JP3876719B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP3876719B2
JP3876719B2 JP2002007198A JP2002007198A JP3876719B2 JP 3876719 B2 JP3876719 B2 JP 3876719B2 JP 2002007198 A JP2002007198 A JP 2002007198A JP 2002007198 A JP2002007198 A JP 2002007198A JP 3876719 B2 JP3876719 B2 JP 3876719B2
Authority
JP
Japan
Prior art keywords
pipe
refrigerator
condenser
heat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002007198A
Other languages
Japanese (ja)
Other versions
JP2003207253A (en
Inventor
誠 岡部
等 丸山
章 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002007198A priority Critical patent/JP3876719B2/en
Publication of JP2003207253A publication Critical patent/JP2003207253A/en
Application granted granted Critical
Publication of JP3876719B2 publication Critical patent/JP3876719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵庫の構造に関するもので、特に可燃性冷媒を用いた冷蔵庫に関するものである。
【0002】
【従来の技術】
現在、冷凍冷蔵庫の冷媒には、フロン系冷媒が使用されている。中でもCFC系およびHCFC系冷媒はオゾン層を破壊するため、HFC系冷媒への移行がなされている。家庭用冷蔵庫にはHFC134aが広く用いられている。しかし、HFC系冷媒も地球温暖化を促す物質であり、これらの中で温暖化の程度が少ない物質や、地球環境を悪化させない自然冷媒、例えば炭化水素系冷媒等の冷媒を用いることが検討されている。
【0003】
しかし、これらの冷媒、例えばプロパンやブタンなどの炭化水素系の冷媒は可燃性を有するため、漏れ出すなどにより燃焼するなどの問題があるため問題点を低減する等の検討や対策が広く行われており、冷蔵庫に封入される可燃性冷媒の冷媒量を低減することもその一つである。
【0004】
図6は、従来の一般的なフロン系冷媒を用いた冷凍冷蔵庫の冷凍サイクル構成図を示す。図6において、22は圧縮機、23は冷蔵庫底面に配置されたドレン蒸発用パイプ、24は庫内から排出されるドレン水を受けるドレンパン、25は断熱材中に埋められ冷蔵庫側板の内側に貼り付けられたコンデンサパイプ、27は冷蔵庫の扉と接する面の本体外周部に設けられた防露パイプ、28は毛細管、29は蒸発器、30は吸入パイプで順次接続され冷凍サイクルを構成する。この冷凍サイクルは冷蔵庫本体の主として庫外である本体下部の機械室に圧縮機22などが、同様に本体下面部にドレンパン24が、本体壁面部に放熱パイプが設けられ、蒸発器29が庫内に設けられている。
【0005】
上記構成において、圧縮機22を運転すると圧縮機から吐出された高温高圧の冷媒は、ドレン蒸発用パイプ23、コンデンサパイプ25、防露パイプ27を通って凝縮し、凝縮された冷媒は毛細管28に入り減圧され、蒸発器29で庫内の空気と熱交換して低温低圧のガスとなって吸入パイプ30を通って圧縮機に戻る。図示はしていないがこの蒸発器29は循環する冷媒により冷却された空気である冷気を生成するが、この冷気を庫内ファンにより冷蔵庫本体の庫内に設けられ食品などを収納する庫室に通風路を介して循環させている。
【0006】
つまり、上記構成でドレン蒸発用パイプ23、コンデンサパイプ25、防露パイプ27は冷凍サイクル上、冷媒の凝縮を担う役割、すなわち熱を放出する役割をもっていて、それぞれ機能ごとに分けられ配置されている。蒸発器29と庫内を循環する空気が熱交換する際、空気中に含まれる水分は蒸発器に付着し霜として存在し、付着した霜の量が増えると霜取りヒータによって融解されドレン水として庫外に排出され、ドレンパン23で受けている。このドレン水を蒸発させる方法として、圧縮機22から吐出される高温の冷媒の熱を利用している。この時ドレン蒸発用パイプ23内で冷媒は凝縮を行う。また、コンデンサパイプ25では、壁面への放熱を介して本体庫外の空気である外気と熱交換して冷媒は凝縮を行う。また、冷蔵庫の扉と本体の間に設けられているパッキンが、冷蔵庫の壁面などに比べ断熱性能に劣り、パッキン表面などが庫内の冷気によって冷やされ露点以下になることもある。このため、凝縮パイプの一部として防露パイプ27をこの近傍に配置して、この防露パイプ27を通る冷媒の熱を使ってパッキン表面などが露点以下になるのを防いでいる。この時冷媒は凝縮を行う。このように、ドレン蒸発用パイプ23、コンデンサパイプ25、防露パイプ27での凝縮量が冷蔵庫の必要は凝縮量となる。コンデンサパイプについては特開昭62‐213676号公報に、また、機械室内に配置する凝縮器については特開平10‐253225号に技術が知られている。
【0007】
【発明が解決すようとする課題】
従来の冷蔵庫は運転している最中のある時間に冷凍サイクル内に分布している冷媒量を考えた場合、ドレン蒸発用パイプ、コンデンサパイプ、防露パイプと複数の部位に別れた長いパイプである凝縮器の中に比較的多量の冷媒が存在し、したがって、従来の冷蔵庫に即可燃性冷媒を用いた場合、何らかの原因で冷媒漏れが生じた場合、可燃性冷媒が引火したりする限界に達する可能性を有する問題があった。
【0008】
また従来の冷蔵庫では、断熱材中に埋められ冷蔵庫側板の内側に貼り付けられたコンデンサパイプは、冷媒の凝縮に必要な放熱量を確保し、且つ貼り付け作業の容易さなどから上下に蛇行するように這りめぐらされている場合が多い。このような場合、凝縮液化した冷媒が上昇流部にさしかかったとき、配管内壁面を昇りきれず下側の配管溜まり部に滞留してしまい、したがって、冷蔵庫に封入させる冷媒量が増加したり放熱を効果的に行えないといった問題がある。またこのように配管内の冷媒の流がスムースでないと放熱が局所的になり冷蔵庫の側面に霜をつけないという本来の役割を解決できないという問題があった。
【0009】
本発明は上記のような問題点を解消するためになされたもので、冷凍サイクルを循環する冷媒封入量を減らすことができる冷蔵庫を提供することを目的とする。また、可燃性冷媒が何らかの原因で冷凍サイクルから冷媒漏れが生じた場合でも引火等の限界に達する可能性を低減することができる冷蔵庫を提供することを目的とするものである。また本発明は信頼性が高く効率の良い冷蔵庫を提供するものである。
【0010】
【課題を解決するための手段】
本発明の請求項1に係る冷蔵庫は、本体庫内の冷気を生成する冷凍サイクル内を循環する可燃性冷媒と、本体庫外に配置され送風ファンにより強制空冷される冷凍サイクルの一部を形成する凝縮器と、凝縮器に接続され本体壁面に配置されこの壁面に放熱する放熱パイプと、を備え、放熱パイプは上方向流よりも下方向流もしくは下方向流及び横方向流の放熱量を大きくしたものである。
【0012】
本発明の冷蔵庫は、冷蔵庫本体の天上面に強制空冷される凝縮器を配置したものである。
【0013】
本発明の請求項4に係る冷蔵庫の放熱パイプは上方向流のパイプ長さよりも下方向流もしくは下方向流及び横方向流のパイプ長さが長くなるように配置したものである。
【0014】
本発明の冷蔵庫は、本体庫外の圧縮機上部に配置され庫内からのドレン水を貯めて蒸発させる容器とを備え、前記圧縮機の発熱を前記容器に伝えるものである。
【0017】
【発明の実施の形態】
実施の形態1.
図1に本発明に係る第一の実施の形態を示す。図1において、1は冷蔵庫本体、2は圧縮機、3は圧縮機冷却用ファン、5は断熱材中に埋められ冷蔵庫側板の内側に這わせたコンデンサパイプ、11はパイプ、12はフィンであり、圧縮機2と圧縮機冷却用ファン3を備えた冷蔵庫背面下部の機械室空間内に、圧縮機冷却用ファン3によって強制空冷されるように凝縮器4を設けたものである。圧縮機2から吐出されたイソブタンのような可燃性冷媒は図示を省略しているが凝縮器4のパイプ11に接続され、放熱パイプであるコンデンサパイプ5の上方向流を形成する上向きのパイプに入ったあとで横向きと下向きのパイプにより本体1の壁面に放熱してから防露の役割であるキャビネットパイプを通過し放熱した後で、毛細管で膨張し、蒸発器で蒸発冷却して、再び圧縮機に吸引される。凝縮器4のフィン12は圧縮機冷却用ファン3により先ずフィン12の間を通る空気により通風冷却され、その後この空気は圧縮機2を冷却し本体の外部に吹出される。
【0018】
従来のように断熱材中に埋められ冷蔵庫側板の内側に這わせたコンデンサパイプ5の放熱、すなわち自然対流による熱交換を利用するよりも、本実施例のように機械室に集中配置した凝縮器4をファン3の送風によって強制空冷する、すなわち強制対流により熱交換させることで熱交換効率が高まり、従って、冷蔵庫として必要な凝縮量を得るための配管のボリュームを縮小することができ、封入する冷媒量を削減することができる。本実施例では機械室に配置した凝縮器4で稼いだ凝縮量分が大きく、断熱材中に埋められ冷蔵庫側板の内側に這わせたコンデンサパイプ5の凝縮量分を縮小している。これによって従来のようにコンデンサパイプを長い放熱パイプとすることなく短い放熱パイプにできるので配管内の冷媒量を大幅に減らすことが出来る。さらに、機械室に集中配置した凝縮器4を、例えば図示したようにフィンチューブ式熱交換器とするなど、凝縮器の熱交換性能を高め、ボリュームを減らすことによって、さらなる冷媒量削減効果が得られることとなる。また本実施例では、熱交換性を高めるために送風ファン3の吹き出し側に凝縮器4を配置しているが、冷蔵庫実使用上では埃が付着するため、凝縮器4に多量に付着し風路を遮ってしまい圧縮機2の冷却が不十分となり信頼性上不具合が生じないよう、図2のように凝縮器4を送風ファン3の吸い込み側に配置してもよい。
【0019】
一般に可燃性ガスは引火や爆発する限界というものがあり、ある濃度範囲でのみ着火源が存在する場合、引火や爆発する恐れがある。たとえばイソブタン(R600a)の場合は1.8〜8.5vol%である。冷蔵庫に封入される可燃性冷媒の封入量が少なければ、それだけこの限界に達する時間を遅らすことができるばかりか、空間容積によっては爆発限界に達しなくてすむ場合もでてくる。すなわち、冷媒封入量を低減することで危険性を低減することができる。このように冷凍サイクルの配管内容積を減らすことにより使用する可燃性冷媒の量を減らすことにより問題をなくすことが出来る。
【0020】
さらに、本実施例では断熱材中に埋められ冷蔵庫側板の内側に這わせてあるコンデンサパイプ5の這わせ方として、極力上昇流を減らした這わせ方としている。従来の冷蔵庫では、貼り付け作業のし易さなどの理由により、図6で示したように、冷媒の流れとして上昇・下降を繰り返すパターンでコンデンサパイプ5が這わせてある。この場合、凝縮液化した冷媒が上昇流部を昇りきれず、図6中拡大図に示すように下側ターン部に密度の高い液冷媒が滞留してしまい、その滞留液冷媒分余分に封入冷媒量が増えるばかりか、滞留した液冷媒により流路の圧損増加にもなり、その損失分も冷蔵庫の封入冷媒量が増加していた。本実施例のよう、上昇流を極力減らすことにより、液冷媒の滞留を無くすことができ、従って、封入冷媒量の削減につながる。更には上方向に流れるコンデンサパイプの長さを下方向や横方向のパイプ長さより短くしてパイプの量を減らしたり、上方向流による方熱を極力少なくして横方向流や下方向流によるパイプの放熱を主体にすることより、滞留分をなくし冷媒流をスムースなものとし壁面への放熱を効果的に行うことが出来るので放熱のムラがなくなり冷凍サイクルの運転効率も向上する。
【0021】
図2に本発明に係る他の放熱パイプ配列の構成を示す。尚、図1と同一機能を有するものには同一記号を付して説明を省略する。図2において、6は冷蔵庫底面部に設けられた底面凝縮器、7は庫外に排出されたドレン水を受けるドレンパンである。本実施例では、機械室の凝縮器4と、さらに冷蔵庫の底面にも底面凝縮器6を設けている。底面凝縮器6(熱交換器)の伝熱面積を大きくとるために、従来冷蔵庫の底面に備えられていたドレン水を受け凝縮パイプの放熱でドレンを蒸発させていたドレンパン7を、機械室の圧縮機2の上部に配し、圧縮機に直接接触させたり、圧縮機から対流によって熱を伝えられることにより、圧縮機2の放熱を利用してドレンを蒸発させるようにしたものである。このようにドレン水を蒸発させる容器を圧縮機近傍に設けたので、底面部にも性能を高めた凝縮器を配し、送風ファン3により強制空冷することで、さらに凝縮器の配管ボリュームを縮小できる。
【0022】
断熱材中に埋められ冷蔵庫側板の内側に這わせてあるコンデンサパイプ5は、多湿時の外側面の露付き防止の作用も兼ねているため全廃はできないが、たとえば本例で図示したように側面の温度が低くなる冷凍室側面の露付き防止のために這わせる等範囲を絞りコンデンサパイプの全長を短くしたり、上方向流の長さを下や横方向のパイプ長さより大幅に短くして放熱を横や下のパイプから主として行わせたり、上昇流が流れる上向きの配管径を下向きの配管などの径より細くし流れをスムースにして冷媒量の削減や効率の向上を得ることが出来る。更にコンデンサパイプを必要最小限まで長さを縮小することで、冷媒量を一層削減できるうえ、コンデンサパイプ5から庫内への熱侵入も削減でき、冷蔵庫の省エネ化にもつながる。
【0023】
図1、図2の構造でコンデンサパイプ5である冷蔵庫本体1の壁面に放熱する放熱パイプは本体側面の霜付き防止に設けられるが、フィン付きの凝縮器にモーターにて駆動されるファンによって強制空冷することでより小型の凝縮器とすることが出来るのでこのような凝縮器を図2のように底面と機械室内など複数設け、且つ、パイプ径をより小さくすることにより一層冷凍サイクル内の冷媒量を低減でき、可燃性冷媒が漏れても問題がなくなることになる。更にコンデンサパイプ5の放熱を効果的に行うことが出来る。
【0024】
また、図3に本実施の形態における冷蔵庫底面部周辺の風路を示す。図3に示すように凝縮器4および6を配置してある機械室空間および冷蔵庫底面には放熱を効率よくするため、風の流れをスムースに、且つ、冷蔵庫本体からの吹出しを拡散するように風路が設けられることによって、万が一高圧側配管(凝縮器接合部等)から冷媒が漏洩した場合でも、送風ファン3によって常に風が通過しているため漏洩した可燃性冷媒を拡散することができ、可燃空間を形成することがなく、冷蔵庫の安全性が高まる。
【0025】
以上の説明では、可燃性冷媒を冷気を生成する冷媒に用いた冷蔵庫において、冷蔵庫背面下部の圧縮機と圧縮機冷却用の送風ファンを備えた機械室空間内に、送風ファンにより強制空冷される放熱パイプを集中配置しこのパイプにフィンをつけて放熱効果を増大させた小型ブロック状の凝縮器を設けたり、本体底面に放熱パイプを平面状に配置し同様にフィンにより放熱効果を増大させ強制空冷の凝縮器を設けた構造により冷媒量を削減する構造を説明してきた。更に、可燃性冷媒を冷媒に用いた冷蔵庫のコンデンサパイプである放熱パイプが極力上昇流とならないようにしたものである。図4にコンデンサパイプ5の放熱パイプが上昇流とならないような配置の別の例を示す。図4のコンデンサパイプは、上向きには1本下向きには2本というようにパイプのパス数を上向きより下向きの数を増やしている。これによって放熱パイプの量や放熱量を下向き主体にすることが出来る。圧縮機2から吐出された高温の冷媒は先ず凝縮器4で効果的に凝縮され、更にコンデンサパイプで図のように下向きと横向きの流れにより主として壁面に放熱されてそのままキャビネットパイプにて凝縮放熱し、膨張弁や毛細管での膨張の後で蒸発器で蒸発吸熱によってすなわち庫内の空気から熱を奪う作用により冷気を生成し、この冷気を風路を介し循環させて庫室に収納される食品を冷却することになる。このようにコンデンサパイプのパイプパス数を上向きより下向きを多くし放熱を下向きのパイプにより行わせることで放熱を効果的に且つ効率良く行わせ、更に冷媒量を減らすことが出来る。
【0026】
更に本発明に係る冷蔵庫では、可燃性冷媒を冷媒に用いた冷蔵庫において冷蔵庫の機械室や底面に凝縮器を設け、圧縮機冷却用の送風ファンにより前記凝縮器を空冷するよう機械室風路を設けたものを説明してきたが、このような強制空冷のフィン付き凝縮器を冷蔵庫本体の天井面に配置することも可能である。この構造例を図5に示す。図5において、8は冷蔵庫本体1の天井面に平板状に配置し放熱パイプを側面方向に冷媒が流れるように配列しパイプに固定したフィンを前後方向に並べこのフィン間を空気が流れるように送風ファン9により冷蔵庫前方より空気を吸込み後方に吹出して放熱させる凝縮器、10は凝縮器の下部に配置されて送風ファン9により空気流で冷却される制御基板である。図5の構成では圧縮機2から吐出される高温の気体冷媒は先ず凝縮器4で放熱し、圧縮機用ファン3で外部に排気される。この後上向きの接続パイプ13で天井コンデンサである凝縮器8にて凝縮される。凝縮器8で強制空冷された後で下向きの接続パイプ13からキャビネットパイプに冷媒が流れる構造であり、凝縮熱のほとんどは機械室に設けた凝縮器4と天井面に設けた凝縮器8で凝縮されることになる。図5の天井面に配置した凝縮器と図1や図2の構造と組合せ、凝縮器を機械室と天井面と底面、あるいは圧縮機ファン3の前後の両方にも受けるなどフレキシブルに複数設けて冷媒量を減らすことはさらに効果があることになる。なおなお本体壁面の断熱真空断熱などを採用することによりコンデンサパイプを除くことは可能である。また制御基板10には冷蔵庫全体の電機品を制御するマイコンなどによる制御装置が設けられている。例えば圧縮機の運転を制御するなどはこの基板に配置された素子により行われる。
【0027】
可燃性冷媒を冷媒に用いた冷蔵庫において、庫内のドレンを受け蒸発させるための容器を、冷蔵庫背面下部の機械室空間内に配し、圧縮機の放熱を利用してドレン水を蒸発させるようにした構造は、凝縮器の配置をよりフレキシブルにするために有効である。
【0028】
以上説明したとおり本発明に係る冷蔵庫は、冷蔵庫背面下部の圧縮機と前記圧縮機冷却用の送風ファンを備えた機械室空間内に、前記送風ファンにより強制空冷されるように凝縮器、あるいは底面や天井面、場合によっては本体背面に取付ける凝縮器を設けたもので、凝縮器の効率を高めることで凝縮器全体の配管ボリュームを縮小でき、したがって、冷蔵庫に封入される冷媒量を削減でき、可燃性冷媒を冷媒に用いた冷蔵庫において安全性を高めることができる。
【0029】
本発明に係る冷蔵庫は、凝縮器の放熱パイプが極力上昇流とならないようにしたもので、凝縮液化した冷媒が配管内に滞留することを防ぎ、さらに冷媒量を削減でき、可燃性冷媒を冷媒に用いた冷蔵庫においてさらに安全性を高めることができる。
【0030】
本発明に係る冷蔵庫は、冷蔵庫の底面に凝縮器を設け、圧縮機冷却用の送風ファンにより凝縮器を空冷するよう機械室風路を設けたもので、さらに凝縮器の効率を高めることで冷媒量を削減でき、可燃性冷媒を冷媒に用いた冷蔵庫において安全性を高めることができる。
【0031】
本発明に係る冷蔵庫は、可燃性冷媒を冷凍サイクルの冷媒に用いた冷蔵庫において、庫内のドレンを受け蒸発させるための容器を、冷蔵庫背面下部の機械室空間内に配し、圧縮機の放熱を利用してドレン水を蒸発させるようにしたものであり、従来の冷蔵庫でドレンパンを配置していた底面の空間に凝縮器を配置でき、凝縮器の表面積を大きくとれることで高性能化でき、冷蔵庫全体の凝縮器の配管ボリュームとしてさらに縮小でき、冷媒量をさらに削減でき、したがって冷蔵庫の安全性を高めることができる。
【0032】
【発明の効果】
本発明の冷蔵庫は、本体庫内の冷気を生成する冷凍サイクル内を循環する可燃性冷媒と、本体庫外に配置され送風ファンにより強制空冷される冷凍サイクルの一部を形成する凝縮器と、凝縮器に接続され本体壁面に配置され壁面に放熱する放熱パイプと、を備え、放熱パイプは上方向流よりも下方向流もしくは下方向流と横方向流の放熱パイプの量もしくは放熱パイプによる放熱量を大きくする様に放熱パイプは上方向流のパイプパス数よりも下方向流のパイプパス数を多くもしくは上方向流のパイプ径よりも下方向流のパイプ径を太くするので、信頼性が高く簡単な構造で効率の向上が図れる冷蔵庫が得られる。
【0034】
本発明の冷蔵庫は、冷蔵庫本体の天井面に強制空冷される凝縮器を配置したので、冷媒量の削減ができる。
【0035】
本発明の請求項4に係る冷蔵庫の放熱パイプは上方向流のパイプ長さよりも下方向流もしくは下方向流及び横方向流のパイプ長さが長くなるように配置したので、効率を更に良く出来る。
【0036】
本発明の冷蔵庫は、本体庫外の圧縮機上部に配置され庫内からのドレン水を貯めて蒸発させる容器とを備え、圧縮機の発熱を前記容器に伝えるので、簡単な構造で効率の良い装置が得られる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態の冷蔵庫の斜視図である。
【図2】 本発明の第1の実施の形態の別の冷蔵庫の斜視図である。
【図3】 本発明の第1の実施の形態の冷蔵庫の底面部周辺の風路を示す図である。
【図4】 本発明の第1の実施の形態の別の冷蔵庫の斜視図である。
【図5】 本発明の第1の実施の形態の別の冷蔵庫の斜視図である。
【図6】 従来の冷蔵庫の冷凍サイクルを示す図である。
【符号の説明】
1 冷蔵庫本体、 2 圧縮機、 3 ファン、 4 凝縮器、 5 コンデンサパイプ、 6 底面凝縮器、 7 ドレンパン、 8 凝縮器、 9 ファン、 10 制御基板。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the structure of a refrigerator, and particularly to a refrigerator using a flammable refrigerant.
[0002]
[Prior art]
Currently, chlorofluorocarbon refrigerants are used as refrigerants in refrigerators. Among them, CFC-based refrigerants and HCFC-based refrigerants have been shifted to HFC-based refrigerants in order to destroy the ozone layer. HFC134a is widely used for household refrigerators. However, HFC-based refrigerants are also substances that promote global warming, and among these substances, it is considered to use substances that have a low degree of warming or natural refrigerants that do not deteriorate the global environment, such as hydrocarbon-based refrigerants. ing.
[0003]
However, since these refrigerants, for example, hydrocarbon refrigerants such as propane and butane, are flammable, there are problems such as combustion due to leakage, etc., and therefore studies and countermeasures such as reducing the problems are widely performed. One of them is to reduce the amount of the combustible refrigerant sealed in the refrigerator.
[0004]
FIG. 6 shows a refrigeration cycle configuration diagram of a refrigerator-freezer using a conventional general chlorofluorocarbon refrigerant. In FIG. 6, 22 is a compressor, 23 is a drain evaporating pipe arranged on the bottom of the refrigerator, 24 is a drain pan for receiving drain water discharged from the inside of the refrigerator, and 25 is buried in a heat insulating material and stuck inside the refrigerator side plate. The attached condenser pipe, 27 is a dew-proof pipe provided on the outer periphery of the main body on the surface in contact with the refrigerator door, 28 is a capillary tube, 29 is an evaporator, and 30 is an intake pipe to be connected in sequence to constitute a refrigeration cycle. In this refrigeration cycle, a compressor 22 or the like is provided in a machine room at the lower part of the main body, which is mainly outside the refrigerator main body, similarly, a drain pan 24 is provided on the lower surface of the main body, and a heat radiating pipe is provided on the wall surface of the main body. Is provided.
[0005]
In the above configuration, when the compressor 22 is operated, the high-temperature and high-pressure refrigerant discharged from the compressor condenses through the drain evaporation pipe 23, the condenser pipe 25, and the dew-proof pipe 27, and the condensed refrigerant enters the capillary 28. The pressure is reduced, and the evaporator 29 exchanges heat with the air in the cabinet to form a low-temperature and low-pressure gas that returns to the compressor through the suction pipe 30. Although not shown, the evaporator 29 generates cool air that is air cooled by the circulating refrigerant. The cool air is provided in the refrigerator main body by the internal fan to store food and the like. It is circulated through the ventilation path.
[0006]
That is, in the above configuration, the drain evaporation pipe 23, the condenser pipe 25, and the dew prevention pipe 27 have a role of condensing the refrigerant, that is, a role of releasing heat on the refrigeration cycle, and are arranged separately for each function. . When the air circulating through the evaporator 29 and the inside of the warehouse exchanges heat, moisture contained in the air adheres to the evaporator and exists as frost. When the amount of the attached frost increases, it is melted by the defrost heater and stored as drain water. It is discharged outside and received by the drain pan 23. As a method for evaporating the drain water, the heat of the high-temperature refrigerant discharged from the compressor 22 is used. At this time, the refrigerant condenses in the drain evaporation pipe 23. Further, in the condenser pipe 25, heat is exchanged with outside air that is air outside the main body through heat radiation to the wall surface, and the refrigerant condenses. In addition, the packing provided between the door of the refrigerator and the main body is inferior in heat insulating performance as compared with the wall surface of the refrigerator, and the packing surface may be cooled by the cool air in the refrigerator and may be below the dew point. For this reason, the dew-proof pipe 27 is disposed in the vicinity as a part of the condensing pipe, and the heat of the refrigerant passing through the dew-proof pipe 27 is used to prevent the packing surface and the like from becoming below the dew point. At this time, the refrigerant condenses. Thus, the amount of condensation in the drain evaporation pipe 23, the condenser pipe 25, and the dew proof pipe 27 is the amount of condensation required for the refrigerator. Japanese Laid-Open Patent Publication No. 62-213676 discloses a condenser pipe, and Japanese Laid-Open Patent Publication No. 10-253225 discloses a condenser disposed in a machine room.
[0007]
[Problems to be solved by the invention]
When considering the amount of refrigerant distributed in the refrigeration cycle at a certain time during operation of a conventional refrigerator, it is a long pipe divided into multiple parts, such as a drain evaporation pipe, a condenser pipe, and a dew condensation pipe. There is a relatively large amount of refrigerant in a condenser, so when using an immediately flammable refrigerant in a conventional refrigerator, if the refrigerant leaks for some reason, the flammable refrigerant will ignite. There was a problem that could reach.
[0008]
In the conventional refrigerator, the condenser pipe buried in the heat insulating material and attached to the inside of the refrigerator side plate secures a heat radiation amount necessary for the condensation of the refrigerant, and meanders up and down from the ease of the attaching operation. In many cases, they are beaten. In such a case, when the condensed and liquefied refrigerant reaches the upflow portion, the inner wall surface of the pipe cannot be fully raised and stays in the lower pipe pool portion, so that the amount of refrigerant sealed in the refrigerator increases or heat dissipation. There is a problem that cannot be performed effectively. In addition, there is a problem that if the flow of the refrigerant in the pipe is not smooth, the heat release is localized and the original role of not forming frost on the side of the refrigerator cannot be solved.
[0009]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigerator that can reduce the amount of refrigerant enclosed in the refrigeration cycle. It is another object of the present invention to provide a refrigerator that can reduce the possibility of reaching the limit of ignition and the like even when the refrigerant leaks from the refrigeration cycle for some reason. The present invention also provides a highly reliable and efficient refrigerator.
[0010]
[Means for Solving the Problems]
The refrigerator according to claim 1 of the present invention forms a combustible refrigerant circulating in the refrigeration cycle that generates cool air in the main body and a part of the refrigeration cycle that is arranged outside the main body and is forced-air cooled by a blower fan. And a heat dissipating pipe connected to the condenser and disposed on the wall surface of the main body to dissipate heat to the wall surface, and the heat dissipating pipe dissipates heat of the downward flow or the downward flow and the lateral flow rather than the upward flow. It is a big one.
[0012]
The refrigerator of this invention arrange | positions the condenser by which forced air cooling is carried out on the top | upper surface of the refrigerator main body.
[0013]
The heat radiating pipe of the refrigerator according to claim 4 of the present invention is arranged so that the pipe length of the downward flow or the downward flow and the lateral flow is longer than the pipe length of the upward flow.
[0014]
The refrigerator according to the present invention includes a container that is disposed on an upper part of the compressor outside the main body and that stores and evaporates drain water from the inside of the refrigerator, and transmits heat generated by the compressor to the container.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 shows a first embodiment according to the present invention. In FIG. 1, 1 is a refrigerator body, 2 is a compressor, 3 is a fan for cooling the compressor, 5 is a condenser pipe buried in a heat insulating material and placed inside the refrigerator side plate, 11 is a pipe, and 12 is a fin. A condenser 4 is provided in a machine room space at the lower back of the refrigerator including the compressor 2 and the compressor cooling fan 3 so as to be forcibly air-cooled by the compressor cooling fan 3. The combustible refrigerant such as isobutane discharged from the compressor 2 is connected to the pipe 11 of the condenser 4 (not shown), and is connected to the pipe 11 of the condenser 4 and forms an upward pipe that forms the upward flow of the condenser pipe 5 that is a heat radiating pipe. After entering, heat is radiated to the wall surface of the main body 1 with the pipes facing sideways and downward, and after passing through the cabinet pipe, which is the role of dew condensation, radiates heat, expands in the capillary tube, evaporates and cools in the evaporator, and compresses again. Sucked into the machine. The fins 12 of the condenser 4 are first ventilated and cooled by the air passing between the fins 12 by the compressor cooling fan 3, and then the air cools the compressor 2 and is blown out of the main body.
[0018]
Rather than using the heat radiation of the condenser pipe 5 buried in the heat insulating material and placed inside the refrigerator side plate as in the prior art, that is, using heat exchange by natural convection, the condenser concentrated in the machine room as in this embodiment 4 is forcibly air-cooled by blowing air from the fan 3, that is, heat exchange efficiency is increased by forced convection, so that the volume of piping for obtaining the amount of condensation required as a refrigerator can be reduced and enclosed. The amount of refrigerant can be reduced. In the present embodiment, the amount of condensation earned by the condenser 4 disposed in the machine room is large, and the amount of condensation of the condenser pipe 5 buried in the heat insulating material and placed inside the refrigerator side plate is reduced. As a result, the condenser pipe can be made into a short heat radiating pipe without using a long heat radiating pipe as in the prior art, so the amount of refrigerant in the pipe can be greatly reduced. Furthermore, the condenser 4 concentrated in the machine room is, for example, a finned tube heat exchanger as shown in the figure.By increasing the heat exchange performance of the condenser and reducing the volume, a further refrigerant amount reduction effect is obtained. Will be. Further, in this embodiment, the condenser 4 is arranged on the blowing side of the blower fan 3 in order to improve heat exchange. However, since dust adheres in actual use of the refrigerator, a large amount of dust adheres to the condenser 4 and wind The condenser 4 may be arranged on the suction side of the blower fan 3 as shown in FIG. 2 so that the passage is blocked and the compressor 2 is not sufficiently cooled to cause a problem in reliability.
[0019]
In general, flammable gas has a limit of ignition and explosion, and when an ignition source exists only in a certain concentration range, there is a risk of ignition or explosion. For example, in the case of isobutane (R600a), it is 1.8 to 8.5 vol%. If the amount of the flammable refrigerant sealed in the refrigerator is small, not only the time to reach this limit can be delayed, but also the explosion limit may not be reached depending on the space volume. That is, the danger can be reduced by reducing the amount of refrigerant enclosed. Thus, the problem can be eliminated by reducing the amount of the combustible refrigerant to be used by reducing the volume in the piping of the refrigeration cycle.
[0020]
Furthermore, in the present embodiment, as a way of placing the condenser pipe 5 buried in the heat insulating material and placed inside the refrigerator side plate, the manner of arranging the upward flow as much as possible is reduced. In the conventional refrigerator, the capacitor pipe 5 is arranged in a pattern in which the refrigerant flows up and down repeatedly as shown in FIG. 6 for reasons such as easy pasting operation. In this case, the condensed and liquefied refrigerant cannot reach the upflow portion, and as shown in the enlarged view in FIG. 6, the high-density liquid refrigerant stays in the lower turn portion, and the remaining amount of the retained liquid refrigerant is added to the enclosed refrigerant. Not only the amount increased, but also the pressure loss of the flow path increased due to the staying liquid refrigerant, and the amount of refrigerant enclosed in the refrigerator also increased by the loss. As in this embodiment, by reducing the upward flow as much as possible, it is possible to eliminate the stagnation of the liquid refrigerant, thus leading to a reduction in the amount of enclosed refrigerant. Furthermore, the length of the condenser pipe that flows upward is shorter than the length of the pipe in the downward or lateral direction, and the amount of pipe is reduced. By mainly radiating the heat from the pipe, it is possible to eliminate the stagnation, smooth the refrigerant flow, and effectively radiate the heat to the wall surface.
[0021]
FIG. 2 shows the configuration of another heat radiating pipe arrangement according to the present invention. 1 having the same functions as those in FIG. In FIG. 2, 6 is a bottom condenser provided on the bottom of the refrigerator, and 7 is a drain pan that receives drain water discharged outside the refrigerator. In the present embodiment, the condenser 4 in the machine room and the bottom condenser 6 are also provided on the bottom of the refrigerator. In order to increase the heat transfer area of the bottom condenser 6 (heat exchanger), a drain pan 7 that has received drain water that has conventionally been provided on the bottom of the refrigerator and has evaporated the drain by the heat radiation of the condensation pipe, The drain is evaporated by utilizing the heat radiation of the compressor 2 by being arranged on the upper part of the compressor 2 and being brought into direct contact with the compressor or by transferring heat from the compressor by convection. Since the container for evaporating the drain water is provided in the vicinity of the compressor in this way, a condenser with improved performance is also arranged on the bottom surface, and forced air cooling is performed by the blower fan 3, thereby further reducing the condenser pipe volume. it can.
[0022]
The capacitor pipe 5 embedded in the heat insulating material and placed inside the refrigerator side plate also serves to prevent dew condensation on the outer side surface when it is humid. Reduce the overall length of the condenser pipe by narrowing the range to prevent dew condensation on the side of the freezer compartment when the temperature of the refrigerator is low, or make the length of the upward flow significantly shorter than the length of the pipe in the lower or lateral direction. Heat can be dissipated mainly from the side or the lower pipe, or the upward pipe diameter through which the upward flow flows can be made smaller than the diameter of the downward pipe and the flow can be made smooth to reduce the amount of refrigerant and improve the efficiency. Further, by reducing the length of the condenser pipe to the minimum necessary, the amount of refrigerant can be further reduced, and heat penetration from the condenser pipe 5 into the cabinet can be reduced, leading to energy saving of the refrigerator.
[0023]
1 and 2, a heat radiating pipe that radiates heat on the wall surface of the refrigerator main body 1, which is the condenser pipe 5, is provided to prevent frost formation on the side surface of the main body, but is forced by a fan driven by a motor on a finned condenser. Since a smaller condenser can be obtained by air cooling, a plurality of such condensers such as a bottom surface and a machine room are provided as shown in FIG. 2, and the refrigerant in the refrigeration cycle is further reduced by reducing the pipe diameter. The amount can be reduced, and even if the flammable refrigerant leaks, there will be no problem. Furthermore, the heat dissipation of the capacitor pipe 5 can be performed effectively.
[0024]
Moreover, the air path around the refrigerator bottom face part in this Embodiment is shown in FIG. As shown in FIG. 3, in order to efficiently dissipate heat in the machine room space where the condensers 4 and 6 are arranged and the bottom of the refrigerator, the flow of wind is smoothly diffused and the blowout from the refrigerator body is diffused. By providing the air passage, even if the refrigerant leaks from the high-pressure side pipe (condenser joint, etc.), the blown fan 3 can always diffuse the leaked combustible refrigerant because the wind always passes. The safety of the refrigerator is enhanced without forming a combustible space.
[0025]
In the above description, in a refrigerator using a combustible refrigerant as a refrigerant for generating cold air, forced air cooling is performed by a blower fan in a machine room space provided with a compressor at the lower back of the refrigerator and a blower fan for cooling the compressor. Concentrate the heat dissipating pipes and install fins on the pipes to increase the heat dissipating effect, or install the heat dissipating pipes flat on the bottom of the main unit and increase the heat dissipating effect with the fins. The structure which reduces the refrigerant | coolant amount with the structure which provided the air-cooled condenser has been demonstrated. Furthermore, the heat dissipation pipe, which is a condenser pipe of a refrigerator using a flammable refrigerant as a refrigerant, is prevented from rising as much as possible. FIG. 4 shows another example of arrangement in which the heat radiating pipe of the capacitor pipe 5 does not flow upward. In the capacitor pipe of FIG. 4, the number of pipe paths is increased from the upward direction to the downward number, such as one upward and two downward. As a result, the amount of the heat radiating pipe and the amount of heat radiated can be mainly directed downward. The high-temperature refrigerant discharged from the compressor 2 is first effectively condensed by the condenser 4, and then is radiated mainly to the wall surface by the condenser pipe by the downward and lateral flows as shown in the figure and is condensed and radiated by the cabinet pipe as it is. Food that is stored in the storage room by generating heat by evaporative heat absorption in the evaporator after the expansion of the expansion valve or capillary tube, that is, by removing heat from the air in the storage, and circulating the cold air through the air passage Will be cooled. In this way, by increasing the number of pipe paths of the capacitor pipe downward as compared to upward and allowing heat dissipation to be performed by the downward pipe, heat dissipation can be performed effectively and efficiently, and the amount of refrigerant can be further reduced.
[0026]
Further, in the refrigerator according to the present invention, in the refrigerator using a flammable refrigerant as a refrigerant, a condenser is provided in the machine room and the bottom surface of the refrigerator, and a machine room air passage is provided to air-cool the condenser by a blower fan for cooling the compressor. Although what was provided was demonstrated, it is also possible to arrange | position such a condenser with a fin of forced air cooling on the ceiling surface of a refrigerator main body. An example of this structure is shown in FIG. In FIG. 5, 8 is arranged in a flat plate shape on the ceiling surface of the refrigerator main body 1 and the heat radiating pipes are arranged so that the refrigerant flows in the lateral direction, and fins fixed to the pipes are arranged in the front-rear direction so that air flows between the fins. A condenser 10 that sucks air from the front of the refrigerator by the blower fan 9 and blows it back to dissipate the heat, and 10 is a control board that is disposed in the lower part of the condenser and cooled by the airflow by the blower fan 9. In the configuration of FIG. 5, the high-temperature gaseous refrigerant discharged from the compressor 2 first dissipates heat in the condenser 4 and is exhausted to the outside by the compressor fan 3. After that, it is condensed in the condenser 8 which is a ceiling condenser by the upward connecting pipe 13. The refrigerant flows from the downward connection pipe 13 to the cabinet pipe after forced air cooling by the condenser 8, and most of the condensation heat is condensed by the condenser 4 provided in the machine room and the condenser 8 provided on the ceiling surface. Will be. A combination of the condenser arranged on the ceiling surface of FIG. 5 and the structure of FIG. 1 and FIG. 2, a plurality of condensers are provided flexibly, such as being received by the machine room and the ceiling surface and bottom surface, or both before and after the compressor fan 3. Reducing the amount of refrigerant will be more effective. In addition, it is possible to remove the capacitor pipe by adopting heat insulation vacuum insulation on the wall surface of the main body. Further, the control board 10 is provided with a control device such as a microcomputer for controlling the electrical equipment of the entire refrigerator. For example, the operation of the compressor is controlled by an element disposed on the substrate.
[0027]
In a refrigerator using a flammable refrigerant as a refrigerant, a container for receiving and evaporating the drain in the refrigerator is disposed in the machine room space at the lower back of the refrigerator, and the drain water is evaporated using the heat radiation of the compressor. This structure is effective for making the arrangement of the condenser more flexible.
[0028]
As described above, the refrigerator according to the present invention includes a condenser or a bottom surface in a machine room space provided with a compressor at the lower back of the refrigerator and a blower fan for cooling the compressor so that the air is forcedly cooled by the blower fan. And a condenser that is attached to the back of the main unit, and in some cases the back of the main unit. By increasing the efficiency of the condenser, the piping volume of the entire condenser can be reduced, and therefore the amount of refrigerant sealed in the refrigerator can be reduced. Safety can be improved in a refrigerator using a combustible refrigerant as the refrigerant.
[0029]
The refrigerator according to the present invention is such that the heat radiating pipe of the condenser is prevented from becoming an upward flow as much as possible, prevents the condensed and liquefied refrigerant from staying in the pipe, further reduces the amount of the refrigerant, and converts the combustible refrigerant into the refrigerant. Safety can be further improved in the refrigerator used in the above.
[0030]
The refrigerator according to the present invention is provided with a condenser on the bottom surface of the refrigerator, and provided with a machine room air passage so that the condenser is air-cooled by a blower fan for cooling the compressor. The refrigerant is further improved by increasing the efficiency of the condenser. The amount can be reduced, and safety can be enhanced in a refrigerator using a flammable refrigerant as the refrigerant.
[0031]
The refrigerator according to the present invention is a refrigerator using a flammable refrigerant as a refrigerant for a refrigeration cycle, and a container for receiving and evaporating the drain in the warehouse is disposed in the machine room space at the lower back of the refrigerator to dissipate heat from the compressor. It is designed to evaporate the drain water by using a condenser, a condenser can be placed in the bottom space where the drain pan was placed in a conventional refrigerator, and the surface area of the condenser can be increased to improve performance, It is possible to further reduce the piping volume of the condenser in the entire refrigerator, further reduce the amount of refrigerant, and thus improve the safety of the refrigerator.
[0032]
【The invention's effect】
The refrigerator of the present invention includes a combustible refrigerant that circulates in the refrigeration cycle that generates cool air in the main body, a condenser that forms a part of the refrigeration cycle that is disposed outside the main body and is forced-air cooled by a blower fan, A heat radiating pipe connected to the condenser and disposed on the wall surface of the main body to dissipate heat to the wall surface. To increase the amount of heat, the heat radiating pipe has a higher number of pipe paths for the downward flow than the number of pipe paths for the upward flow, or a larger pipe diameter for the downward flow than the pipe diameter of the upward flow. A refrigerator capable of improving efficiency with a simple structure can be obtained.
[0034]
In the refrigerator according to the present invention, the condenser that is forced air-cooled is arranged on the ceiling surface of the refrigerator body, so that the amount of refrigerant can be reduced.
[0035]
Since the heat radiating pipe of the refrigerator according to claim 4 of the present invention is arranged so that the pipe length of the downward flow or the downward flow and the lateral flow is longer than the pipe length of the upward flow, the efficiency can be further improved. .
[0036]
The refrigerator according to the present invention includes a container that is disposed above the compressor outside the main body and stores and evaporates the drain water from the inside of the refrigerator, and transmits heat generated by the compressor to the container. A device is obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view of a refrigerator according to a first embodiment of the present invention.
FIG. 2 is a perspective view of another refrigerator according to the first embodiment of the present invention.
FIG. 3 is a diagram showing an air path around the bottom surface of the refrigerator according to the first embodiment of the present invention.
FIG. 4 is a perspective view of another refrigerator according to the first embodiment of the present invention.
FIG. 5 is a perspective view of another refrigerator according to the first embodiment of the present invention.
FIG. 6 is a diagram showing a refrigeration cycle of a conventional refrigerator.
[Explanation of symbols]
1 refrigerator body, 2 compressor, 3 fan, 4 condenser, 5 condenser pipe, 6 bottom condenser, 7 drain pan, 8 condenser, 9 fan, 10 control board.

Claims (4)

本体庫内の冷気を生成する冷凍サイクル内を循環する可燃性冷媒と、本体庫外に配置され送風ファンにより強制空冷される前記冷凍サイクルの一部を形成する凝縮器と、前記凝縮器に接続され本体壁面に配置され前記壁面に放熱する放熱パイプと、を備え、前記放熱パイプは上方向流よりも下方向流もしくは下方向流と横方向流の前記放熱パイプの量もしくは前記放熱パイプによる放熱量を大きくするように前記放熱パイプは上方向流のパイプパス数よりも下方向流のパイプパス数を多くもしくは上方向流のパイプ径よりも下方向流のパイプ径を太くすることを特徴とする冷蔵庫。  A combustible refrigerant that circulates in the refrigeration cycle that generates cool air in the main body cabinet, a condenser that forms a part of the refrigeration cycle that is arranged outside the main body cabinet and is forced to be air-cooled by a blower fan, and connected to the condenser A heat dissipating pipe disposed on the wall surface of the main body and dissipating heat to the wall surface, wherein the heat dissipating pipe is an amount of the heat dissipating pipe in a downward flow or a downward flow and a lateral flow rather than an upward flow or The refrigerator is characterized in that the heat radiating pipe has a larger number of pipe paths for the downward flow than the number of pipe paths for the upward flow or a diameter of the pipe for the downward flow larger than the diameter of the pipe for the upward flow so as to increase the amount of heat. . 冷蔵庫本体の天上面に前記放熱パイプに接続され強制空冷される第2の凝縮器を配置したことを特徴とする請求項1記載の冷蔵庫。 The refrigerator according to claim 1, wherein a second condenser connected to the heat radiating pipe and forcedly cooled by air is disposed on the top surface of the refrigerator body . 前記放熱パイプは上方向流のパイプ長さよりも下方向流もしくは下方向流および横方向流のパイプ長さが長くなるように配置したことを特徴とする請求項1記載の冷蔵庫。 2. The refrigerator according to claim 1, wherein the heat radiating pipe is arranged so that a pipe length of a downward flow or a downward flow and a lateral flow is longer than a pipe length of the upward flow . 前記本体庫外の圧縮機上部に配置され庫内からのドレン水を貯めて蒸発させる容器とを備え、前記圧縮機の発熱を前記容器に伝えることを特徴とする請求項1記載の冷蔵庫。 2. The refrigerator according to claim 1, further comprising a container that is disposed on an upper part of the compressor outside the main body and that stores and evaporates drain water from the interior, and transmits heat generated by the compressor to the container .
JP2002007198A 2002-01-16 2002-01-16 refrigerator Expired - Fee Related JP3876719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002007198A JP3876719B2 (en) 2002-01-16 2002-01-16 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002007198A JP3876719B2 (en) 2002-01-16 2002-01-16 refrigerator

Publications (2)

Publication Number Publication Date
JP2003207253A JP2003207253A (en) 2003-07-25
JP3876719B2 true JP3876719B2 (en) 2007-02-07

Family

ID=27645766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002007198A Expired - Fee Related JP3876719B2 (en) 2002-01-16 2002-01-16 refrigerator

Country Status (1)

Country Link
JP (1) JP3876719B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609316B2 (en) * 2005-12-28 2011-01-12 パナソニック株式会社 refrigerator
JP6218790B2 (en) * 2015-10-20 2017-10-25 三菱電機株式会社 refrigerator
CN105371536A (en) * 2015-12-14 2016-03-02 珠海格力电器股份有限公司 Intelligence delivery cabinet air conditioning system mounting structure
JP7153456B2 (en) * 2018-03-09 2022-10-14 東芝ライフスタイル株式会社 refrigerator
JP7032186B2 (en) * 2018-03-09 2022-03-08 東芝ライフスタイル株式会社 refrigerator

Also Published As

Publication number Publication date
JP2003207253A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
TW571064B (en) Stirling refrigerator
JP2004069294A (en) Refrigerator and defrosting device
JP2006343078A (en) Refrigerator
JP4945713B2 (en) Cooling system
JP2005172329A (en) Cooling storage
JP2005016740A (en) Refrigerator
JP2009079778A (en) Refrigerator
JP4945712B2 (en) Thermosiphon
JP3876719B2 (en) refrigerator
JP3826998B2 (en) Stirling refrigeration system and Stirling refrigerator
JP2004324902A (en) Freezing refrigerator
JPH10267508A (en) Electric refrigerator
JP2003302117A (en) Heat radiation system for stirling engine and cooling chamber having the same
KR100469322B1 (en) Evaporator
JP2003314946A (en) Refrigerator
JP6543811B2 (en) refrigerator
JP4513707B2 (en) vending machine
JP3482406B2 (en) Freezer refrigerator
JP3482405B2 (en) refrigerator
JP4001607B2 (en) Stirling refrigerator
JP2005195204A (en) Refrigerator
JP2006118792A (en) Refrigerator
KR100309271B1 (en) Condenser
JP2003279220A (en) Refrigerator
KR100546675B1 (en) radiant heat-structure of direct cooling type refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040617

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees