure and the arrangement position, and the manufacturing method of the cooling device 32 described in the first to fourth embodiments can be applied to the fifth embodiment as appropriate.

実施例5に係る冷却装置32では、二重管式の熱交換器HE1が採用されている。実施例5の熱交換器HE1について具体的に説明する。図13または図14に示すように、実施例5の前提例となる熱交換器HE1は、熱伝導性に優れた金属材料からなる管状の二次熱交換部46を内管とし、この二次熱交換部46の外側を一次冷媒の流通空間をあけて被覆する一次熱交換部36を外管とする二重管式熱交換器である。なお、一次熱交換部36は、金属材料で構成される。また熱交換器HE1は、二次熱交換部46が上下方向を軸とする螺旋状に延在するよう配設され、この二次熱交換部46の外側を覆って一次熱交換部36が二次熱交換部46と同様に螺旋状に延在するよう構成される。すなわち、熱交換器HE1は、平面に環を描くように構成された螺旋状の管状体であって(図13参照)、二次熱交換部46の上端に二次ガス配管50が接続され、二次熱交換部46の下端に二次液配管48が接続されて、二次熱交換部46を二次冷媒が螺旋形状に沿って渦巻きながら上方から下方に流通するようになっている。これに対して、一次熱交換部36は、下端に膨張弁EVに接続する一次液配管38が接続され、上端に圧縮機CMに接続する一次ガス配管40が接続されて、該一次熱交換部36の流通空間を一次冷媒が螺旋形状に沿って渦巻きながら下方から上方に流通するようになっている。すなわち、熱交換器HE1は、二次熱交換部46を流通する二次冷媒の流通方向と一次熱交換部36を流通する一次冷媒の流通方向とが反対向きの対向流になるよう構成される。 In the cooling device 32 according to the fifth embodiment, a double-pipe heat exchanger HE1 is employed. The heat exchanger HE1 of Example 5 will be specifically described. As shown in FIG. 13 or FIG. 14, the heat exchanger HE1 as a premise example of the fifth embodiment has a tubular secondary heat exchange portion 46 made of a metal material having excellent heat conductivity as an inner tube. This is a double-tube heat exchanger in which the primary heat exchange part 36 that covers the outside of the heat exchange part 46 with a primary refrigerant flow space is used as an outer pipe. In addition, the primary heat exchange part 36 is comprised with a metal material. The heat exchanger HE1 is arranged such that the secondary heat exchanging portion 46 extends in a spiral shape with the vertical direction as an axis, and the primary heat exchanging portion 36 covers the outside of the secondary heat exchanging portion 46 and the secondary heat exchanging portion 36 Like the next heat exchanging section 46, it is configured to extend spirally. That is, the heat exchanger HE1 is a spiral tubular body configured to draw a ring on a plane (see FIG. 13), and the secondary gas pipe 50 is connected to the upper end of the secondary heat exchange unit 46, A secondary liquid pipe 48 is connected to the lower end of the secondary heat exchange unit 46 so that the secondary refrigerant flows through the secondary heat exchange unit 46 from above while swirling along the spiral shape. On the other hand, the primary heat exchange section 36 has a primary liquid pipe 38 connected to the expansion valve EV connected to the lower end, and a primary gas pipe 40 connected to the compressor CM connected to the upper end. The primary refrigerant circulates in the circulation space 36 from below to above while spiraling along a spiral shape. That is, the heat exchanger HE1 is configured such that the flow direction of the secondary refrigerant flowing through the secondary heat exchange unit 46 and the flow direction of the primary refrigerant flowing through the primary heat exchange unit 36 are opposite to each other. .

前記熱交換器HE1は、機械室20において圧縮機CMの上側に配設され、該熱交換器HE1のなす環の中に圧縮機CMが臨むように配置されている(図1または図2参照)。また熱交換器HE1は、機械室20において、圧縮機CMより背が高い凝縮器CDの頂部より低い位置に配置され、機械室20からはみ出さないようになっている。更に熱交換器HE1は、凝縮器ファンFMにより送出される空気の流通方向下流側に配置されて、凝縮器ファンFMにより送出される空気流の経路上に位置している。そして、熱交換器HE1は、一次熱交換部36の冷媒流通径路が水平方向または水平面に対して傾斜して延在するよう、水平姿勢または水平面に対して傾斜角θで傾斜する姿勢で配置される。しかも、熱交換器HE1は、螺旋状に形成して横方向に冷媒が流通する経路を長くとり、上下の重なり方向の寸法を小さくして、全体として横長の形状とされている。なお、熱交換器HE1を水平姿勢で配設してもよい。ここで、実施例5の熱交換器HE1は、図15に示すように、断熱壁部24内に配設される。 The heat exchanger HE1 is disposed on the upper side of the compressor CM in the machine room 20, and is disposed so that the compressor CM faces the ring formed by the heat exchanger HE1 (see FIG. 1 or FIG. 2). ). Further, the heat exchanger HE1 is disposed in the machine room 20 at a position lower than the top of the condenser CD, which is taller than the compressor CM, and does not protrude from the machine room 20. Furthermore, the heat exchanger HE1 is disposed on the downstream side in the flow direction of the air sent by the condenser fan FM, and is located on the path of the air flow sent by the condenser fan FM. The heat exchanger HE1 is disposed in a horizontal posture or a posture inclined at an inclination angle θ with respect to the horizontal plane so that the refrigerant flow path of the primary heat exchange unit 36 extends in a horizontal direction or inclined with respect to the horizontal plane. The Moreover, the heat exchanger HE1 is formed in a spiral shape so that the passage through which the refrigerant flows in the lateral direction is elongated, and the size in the upper and lower overlapping directions is reduced, so that the overall shape is a laterally long shape. Note that the heat exchanger HE1 may be disposed in a horizontal posture. Here, the heat exchanger HE1 of the fifth embodiment is disposed in the heat insulating wall 24 as shown in FIG.

実施例5の熱交換器HE1であっても、該熱交換器HE1と水平面とのなす傾斜角θを、液配管38,48の接続端側を基準として、ガス配管40,50の接続端側に向けて上方傾斜する姿勢を正の値とした場合に、−4°<θ≦45°の範囲、4°≦θ≦45°、−4°<θ<4°の範囲に適宜設定することで、前記実施例1〜4と同様の作用効果を生じる。
すなわち、一次熱交換部36の冷媒流通経路が水平面に対して傾斜するよう熱交換器HE1を水平面に対して傾斜させたことにより、一次熱交換部36における一次液配管38の接続部位と一次ガス配管40の接続部位との高低差を小さくでき、重力に抗して上昇する垂直成分が減少し、熱交換器HE1内の一次冷媒密度の増加割合が軽減され、これにより滞留冷媒量の増加割合も軽減されるため、一次回路34での一次冷媒の使用量を減少し得る。このとき、熱交換器HE1においては、一次回路34を流通する一次冷媒と二次回路を流通する二次冷媒との間で、比較的熱伝達率の大きい潜熱同士による熱交換が行なわれるから、該熱交換器HE1内の滞留冷媒量が減少しても熱交換効率を損なうことはない。また、熱交換器HE1を水平面に対して傾斜することで、該熱交換器HE1の上下の高さ寸法を抑制することができ、冷却装置32をコンパクトにし得る。また、二重管式の熱交換器HE1は、形状の自由度が高く、スペースを有効に利用し得る。ここで、一次熱交換部36を内管として、二次熱交換部を外管としてもよい。
Even in the heat exchanger HE1 of the fifth embodiment, the inclination angle θ between the heat exchanger HE1 and the horizontal plane is set to the connection end side of the gas piping 40, 50 with reference to the connection end side of the liquid piping 38, 48. If the posture that tilts upward toward is positive, set it appropriately within the range of -4 ° <θ ≦ 45 °, 4 ° ≦ θ ≦ 45 °, and -4 ° <θ <4 °. Thus, the same effects as those of the first to fourth embodiments are produced.
That is, by connecting the heat exchanger HE1 with respect to the horizontal plane so that the refrigerant flow path of the primary heat exchange section 36 is inclined with respect to the horizontal plane, the connection site of the primary liquid piping 38 and the primary gas in the primary heat exchange section 36 are obtained. The height difference from the connection portion of the pipe 40 can be reduced, the vertical component rising against gravity is reduced, and the increase rate of the primary refrigerant density in the heat exchanger HE1 is reduced, thereby increasing the retention refrigerant amount Therefore, the amount of primary refrigerant used in the primary circuit 34 can be reduced. At this time, in the heat exchanger HE1, heat exchange is performed between the primary refrigerant that circulates in the primary circuit 34 and the secondary refrigerant that circulates in the secondary circuit by latent heat having a relatively large heat transfer coefficient. Even if the amount of the refrigerant staying in the heat exchanger HE1 is reduced, the heat exchange efficiency is not impaired. In addition, by tilting the heat exchanger HE1 with respect to the horizontal plane, the vertical height of the heat exchanger HE1 can be suppressed, and the cooling device 32 can be made compact. In addition, the double-pipe heat exchanger HE1 has a high degree of freedom in shape and can effectively use space. Here, the primary heat exchange unit 36 may be an inner tube, and the secondary heat exchange unit may be an outer tube.

(変更例)
本発明に係る冷却装置およびその製造方法としては、前述した各実施例のものに限られるものではなく、種々の変更が可能である。
(Change example)
The cooling device and the manufacturing method thereof according to the present invention are not limited to those of the above-described embodiments, and various modifications can be made.

施例1〜4では、プレート式熱交換器を断熱壁部内に配設するよう構成した In actual施例1-4 and configured to dispose the plate heat exchanger in the heat insulating wall.

各実施例では、二次回路における蒸発器において、二次液配管に接続する流入端を二次ガス配管に接続する流出端より上部に位置するよう構成したが、これに限られるものではなく、二次液配管に接続する流入端を二次ガス配管に接続する流出端より下部に位置するよう構成することも可能である。   In each example, in the evaporator in the secondary circuit, the inflow end connected to the secondary liquid pipe is configured to be located above the outflow end connected to the secondary gas pipe, but is not limited thereto, It is also possible to configure so that the inflow end connected to the secondary liquid pipe is positioned below the outflow end connected to the secondary gas pipe.

各実施例では、断熱壁部を構成する外郭部材に傾斜面を設けたり、該外郭部材またはプレート式熱交換器に設けた突起部により、プレート式熱交換器を傾斜状態で配置するよう構成したが、プレート式熱交換器の各配管を位置決め固定する治具のみにより、プレート式熱交換器を傾斜状態で位置決めすることもできる。   In each embodiment, the outer member constituting the heat insulating wall is provided with an inclined surface, or the plate heat exchanger is arranged in an inclined state by the protrusion provided on the outer member or the plate heat exchanger. However, it is also possible to position the plate heat exchanger in an inclined state using only a jig for positioning and fixing each pipe of the plate heat exchanger.

また、蒸発器の蒸発管としては、外周に半径方向へ延出するフィンを設けた所謂フィンチューブや、外周に半径方向へ延出するフィンを螺旋状に設けた所謂スパイラルフィンチューブを採用してもよい。また、蒸発管の管路としては、流入端で複数(2系統)の系統に分岐されて、これら複数系統の分岐蒸発管が、循環方向前側に向けて下り勾配となるように蛇行状に延在し、流出端で再びまとめられる構成も採用し得る。   Moreover, as an evaporator tube of the evaporator, a so-called fin tube having a radially extending fin on the outer periphery, or a so-called spiral fin tube having a spiral extending radially on the outer periphery is adopted. Also good. Further, the pipes of the evaporation pipes are branched into a plurality of (two systems) systems at the inflow end, and these plurality of system branch evaporation pipes extend in a meandering manner so as to have a downward slope toward the front side in the circulation direction. It is also possible to adopt a configuration that exists and is brought together again at the outflow end.

各実施例では、蒸発管を流入端側から流出端側に向かうにつれて下方傾斜するように形成したが、全体として流出端側への重力作用下に液化冷媒を拡散し得るのであれば、管路の一部に流出端側に向けて上方傾斜する部位あるいは水平に延在する部位を設けてもよい。   In each embodiment, the evaporation pipe is formed so as to incline downward from the inflow end side to the outflow end side. However, if the liquefied refrigerant can be diffused under the action of gravity toward the outflow end side as a whole, the pipe line A part that is inclined upward toward the outflow end side or a part that extends horizontally may be provided in a part of the part.

各実施例では、気相二次冷媒の逆流を防ぐ手段として、プレート式熱交換器における二次熱交換部の流路に形成される液封部を利用したが、これに限定されず、熱交換器の内部における二次液配管との接続部近傍から二次液配管の間に、気相二次冷媒に対し流通抵抗となる抗力を設ければよい。例えば、熱交換器の内底部または二次液配管の途中に液相二次冷媒を貯留する構成として、この貯留部に溜る二次冷媒のヘッド(水頭)を抵抗部としてもよい。更には、二次液配管に流れ抵抗が大きくなる手段や、絞り部あるいはトラップ等を設ける配管形状としたり、あるいは二次液配管に介挿した逆止弁等も抵抗部として用いることができる。これら種々の態様の抵抗部を単体で用いるだけでなく、実施例1および変更例の構成を組合わせて抵抗部として機能させてもよい。   In each embodiment, as a means for preventing the back flow of the gas phase secondary refrigerant, a liquid seal formed in the flow path of the secondary heat exchange section in the plate heat exchanger is used. What is necessary is just to provide the drag which becomes distribution resistance with respect to a gaseous-phase secondary refrigerant between the secondary liquid piping from the connection part vicinity with the secondary liquid piping in the inside of an exchanger. For example, as a configuration in which the liquid phase secondary refrigerant is stored in the inner bottom portion of the heat exchanger or in the middle of the secondary liquid pipe, a head (water head) of the secondary refrigerant stored in the storage portion may be used as the resistance portion. Furthermore, a means for increasing the flow resistance in the secondary liquid pipe, a pipe shape provided with a throttle part or a trap, or a check valve inserted in the secondary liquid pipe can be used as the resistance part. In addition to using the resistance portions of these various modes alone, the configurations of the first embodiment and the modified example may be combined to function as a resistance portion.

各実施例では、機械室に配設する機器の共通基板となる台板により、機械室と収納室との間で空気の流通がないように収納室と機械室とを区切る構成であるが、機械室と収納室とを箱体の天板で区切る構成であってもよい。   In each embodiment, the storage chamber and the machine room are separated so that there is no air flow between the machine room and the storage room by a base plate that is a common substrate of the equipment disposed in the machine room. The machine room and the storage room may be separated from each other by a box top plate.

各実施例では、冷却装置を冷蔵庫に採用する場合を例にして説明したが、冷凍庫、冷凍・冷蔵庫、ショーケースおよびプレハブ庫等の所謂貯蔵庫、その他空調機器等にも適用可能である。   In each of the embodiments, the case where the cooling device is employed in the refrigerator has been described as an example.

実施例では、一次回路の減圧手段(絞り機構)として膨張弁を用いたが、キャピラリーチューブやその他の手段を採用することができる。   In the embodiment, the expansion valve is used as the pressure reducing means (throttle mechanism) of the primary circuit, but a capillary tube or other means can be adopted.

実施例5では、二重管式の熱交換器を上下を軸とする螺旋状に延在するよう形成したが、蛇行状や階段状等の適宜経路で延在するよう形成してもよい。   In the fifth embodiment, the double-tube heat exchanger is formed so as to extend in a spiral shape with the upper and lower axes as axes, but may be formed so as to extend through an appropriate path such as a meandering shape or a staircase shape.

本発明の好適な実施例1に係る冷却装置により冷却される冷蔵庫を示す側断面図である。It is a sectional side view which shows the refrigerator cooled with the cooling device which concerns on suitable Example 1 of this invention. 実施例1に係る冷却装置を示す概略回路図である。1 is a schematic circuit diagram illustrating a cooling device according to Embodiment 1. FIG. 実施例1に係るプレート式熱交換器の断面図である。1 is a cross-sectional view of a plate heat exchanger according to Example 1. FIG. 実施例1に係るプレート式熱交換器の設置状態を示す概略説明図である。It is a schematic explanatory drawing which shows the installation state of the plate type heat exchanger which concerns on Example 1. FIG. 実施例1に係るプレート式熱交換器における温度勾配と二次冷媒の流通方向との関係を示す概略説明図であって、(a)は二次冷媒が正循環する状態を示し、(b)は二次冷媒が逆循環する状態を示す。It is a schematic explanatory drawing which shows the relationship between the temperature gradient in the plate type heat exchanger which concerns on Example 1, and the distribution direction of a secondary refrigerant | coolant, (a) shows the state in which a secondary refrigerant is circulating normally, (b) Indicates a state in which the secondary refrigerant is reversely circulated. 図2に示す蒸発器のA−A線断面図であって、二次冷媒が正循環する状態を示す。It is AA sectional view taken on the line of the evaporator shown in FIG. 2, Comprising: The state which a secondary refrigerant | coolant circulates normally is shown. 図2に示す蒸発器のA−A線断面図であって、二次冷媒が逆循環する状態を示す。It is AA sectional view taken on the line of the evaporator shown in FIG. 2, Comprising: A secondary refrigerant | coolant shows the state which reversely circulates. 実施例1に係るプレート式熱交換器の配設方法を示す概略説明図である。It is a schematic explanatory drawing which shows the arrangement | positioning method of the plate type heat exchanger which concerns on Example 1. FIG. 実施例3に係るプレート式熱交換器の配設方法を示す概略説明図である。It is a schematic explanatory drawing which shows the arrangement | positioning method of the plate type heat exchanger which concerns on Example 3. FIG. 実施例4に係るプレート式熱交換器の配設方法を示す概略説明図である。It is a schematic explanatory drawing which shows the arrangement | positioning method of the plate type heat exchanger which concerns on Example 4. FIG. 実施例4に係るプレート式熱交換器を配設した台板を傾斜して配設する配設方法を示す概略説明図であって、(a)は箱体構造により傾斜させる構造を示し、(b)は台板構造により台板を傾斜させる構造を示す。It is a schematic explanatory drawing which shows the arrangement | positioning method which inclines and arrange | positions the base plate which arrange | positioned the plate-type heat exchanger which concerns on Example 4, Comprising: (a) shows the structure made to incline with a box structure, b) shows a structure in which the base plate is inclined by the base plate structure. 実施例5の前提例に係る熱交換器を備えた冷却装置により冷却される冷蔵庫を示す側断面図である。It is a sectional side view which shows the refrigerator cooled by the cooling device provided with the heat exchanger which concerns on the premise example of Example 5. 実施例5の前提例に係る熱交換器を備えた冷却装置により冷却される冷蔵庫における機械室を示す平面図である。It is a top view which shows the machine room in the refrigerator cooled with the cooling device provided with the heat exchanger which concerns on the premise example of Example 5. FIG. 実施例5の前提例に係る熱交換器を一部破断して示す側面図である。FIG. 10 is a side view showing a partially broken heat exchanger according to a premise example of Example 5. 実施例5に係る熱交換器の配置例を示す冷蔵庫の側断面図である。It is a sectional side view of the refrigerator which shows the example of arrangement | positioning of the heat exchanger which concerns on Example 5. FIG. 従来技術に係る冷却装置を模式的に示した説明図である。It is explanatory drawing which showed typically the cooling device which concerns on a prior art.

符号の説明Explanation of symbols

14 収納室(閉鎖空間),20 機械室(開放空間),24 台板(断熱壁部)
24a 外郭部材,25 突起部,34 一次回路,36 一次熱交換部
38 一次液配管,40 一次ガス配管,44 二次回路,46 二次熱交換部
48 二次液配管,50 二次ガス配管,52 蒸発管(冷媒経路),52a 流入端
52b 流出端,74 第1拘束治具,76 第2拘束治具,80 傾斜面
CD 凝縮器,CM 圧縮機,EP 蒸発器,HE プレート式熱交換器
HE1 熱交換器
14 storage room (closed space), 20 machine room (open space), 24 base plate (heat insulation wall)
24a outer member, 25 projection, 34 primary circuit, 36 primary heat exchange section 38 primary liquid piping, 40 primary gas piping, 44 secondary circuit, 46 secondary heat exchange section 48 secondary liquid piping, 50 secondary gas piping, 52 Evaporating Tube (Refrigerant Path), 52a Inlet End 52b Outlet End, 74 First Restraint Jig, 76 Second Restraint Jig, 80 Inclined Surface CD Condenser, CM Compressor, EP Evaporator, HE Plate Heat Exchanger HE1 heat exchanger

Claims (12)

一次冷媒を機械的に強制循環する一次回路(34)と、二次冷媒を自然循環する二次回路(44)と、一次冷媒および二次冷媒の間で熱交換する熱交換器(HE,HE1)とを備えた冷却装置において、
前記一次回路(34)は、一次冷媒を圧縮する圧縮機(CM)と、該圧縮機(CM)で圧縮された一次冷媒を凝縮する凝縮器(CD)と、該凝縮器(CD)で凝縮した一次冷媒を減圧する減圧手段(EV)と、前記熱交換器(HE,HE1)に形成されて凝縮器(CD)で凝縮した一次冷媒を蒸発する一次熱交換部(36)とを備え、凝縮器(CD)と一次熱交換部(36)とを減圧手段(EV)を介して接続する一次液配管(38)を前記熱交換器(HE,HE1)の一方の端側に接続すると共に、前記圧縮機(CM)と一次熱交換部(36)とを接続する一次ガス配管(40)を該熱交換器(HE,HE1)の他方の端側に接続するよう構成され、
前記二次回路(44)は、前記熱交換器(HE,HE1)に形成されて二次冷媒を凝縮する二次熱交換部(46)と、前記二次熱交換部(46)で凝縮した二次冷媒を蒸発する蒸発器(EP)とを備え、前記二次熱交換部(46)と蒸発器(EP)とを接続する二次液配管(48)を、前記熱交換器(HE,HE1)における前記一次液配管(38)の接続端側に接続すると共に、該二次熱交換部(46)と蒸発器(EP)とを接続する二次ガス配管(50)を、該熱交換器(HE,HE1)における前記一次ガス配管(40)の接続端側に接続するよう構成され、
前記一次回路(34)が配設される開放空間(20)と前記二次回路(44)の前記蒸発器(EP)が配設される閉鎖空間(14)とを、断熱壁部(24)により区切り、
前記断熱壁部(24)を構成する一対の外郭部材(24a,24a)間に前記熱交換器(HE,HE1)が配置され、
前記熱交換器(HE,HE1)は、前記一次熱交換部(36)の冷媒流通径路が水平方向または水平面に対して傾斜して延在するよう、水平姿勢または水平面に対して傾斜する姿勢で配置される
ことを特徴とする冷却装置。
Primary circuit (34) that mechanically circulates the primary refrigerant, secondary circuit (44) that naturally circulates the secondary refrigerant, and heat exchangers (HE, HE1) that exchange heat between the primary refrigerant and the secondary refrigerant )
The primary circuit (34) includes a compressor (CM) that compresses the primary refrigerant, a condenser (CD) that condenses the primary refrigerant compressed by the compressor (CM), and a condenser (CD) that condenses the primary refrigerant. Pressure reducing means (EV) for depressurizing the primary refrigerant, and a primary heat exchange unit (36) for evaporating the primary refrigerant formed in the heat exchanger (HE, HE1) and condensed in the condenser (CD), A primary liquid pipe (38) that connects the condenser (CD) and the primary heat exchange section (36) via a decompression means (EV) is connected to one end side of the heat exchanger (HE, HE1). The primary gas pipe (40) connecting the compressor (CM) and the primary heat exchange section (36) is configured to be connected to the other end side of the heat exchanger (HE, HE1),
The secondary circuit (44) is formed in the heat exchanger (HE, HE1) and is condensed in a secondary heat exchange unit (46) that condenses the secondary refrigerant and the secondary heat exchange unit (46). An evaporator (EP) for evaporating the secondary refrigerant, and a secondary liquid pipe (48) connecting the secondary heat exchange section (46) and the evaporator (EP), the heat exchanger (HE, HE1) is connected to the connection end side of the primary liquid pipe (38), and the secondary gas pipe (50) connecting the secondary heat exchange section (46) and the evaporator (EP), the heat exchange It is configured to connect to the connection end side of the primary gas pipe (40) in the vessel (HE, HE1),
An insulating space (24) comprising an open space (20) in which the primary circuit (34) is disposed and a closed space (14) in which the evaporator (EP) of the secondary circuit (44) is disposed. Separated by
The heat exchanger (HE, HE1) is disposed between a pair of outer members (24a, 24a) constituting the heat insulating wall (24),
The heat exchanger (HE, HE1) has a horizontal posture or a posture inclined with respect to a horizontal plane so that a refrigerant flow path of the primary heat exchange section (36) extends in a horizontal direction or inclined with respect to a horizontal plane. A cooling device that is arranged.
記熱交換器(HE,HE1)は、該熱交換器(HE,HE1)または外郭部材(24a,24a)に形成された突起部(25)により水平面に対して傾斜角θで傾斜するよう構成された請求項1記載の冷却装置。 Before Stories heat exchanger (HE, HE1) is heat exchanger (HE, HE1) or outer member (24a, 24a) to be inclined at an inclination angle θ relative to the horizontal plane by a projection formed on the (25) configuration claims 1 Symbol placement of the cooling device. 前記突起部(25)は、断熱性能を有する部材により形成される請求項記載の冷却装置。 The cooling device according to claim 2 , wherein the protrusion (25) is formed of a member having heat insulation performance. 記外郭部材(24a)に形成されて水平面に対して傾斜角θとなる傾斜面(80)に、前記熱交換器(HE,HE1)を設置することで該熱交換器(HE,HE1)が水平面に対して傾斜角θで傾斜するよう構成された請求項1記載の冷却装置。 Before Kigaikaku member inclined surface as the inclined angle θ with respect to formed by a horizontal plane (24a) (80), the heat exchanger by installing the heat exchanger (HE, HE1) (HE, HE1) There configured claim 1 Symbol placement of the cooling device to be inclined at an inclination angle θ relative to the horizontal plane. 記外郭部材(24a)を水平面に対して傾斜させることで、前記熱交換器(HE,HE1)が水平面に対して傾斜角θで傾斜するよう構成された請求項1記載の冷却装置。 Before Kigaikaku member (24a) that is inclined relative to a horizontal plane, said heat exchanger (HE, HE1) is configured according to claim 1 Symbol placement of the cooling device to be inclined at an inclination angle θ relative to the horizontal plane. 前記熱交換器は、プレート式熱交換器(HE)であって、該プレート式熱交換器(HE)は水平姿勢または水平面に対して傾斜する姿勢で配置される請求項1〜5の何れか一項に記載の冷却装置。 The said heat exchanger is a plate type heat exchanger (HE), and this plate type heat exchanger (HE) is arrange | positioned with the attitude | position which inclines with respect to a horizontal attitude | position or a horizontal surface. The cooling device according to one item . 前記熱交換器(HE1)は、前記一次熱交換部(36)または前記二次熱交換部(46)の何れか一方をなす外管と、該外管の内部に挿通され、前記一次熱交換部(36)または前記二次熱交換部(46)の何れか他方をなす内管とから構成される請求項1〜5の何れか一項に記載の冷却装置。 The heat exchanger (HE1) is inserted into the outer tube forming either one of the primary heat exchange unit (36) or the secondary heat exchange unit (46), and the primary heat exchange. The cooling device according to any one of claims 1 to 5, wherein the cooling device is configured by an inner pipe that constitutes one of the section (36) and the secondary heat exchange section (46). 前記熱交換器(HE,HE1)と水平面とのなす角θは、前記液配管(38,48)の接続端側を基準として、前記ガス配管(40,50)の接続端側に向けて上方傾斜する姿勢を正の値とした場合に、−4°<θ≦45°の範囲に設定される請求項1〜の何れか一項に記載の冷却装置。 The angle θ formed by the heat exchanger (HE, HE1) and the horizontal plane is upward toward the connection end side of the gas pipe (40, 50) with respect to the connection end side of the liquid pipe (38, 48). The cooling device according to any one of claims 1 to 7 , which is set in a range of -4 ° <θ ≤ 45 ° when the tilting posture is a positive value. 前記熱交換器(HE,HE1)と水平面とのなす角θは、前記液配管(38,48)の接続端側を基準として、前記ガス配管(40,50)の接続端側に向けて上方傾斜する姿勢を正の値とした場合に、4°≦θ≦45°の範囲に設定される請求項1〜の何れか一項に記載の冷却装置。 The angle θ formed by the heat exchanger (HE, HE1) and the horizontal plane is upward toward the connection end side of the gas pipe (40, 50) with respect to the connection end side of the liquid pipe (38, 48). The cooling device according to any one of claims 1 to 7 , which is set in a range of 4 ° ≤ θ ≤ 45 ° when the inclined posture is a positive value. 前記熱交換器(HE,HE1)と水平面とのなす角θは、前記液配管(38,48)の接続端側を基準として、前記ガス配管(40,50)の接続端側に向けて上方傾斜する姿勢を正の値とした場合に、−4°<θ<4°の範囲に設定される請求項1〜の何れか一項に記載の冷却装置。 The angle θ formed by the heat exchanger (HE, HE1) and the horizontal plane is upward toward the connection end side of the gas pipe (40, 50) with respect to the connection end side of the liquid pipe (38, 48). The cooling device according to any one of claims 1 to 7 , which is set in a range of -4 ° <θ <4 ° when the tilting posture is a positive value. 前記二次回路(44)における蒸発器(EP)は、前記二次液配管(48)に接続する流入端(52a)が前記二次ガス配管(50)に接続する流出端(52b)より上部に位置するよう構成された請求項10記載の冷却装置。 The evaporator (EP) in the secondary circuit (44) has an inflow end (52a) connected to the secondary liquid pipe (48) above an outflow end (52b) connected to the secondary gas pipe (50). The cooling device according to claim 10 , wherein the cooling device is configured to be located in 前記断熱壁部(24)を構成する一対の外郭部材(24a,24a)間に前記熱交換器(HE,HE1)を配置するよう構成された請求項1〜11の何れか一項に記載の冷却装置(32)を製造する方法であって、
前記一対の外郭部材(24a,24a)間に前記熱交換器(HE,HE1)を配置すると共に、前記一次回路(34)および熱交換器(HE,HE1)を接続する配管(38,40)と、前記二次回路(44)および熱交換器(HE,HE1)を接続する配管(48,50)とを拘束治具(74,76)により保持した状態で、一対の外郭部材(24a,24a)間に発泡材を充填するようにした
ことを特徴とする冷却装置の製造方法。
The heat exchanger (HE, HE1) is configured to be disposed between a pair of outer members (24a, 24a) constituting the heat insulating wall (24), according to any one of claims 1 to 11. A method of manufacturing a cooling device (32), comprising:
The heat exchanger (HE, HE1) is disposed between the pair of outer members (24a, 24a) and pipes (38, 40) connecting the primary circuit (34) and the heat exchanger (HE, HE1). And a pipe (48, 50) connecting the secondary circuit (44) and the heat exchanger (HE, HE1) with a restraining jig (74, 76), a pair of outer members (24a, 24a) A method for manufacturing a cooling device, wherein a foaming material is filled in between.
JP2008170673A 2007-08-10 2008-06-30 Cooling device and manufacturing method thereof Expired - Fee Related JP5219657B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008170673A JP5219657B2 (en) 2007-08-10 2008-06-30 Cooling device and manufacturing method thereof
PCT/JP2009/055336 WO2010001643A1 (en) 2008-06-30 2009-03-18 Cooling device and method for manufacturing the same
TW98109041A TWI440806B (en) 2008-06-30 2009-03-20 Cooling unit and method of making the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007210453 2007-08-10
JP2007210453 2007-08-10
JP2008170673A JP5219657B2 (en) 2007-08-10 2008-06-30 Cooling device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009063283A JP2009063283A (en) 2009-03-26
JP5219657B2 true JP5219657B2 (en) 2013-06-26

Family

ID=40558005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170673A Expired - Fee Related JP5219657B2 (en) 2007-08-10 2008-06-30 Cooling device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5219657B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189261A (en) * 2011-03-10 2012-10-04 National Institute Of Advanced Industrial Science & Technology Heat exchanger
KR101852817B1 (en) * 2011-07-21 2018-04-27 엘지전자 주식회사 Refrigerator having thermosiphon
JP2018194183A (en) * 2017-05-12 2018-12-06 株式会社ニシヤマ Cooling device
CN113796705A (en) * 2021-09-29 2021-12-17 江苏星星冷链科技有限公司 Air curtain cabinet of water-cooling condensation system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527561U (en) * 1991-09-20 1993-04-09 新明和工業株式会社 Refrigeration equipment
JP3909520B2 (en) * 2002-08-29 2007-04-25 三菱電機株式会社 Cooling system
WO2005050104A1 (en) * 2003-11-21 2005-06-02 Mayekawa Mfg.Co.,Ltd. Ammonia/co2 refrigeration system, co2 brine production system for use therein, and ammonia cooing unit incorporating that production system
JP4945713B2 (en) * 2006-10-16 2012-06-06 ホシザキ電機株式会社 Cooling system

Also Published As

Publication number Publication date
JP2009063283A (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP6724888B2 (en) Equipment temperature controller
WO2010001643A1 (en) Cooling device and method for manufacturing the same
KR102566889B1 (en) Vapor injection module and heat pump system using the same
JP6575690B2 (en) Equipment temperature controller
JP4945713B2 (en) Cooling system
JP5219657B2 (en) Cooling device and manufacturing method thereof
JP3909520B2 (en) Cooling system
JP4945712B2 (en) Thermosiphon
JP2018165104A (en) Thermal management system in vehicle cabin
KR102548358B1 (en) Vapor injection module and heat pump system using the same
JP5139019B2 (en) Cooling system
JP5405058B2 (en) Cooling system
JP4720510B2 (en) Refrigerant cycle equipment
JP6769315B2 (en) Small refrigeration cycle device
JP2004309115A (en) Accumulator and air conditioning system using the same
EP3217117A1 (en) Air-conditioning/hot-water supply system
JP6956903B2 (en) Air conditioner and its control method
WO2009157318A1 (en) Cooling device
JP2009168288A (en) Cooling device
JPH10281572A (en) Secondary refrigerant freezer
JP2006004254A (en) Automatic vending machine
JP2009168337A (en) Cooling device
JP2004225928A (en) Refrigeration unit
JP2009140308A (en) Vending machine
JP3762542B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees