JP2008096084A - Thermosiphon - Google Patents

Thermosiphon Download PDF

Info

Publication number
JP2008096084A
JP2008096084A JP2006281488A JP2006281488A JP2008096084A JP 2008096084 A JP2008096084 A JP 2008096084A JP 2006281488 A JP2006281488 A JP 2006281488A JP 2006281488 A JP2006281488 A JP 2006281488A JP 2008096084 A JP2008096084 A JP 2008096084A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
pipe
heat exchange
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006281488A
Other languages
Japanese (ja)
Other versions
JP4945712B2 (en
Inventor
Kazuyoshi Seki
和芳 関
Akihiko Hirano
明彦 平野
Shinichi Kaga
進一 加賀
Yukinobu Ikemoto
幸信 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2006281488A priority Critical patent/JP4945712B2/en
Publication of JP2008096084A publication Critical patent/JP2008096084A/en
Application granted granted Critical
Publication of JP4945712B2 publication Critical patent/JP4945712B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermosiphon reducing a coolant amount in a circuit. <P>SOLUTION: A secondary circuit 44 of a cooling apparatus 32 is composed by connecting a secondary heat exchange part 46 condensing a secondary coolant, and an evaporator EP arranged below the heat exchange part 46 to evaporate the secondary coolant by a liquid piping 48 and a gas piping 50. In the secondary circuit 44, a natural circulation cycle is formed to send a liquid phase secondary coolant down from the secondary heat exchange part 46 to the evaporator EP via the liquid piping 48, and to communicate a gaseous phase secondary coolant from the evaporator EP to the secondary heat exchange part 46 via the gas piping 50. In an evaporation pipe 52 of the evaporator EP, an inflow end 52a is arranged higher than an outflow end 52b, and it is a downward gradient toward a circulating direction front side of the secondary coolant. A liquid sealing part formed in the secondary heat exchange part 46 acts as resistance pushing the gaseous phase secondary coolant of the evaporation pipe 52 in a circulating direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、熱交換器と蒸発器との間の温度勾配を利用して、冷媒を自然循環させるサーモサイフォンに関するものである。   The present invention relates to a thermosiphon that naturally circulates a refrigerant using a temperature gradient between a heat exchanger and an evaporator.

冷媒回路内に温度勾配を設けることで冷媒に密度差を形成し、密度の不均一によって重力の作用下に生じる自然対流を利用して熱伝達を行なうサーモサイフォンと呼ばれる熱輸送機構がある。このようなサーモサイフォンは、例えば冷蔵庫等の貯蔵設備や空調設備等の冷却機構として用いられている(例えば、特許文献1参照)。   There is a heat transport mechanism called a thermosiphon that forms a temperature difference in the refrigerant circuit by forming a temperature difference in the refrigerant circuit, and performs heat transfer using natural convection caused by gravity due to non-uniform density. Such a thermosiphon is used as a cooling mechanism such as a storage facility such as a refrigerator or an air conditioning facility (see, for example, Patent Document 1).

図7に例示するように、サーモサイフォンを利用した冷却回路80は、凝縮器82と、この凝縮器82の下方に配置した蒸発器84と、凝縮器82から蒸発器84へ液化冷媒を導く液配管86と、蒸発器84から凝縮器82へ気化冷媒を導くガス配管88とから構成される。冷却回路80では、強制的または自然冷却された凝縮器82で気化冷媒から熱を奪って液化し、この液化冷媒を液配管86を介して重力の作用下に蒸発器84へ流下させる。また冷却回路80では、蒸発器84の周囲雰囲気から熱を奪うことで蒸発器84に流入した液化冷媒を気化させる。そして、気化冷媒は、蒸発器84で液化冷媒から相変化して体積が膨張することにより比重が減少するので、上方に向けて流動して、ガス配管88を介して凝縮器82に還流される。また、蒸発器84では液化冷媒の蒸発により圧力が上昇する一方、凝縮器82では気化冷媒の凝縮により圧力が降下するので、冷却回路80には微少な圧力差が生じる。すなわち、冷却回路80では、前述した冷媒の比重差と、蒸発器84および凝縮器82の間の圧力差との二種類の推進力によって冷媒が自然循環される。そして、冷却回路80では、一方向(循環方向)へ自然対流による冷媒の循環サイクルが構築されることで、蒸発器84で所要の冷却作用を発揮するようになっている。   As illustrated in FIG. 7, the cooling circuit 80 using the thermosyphon includes a condenser 82, an evaporator 84 disposed below the condenser 82, and a liquid that guides the liquefied refrigerant from the condenser 82 to the evaporator 84. The pipe 86 is constituted by a gas pipe 88 that leads the vaporized refrigerant from the evaporator 84 to the condenser 82. In the cooling circuit 80, heat is removed from the vaporized refrigerant by the forced or naturally cooled condenser 82, and the liquid refrigerant is liquefied through the liquid pipe 86 to the evaporator 84 under the action of gravity. The cooling circuit 80 vaporizes the liquefied refrigerant that has flowed into the evaporator 84 by removing heat from the ambient atmosphere of the evaporator 84. The vaporized refrigerant is phase-changed from the liquefied refrigerant in the evaporator 84 and expands in volume, so that the specific gravity decreases. Therefore, the vaporized refrigerant flows upward and is refluxed to the condenser 82 via the gas pipe 88. . In the evaporator 84, the pressure increases due to the evaporation of the liquefied refrigerant, while in the condenser 82, the pressure decreases due to the condensation of the vaporized refrigerant, so that a slight pressure difference occurs in the cooling circuit 80. That is, in the cooling circuit 80, the refrigerant is naturally circulated by two types of propulsive force, that is, the above-described difference in specific gravity of the refrigerant and the pressure difference between the evaporator 84 and the condenser 82. In the cooling circuit 80, a refrigerant circulation cycle by natural convection is constructed in one direction (circulation direction), so that the evaporator 84 exhibits a required cooling action.

ところで、前記蒸発器84は、周囲雰囲気との接触面積をかせぐために管路を蛇行させた蒸発管85で構成される。蒸発管85では、比重差により上方へ流動する気化冷媒に対して作用する外力が存在しない場合、気化冷媒は圧力損失が少ない方向へ押し出される。ここで、蒸発管85において気化冷媒が液配管86側に向けて流動すると、液配管86を蒸発器84へ向けて重力落下する液化冷媒の流下方向に対し逆向きとなり、液化冷媒の流下を阻害するから、冷媒の循環速度が低下して冷却能力を低下させてしまう問題を生じる。すなわち、冷却回路80では、冷媒の自然循環を維持するために、冷媒の循環方向と蒸発器84における気化冷媒の流動方向を一致させる必要がある。   By the way, the evaporator 84 is composed of an evaporation pipe 85 having a meandering pipe line in order to increase the contact area with the surrounding atmosphere. In the evaporation pipe 85, when there is no external force acting on the vaporized refrigerant flowing upward due to the difference in specific gravity, the vaporized refrigerant is pushed out in a direction where the pressure loss is small. Here, when the vaporized refrigerant flows toward the liquid pipe 86 in the evaporation pipe 85, the liquid pipe 86 is directed in the opposite direction to the flow direction of the liquefied refrigerant that drops by gravity toward the evaporator 84, thereby inhibiting the flow of the liquefied refrigerant. Therefore, there arises a problem that the circulation rate of the refrigerant is lowered and the cooling capacity is lowered. That is, in the cooling circuit 80, in order to maintain the natural circulation of the refrigerant, it is necessary to make the circulation direction of the refrigerant coincide with the flow direction of the vaporized refrigerant in the evaporator 84.

そこで、図7に示す如く、蒸発器84では、液配管86の下端に接続する蒸発管85の流入端85aを、蒸発器84の下部に配置する一方、ガス配管88の下端に接続する蒸発管85の流出端85bを、蒸発器84の上部に配置している。また、蒸発管85の管路を、全体として流出端85b側に向かう上り勾配となるように形成することで、比重が低下した気化冷媒が上方に流動する作用を利用して、蒸発管85に沿って気化冷媒を案内してガス配管88に導くように構成される。このように、比重差を利用して気化冷媒を流動させる都合上、従来の蒸発器84では、蒸発管85の流出端85bを流入端85aより上方に位置させて、管路を冷媒の循環方向前側に向けて全体として上り勾配となるように形成することが必須であると考えられていた。   Therefore, as shown in FIG. 7, in the evaporator 84, the inflow end 85 a of the evaporator pipe 85 connected to the lower end of the liquid pipe 86 is arranged at the lower part of the evaporator 84, while the evaporator pipe connected to the lower end of the gas pipe 88. The outflow end 85 b of 85 is disposed at the top of the evaporator 84. In addition, by forming the pipe line of the evaporation pipe 85 so as to have an upward gradient toward the outflow end 85b as a whole, the vaporization refrigerant having a reduced specific gravity flows upward to the evaporation pipe 85. The vaporized refrigerant is guided along the gas pipe 88 and guided to the gas pipe 88. Thus, for the convenience of flowing the vaporized refrigerant using the difference in specific gravity, in the conventional evaporator 84, the outflow end 85b of the evaporation pipe 85 is positioned above the inflow end 85a, and the pipe line is circulated in the refrigerant direction. It was considered essential to form an upward slope as a whole toward the front side.

前記蒸発器84では、蒸発管85の流入端85aが管路における傾斜下端となっているから、液配管86を介して到来した液化冷媒は流入端85a側に集約される。また、蒸発管85において、蒸発管85の流出端85b側まで自然に拡散することはなく、冷媒量の増加に伴って、液配管86に形成されるヘッドによる押出し力により流出端85b側に冷媒が次第に満たされる。例えば、冷却回路80の冷媒量が少ないと、蒸発管85の流入端85a側だけで液化冷媒が蒸発(ドライアウト)するから、周囲雰囲気と液化冷媒とが熱交換する範囲(伝熱面積)が狭く、蒸発器84は充分な冷却能力を発揮することができない(図8(a)参照)。そこで、蒸発器84では、蒸発管85の流入端85a側から流出端85b側まで液化冷媒が満たされるように冷却回路80の冷媒量を設定して、流出端85b近傍でも液化冷媒を蒸発させることで、蒸発管85の全体に亘って伝熱面積を確保するようにしている(図8(b)参照)。なお、図8(b)の場合の冷媒量が適正とされるが、適正量を越えて冷媒が過剰に充填されたときであっても(図8(c)参照)、蒸発管85に満たされた液化冷媒の湿り度が増大して熱伝導率が向上するから、蒸発器84は見かけ上所要の冷却能力を発揮する。
特開2004−85151号公報
In the evaporator 84, since the inflow end 85a of the evaporation pipe 85 is an inclined lower end in the pipe line, the liquefied refrigerant that has arrived through the liquid pipe 86 is concentrated on the inflow end 85a side. Further, the evaporation pipe 85 does not naturally diffuse to the outflow end 85b side of the evaporation pipe 85, and the refrigerant is moved to the outflow end 85b side by the pushing force generated by the head formed in the liquid pipe 86 as the refrigerant amount increases. Is gradually satisfied. For example, if the amount of refrigerant in the cooling circuit 80 is small, the liquefied refrigerant evaporates (drys out) only on the inflow end 85a side of the evaporation pipe 85, so the range (heat transfer area) in which the ambient atmosphere and the liquefied refrigerant exchange heat is reduced. Narrow and the evaporator 84 cannot exhibit sufficient cooling capacity (see FIG. 8A). Therefore, in the evaporator 84, the refrigerant amount of the cooling circuit 80 is set so that the liquefied refrigerant is filled from the inflow end 85a side to the outflow end 85b side of the evaporation pipe 85, and the liquefied refrigerant is evaporated also in the vicinity of the outflow end 85b. Thus, a heat transfer area is ensured over the entire evaporation pipe 85 (see FIG. 8B). Note that the amount of refrigerant in the case of FIG. 8B is appropriate, but even when the amount of refrigerant exceeds the appropriate amount and is excessively charged (see FIG. 8C), the refrigerant pipe 85 is filled. Since the wetness of the liquefied refrigerant is increased and the thermal conductivity is improved, the evaporator 84 apparently exhibits the required cooling capacity.
JP 2004-85151 A

前述した蒸発器84では、伝熱面積を確保するために蒸発管85の流入端85a側から流出端85b側に亘る全体に液化冷媒を満たす必要があり、冷却回路80に循環させる冷媒量が多くなってしまう不都合がある。冷却回路80を循環する冷媒量の増大に伴って、装置を停止したときの冷却回路80の圧力が上昇するため、冷却回路80に要求される耐圧性能が高くなるので、設備の重厚化に繋がり、コストの増大を招いていた。また、冷却回路80に大型の膨張タンクを追加すること等により当該回路80の内容積を増やして圧力上昇に対応することも考えられるが、設備の大型化に繋がり、これもコスト上昇の一因となる。   In the evaporator 84 described above, in order to secure a heat transfer area, it is necessary to fill the entire liquefied refrigerant from the inflow end 85a side to the outflow end 85b side of the evaporation pipe 85, and a large amount of refrigerant circulates in the cooling circuit 80. There is an inconvenience. As the amount of refrigerant circulating in the cooling circuit 80 increases, the pressure of the cooling circuit 80 when the apparatus is stopped increases, so that the pressure resistance performance required for the cooling circuit 80 increases, leading to an increase in the weight of the equipment. , Which led to an increase in cost. It is also conceivable to increase the internal volume of the circuit 80 by adding a large expansion tank to the cooling circuit 80, etc., to cope with the pressure increase, but this leads to an increase in the size of the equipment, which also contributes to an increase in cost. It becomes.

すなわち本発明は、従来の技術に係るサーモサイフォンに内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、回路内の冷媒量を低減し得るサーモサイフォンを提供することを目的とする。   That is, the present invention has been proposed in order to suitably solve these problems inherent in the thermosyphon according to the related art, and provides a thermosiphon that can reduce the amount of refrigerant in the circuit. With the goal.

前記課題を克服し、所期の目的を達成するため、本願の請求項1に係る発明のサーモサイフォンは、
気化冷媒を凝縮して液化冷媒とする熱交換部と、この熱交換部の下方に配置され、液化冷媒を蒸発させて気化冷媒とする蒸発器とを、液配管およびガス配管で接続し、液化冷媒を熱交換部から蒸発器へ液配管を介して流下させると共に、気化冷媒を蒸発器から熱交換部へガス配管を介して流通させる自然循環サイクルを形成したサーモサイフォンにおいて、
前記蒸発器に延在する冷媒経路は、前記液配管の下端に接続する流入端を、該蒸発器の上部に配置すると共に、前記ガス配管の下端に接続する流出端を、該蒸発器の下部に配置し、
前記熱交換部または液配管に、前記蒸発器から逆流する気化冷媒に対して流通抵抗となる抵抗部を設けたことを特徴とする。
請求項1に係る発明によれば、蒸発器に延在する冷媒経路は、流入端を蒸発器の上部に設けると共に、流出端を蒸発器の下部に設けることで、流入端を流出端より上方に位置させた状態で、冷媒の循環方向前側に向かって落差が設けられる。すなわち、冷媒経路に流入した液化冷媒が、この落差による重力の作用下に経路に沿って流出端側へ誘導されて自然に拡散するから、伝熱面積を広く確保することができる。このように、冷媒経路に液化冷媒を満たさなくても伝熱面積を確保し得るので、回路内の冷媒量を低減し得る。
In order to overcome the above-mentioned problems and achieve the intended object, the thermosiphon of the invention according to claim 1 of the present application is
A heat exchange part that condenses the vaporized refrigerant to be a liquefied refrigerant and an evaporator that is disposed below the heat exchange part and that evaporates the liquefied refrigerant to be a vaporized refrigerant are connected by a liquid pipe and a gas pipe. In the thermosiphon that forms a natural circulation cycle in which the refrigerant flows from the heat exchanger to the evaporator via the liquid pipe and the vaporized refrigerant flows from the evaporator to the heat exchanger via the gas pipe.
The refrigerant path extending to the evaporator has an inflow end connected to the lower end of the liquid pipe at the upper part of the evaporator and an outflow end connected to the lower end of the gas pipe at the lower part of the evaporator. Placed in
The heat exchange section or the liquid pipe is provided with a resistance section that provides a flow resistance against the vaporized refrigerant that flows backward from the evaporator.
According to the first aspect of the present invention, the refrigerant path extending to the evaporator has the inflow end provided above the evaporator and the outflow end provided below the evaporator so that the inflow end is above the outflow end. In this state, a drop is provided toward the front side in the circulation direction of the refrigerant. That is, the liquefied refrigerant that has flowed into the refrigerant path is guided to the outflow end side along the path under the action of gravity due to the head and diffuses naturally, so that a wide heat transfer area can be secured. Thus, since the heat transfer area can be secured without filling the refrigerant path with the liquefied refrigerant, the amount of refrigerant in the circuit can be reduced.

請求項2に係る発明は、前記冷媒経路が、前記流入端から流出端に向かうにつれて下り勾配となるように形成されることが要旨とされる。
請求項2に係る発明によれば、冷媒経路を全体として冷媒の循環方向前側に向けて下り勾配とすることで、液化冷媒の拡散作用をより向上し得る。
The gist of the invention according to claim 2 is that the refrigerant path is formed to have a downward gradient from the inflow end toward the outflow end.
According to the invention which concerns on Claim 2, the spreading | diffusion effect | action of a liquefied refrigerant | coolant can be improved more by making a refrigerant | coolant path | route as a whole downward gradient toward the circulation direction front of a refrigerant | coolant.

請求項3に係る発明は、前記熱交換部が、上下方向に延在する複数のプレートを並列に対向配置して構成されると共に、各プレート間に形成された冷媒の流路の下部に、液化冷媒で液封される部位を設け、この液封される部位が前記抵抗部となることを要旨とする。
請求項3に係る発明によれば、熱交換器の対向するプレート間に生じる液封作用を抵抗として利用することで、抵抗部の構成を簡易にし得る。
According to a third aspect of the present invention, the heat exchanging portion is configured by arranging a plurality of plates extending in the vertical direction so as to face each other in parallel, and at a lower portion of the refrigerant flow path formed between the plates, The gist of the invention is that a portion sealed with a liquefied refrigerant is provided, and the sealed portion serves as the resistance portion.
According to the invention which concerns on Claim 3, the structure of a resistance part can be simplified by utilizing as a resistance the liquid sealing effect which arises between the plates which a heat exchanger opposes.

本発明に係るサーモサイフォンによれば、冷媒の循環方向前側に向かって設けた落差による重力の作用下に、流入端から冷媒経路に流入した液化冷媒が経路に沿って流出端側へ誘導されて自然に拡散するから、伝熱面積を広く確保でき、必要とされる冷媒量を低減することが可能となる。   According to the thermosyphon of the present invention, the liquefied refrigerant that has flowed into the refrigerant path from the inflow end is guided to the outflow end side along the path under the action of gravity due to a head provided toward the front side in the refrigerant circulation direction. Since it diffuses naturally, a wide heat transfer area can be secured, and the amount of refrigerant required can be reduced.

次に、本発明に係るサーモサイフォンにつき、好適な実施例を挙げて、添付図面を参照して以下に説明する。実施例では、店舗等の業務用途に用いられ、野菜や肉等の物品を多量に収納し得る大型の冷蔵庫を例に挙げ、この冷蔵庫の冷却装置として、本願発明に係るサーモサイフォンを二次側の回路に用いた所謂二次ループ冷凍回路を採用した場合について説明する。   Next, a thermosyphon according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments. In the embodiment, a large refrigerator that can be used for business use such as a store and can store a large amount of articles such as vegetables and meat is taken as an example, and the thermosiphon according to the present invention is used as a cooling device for the refrigerator on the secondary side. A case where a so-called secondary loop refrigeration circuit used in this circuit is employed will be described.

図1に示すように、実施例に係る冷蔵庫10は、収納室(閉鎖空間)14を内部画成した断熱構造の箱体12と、この箱体12の上方に設けられ、金属パネル18により外壁を構成したキャビネット16とを備えている。箱体12には、前側に開放して物品の出し入れ口となる開口部12aが収納室14に連通して開設される。また箱体12の前部には、断熱扉22が図示しないヒンジにより回動可能に配設され、断熱扉22を開放することで開口部12aを介して収納室14に対する物品の出し入れが許容されると共に、断熱扉22を閉成することで収納室14を密閉し得るようになっている。   As shown in FIG. 1, a refrigerator 10 according to an embodiment includes a box 12 having a heat insulating structure that internally defines a storage room (closed space) 14, and is provided above the box 12. And a cabinet 16 configured as described above. In the box 12, an opening portion 12 a that opens to the front side and serves as an entry / exit port for goods is opened in communication with the storage chamber 14. Further, a heat insulating door 22 is rotatably disposed at a front portion of the box body 12 by a hinge (not shown), and by opening the heat insulating door 22, an article can be taken into and out of the storage chamber 14 through the opening 12a. In addition, the storage chamber 14 can be sealed by closing the heat insulating door 22.

前記キャビネット16の内部には、収納室14を冷却するための冷却装置32の一部および該冷却装置32を制御する制御用電装箱Cが配設される機械室(開放空間)20が画成される(図2参照)。機械室20の底部には、箱体12の天板12bに載置されて、該機械室20に配設する機器の共通基板となる台板(隔壁)24が設置されている。そして、キャビネット16の外壁をなす金属パネル18には、機械室20に連通する空気流通孔(図示せず)が適宜部位に開設され、この空気流通孔を介して機械室20内の雰囲気と外気とが入替わるようになっている。   Inside the cabinet 16 is a machine room (open space) 20 in which a part of a cooling device 32 for cooling the storage chamber 14 and a control electrical box C for controlling the cooling device 32 are arranged. (See FIG. 2). At the bottom of the machine room 20, a base plate (partition wall) 24 that is placed on the top plate 12 b of the box 12 and serves as a common substrate for the devices disposed in the machine room 20 is installed. The metal panel 18 forming the outer wall of the cabinet 16 is provided with air circulation holes (not shown) communicating with the machine room 20 at appropriate locations, and the atmosphere in the machine room 20 and the outside air are communicated through the air circulation holes. And are to be replaced.

前記収納室14の上部には、箱体12における天板12bの下面から所定間隔離間して冷却ダクト26が配設され、この冷却ダクト26と、箱体12の天板12bに開設した切欠口12cを介して収納室14側に臨む台板24との間に冷却室28が画成される。この冷却室28は、冷却ダクト26の底部前側に形成した吸込口26aおよび後側に形成した冷気吹出口26bを介して収納室14に連通している。吸込口26aには送風ファン30が配設され、該送風ファン30を駆動することで、吸込口26aから収納室14の空気を冷却室28に取込み、冷気吹出口26bから冷却室28の冷気が収納室14に送出される。天板12bの切欠口12cは、台板24で気密的に塞がれて、収納室14(冷却室28)と機械室20とは、台板24で区切られて互いに独立した空間となっている(図1参照)。   In the upper part of the storage chamber 14, a cooling duct 26 is disposed at a predetermined distance from the lower surface of the top plate 12b in the box 12, and the cooling duct 26 and a notch formed in the top plate 12b of the box 12 are provided. A cooling chamber 28 is defined between the base plate 24 facing the storage chamber 14 via 12c. The cooling chamber 28 communicates with the storage chamber 14 via a suction port 26 a formed on the front side of the bottom of the cooling duct 26 and a cold air outlet 26 b formed on the rear side. A blower fan 30 is disposed at the suction port 26a. By driving the blower fan 30, the air in the storage chamber 14 is taken into the cooling chamber 28 from the suction port 26a, and the cool air in the cooling chamber 28 is drawn from the cool air outlet 26b. It is sent to the storage chamber 14. The notch 12c of the top plate 12b is hermetically closed by the base plate 24, and the storage chamber 14 (cooling chamber 28) and the machine room 20 are separated from each other by the base plate 24 and become independent spaces. (See FIG. 1).

図3に示す如く、冷却装置32は、冷媒を強制循環する機械圧縮式の一次回路34と、冷媒が自然対流するサーモサイフォンからなる二次回路44との2系統の回路を、熱交換器HEを介して熱交換するように接続(カスケード接続)した二次ループ冷凍回路が採用される。熱交換器HEは、一次回路34を構成する一次熱交換部36と、この一次熱交換部36と別系統に形成されて、二次回路44を構成する二次熱交換部(熱交換部)46とを備え、熱交換器HEは機械室20の側方後側に位置して台板24上に配設されている(図2参照)。すなわち、一次回路34および二次回路44には、独立した冷媒循環経路が夫々形成され、二次回路44を循環する二次冷媒(冷媒)としては、毒性、可燃性および腐食性を有していない安全性の高い二酸化炭素が採用される。これに対し、一次回路34を循環する一次冷媒としては、蒸発熱や飽和圧等の冷媒としての特性に優れているメタンやプロパン等のCH系の冷媒またはアンモニアなどが採用され、実施例ではプロパンが用いられている。   As shown in FIG. 3, the cooling device 32 includes two circuits, a primary circuit 34 of a mechanical compression type that forcibly circulates a refrigerant, and a secondary circuit 44 that includes a thermosiphon that naturally convects the refrigerant. A secondary loop refrigeration circuit that is connected so as to exchange heat (cascade connection) is adopted. The heat exchanger HE is formed in a separate system from the primary heat exchange unit 36 constituting the primary circuit 34 and the primary heat exchange unit 36, and the secondary heat exchange unit (heat exchange unit) constituting the secondary circuit 44. 46, and the heat exchanger HE is disposed on the base plate 24 at the rear side of the machine room 20 (see FIG. 2). That is, an independent refrigerant circulation path is formed in each of the primary circuit 34 and the secondary circuit 44, and the secondary refrigerant (refrigerant) circulating in the secondary circuit 44 has toxicity, flammability, and corrosivity. Highly safe carbon dioxide is adopted. On the other hand, as the primary refrigerant circulating in the primary circuit 34, CH-type refrigerants such as methane and propane or ammonia, which have excellent characteristics as refrigerants such as heat of evaporation and saturation pressure, are employed. Is used.

前記一次回路34は、気相一次冷媒を圧縮する圧縮機CMと、圧縮した一次冷媒を液化する凝縮器CDと、液相一次冷媒の圧力を低下させる膨張弁EVと、液相一次冷媒を気化する熱交換器HEの一次熱交換部36とを冷媒配管38で接続して構成される(図3参照)。圧縮機CMおよび凝縮器CDは、機械室20において台板24上に共通的に配設され、凝縮器CDを強制冷却する凝縮器ファンFMも、該凝縮器CDに対向して台板24上に配設されている。ここで、凝縮器CDは、キャビネット16の前面をなす金属パネル(フロントパネル)18に近接して機械室20の前側に配置され、該凝縮器CDの後側に凝縮器ファンFMが配置される。また圧縮機CMは、凝縮器ファンFMの後側に配置される(図2参照)。このように機械室20では、凝縮器CD,凝縮器ファンFMおよび圧縮機CMが、機械室20において凝縮器ファンFMにより生起される空気の流通方向に沿って一直線上に並んで配設される。すなわち、凝縮器ファンFMの駆動によりフロントパネル18に開設した空気流通孔から外気が機械室20に取込まれ、この外気が機械室20の前側から後側に流通して凝縮器CDおよび圧縮機CMと熱交換するようになっている。一次回路34では、圧縮機CMによる一次冷媒の圧縮により、圧縮機CM、凝縮器CD、膨張弁EV、熱交換器HEの一次熱交換部36および圧縮機CMの順に、一次冷媒が強制循環され、各機器の作用下に一次熱交換部36において所要の冷却を行なうようになっている(図3参照)。なお、前述した制御用電装箱Cは、機械室20において凝縮器ファンFMによる空気の流れを阻害しない位置(実施例では機械室20の側部)で台板24上に配設されている。   The primary circuit 34 includes a compressor CM that compresses the gas phase primary refrigerant, a condenser CD that liquefies the compressed primary refrigerant, an expansion valve EV that reduces the pressure of the liquid primary refrigerant, and vaporizes the liquid primary refrigerant. The heat exchanger HE is connected to a primary heat exchanging portion 36 by a refrigerant pipe 38 (see FIG. 3). The compressor CM and the condenser CD are commonly arranged on the base plate 24 in the machine room 20, and a condenser fan FM for forcibly cooling the condenser CD is also provided on the base plate 24 so as to face the condenser CD. It is arranged. Here, the condenser CD is disposed on the front side of the machine room 20 in the vicinity of the metal panel (front panel) 18 that forms the front surface of the cabinet 16, and the condenser fan FM is disposed on the rear side of the condenser CD. . The compressor CM is disposed on the rear side of the condenser fan FM (see FIG. 2). Thus, in the machine room 20, the condenser CD, the condenser fan FM, and the compressor CM are arranged in a straight line along the flow direction of the air generated by the condenser fan FM in the machine room 20. . That is, outside air is taken into the machine room 20 from the air circulation hole opened in the front panel 18 by driving the condenser fan FM, and this outside air is circulated from the front side to the rear side of the machine room 20 to cause the condenser CD and the compressor. It is designed to exchange heat with CM. In the primary circuit 34, the primary refrigerant is forcibly circulated in the order of the compressor CM, the condenser CD, the expansion valve EV, the primary heat exchange unit 36 of the heat exchanger HE, and the compressor CM by the compression of the primary refrigerant by the compressor CM. The required cooling is performed in the primary heat exchange section 36 under the action of each device (see FIG. 3). The control electrical box C described above is disposed on the base plate 24 at a position that does not obstruct the air flow by the condenser fan FM in the machine room 20 (side of the machine room 20 in the embodiment). .

前記二次回路44は、気相二次冷媒(気化冷媒)を液化する熱交換器HEの二次熱交換部46と、液相二次冷媒(液化冷媒)を気化する蒸発器EPとを備えている(図3参照)。また、二次回路44は、二次熱交換部46と蒸発器EPとを接続する配管として、二次熱交換部46から蒸発器EPへ重力の作用下に液相二次冷媒を導く液配管48と、蒸発器EPから二次熱交換部46へ気相二次冷媒を導くガス配管50とを有している。前述した如く、二次回路44の二次熱交換部46は、機械室20に配設される一方、蒸発器EPは、当該機械室20の下方に位置する冷却室28に配設され、台板24を挟んで二次熱交換部46より下方に蒸発器EPが配置される。ここで蒸発器EPは、台板24の下面に固定されて、台板24と一体的に取扱い可能とされる。なお、蒸発器EPの下方に位置する冷却ダクト26は、蒸発器EPから滴下する除霜水等を受容する露受皿としても機能する。   The secondary circuit 44 includes a secondary heat exchange unit 46 of the heat exchanger HE that liquefies the gas phase secondary refrigerant (vaporized refrigerant) and an evaporator EP that vaporizes the liquid phase secondary refrigerant (liquefied refrigerant). (See FIG. 3). Further, the secondary circuit 44 is a liquid pipe that guides the liquid phase secondary refrigerant from the secondary heat exchange section 46 to the evaporator EP under the action of gravity as a pipe connecting the secondary heat exchange section 46 and the evaporator EP. 48 and a gas pipe 50 that guides the gas phase secondary refrigerant from the evaporator EP to the secondary heat exchange unit 46. As described above, the secondary heat exchanging portion 46 of the secondary circuit 44 is disposed in the machine room 20, while the evaporator EP is disposed in the cooling chamber 28 located below the machine room 20. The evaporator EP is disposed below the secondary heat exchange unit 46 with the plate 24 interposed therebetween. Here, the evaporator EP is fixed to the lower surface of the base plate 24 and can be handled integrally with the base plate 24. The cooling duct 26 positioned below the evaporator EP also functions as a dew receiving tray that receives defrosted water or the like dripping from the evaporator EP.

前記液配管48は、上端を二次熱交換部46の下部に接続して台板24を貫通して配管され、冷却室28に臨む下端が蒸発器EPに接続される。ガス配管50は、上端を二次熱交換部46の上部に接続して台板24を貫通して配管され、冷却室28に臨む下端が蒸発器EPに接続される。そして、二次回路44には、強制冷却される一次熱交換部36との熱交換により冷却される二次熱交換部46と蒸発器EPとの間に温度勾配が形成され、二次冷媒が二次熱交換部46、液配管48、蒸発器EPおよびガス配管50を自然循環して二次熱交換部46に再び戻る冷媒循環サイクルが形成される。なお、液配管48およびガス配管50における台板24の貫通部位は、シール等により気密的に封止されている。   The liquid pipe 48 is connected to the lower part of the secondary heat exchanging portion 46 at the upper end and is piped through the base plate 24, and the lower end facing the cooling chamber 28 is connected to the evaporator EP. The gas pipe 50 has an upper end connected to the upper part of the secondary heat exchange unit 46 and is piped through the base plate 24, and a lower end facing the cooling chamber 28 is connected to the evaporator EP. In the secondary circuit 44, a temperature gradient is formed between the secondary heat exchange unit 46 cooled by heat exchange with the primary heat exchange unit 36 that is forcibly cooled and the evaporator EP, and the secondary refrigerant is A refrigerant circulation cycle is formed in which the secondary heat exchange unit 46, the liquid pipe 48, the evaporator EP, and the gas pipe 50 are naturally circulated and returned to the secondary heat exchange unit 46 again. In addition, the penetration site | part of the base plate 24 in the liquid piping 48 and the gas piping 50 is airtightly sealed with the seal | sticker etc. FIG.

前記二次回路44は、二次冷媒として常温では液化しない二酸化炭素を採用しているので、冷却装置32の停止時に二次冷媒の圧力上昇を抑制するための膨張タンク54を備えている(図3参照)。この膨張タンク54は、ガス配管50の途中に接続され、膨張タンク54に、蒸発器EPにおいて熱伝達に関わる二次冷媒以外に、ある程度の二次冷媒が貯留される。また、膨張タンク54は、機械室20において圧縮機CMの後側に、凝縮器CDおよび凝縮器ファンFMと前後方向に並んで台板24上に配置される。すなわち、膨張タンク54は、凝縮器ファンFMにより生起される空気の流通方向前側であって、凝縮器CDおよび圧縮機CMからの排熱の流通経路に位置している(図2参照)。   Since the secondary circuit 44 employs carbon dioxide that does not liquefy at room temperature as the secondary refrigerant, the secondary circuit 44 includes an expansion tank 54 for suppressing an increase in the pressure of the secondary refrigerant when the cooling device 32 is stopped (see FIG. 3). The expansion tank 54 is connected in the middle of the gas pipe 50, and a certain amount of secondary refrigerant is stored in the expansion tank 54 in addition to the secondary refrigerant involved in heat transfer in the evaporator EP. In addition, the expansion tank 54 is disposed on the base plate 24 along with the condenser CD and the condenser fan FM in the front-rear direction on the rear side of the compressor CM in the machine room 20. That is, the expansion tank 54 is located on the front side in the flow direction of the air generated by the condenser fan FM, and is located in the flow path of exhaust heat from the condenser CD and the compressor CM (see FIG. 2).

前記蒸発器EPは、管路を蛇行させた蒸発管(冷媒経路)52を有し、液配管48の下端に接続する蒸発管52の流入端52aが、蒸発器EPの上部に配置されると共に、ガス配管50の下端に接続する蒸発管52の流出端52bが、蒸発器EPの下部に配置されている(図3参照)。蒸発器EPでは、蒸発管52の流入端52aが流出端52bより上方に位置するように構成される。また蒸発管52の管路は、流入端52aと流出端52bとの上下位置の間で延在して、蒸発管52に流入した液相二次冷媒を、管路に沿って重力の作用下に流出端52b側まで拡散させるように導くようになっている。より具体的には、蒸発管52は、傾斜する直線部分が上下の関係で葛折り状態で折り重なると共に、屈曲部分が横方向に離間した蛇行形状に管路が形成され、この管路が流入端52a側から流出端52b側に向かうにつれて下り勾配となるよう構成されている。   The evaporator EP has an evaporation pipe (refrigerant path) 52 having meandering pipe lines, and an inflow end 52a of the evaporation pipe 52 connected to the lower end of the liquid pipe 48 is disposed at the upper part of the evaporator EP. The outflow end 52b of the evaporation pipe 52 connected to the lower end of the gas pipe 50 is disposed at the lower part of the evaporator EP (see FIG. 3). The evaporator EP is configured such that the inflow end 52a of the evaporation pipe 52 is positioned above the outflow end 52b. The pipe of the evaporation pipe 52 extends between the upper and lower positions of the inflow end 52a and the outflow end 52b, and the liquid secondary refrigerant that has flowed into the evaporation pipe 52 is subjected to gravity along the pipe. It is guided to diffuse to the outflow end 52b side. More specifically, the evaporating pipe 52 is formed in a meandering shape in which the inclined straight part is folded in a distorted state in an up-and-down relationship, and the bent part is laterally spaced, and this pipe line is formed at the inflow end. It is comprised so that it may become a downward slope as it goes to the outflow end 52b side from 52a side.

図4に示すように、熱交換器HEとしては、所謂プレート式の熱交換器が採用される。熱交換器HEは、上下方向に延在する複数のプレート60を所要間隔離間して並列に対向配置し、対向するプレート60,60の間に、冷媒が流通する複数の流路60a,60bが並列に形成される。熱交換器HEの下部には、一次回路34における膨張弁EVに連通した冷媒配管38に接続する一次流入路64が設けられ、熱交換器HEの上部には、一次回路34における圧縮機CMに連通した冷媒配管38に接続する一次流出路66が設けられる。更に、熱交換器HEの上部には、二次回路44のガス配管50に接続する二次流入路68が設けられ、熱交換器HEの下部には、二次回路44の液配管48に接続する二次流出路70が設けられる。   As shown in FIG. 4, a so-called plate heat exchanger is employed as the heat exchanger HE. In the heat exchanger HE, a plurality of plates 60 extending in the vertical direction are arranged to face each other in parallel at a predetermined interval, and a plurality of flow paths 60a and 60b through which a refrigerant flows are provided between the opposed plates 60 and 60. Formed in parallel. A primary inflow path 64 connected to a refrigerant pipe 38 communicating with the expansion valve EV in the primary circuit 34 is provided in the lower part of the heat exchanger HE, and the compressor CM in the primary circuit 34 is provided in the upper part of the heat exchanger HE. A primary outflow path 66 connected to the communicating refrigerant pipe 38 is provided. Further, a secondary inflow path 68 connected to the gas pipe 50 of the secondary circuit 44 is provided at the upper part of the heat exchanger HE, and connected to the liquid pipe 48 of the secondary circuit 44 at the lower part of the heat exchanger HE. Secondary outflow passage 70 is provided.

前記一次流入路64は、熱交換器HEにおいて横方向に並列する複数の流路60aに対して1つおきに開口すると共に、一次流出路66は、一次流入路64が開口する流路60aに対応して開口するように形成される。そして、一次流入路64および一次流出路66が連通する1つおきの流路60aにより一次熱交換部36が構成され、圧縮機CMの負圧作用下に、一次熱交換部36を構成する各流路60aを下方から上方へ向けて一次冷媒が流通される。一方、二次流入路68および二次流出路70は、前述した一次流入路64および一次流出路66が開口する流路60aとは互い違いに並んだ流路60bに対し開口するようになっている(図4参照)。二次流入路68および二次流出路70が連通する1つおきの流路60bにより二次熱交換部46が構成され、重力の作用下に二次熱交換部46を構成する各流路60bを上方から下方へ向けて二次冷媒が流通される。すなわち、熱交換器HEでは、並列する流路60a,60bに一次冷媒および二次冷媒を交互に流通させて、各プレート60を介して一次冷媒と二次冷媒とを熱交換するよう構成される。なお、熱交換器HEは、断熱材58で外周を覆われ、一次熱交換部36を流通する一次冷媒と、二次熱交換部46を流通する二次冷媒との熱交換の促進が図られている(図4参照)。   In the heat exchanger HE, the primary inflow path 64 is opened every other flow path 60a parallel in the lateral direction, and the primary outflow path 66 is formed into a flow path 60a in which the primary inflow path 64 is opened. A corresponding opening is formed. And every other flow path 60a with which the primary inflow path 64 and the primary outflow path 66 communicate, the primary heat exchange part 36 is comprised, and each primary heat exchange part 36 is comprised under the negative pressure action of compressor CM. The primary refrigerant flows through the flow path 60a from below to above. On the other hand, the secondary inflow path 68 and the secondary outflow path 70 open to the flow paths 60b arranged alternately with the flow paths 60a in which the primary inflow path 64 and the primary outflow path 66 described above are opened. (See Figure 4). The secondary heat exchange section 46 is constituted by every other flow path 60b communicating with the secondary inflow path 68 and the secondary outflow path 70, and each flow path 60b constituting the secondary heat exchange section 46 under the action of gravity. The secondary refrigerant is circulated from above to below. That is, the heat exchanger HE is configured so that the primary refrigerant and the secondary refrigerant are alternately circulated through the parallel flow paths 60a and 60b, and the primary refrigerant and the secondary refrigerant are heat-exchanged via the respective plates 60. . The heat exchanger HE is covered with a heat insulating material 58 to promote heat exchange between the primary refrigerant flowing through the primary heat exchange unit 36 and the secondary refrigerant flowing through the secondary heat exchange unit 46. (See FIG. 4).

前記二次熱交換部46では、対向するプレート60,60の間の流路60bが、例えば1mm程度の狭小な関係に設定されて、液相二次冷媒の粘着力や表面張力等が作用して、二次回路44側の流路60bの下部が液相二次冷媒で塞がれる所謂液封が生じるように構成されている(図4参照)。実施例では、二次熱交換部46の各流路60bに生じる液封部62が、気相二次冷媒に対する抵抗部となる。   In the secondary heat exchange section 46, the flow path 60b between the opposing plates 60, 60 is set to a narrow relationship of about 1 mm, for example, and the adhesive force or surface tension of the liquid phase secondary refrigerant acts. Thus, a so-called liquid seal is formed in which the lower part of the flow path 60b on the secondary circuit 44 side is closed with the liquid phase secondary refrigerant (see FIG. 4). In the embodiment, the liquid seal portion 62 generated in each flow path 60b of the secondary heat exchanging portion 46 serves as a resistance portion with respect to the gas phase secondary refrigerant.

前記二次回路44では、蒸発器EPにおける蒸発管52の流入端52aから流入した液相二次冷媒が、管路に案内されて蒸発管52の流出端52b近傍に到達し得る量であって、飽和状態の液相二次冷媒が当該流出端52b近傍でも蒸発する程度に、二次冷媒量が規定される(図5参照)。なお、二次冷媒量は、必要とされる冷却能力、二次回路44の容量、二次冷媒の循環速度またはその他の要素を勘案して適宜設定される。   In the secondary circuit 44, the amount of the liquid phase secondary refrigerant that has flowed from the inflow end 52a of the evaporation pipe 52 in the evaporator EP can reach the vicinity of the outflow end 52b of the evaporation pipe 52 by being guided by the pipeline. The amount of the secondary refrigerant is defined so that the saturated liquid phase secondary refrigerant evaporates even in the vicinity of the outflow end 52b (see FIG. 5). The secondary refrigerant amount is appropriately set in consideration of the required cooling capacity, the capacity of the secondary circuit 44, the circulation speed of the secondary refrigerant, or other factors.

〔実施例の作用〕
次に、実施例に係るサーモサイフォンの作用について説明する。冷却装置32では、冷却運転を開始すると、一次回路34および二次回路44の夫々で冷媒の循環が開始される。先ず、一次回路34について説明すると、圧縮機CDおよび凝縮器ファンFMが駆動され、圧縮機CMで気相一次冷媒が圧縮されて、この一次冷媒を冷媒配管38を介して凝縮器CDに供給して、凝縮器ファンFMによる強制冷却により凝縮液化することで液相とする。液相一次冷媒は、膨張手段EVで減圧され、熱交換器HEの一次熱交換部36において二次熱交換部46を流通する二次冷媒から熱を奪って(吸熱)一挙に膨張気化する。このように一次回路34は、熱交換器HEにおいて、一次熱交換部36により二次熱交換部46を強制冷却するように機能している。そして、一次熱交換部36で蒸発した気相一次冷媒は、冷媒配管38を経て圧縮機CMに帰還する強制循環サイクルを繰返す。
(Effects of Example)
Next, the operation of the thermosiphon according to the embodiment will be described. In the cooling device 32, when the cooling operation is started, circulation of the refrigerant is started in each of the primary circuit 34 and the secondary circuit 44. First, the primary circuit 34 will be described. The compressor CD and the condenser fan FM are driven, the gas phase primary refrigerant is compressed by the compressor CM, and this primary refrigerant is supplied to the condenser CD through the refrigerant pipe 38. The liquid phase is obtained by condensing and liquefying by forced cooling by the condenser fan FM. The liquid primary refrigerant is depressurized by the expansion means EV, and in the primary heat exchanging section 36 of the heat exchanger HE, it takes heat from the secondary refrigerant flowing through the secondary heat exchanging section 46 (heat absorption) and expands and vaporizes all at once. Thus, the primary circuit 34 functions so as to forcibly cool the secondary heat exchange unit 46 by the primary heat exchange unit 36 in the heat exchanger HE. Then, the gas phase primary refrigerant evaporated in the primary heat exchange unit 36 repeats the forced circulation cycle that returns to the compressor CM through the refrigerant pipe 38.

前記二次回路44では、二次熱交換部46が一次熱交換部36により冷却されているから、二次熱交換部46で気相二次冷媒が放熱して凝縮し、気相から液相に状態変化することで比重が増加することから、重力の作用下に二次熱交換部46の各流路60bに沿って液相二次冷媒が流下する。二次回路44では、二次熱交換部46を機械室20に配置する一方、蒸発器EPを機械室20の下方に位置する冷却室28に配設することで、二次熱交換部46と蒸発器EPとの間に落差を設けてある。すなわち、液相二次冷媒を、二次熱交換部46の下部に接続した液配管48を介して、蒸発器EPへ向けて重力の作用下に自然流下させることができる。液相二次冷媒は、蒸発器EPの蒸発管52を流通する過程で該蒸発器EPの周囲雰囲気から熱を奪って蒸発して気相に移行する。気相二次冷媒は、ガス配管50を介して蒸発器EPから二次熱交換部46へ還流し、二次回路44ではポンプやモータ等の動力を用いることなく、簡単な構成で二次冷媒が自然循環するサイクルが繰返される。   In the secondary circuit 44, since the secondary heat exchange unit 46 is cooled by the primary heat exchange unit 36, the secondary heat exchange unit 46 radiates and condenses the gas phase secondary refrigerant, and the liquid phase from the gas phase Since the specific gravity increases due to the state change, the liquid phase secondary refrigerant flows down along the flow paths 60b of the secondary heat exchange section 46 under the action of gravity. In the secondary circuit 44, the secondary heat exchange unit 46 is arranged in the machine room 20, while the evaporator EP is arranged in the cooling chamber 28 located below the machine room 20, so that the secondary heat exchange unit 46 and A head is provided with the evaporator EP. That is, the liquid phase secondary refrigerant can be naturally flowed under the action of gravity toward the evaporator EP via the liquid pipe 48 connected to the lower portion of the secondary heat exchange section 46. The liquid secondary refrigerant evaporates by taking heat from the ambient atmosphere of the evaporator EP in the process of flowing through the evaporation pipe 52 of the evaporator EP and moves to the gas phase. The gas phase secondary refrigerant is refluxed from the evaporator EP to the secondary heat exchange unit 46 via the gas pipe 50, and the secondary circuit 44 has a simple configuration without using power from a pump, a motor, or the like. A cycle in which natural circulation occurs is repeated.

前記送風ファン30により吸込口26aから冷却室28に吸引された収納室14の空気を、冷却された蒸発器EPに吹付けることで、蒸発器EPと熱交換した空気が冷気となる。そして冷気を、冷却室28から冷気吹出口40を介して収納室14に送出することで、収納室14が冷却される。冷気は、収納室14の内部を循環して、吸込口26aを介して再び冷却室28内に戻るサイクルを反復する。   By blowing the air in the storage chamber 14 sucked into the cooling chamber 28 from the suction port 26a by the blower fan 30 onto the cooled evaporator EP, the air heat-exchanged with the evaporator EP becomes cold air. The storage chamber 14 is cooled by sending the cool air from the cooling chamber 28 to the storage chamber 14 via the cool air outlet 40. The cold air circulates inside the storage chamber 14 and repeats a cycle of returning to the cooling chamber 28 again through the suction port 26a.

ここで、蒸発器EPでの二次冷媒の挙動について更に説明する。蒸発器EPに延在する蒸発管52は、流入端52aを蒸発器EPの上部に設けると共に、流出端52bを蒸発器EPの下部に設けることで、流入端52aを流出端52bより上方に位置させて、流入端52aと流出端52bとの間に落差が設けられる。しかも、蒸発管52は、流出端52bと流入端52aとの間において、直線部分が上下の関係で折り重なった蛇行形状とすると共に、流入端52a側から流出端52b側に向かうにつれて下方傾斜するように管路を形成している。すなわち、蒸発管52は、全体として二次回路における二次冷媒の循環方向前側に向けて下り勾配となっているから、流入端52aから蒸発管52に流入した液相二次冷媒を、重力の作用下に管路に沿って流出端52b側に誘導しつつ蒸発させることができる。従って、蒸発器EPにおいて、蒸発管52の流入端52a近傍で液相二次冷媒が留まって当該流入端52a近傍で優先的に蒸発するのではなく、二次冷媒が管路に沿って流出端52b側に自然に拡散するから、伝熱面積を広く確保することができる。   Here, the behavior of the secondary refrigerant in the evaporator EP will be further described. The evaporation pipe 52 extending to the evaporator EP has an inflow end 52a at the upper part of the evaporator EP and an outflow end 52b at the lower part of the evaporator EP so that the inflow end 52a is positioned above the outflow end 52b. Thus, a drop is provided between the inflow end 52a and the outflow end 52b. In addition, the evaporation pipe 52 has a meandering shape in which the linear portion is folded up and down between the outflow end 52b and the inflow end 52a, and is inclined downward from the inflow end 52a toward the outflow end 52b. A pipe line is formed. That is, since the evaporation pipe 52 as a whole has a downward slope toward the front side in the circulation direction of the secondary refrigerant in the secondary circuit, the liquid-phase secondary refrigerant flowing into the evaporation pipe 52 from the inflow end 52a Under the action, it can be evaporated while being guided along the pipe line toward the outflow end 52b. Therefore, in the evaporator EP, the liquid secondary refrigerant stays in the vicinity of the inflow end 52a of the evaporation pipe 52 and does not preferentially evaporate in the vicinity of the inflow end 52a, but the secondary refrigerant flows out along the pipe line. Since it diffuses naturally on the side of 52b, a wide heat transfer area can be secured.

前記蒸発管52を流通する液相二次冷媒の流速が遅い場合に、二次冷媒は蒸発管52の管底に集約された状態で流通する(図6(a)参照)。この場合、蒸発管52を流通する二次冷媒は、該蒸発管52の内底部としか接触していないので、伝熱面積が狭くなる難点がある。しかるに、実施例の蒸発管52における管路は二次冷媒の循環方向前側に傾いているから、蒸発管52の流入端52a近傍では二次冷媒の流速が遅いために、管底に集約された状態での流れが優先的に現われるものの、流出端52b側に向かうにつれて二次冷媒の流速が次第に速くなる。これにより、蒸発管52には、液相二次冷媒が蒸発管52の内面全体に亘って環状に流通する環状流が優先的に現われる(図6(b)参照)。従って、液相二次冷媒が蒸発管52の全周に接触するから、伝熱面積をより広く確保することが可能である。更に、蒸発管52が傾斜しているので、除霜水等の蒸発管52から滴下する水を流出端52bに集約して滴下させることができる。   When the flow rate of the liquid phase secondary refrigerant flowing through the evaporation pipe 52 is low, the secondary refrigerant flows in a state of being concentrated on the bottom of the evaporation pipe 52 (see FIG. 6A). In this case, since the secondary refrigerant flowing through the evaporation pipe 52 is only in contact with the inner bottom portion of the evaporation pipe 52, there is a drawback that the heat transfer area is reduced. However, since the pipe line in the evaporation pipe 52 of the embodiment is inclined to the front side in the circulation direction of the secondary refrigerant, the flow rate of the secondary refrigerant is slow in the vicinity of the inflow end 52a of the evaporation pipe 52, so that it is concentrated on the pipe bottom. Although the flow in the state appears preferentially, the flow rate of the secondary refrigerant gradually increases toward the outflow end 52b. As a result, an annular flow in which the liquid phase secondary refrigerant circulates in an annular shape over the entire inner surface of the evaporation tube 52 appears preferentially in the evaporation tube 52 (see FIG. 6B). Accordingly, since the liquid phase secondary refrigerant contacts the entire circumference of the evaporation pipe 52, it is possible to secure a wider heat transfer area. Furthermore, since the evaporation pipe 52 is inclined, water dripped from the evaporation pipe 52 such as defrosted water can be concentrated and dropped at the outflow end 52b.

前記蒸発器EPでは、液相二次冷媒が蒸発管52の流出端52b近傍に到達して、飽和状態の液相二次冷媒が流出端52b近傍でも蒸発するように、二次回路44の二次冷媒量が規定される(図5参照)。このとき、蒸発器EPにおいて、液相二次冷媒は蒸発管52の管路に沿って自然に流下するから、液相二次冷媒で蒸発管52を満たさなくても、二次冷媒を蒸発管52の流出端近傍まで到達させることができる。すなわち、二次回路44において、必要とされる二次冷媒量を少なくすることができる。   In the evaporator EP, the secondary phase of the secondary circuit 44 is such that the liquid phase secondary refrigerant reaches the vicinity of the outflow end 52b of the evaporation pipe 52 and the saturated liquid phase secondary refrigerant evaporates also in the vicinity of the outflow end 52b. The next refrigerant amount is defined (see FIG. 5). At this time, in the evaporator EP, the liquid phase secondary refrigerant naturally flows down along the pipe line of the evaporation pipe 52. Therefore, even if the liquid phase secondary refrigerant does not fill the evaporation pipe 52, the secondary refrigerant is removed from the evaporation pipe. 52 near the outflow end. That is, the amount of secondary refrigerant required in the secondary circuit 44 can be reduced.

例えば、二次冷媒量が極端に少ない場合は、液相二次冷媒が蒸発管52の流出端52b近傍に至る前に蒸発してしまうから、蒸発器EP全体として冷却作用を得られず、所要の冷却能力を発揮することができない。また、二次冷媒量が過剰な場合は、蒸発管52全体に液相二次冷媒が満たされ、ガス配管50に気相二次冷媒の流通を妨げるヘッドが発生するため、気相二次冷媒が蒸発管52に滞留する。このとき、蒸発管52では、ガス配管50のヘッドによって気相二次冷媒の循環が滞る局面と、蒸発管52における内圧の上昇によって、ガス配管50に形成されたヘッドが急激に押し上げられて、一時的に気相二次冷媒の循環が再開する局面とが繰返される。気相二次冷媒の循環が滞っている局面においては、気相二次冷媒の循環が正常になされている局面に比べて、蒸発管52に気相二次冷媒が多く滞留することで、熱伝導率の大きな液相二次冷媒による伝熱面積が減少するから、蒸発器EPの冷却能力が低下してしまう。このように、蒸発器EPにおける二次冷媒が過剰な場合に生ずる冷却能力の低下は、ガス配管50のヘッドによる冷媒循環量の減少と、蒸発管52における滞留する気相二次冷媒の増加による熱伝導率の減少とが、主な原因である。すなわち、蒸発器EPは、二次冷媒量が少なくても多くても所要の冷却能力を得ることができず、適正な量の二次冷媒を充填することが肝要とされる。実施例に係る蒸発器EPの構成によれば、二次冷媒の適正量は、蒸発管52を流下しつつ蒸発する液相二次冷媒における蒸発位置の最下部(蒸発管52の流出端52b近傍)との関係で一義的に決定される極値を有し、容易に求めることができる。   For example, when the amount of the secondary refrigerant is extremely small, the liquid phase secondary refrigerant evaporates before reaching the vicinity of the outflow end 52b of the evaporation pipe 52, so that the cooling action cannot be obtained as the entire evaporator EP, and is required. The cooling ability cannot be demonstrated. Further, when the amount of the secondary refrigerant is excessive, the liquid phase secondary refrigerant is filled in the entire evaporation pipe 52 and a head is generated in the gas pipe 50 that obstructs the circulation of the gas phase secondary refrigerant. Stays in the evaporation pipe 52. At this time, in the evaporation pipe 52, the head formed in the gas pipe 50 is suddenly pushed up by the phase in which the circulation of the gas phase secondary refrigerant is delayed by the head of the gas pipe 50 and the increase in the internal pressure in the evaporation pipe 52, The phase where the circulation of the gas phase secondary refrigerant is temporarily resumed is repeated. In the phase where the circulation of the gas phase secondary refrigerant is stagnant, a larger amount of the gas phase secondary refrigerant stays in the evaporation pipe 52 than in the phase where the circulation of the gas phase secondary refrigerant is normally performed. Since the heat transfer area by the liquid phase secondary refrigerant having a high conductivity is reduced, the cooling capacity of the evaporator EP is lowered. As described above, the decrease in the cooling capacity that occurs when the secondary refrigerant in the evaporator EP is excessive is due to a decrease in the refrigerant circulation amount by the head of the gas pipe 50 and an increase in the gas phase secondary refrigerant that stays in the evaporation pipe 52. The main cause is the decrease in thermal conductivity. That is, the evaporator EP cannot obtain the required cooling capacity even if the amount of the secondary refrigerant is small or large, and it is important to fill the secondary refrigerant with an appropriate amount. According to the configuration of the evaporator EP according to the embodiment, the appropriate amount of the secondary refrigerant is the lowest part of the liquid phase secondary refrigerant that evaporates while flowing down the evaporation pipe 52 (near the outflow end 52b of the evaporation pipe 52). ), And can be easily obtained.

前記蒸発器EPの蒸発管52において、液相二次冷媒が蒸発して得られた気相二次冷媒は体積膨張により比重が減少するから、上方へ向けて流動する。蒸発管52は、流入端52a側が流出端52b側に比べて高くなっているので、気相二次冷媒は、流入端52a側に逆流しようとする。しかし、二次熱交換部46における各流路60aの下部に、液相二次冷媒による液封部62が形成されるから、流動が妨げられた気相二次冷媒は蒸発管52に滞留し、蒸発管52内部の内圧を上昇させる。蒸発管52における内圧の上昇に伴い、蒸発管52内部の冷媒は唯一の圧力開放部である流出端52bに向かって押し出されるように内力が働く。すなわち、気相二次冷媒は、蒸発器EPからガス配管50に向けて押し出されるから、蒸発管52の管路形状に抗して、二次回路44における正常な循環方向へ自然循環させることができる。ここで、液封部62では、気相二次冷媒の流通を阻むものの、液封部62の上方で凝縮して流下する液相二次冷媒は、液封部62を順次形成すると共に、液封部62を形成していた液相二次冷媒が重力の作用下に順次流下する。よって、液相二次冷媒の流通を、液封部62が阻害することはない。   In the evaporation pipe 52 of the evaporator EP, the gas phase secondary refrigerant obtained by evaporating the liquid phase secondary refrigerant decreases in specific gravity due to volume expansion, and thus flows upward. Since the evaporating pipe 52 is higher on the inflow end 52a side than the outflow end 52b side, the vapor phase secondary refrigerant tends to flow backward to the inflow end 52a side. However, since the liquid sealing portion 62 made of the liquid phase secondary refrigerant is formed below each flow path 60a in the secondary heat exchanging portion 46, the gas phase secondary refrigerant whose flow has been hindered stays in the evaporation pipe 52. The internal pressure inside the evaporation pipe 52 is increased. As the internal pressure in the evaporation pipe 52 rises, an internal force acts so that the refrigerant in the evaporation pipe 52 is pushed out toward the outflow end 52b, which is the only pressure release portion. That is, since the gas phase secondary refrigerant is pushed out from the evaporator EP toward the gas pipe 50, it can be naturally circulated in the normal circulation direction in the secondary circuit 44 against the pipe shape of the evaporation pipe 52. it can. Here, in the liquid sealing part 62, the liquid phase secondary refrigerant that condenses and flows down above the liquid sealing part 62 sequentially forms the liquid sealing part 62, while preventing the circulation of the gas phase secondary refrigerant. The liquid phase secondary refrigerant that has formed the sealing portion 62 flows down under the action of gravity. Therefore, the liquid sealing portion 62 does not hinder the flow of the liquid phase secondary refrigerant.

前記二次熱交換部46では、気相二次冷媒が一次熱交換部36との熱交換により凝縮して、体積が減少することで該二次熱交換部46の内部の圧力が低下するから、ガス配管50に二次熱交換部46へ向かう吸引力が作用している。前述した如く、蒸発管52には、液相二次冷媒が全体に満たされる構成ではなく、蒸発管52の流出端52bおよびガス配管50が液相二次冷媒で封止されず開放しているから、ガス配管50にかかる吸引力を蒸発管52に対しても作用させることができる。よって、二次熱交換部46による吸引力を有効に利用して、気相二次冷媒を二次熱交換部46に還流させることができる。   In the secondary heat exchange section 46, the gas phase secondary refrigerant is condensed by heat exchange with the primary heat exchange section 36, and the volume is reduced to reduce the pressure inside the secondary heat exchange section 46. The suction force toward the secondary heat exchange unit 46 is acting on the gas pipe 50. As described above, the evaporation pipe 52 is not configured to be entirely filled with the liquid phase secondary refrigerant, and the outflow end 52b of the evaporation pipe 52 and the gas pipe 50 are not sealed with the liquid phase secondary refrigerant and are opened. Therefore, the suction force applied to the gas pipe 50 can also be applied to the evaporation pipe 52. Therefore, the gas phase secondary refrigerant can be recirculated to the secondary heat exchange unit 46 by effectively utilizing the suction force by the secondary heat exchange unit 46.

前記冷却装置32における運転開始初期の段階では、二次熱交換部46に液封部62が形成されていない場合がある。この場合、蒸発器EPで蒸発した気相二次冷媒に対して、循環方向に外力が加わっていないから、液配管48を介して二次熱交換部46の下部に気相二次冷媒が逆流することも考えられる。ここで、液配管48を介して二次熱交換部46の下部に到来した気相二次冷媒は、一次熱交換部36により二次熱交換部46が既に冷却されているから、二次熱交換部46における各流路60bの下部で直ちに液化する。そして、この液相二次冷媒および正常な循環により二次熱交換部46で液化して流下してきた液相二次冷媒により、液封部62が二次熱交換部46における流路60bの下部に形成される。この液封部62により気相二次冷媒の逆流が阻まれると共に、気相二次冷媒に対し循環方向に向けて外力が働くから、気相二次冷媒は二次回路44において正常な循環方向へ循環される。   In the initial stage of operation in the cooling device 32, the liquid seal portion 62 may not be formed in the secondary heat exchange portion 46. In this case, since no external force is applied in the circulation direction to the vapor phase secondary refrigerant evaporated in the evaporator EP, the vapor phase secondary refrigerant flows back to the lower portion of the secondary heat exchange section 46 via the liquid pipe 48. It is also possible to do. Here, since the secondary heat exchange unit 46 has already been cooled by the primary heat exchange unit 36, the gas phase secondary refrigerant that has arrived at the lower part of the secondary heat exchange unit 46 via the liquid pipe 48 has the secondary heat. The liquid is immediately liquefied at the lower part of each flow path 60b in the exchange part 46. Then, the liquid seal portion 62 is located below the flow path 60b in the secondary heat exchange section 46 by the liquid phase secondary refrigerant and the liquid phase secondary refrigerant that has been liquefied and flowed down in the secondary heat exchange section 46 due to normal circulation. Formed. The liquid seal portion 62 prevents the reverse flow of the gas-phase secondary refrigerant and an external force acts on the gas-phase secondary refrigerant in the circulation direction, so that the gas-phase secondary refrigerant is in the normal circulation direction in the secondary circuit 44. It is circulated to.

前記二次回路44によれば、液相二次冷媒が重力の作用下に蒸発管52を循環方向前側へ自然流下する構成であるから、少量の二次冷媒で広く伝熱面積を確保することができる。すなわち、二次回路44の二次冷媒量を低減し得るから、二次回路44自体を小型化することが可能となる。また、二次冷媒量が少なくなることで、冷却装置32を長期間に亘って停止する際に要する圧力最大値を低く抑えることができるので、二次回路44に求められる耐圧強度を低く設定することが可能となり、コストダウンを図り得ると共に設計の自由度を向上し得る。特に、二次冷媒として実施例の二酸化炭素の如く常温で蒸発するものを用いる場合は、二次回路44における内部圧力の最大値を低く抑えることができる。また、膨張タンク54の容量も削減でき、膨張タンク54の小型化、機械室20のスペースの有効活用およびコストダウンを図り得る。更に、既設設備であっても、熱交換器HEとしてプレート式熱交換器を用いていれば、実施例に係る蒸発器EPとするだけで、実施例の蒸発器EPによる二次冷媒の充填量の削減等の前述した優れた作用を享受し得る。なお、前述した如く二次冷媒の最大圧力値を抑制し得るので、ガス配管50に圧力逃がし弁(図示せず)を設ける場合であっても、圧力逃がし弁の設定値を低くし得る。   According to the secondary circuit 44, the liquid-phase secondary refrigerant is configured to naturally flow down the evaporating pipe 52 to the front side in the circulation direction under the action of gravity, so that a wide heat transfer area can be secured with a small amount of secondary refrigerant. Can do. That is, since the amount of secondary refrigerant in the secondary circuit 44 can be reduced, the secondary circuit 44 itself can be downsized. Further, since the amount of the secondary refrigerant is reduced, the maximum pressure value required when the cooling device 32 is stopped for a long period of time can be kept low, so the pressure strength required for the secondary circuit 44 is set low. Therefore, the cost can be reduced and the degree of design freedom can be improved. In particular, when a secondary refrigerant that evaporates at room temperature, such as carbon dioxide in the embodiment, the maximum value of the internal pressure in the secondary circuit 44 can be kept low. Further, the capacity of the expansion tank 54 can be reduced, and the expansion tank 54 can be downsized, the space in the machine room 20 can be effectively used, and the cost can be reduced. Furthermore, even if it is an existing facility, if a plate-type heat exchanger is used as the heat exchanger HE, only the evaporator EP according to the embodiment is used, and the amount of secondary refrigerant charged by the evaporator EP of the embodiment It is possible to enjoy the above-described excellent effects such as the reduction of the above. In addition, since the maximum pressure value of the secondary refrigerant can be suppressed as described above, even when a pressure relief valve (not shown) is provided in the gas pipe 50, the set value of the pressure relief valve can be lowered.

前記冷却装置32は、一次回路34と二次回路44とを熱交換器HEで接続し、この熱交換器HEにおいて、一次回路34の一次冷媒と二次回路44の二次冷媒とが蒸発および凝縮作用下に熱交換を行なう。すなわち、顕熱のみによる熱交換と比べて、非常に高い熱伝達率を持つので、一次回路34と二次回路44との間の伝熱面積を小さくすることができる。また、一次冷媒および二次冷媒は共に、潜熱により熱の輸送を行なうため、比較的少量で、多くの熱量を伝達することができるから、熱交換器HEにおける熱交換量を低下させる事なく、一次回路34および二次回路44の内容積を小さくする事が可能となる。従って、一次回路34の一次冷媒量および二次回路44の二次冷媒量を何れも低減でき、コストダウンや、一次回路34および二次回路44の小型化による冷却装置32の省スペース化を図り得る。   In the cooling device 32, the primary circuit 34 and the secondary circuit 44 are connected by a heat exchanger HE. In the heat exchanger HE, the primary refrigerant of the primary circuit 34 and the secondary refrigerant of the secondary circuit 44 are evaporated and evaporated. Heat exchange is performed under condensation. That is, since the heat transfer coefficient is very high compared to heat exchange using only sensible heat, the heat transfer area between the primary circuit 34 and the secondary circuit 44 can be reduced. In addition, since both the primary refrigerant and the secondary refrigerant transport heat by latent heat, a large amount of heat can be transmitted in a relatively small amount, so that the amount of heat exchange in the heat exchanger HE is not reduced. It is possible to reduce the internal volume of the primary circuit 34 and the secondary circuit 44. Therefore, both the primary refrigerant amount of the primary circuit 34 and the secondary refrigerant amount of the secondary circuit 44 can be reduced, and the cost can be reduced and the space of the cooling device 32 can be saved by downsizing the primary circuit 34 and the secondary circuit 44. obtain.

前記一次回路34に必要とされる一次冷媒量が少ないから、法令等で規定された冷媒の使用上限量を回避することができ、一次冷媒として使用する冷媒の種類についての選択肢の幅が広がる。また機械室20は、凝縮器CDおよび圧縮機CMを空冷する都合上、空気が入替えられる開放された空間とされる。このような機械室20に一次回路34を配設してあるから、一次冷媒が万が一漏出したとしても、機械室20に留まるおそれはない。また、機械室20は、台板24により閉鎖空間である収納室14と気密的に区切られているから、漏出した一次冷媒が収納室14に流入することはなく、収納室14に収納した物品に由来するアンモニアや硫化水素等の腐食性ガスが、機械室20に流入することもない。しかも、冷却装置32を一次回路34と二次回路44との二次ループで構成することで、二次回路44の冷却能力が高くなるから、蒸発熱や飽和圧等の冷媒としての特性に劣るものの、安全性に優れている二酸化炭素等を二次冷媒として選択することが可能となる。すなわち、二次回路44では、蒸発器EPが収納室14(冷却室28)に臨むが、例えば二次冷媒が収納室14に漏出したとしても、使用者に対する安全を担保し得る。   Since the amount of the primary refrigerant required for the primary circuit 34 is small, the upper limit amount of the refrigerant stipulated by laws and regulations can be avoided, and the range of options for the type of refrigerant used as the primary refrigerant is expanded. Further, the machine room 20 is an open space in which air is exchanged for the purpose of air-cooling the condenser CD and the compressor CM. Since the primary circuit 34 is disposed in the machine room 20 as described above, even if the primary refrigerant leaks, there is no possibility of staying in the machine room 20. Further, since the machine room 20 is airtightly separated from the storage room 14 which is a closed space by the base plate 24, the leaked primary refrigerant does not flow into the storage room 14, and the articles stored in the storage room 14 Corrosive gases such as ammonia and hydrogen sulfide derived from the above do not flow into the machine room 20. In addition, since the cooling device 32 is configured by a secondary loop of the primary circuit 34 and the secondary circuit 44, the cooling capacity of the secondary circuit 44 is increased, so that the characteristics as a refrigerant such as evaporation heat and saturation pressure are inferior. However, it is possible to select carbon dioxide or the like excellent in safety as the secondary refrigerant. That is, in the secondary circuit 44, the evaporator EP faces the storage chamber 14 (cooling chamber 28), but even if a secondary refrigerant leaks into the storage chamber 14, for example, safety for the user can be ensured.

前記冷却装置32は、一次回路34の圧縮機CM、凝縮器CD、凝縮器ファンFMおよび熱交換器HEと、二次回路44の蒸発器EPおよび膨張タンク54とを台板24に共通的に配設する構成であるから、台板24を介して冷却装置32全体を一体的に取扱うことができる。すなわち、冷却装置32を冷蔵庫10に対して一体的に取付けまたは取外しを行なうことができ、メンテナンス性に優れ、修理等の保守作業も行ない易い。   In the cooling device 32, the compressor CM, the condenser CD, the condenser fan FM, and the heat exchanger HE of the primary circuit 34, and the evaporator EP and the expansion tank 54 of the secondary circuit 44 are shared by the base plate 24. Since it is a structure to arrange | position, the whole cooling device 32 can be handled integrally through the base plate 24. FIG. In other words, the cooling device 32 can be integrally attached to or detached from the refrigerator 10, has excellent maintainability, and can easily perform maintenance work such as repair.

前記一次回路34および二次回路44は、熱交換器HEの一次熱交換部36と二次熱交換部46とで熱的に接続されているが、冷媒の循環経路として互いに独立している。冷却装置32を停止(圧縮機CM:停止)した際に、一次回路34には凝縮器CDから高温の液相一次冷媒が一次熱交換部36に流入する。これにより熱交換器HEは昇温されるものの、二次回路44は独立しているから、蒸発器EPは昇温されることはなく、冷却装置32を停止した際の収納室14の温度上昇が緩やかになる。すなわち、冷却装置32により収納室14を所要の設定温度まで冷却することで、冷却装置32を停止した後、冷却装置32を再度駆動するまでの時間を長くすることができる。よって、冷却装置32の稼働率が低下するので、消費電力量の削減に繋がる。   The primary circuit 34 and the secondary circuit 44 are thermally connected by the primary heat exchange unit 36 and the secondary heat exchange unit 46 of the heat exchanger HE, but are independent of each other as a refrigerant circulation path. When the cooling device 32 is stopped (compressor CM: stopped), the high-temperature liquid-phase primary refrigerant flows into the primary circuit 34 from the condenser CD into the primary circuit 34. As a result, the temperature of the heat exchanger HE is raised, but the secondary circuit 44 is independent. Therefore, the temperature of the evaporator EP is not raised, and the temperature of the storage chamber 14 rises when the cooling device 32 is stopped. Becomes moderate. That is, by cooling the storage chamber 14 to a required set temperature by the cooling device 32, it is possible to lengthen the time until the cooling device 32 is driven again after the cooling device 32 is stopped. Therefore, since the operating rate of the cooling device 32 is reduced, the power consumption is reduced.

前記膨張タンク54は、機械室20において凝縮器CD、凝縮器ファンFMおよび圧縮機CDと一直線上であって、凝縮器ファンFMによる空気流通方向の前側に配置される。このため、凝縮器ファンFMの駆動によりキャビネット16の前側から機械室20に取込んで凝縮器CDおよび圧縮機CMと熱交換して昇温した空気が、膨張タンク54に吹付けられるから、膨張タンク54は、一次回路34の排熱を利用して昇温される。ここで、膨張タンク54に滞留する二次冷媒の量は、圧力および温度に応じて変化する値であり、この圧力は、一次回路34において運転条件等で規定される蒸発温度に依存するので変化させることができない。そこで、膨張タンク54を一次回路34の排熱により昇温することで、膨張タンク54内の二次冷媒密度が低下するので、膨張タンク54に滞留する二次冷媒の量を減少させることができる。膨張タンク54に滞留する二次冷媒の量を減少させると、二次回路44における二次冷媒量を低減できるメリットがある。   The expansion tank 54 is arranged in a straight line with the condenser CD, the condenser fan FM, and the compressor CD in the machine room 20, and is disposed on the front side in the air flow direction by the condenser fan FM. For this reason, since the air that has been taken into the machine room 20 from the front side of the cabinet 16 by the drive of the condenser fan FM and heat-exchanged with the condenser CD and the compressor CM is blown to the expansion tank 54, the expansion is performed. The tank 54 is heated using the exhaust heat of the primary circuit 34. Here, the amount of the secondary refrigerant staying in the expansion tank 54 is a value that changes according to the pressure and temperature, and this pressure changes because it depends on the evaporation temperature defined by the operating conditions and the like in the primary circuit 34. I can't let you. Therefore, by raising the temperature of the expansion tank 54 by the exhaust heat of the primary circuit 34, the secondary refrigerant density in the expansion tank 54 is reduced, so that the amount of the secondary refrigerant staying in the expansion tank 54 can be reduced. . If the amount of the secondary refrigerant staying in the expansion tank 54 is reduced, there is an advantage that the amount of secondary refrigerant in the secondary circuit 44 can be reduced.

(変更例)
本発明は、実施例の構成に限定されず、以下の如く変更することも可能である。
(1)蒸発器の蒸発管としては、外周に半径方向へ延出するフィンを設けた所謂フィンチューブや、外周に半径方向へ延出するフィンを螺旋状に設けた所謂スパイラルフィンチューブを採用してもよい。また、蒸発管の管路としては、流入端で複数(2系統)の系統に分岐されて、これら複数系統の分岐蒸発管が、循環方向前側に向けて下り勾配となるように蛇行状に延在し、流出端で再びまとめられる構成も採用し得る。
(2)実施例では、蒸発管の管路を流入端側から流出端側に向かうにつれて下方傾斜するように形成したが、全体として流出端側への重力作用下に液化冷媒を拡散し得るのであれば、管路の一部に流出端側に向けて上方傾斜する部位あるいは水平に延在する部位を設けてもよい。
(3)実施例の蒸発管は、流入端と流出端との上下位置の間で延在するように管路を形成したが、少なくとも流出端より上方に延在させればよい。
(4)実施例では、気相二次冷媒の逆流を防ぐ手段として、プレート式熱交換器における二次熱交換部の流路に形成される液封部を利用したが、これに限定されず、熱交換器の内部における液配管との接続部近傍から液配管の間に、気相二次冷媒に対し流通抵抗となる抗力を設ければよい。例えば、熱交換器の内底部または液配管の途中に液相二次冷媒を貯留する構成として、この貯留部に溜る二次冷媒のヘッド(水頭)を抵抗部としてもよい。更には、液配管に流れ抵抗が大きくなる手段や、絞り部あるいはトラップ等を設ける配管形状としたり、あるいは液配管に介挿した逆止弁等も抵抗部として用いることができる。これら種々の態様の抵抗部を単体で用いるだけでなく、実施例および変更例の構成を組合わせて抵抗部として機能させてもよい。
(5)実施例に係るサーモサイフォンは、空調設備等の冷却回路にも適用可能である。
(6)実施例の蒸発器は、蒸発管が延在する構成であるが、箱体の内部を壁で区切ることで冷媒経路を形成したタイプの蒸発管であってもよい。
(Change example)
The present invention is not limited to the configuration of the embodiment, and can be modified as follows.
(1) As an evaporator tube of an evaporator, a so-called fin tube having a radially extending fin on the outer periphery or a so-called spiral fin tube having a spiral extending radially on the outer periphery is employed. May be. Further, the pipes of the evaporation pipes are branched into a plurality of (two systems) systems at the inflow end, and these plurality of system branch evaporation pipes extend in a meandering manner so as to have a downward slope toward the front side in the circulation direction. It is also possible to adopt a configuration that exists and is brought together again at the outflow end.
(2) In the embodiment, the pipe of the evaporation pipe is formed so as to be inclined downward from the inflow end side to the outflow end side. However, as a whole, the liquefied refrigerant can be diffused under the action of gravity toward the outflow end side. If there is, a part inclined upward toward the outflow end side or a part extending horizontally may be provided in a part of the pipeline.
(3) Although the evaporation pipe of the embodiment is formed with a pipe line so as to extend between the upper and lower positions of the inflow end and the outflow end, it may be extended at least above the outflow end.
(4) In the embodiment, as the means for preventing the back flow of the gas phase secondary refrigerant, the liquid seal portion formed in the flow path of the secondary heat exchange portion in the plate heat exchanger is used, but is not limited thereto. In addition, a drag that provides a flow resistance against the gas phase secondary refrigerant may be provided between the liquid pipe and the vicinity of the connection with the liquid pipe in the heat exchanger. For example, as a configuration in which the liquid phase secondary refrigerant is stored in the inner bottom portion of the heat exchanger or in the middle of the liquid pipe, a head (water head) of the secondary refrigerant stored in the storage portion may be used as the resistance portion. Furthermore, a means for increasing the flow resistance in the liquid pipe, a pipe shape provided with a throttle part or a trap, or a check valve inserted in the liquid pipe can be used as the resistance part. In addition to using the resistance portions of these various modes as a single unit, the configurations of the embodiments and the modified examples may be combined to function as a resistance portion.
(5) The thermosiphon according to the embodiment can be applied to a cooling circuit such as an air conditioner.
(6) The evaporator according to the embodiment has a configuration in which the evaporation pipe extends, but may be an evaporation pipe of a type in which a refrigerant path is formed by dividing the inside of the box with a wall.

(7)実施例では、機械室に配設する機器の共通基板となる台板により、機械室と収納室との間で空気の流通がないように収納室と機械室とを区切る構成であるが、機械室と収納室とを箱体の天板で区切る構成であってもよい。
(8)実施例では、冷蔵庫の冷却装置として本願発明に係るサーモサイフォンを採用する場合について説明したが、冷凍庫、冷凍・冷蔵庫、ショーケースおよびプレハブ庫等の所謂貯蔵庫に対しても適用し得る。
(7) In the embodiment, the storage chamber and the machine room are separated from each other by a base plate serving as a common substrate for equipment disposed in the machine room so that there is no air flow between the machine room and the storage room. However, the machine room and the storage room may be separated by a box top plate.
(8) In the embodiment, the case where the thermosiphon according to the present invention is employed as the refrigerator cooling device has been described, but the present invention can also be applied to so-called storages such as a freezer, a freezer / refrigerator, a showcase, and a prefabricated warehouse.

(9)実施例では、冷却装置の一次回路として機械圧縮式の冷凍回路を採用したが、吸収式やその他の冷凍回路も採用することができる。
(10)実施例の熱交換器として、一次回路の第1熱交換部と二次回路の第2熱交換部と備えたプレート式熱交換器を用いたが、第1熱交換部と第2熱交換部とを別体で構成したり、他の方式の熱交換器であってもよい。
(11)実施例では、一次回路において液化冷媒を減圧する手段として膨張弁を用いたが、これに限られず、キャピラリーチューブまたはその他の減圧手段を採用し得る。
(9) Although the mechanical compression type refrigeration circuit is employed as the primary circuit of the cooling device in the embodiment, an absorption type and other refrigeration circuits can also be employed.
(10) Although the plate type heat exchanger provided with the 1st heat exchange part of the primary circuit and the 2nd heat exchange part of the secondary circuit was used as a heat exchanger of an example, the 1st heat exchange part and the 2nd The heat exchange unit may be configured as a separate body or may be a heat exchanger of another type.
(11) In the embodiment, the expansion valve is used as means for reducing the pressure of the liquefied refrigerant in the primary circuit. However, the present invention is not limited to this, and a capillary tube or other pressure reducing means may be employed.

本発明の好適な実施例に係るサーモサイフォンを二次回路に備えた冷却装置により冷却される冷蔵庫を示す側断面図である。It is a sectional side view which shows the refrigerator cooled by the cooling device provided with the thermosiphon which concerns on the suitable Example of this invention in the secondary circuit. 実施例の冷蔵庫における機械室を示す平断面図である。It is a plane sectional view showing the machine room in the refrigerator of an example. 実施例の冷却装置を示す概略回路図である。It is a schematic circuit diagram which shows the cooling device of an Example. 実施例の熱交換器を示す側断面図である。It is a sectional side view which shows the heat exchanger of an Example. 実施例の蒸発器を示す模式図である。It is a schematic diagram which shows the evaporator of an Example. 実施例の蒸発管の断面図であって、(a)は図3のA−A線断面を示し、(b)は図3のB−B線断面を示す。It is sectional drawing of the evaporation pipe | tube of an Example, (a) shows the AA sectional view of FIG. 3, (b) shows the BB sectional view of FIG. 従来のサーモサイフォンを示す概略回路図である。It is a schematic circuit diagram which shows the conventional thermosiphon. 従来のサーモサイフォンにおける蒸発器を示す模式図であって、(a)は冷媒量が少ない場合を示し、(b)は冷媒量が適正である場合を示し、(c)は冷媒量が過剰である場合を示す。It is a schematic diagram showing an evaporator in a conventional thermosyphon, where (a) shows a case where the amount of refrigerant is small, (b) shows a case where the amount of refrigerant is appropriate, and (c) shows that the amount of refrigerant is excessive. Indicates a case.

符号の説明Explanation of symbols

46 二次熱交換部(熱交換部),48 液配管,50 ガス配管,52 蒸発管(冷媒経路)
52a 流入端,52b 流出端,60 プレート,60b 流路
62 液封部(抵抗部,液封した部位),EP 蒸発器
46 Secondary heat exchange section (heat exchange section), 48 liquid pipe, 50 gas pipe, 52 evaporation pipe (refrigerant path)
52a inflow end, 52b outflow end, 60 plate, 60b flow path 62 liquid seal part (resistor part, liquid sealed part), EP evaporator

Claims (3)

気化冷媒を凝縮して液化冷媒とする熱交換部(46)と、この熱交換部(46)の下方に配置され、液化冷媒を蒸発させて気化冷媒とする蒸発器(EP)とを、液配管(48)およびガス配管(50)で接続し、液化冷媒を熱交換部(46)から蒸発器(EP)へ液配管(48)を介して流下させると共に、気化冷媒を蒸発器(EP)から熱交換部(46)へガス配管(50)を介して流通させる自然循環サイクルを形成したサーモサイフォンにおいて、
前記蒸発器(EP)に延在する冷媒経路(52)は、前記液配管(48)の下端に接続する流入端(52a)を、該蒸発器(EP)の上部に配置すると共に、前記ガス配管(50)の下端に接続する流出端(52b)を、該蒸発器(EP)の下部に配置し、
前記熱交換部(46)または液配管(48)に、前記蒸発器(EP)から逆流する気化冷媒に対して流通抵抗となる抵抗部(62)を設けた
ことを特徴とするサーモサイフォン。
A heat exchange section (46) that condenses the vaporized refrigerant to form a liquefied refrigerant, and an evaporator (EP) that is disposed below the heat exchange section (46) and vaporizes the liquefied refrigerant to form a vaporized refrigerant. The pipe (48) and the gas pipe (50) are connected, and the liquefied refrigerant flows down from the heat exchange section (46) to the evaporator (EP) through the liquid pipe (48), and the vaporized refrigerant is evaporated to the evaporator (EP). In the thermosiphon that formed a natural circulation cycle that circulates through the gas pipe (50) from the heat exchanger (46) to
In the refrigerant path (52) extending to the evaporator (EP), an inflow end (52a) connected to a lower end of the liquid pipe (48) is disposed at an upper portion of the evaporator (EP), and the gas The outflow end (52b) connected to the lower end of the pipe (50) is disposed at the lower part of the evaporator (EP),
A thermosiphon, wherein a resistance portion (62) serving as a flow resistance against the vaporized refrigerant flowing backward from the evaporator (EP) is provided in the heat exchange portion (46) or the liquid pipe (48).
前記冷媒経路(52)は、前記流入端(52a)から流出端(52b)に向かうにつれて下り勾配となるように形成されている請求項1記載のサーモサイフォン。   The thermosiphon according to claim 1, wherein the refrigerant path (52) is formed to have a downward slope from the inflow end (52a) toward the outflow end (52b). 前記熱交換部(46)は、上下方向に延在する複数のプレート(60)を並列に対向配置して構成されると共に、各プレート(60,60)間に形成された冷媒の流路(60b)の下部に、液化冷媒で液封される部位(62)を設け、この液封される部位(62)が前記抵抗部となる請求項1または2記載のサーモサイフォン。   The heat exchanging section (46) is configured by arranging a plurality of plates (60) extending in the vertical direction to face each other in parallel, and a refrigerant flow path (between the plates (60, 60)) ( The thermosiphon according to claim 1 or 2, wherein a part (62) sealed with a liquefied refrigerant is provided at a lower part of 60b), and the part (62) sealed with liquid becomes the resistance portion.
JP2006281488A 2006-10-16 2006-10-16 Thermosiphon Expired - Fee Related JP4945712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281488A JP4945712B2 (en) 2006-10-16 2006-10-16 Thermosiphon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281488A JP4945712B2 (en) 2006-10-16 2006-10-16 Thermosiphon

Publications (2)

Publication Number Publication Date
JP2008096084A true JP2008096084A (en) 2008-04-24
JP4945712B2 JP4945712B2 (en) 2012-06-06

Family

ID=39379109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281488A Expired - Fee Related JP4945712B2 (en) 2006-10-16 2006-10-16 Thermosiphon

Country Status (1)

Country Link
JP (1) JP4945712B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157318A1 (en) * 2008-06-27 2009-12-30 ホシザキ電機株式会社 Cooling device
JP2010007987A (en) * 2008-06-27 2010-01-14 Hoshizaki Electric Co Ltd Cooling device
JP2010007985A (en) * 2008-06-27 2010-01-14 Hoshizaki Electric Co Ltd Cooling apparatus
KR20190088855A (en) * 2018-01-19 2019-07-29 한국조선해양 주식회사 A Regasification System and Vessel having the same
WO2020218008A1 (en) * 2019-04-26 2020-10-29 株式会社デンソー Cooling system
WO2023052244A1 (en) * 2021-09-30 2023-04-06 ECOOLTEC Grosskopf GmbH Method and device for controlling the temperature of a space to be temperature-controlled

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345875Y2 (en) * 1975-04-15 1978-11-02
JPS62981A (en) * 1985-06-27 1987-01-06 Konishiroku Photo Ind Co Ltd Electrophotographic device
JPS6229894A (en) * 1985-07-29 1987-02-07 Hitachi Plant Eng & Constr Co Ltd Heat pipe type air conditioning system
JPH02298742A (en) * 1989-05-11 1990-12-11 Daikin Ind Ltd Air-conditioning equipment for space in closed system
JPH03253011A (en) * 1990-03-02 1991-11-12 Hitachi Ltd Natural circulation accelerator
JPH04103993A (en) * 1990-08-22 1992-04-06 Agency Of Ind Science & Technol Double loop type heat exchanger
JPH07324881A (en) * 1994-05-30 1995-12-12 Mitsubishi Cable Ind Ltd Heat pipe type heat exchanger
JPH09273876A (en) * 1996-04-08 1997-10-21 Mitsubishi Denki Bill Techno Service Kk Cooler with natural circulation loop
JP2000065454A (en) * 1998-08-20 2000-03-03 Denso Corp Ebullient cooler
JP2001066080A (en) * 1999-08-25 2001-03-16 Mitsubishi Electric Corp Loop type heat pipe
JP2002048484A (en) * 2000-07-31 2002-02-15 Kyoritsu Reinetsu Kk Refrigerant circulating route of natural circulation type heat pump
JP2002168547A (en) * 2000-11-20 2002-06-14 Global Cooling Bv Cpu cooling device using siphon
JP2004085151A (en) * 2002-08-29 2004-03-18 Mitsubishi Electric Corp Cooling system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345875Y2 (en) * 1975-04-15 1978-11-02
JPS62981A (en) * 1985-06-27 1987-01-06 Konishiroku Photo Ind Co Ltd Electrophotographic device
JPS6229894A (en) * 1985-07-29 1987-02-07 Hitachi Plant Eng & Constr Co Ltd Heat pipe type air conditioning system
JPH02298742A (en) * 1989-05-11 1990-12-11 Daikin Ind Ltd Air-conditioning equipment for space in closed system
JPH03253011A (en) * 1990-03-02 1991-11-12 Hitachi Ltd Natural circulation accelerator
JPH04103993A (en) * 1990-08-22 1992-04-06 Agency Of Ind Science & Technol Double loop type heat exchanger
JPH07324881A (en) * 1994-05-30 1995-12-12 Mitsubishi Cable Ind Ltd Heat pipe type heat exchanger
JPH09273876A (en) * 1996-04-08 1997-10-21 Mitsubishi Denki Bill Techno Service Kk Cooler with natural circulation loop
JP2000065454A (en) * 1998-08-20 2000-03-03 Denso Corp Ebullient cooler
JP2001066080A (en) * 1999-08-25 2001-03-16 Mitsubishi Electric Corp Loop type heat pipe
JP2002048484A (en) * 2000-07-31 2002-02-15 Kyoritsu Reinetsu Kk Refrigerant circulating route of natural circulation type heat pump
JP2002168547A (en) * 2000-11-20 2002-06-14 Global Cooling Bv Cpu cooling device using siphon
JP2004085151A (en) * 2002-08-29 2004-03-18 Mitsubishi Electric Corp Cooling system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157318A1 (en) * 2008-06-27 2009-12-30 ホシザキ電機株式会社 Cooling device
JP2010007987A (en) * 2008-06-27 2010-01-14 Hoshizaki Electric Co Ltd Cooling device
JP2010007985A (en) * 2008-06-27 2010-01-14 Hoshizaki Electric Co Ltd Cooling apparatus
JP2010007986A (en) * 2008-06-27 2010-01-14 Hoshizaki Electric Co Ltd Cooling device
KR20190088855A (en) * 2018-01-19 2019-07-29 한국조선해양 주식회사 A Regasification System and Vessel having the same
KR102059744B1 (en) * 2018-01-19 2019-12-26 한국조선해양 주식회사 A Regasification System and Vessel having the same
KR102067893B1 (en) * 2018-01-19 2020-01-17 한국조선해양 주식회사 A Regasification System and Vessel having the same
WO2020218008A1 (en) * 2019-04-26 2020-10-29 株式会社デンソー Cooling system
WO2023052244A1 (en) * 2021-09-30 2023-04-06 ECOOLTEC Grosskopf GmbH Method and device for controlling the temperature of a space to be temperature-controlled

Also Published As

Publication number Publication date
JP4945712B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4945713B2 (en) Cooling system
JP6046821B2 (en) Refrigeration system defrost system and cooling unit
JP5405015B2 (en) Cooling system
JP4935077B2 (en) Refrigerator and vending machine
WO2010024080A1 (en) Cooling device
JP4945712B2 (en) Thermosiphon
JP2005326138A (en) Cooling device and vending machine with it
JP5450462B2 (en) refrigerator
KR20060089752A (en) Cooling box
TWI440806B (en) Cooling unit and method of making the same
JP5405058B2 (en) Cooling system
JP5219657B2 (en) Cooling device and manufacturing method thereof
JP4670576B2 (en) vending machine
JP4274074B2 (en) Refrigerator and vending machine
JP4090240B2 (en) Cooling system
WO2009157318A1 (en) Cooling device
JP5139019B2 (en) Cooling system
JP3876719B2 (en) refrigerator
JP2009168288A (en) Cooling device
JP2009168337A (en) Cooling device
JP5071083B2 (en) vending machine
JP2009041890A (en) Cooling apparatus
JP2008057974A (en) Cooling apparatus
JP6229955B2 (en) Refrigeration apparatus and defrost method for load cooler
JP2010007985A (en) Cooling apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111007

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees