WO2020218008A1 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
WO2020218008A1
WO2020218008A1 PCT/JP2020/015945 JP2020015945W WO2020218008A1 WO 2020218008 A1 WO2020218008 A1 WO 2020218008A1 JP 2020015945 W JP2020015945 W JP 2020015945W WO 2020218008 A1 WO2020218008 A1 WO 2020218008A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
cooler
pressure
shut valve
Prior art date
Application number
PCT/JP2020/015945
Other languages
French (fr)
Japanese (ja)
Inventor
清水 肇
義則 毅
康光 大見
功嗣 三浦
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020218008A1 publication Critical patent/WO2020218008A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the disclosure in this specification relates to a cooling system.
  • Patent Document 1 includes a loop-type thermosiphon having an evaporator (cooler) that evaporates the liquid phase refrigerant and a condenser that condenses the gas phase refrigerant, and phase changes between the liquid phase and the gas phase.
  • a cooling system is disclosed in which heat is transported by using a refrigerant to be used, and the refrigerant naturally circulates between the cooler and the condenser.
  • an on-off valve is provided in the liquid pipe between the condenser and the cooler, and the control unit controls the opening and closing of the on-off valve for the purpose of preventing supercooling of the battery cell.
  • Examples of the cooling device in which the refrigerant circulates include a configuration in which the refrigerant is forcibly circulated and a configuration in which the refrigerant circulates naturally.
  • forced circulation for example, in a configuration in which the refrigerant is circulated by an electric pump, it is possible to determine whether or not the refrigerant is normally circulated by monitoring the pump rotation speed and the drive current. That is, it is possible to detect a refrigerant circulation abnormality based on the pump rotation speed and the drive current.
  • natural circulation for example, in a configuration provided with a loop type thermosiphon, since the electric pump does not exist, the state cannot be determined based on the pump rotation speed and the drive current. Therefore, it is desired that the loop type thermosiphon in which the refrigerant naturally circulates can be accurately determined that the internal refrigerant circulates normally.
  • the present disclosure has been made in view of the above circumstances, and it is possible to determine the circulation state of the refrigerant with a simple configuration for a loop type thermosiphon in which the refrigerant that changes phase between the liquid phase and the gas phase naturally circulates.
  • the purpose is to provide a cooling system that can.
  • the present disclosure is a cooler that absorbs the heat of a heating element to evaporate a liquid refrigerant, a condenser that is arranged above the cooler and condenses a gaseous refrigerant vaporized by the cooler, and is vaporized by the cooler. It is provided with a loop type thermosiphon having a gas pipe for circulating the gas refrigerant to the condenser and a liquid pipe for circulating the liquid refrigerant liquefied by the condenser to the cooler, and the refrigerant is provided between the cooler and the condenser. Is a cooling system that circulates naturally.
  • the control unit closes the shut valve when there is a temperature difference between the refrigerant temperature in the cooler and the refrigerant temperature in the condenser, and the pressure detected by the pressure sensor reaches a predetermined value or higher.
  • it has a first determination unit that determines that the liquid is normally circulating in the loop type thermosiphon, and the first determination unit has a first determination unit even if the shut valve is closed with a temperature difference. If the pressure detected by the pressure sensor does not rise to a predetermined value, it is determined that the loop type thermosiphon is abnormal.
  • a temperature sensor for detecting the temperature of the refrigerant in the loop type thermo siphon is further provided, and the control unit detects the pressure detected by the pressure sensor and the temperature sensor when it is determined to be normal by the first determination unit.
  • the second determination unit has a second determination unit that determines that the refrigerant characteristics are abnormal when the actual refrigerant characteristics deviate from the theoretical characteristics by a predetermined value or more, and the actual refrigerant characteristics are determined. If it does not deviate from the theoretical characteristics by a predetermined value or more, it may be determined that the refrigerant characteristics are normal.
  • the heating element is a battery mounted on the vehicle, and the control unit may perform a determination process by the first determination unit when executing control for switching the open / closed state of the shut valve during soaking of the vehicle. ..
  • control unit may perform a determination process by the first determination unit when closing the shut valve by executing control for suppressing the temperature variation of the battery during soaking of the vehicle.
  • control unit performs a determination process by the first determination unit when the shut valve is closed by executing control for suppressing supercooling of the battery due to the low outside air temperature of the vehicle during soaking of the vehicle. You may.
  • the circulation state of the refrigerant in the loop type thermosiphon is monitored by monitoring the pressure change according to the opening and closing of the shut valve. It can be determined accurately.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a cooling system according to an embodiment.
  • FIG. 2 is a schematic view showing a state in which the refrigerant naturally circulates between the cooler and the condenser.
  • FIG. 3 is a diagram for explaining the operating principle of the loop type thermosiphon. In FIG. 2, the flow when the refrigerant circulates is indicated by an arrow.
  • the cooling system 1 targets the battery cell 2 for cooling.
  • the cooling system 1 includes a loop-type thermosiphon 10 that transports heat by using a working fluid (refrigerant) that changes phase between a liquid phase and a gas phase.
  • the refrigerant is a heat transport medium that absorbs or dissipates heat by utilizing latent heat when gas-liquid changes occur.
  • the "liquid phase working fluid” is referred to as “liquid refrigerant”
  • the “gas phase working fluid” is referred to as "gas refrigerant”.
  • the battery cell 2 has a square shape.
  • the battery cell 2 constitutes a battery pack.
  • the battery pack is composed of a plurality of battery modules.
  • This battery module has a structure in which a plurality of battery cells 2 are arranged so as to be stacked. As described above, in the battery module composed of the plurality of battery cells 2, the temperature varies between the battery cells 2.
  • the battery cell 2 is an in-vehicle battery mounted on an electric vehicle or a plug-in hybrid vehicle.
  • the battery cell 2 stores electric power for supplying the traveling motor. Then, when the vehicle travels, electric power is supplied from the battery cell 2 to the traveling motor. Further, when charging from an external power source such as a charging stand, power is supplied from the external power source to the battery cell 2 in the vehicle.
  • an external power source such as a charging stand
  • heat is generated in the battery cell 2 with energization. The heat of the battery cell 2 is transported by the loop type thermosiphon 10 and dissipated.
  • the loop type thermosiphon 10 includes a cooler 11, a condenser 12, a gas pipe 13 through which a gas refrigerant flows, and a liquid pipe 14 through which a liquid refrigerant flows.
  • the refrigerant is sealed in the closed loop circuit, and the refrigerant can be naturally circulated between the cooler 11 and the condenser 12.
  • a gas pipe 13 is laid so as to connect the steam outlet of the cooler 11 and the steam inlet of the condenser 12.
  • a liquid pipe 14 is piped so as to connect the liquid outlet of the condenser 12 and the liquid inlet of the cooler 11.
  • the cooler 11 absorbs the heat generated in the battery cell 2 to evaporate the liquid refrigerant. That is, the cooler 11 functions as an evaporator in the loop type thermosiphon 10.
  • a liquid refrigerant is supplied to the inside of the cooler 11.
  • the outer surface of the cooler 11 is in contact with the surface of the battery cell 2.
  • the liquid refrigerant supplied to the inside of the cooler 11 receives the heat of the battery cell 2 and boils to evaporate. As shown in FIG. 3, when the liquid refrigerant evaporates in the cooler 11, heat is transferred from the battery cell 2 to the cooler 11 due to the transfer of latent heat accompanying the evaporation. In this way, the cooler 11 absorbs the heat of the battery cell 2 to cool the battery cell 2.
  • the steam (gas refrigerant) vaporized inside the cooler 11 flows out from the steam outlet to the gas pipe 13. Then, the heat generated in the battery cell 2 is transported to the condenser 12 by the gas refrigerant. The heat of the battery cell 2 is dissipated by the condenser 12.
  • the condenser 12 is arranged above the cooler 11 and condenses the gaseous refrigerant vaporized by the cooler 11.
  • the condenser 12 is composed of a radiator which is an air-cooled radiator.
  • the condenser 12 composed of a radiator exchanges heat between the gaseous refrigerant and the outside air of the vehicle. For example, since the running wind hits the radiator while the vehicle is running, the gaseous refrigerant can dissipate heat.
  • the gas pipe 13 and the liquid pipe 14 are formed in an annular shape as a refrigerant pipe.
  • the gas pipe 13 is a pipe that circulates the gas refrigerant vaporized by the cooler 11 to the condenser 12.
  • the liquid pipe 14 is a pipe for circulating the liquid refrigerant liquefied by the condenser 12 to the cooler 11.
  • the lower end of the gas pipe 13 is connected to the steam outlet of the cooler 11, and extends upward in the vertical direction.
  • the upper end of the gas pipe 13 is connected to the steam inlet of the condenser 12.
  • the gaseous refrigerant flowing in the gas pipe 13 toward the condenser 12 flows upward in the vertical direction and then reaches the condenser 12.
  • the upper end of the liquid pipe 14 is connected to the liquid outlet of the condenser 12. As shown in FIG. 3, the liquid pipe 14 is lowered along the vertical direction from the upper end so that the liquid refrigerant liquefied by the condenser 12 flows downward in the vertical direction by its own weight (gravity). It is extended to. Further, the lower end of the liquid pipe 14 is connected to the liquid inlet of the cooler 11. The liquid refrigerant that has flowed downward in the vertical direction due to its own weight in the liquid pipe 14 flows into the cooler 11 from the liquid inlet.
  • the liquid pipe 14 is provided with a shut valve 15 for closing the liquid pipe 14.
  • the shut valve 15 is an on-off valve that switches between an open state and a closed state. When the shut valve 15 is open, the liquid refrigerant can flow through the liquid pipe 14, so that the refrigerant can circulate between the cooler 11 and the condenser 12. On the other hand, when the shut valve 15 is closed, the liquid refrigerant cannot flow through the liquid pipe 14, so that the refrigerant cannot circulate between the cooler 11 and the condenser 12.
  • the shut valve 15 is composed of an electromagnetic valve, and is controlled by an electronic control device (hereinafter, referred to as ECU) 20.
  • the open state of the shut valve 15 may be described as "OPEN", and the closed state of the shut valve 15 may be described as "CLOSE”.
  • the ECU 20 includes a CPU, a storage unit that stores data such as various programs, and an arithmetic processing unit that performs various operations for controlling the temperature of the battery cell 2. Signals from various sensors are input to the ECU 20.
  • the cooling system 1 includes a first temperature sensor 31 that detects the temperature of the refrigerant in the cooler 11, a second temperature sensor 32 that detects the temperature of the refrigerant in the condenser 12, and the like. It is provided with a pressure sensor 33 that detects the pressure of the gas refrigerant in the gas pipe 13. Signals from the first temperature sensor 31, the second temperature sensor 32, and the pressure sensor 33 are input to the ECU 20.
  • the first temperature sensor 31 is provided in a place where the representative temperature of the refrigerant (whether liquid or gas) in the cooler 11 can be measured.
  • the second temperature sensor 32 is provided at a place where the representative temperature of the refrigerant (whether liquid or gas) in the condenser 12 can be measured.
  • signals from a battery temperature sensor (not shown) for detecting the temperature of the battery cell 2 an outside air temperature sensor (not shown) for detecting the temperature of the outside air, and the like may be input to the ECU 20.
  • the battery temperature sensor is attached to the surface of the battery cell 2 and detects the battery temperature. In this description, the temperature of the battery cell 2 may be described as "battery temperature".
  • the ECU 20 executes abnormality detection control, which is a control for detecting an abnormality in the cooling system 1, based on input signals from the first temperature sensor 31, the second temperature sensor 32, and the pressure sensor 33.
  • abnormality detection control the ECU 20 controls for detecting that the refrigerant is not normally circulated (circulation state determination control) and control for detecting that an abnormality has occurred in the refrigerant itself (refrigerant state). Discrimination control) and is executed.
  • the loop type thermosiphon uses the refrigerant temperature detected by the first temperature sensor 31, the refrigerant temperature detected by the second temperature sensor 32, and the refrigerant pressure detected by the pressure sensor 33. It is determined whether or not the refrigerant is normally circulated inside the 10.
  • the circulation state discrimination control is a control focusing on the characteristics of the loop type thermosiphon 10. First, as a characteristic of the loop type thermosiphon 10, when there is a difference between the refrigerant temperature in the cooler 11 and the refrigerant temperature in the condenser 12, the pressure difference according to the temperature difference is the loop type thermosiphon 10. Occurs within.
  • the shut valve 15 when the shut valve 15 is open, the refrigerant naturally circulates due to the pressure difference caused by this temperature difference.
  • the internal pressure of the loop type thermosiphon 10 in the state where the refrigerant is naturally circulated is the same as the internal pressure of the loop type thermosiphon 10 in the state where the shut valve 15 is closed to correspond to a closed space (the liquid pipe 14 is closed). Will be different values.
  • the shut valve 15 is switched from the open state to the closed state, and the pressure change generated at that time is detected by the pressure sensor 33. Then, when the detected pressure rises to a predetermined value or more, it is determined that the refrigerant is normally circulated in the loop type thermosiphon 10. On the other hand, when the detected pressure is lower than the predetermined value, it is determined that the refrigerant is not normally circulated in the loop type thermosiphon 10 (circulation abnormality).
  • the refrigerant pressure when the shut valve 15 is open is lower than the refrigerant pressure when the shut valve 15 is closed.
  • the pressure difference at the same temperature is several tens of kPa.
  • the internal pressure when the shut valve 15 is closed to correspond to a closed space is higher than the internal pressure when the refrigerant is circulating. Therefore, as shown in FIG. 5, when the shut valve 15 is switched from the closed state to the open state (time t1), the pressure in the gas pipe 13 located in front of the condenser 12, that is, the pressure of the gas refrigerant becomes , It drops sharply before and after opening and closing the shut valve 15.
  • the pressure becomes lower than the theoretical saturation state.
  • the relationship between the pressure (theoretical saturation pressure) and the temperature (theoretical saturation temperature) in the theoretical saturation state is proportional. In theoretical saturation, the pressure rises proportionally (linearly) as the temperature rises. Further, the refrigerant pressure when the shut valve 15 is closed is closer to the theoretical saturation state than the refrigerant pressure when the shut valve 15 is open. Further, since the refrigerant flows when the shut valve 15 is open, the refrigerant pressure when the shut valve 15 is open is more turbulent than the refrigerant pressure when the shut valve 15 is closed (the deviation from the proportional change is large). Become).
  • Refrigerant state determination control includes a refrigerant abnormality (foreign matter mixed) in which foreign matter is mixed in the loop type thermosiphon 10 and a refrigerant abnormality (refrigerant) in which the refrigerant sealed in the loop type thermosiphon 10 leaks to the outside. This is a control for detecting omission).
  • this refrigerant state discrimination control in a state where the shut valve 15 is closed and the inside of the loop type thermosiphon 10 is equivalent to a closed space, the actual refrigerant characteristics based on the measured values measured by the sensor and the physical property values of the refrigerant are used. Abnormality of the refrigerant characteristics is detected by comparing with the theoretical characteristics which are the theoretical values.
  • the theoretical values are the theoretical saturation pressure and the theoretical saturation temperature obtained from the physical property values of the refrigerant. That is, the theoretical value is the physical property value of the refrigerant.
  • the saturation pressure and saturation temperature theoretically obtained from the physical property values are the pressures when the refrigerant is filled in the closed space in a saturated state, and therefore correspond to the case where the shut valve 15 is closed and the refrigerant pipe is closed.
  • the ECU 20 compares the measured value and the theoretical value (physical property value) with respect to the characteristics of the refrigerant indicating the relationship between pressure and temperature, and if the measured value deviates significantly from the theoretical value, the loop type thermosiphon. At 10, it is determined that an abnormality of the refrigerant has occurred.
  • the ECU 20 controls the opening and closing of the shut valve 15 based on the temperature of the battery cell 2 detected by the battery temperature sensor, and adjusts the battery temperature to the optimum temperature.
  • the ECU 20 executes temperature control for adjusting the temperature of the battery module to an optimum temperature by the loop type thermosiphon 10.
  • the temperature control is for controlling the temperature variation among a plurality of battery cells 2 during the soaking of the vehicle and for suppressing the supercooling of the battery cells 2 due to the low outside air temperature during the soaking of the vehicle. Includes control of.
  • the vehicle equipped with the cooling system 1 is equipped with an ignition switch.
  • the ignition switch accepts a user's start operation of the vehicle drive system (ignition on operation) and stop operation of the drive system (ignition off operation).
  • the ignition on operation may be described as "IG-ON” and the ignition off operation may be described as "IG-OFF”.
  • IG-ON When IG-ON is turned on, an IG-ON signal is output from the ignition switch to the ECU 20.
  • the IG-OFF signal is turned off, the IG-OFF signal is output from the ignition switch to the ECU 20.
  • the ignition switch may be either a start switch or an ignition key.
  • the ECU 20 determines that the vehicle is soaking.
  • the soaking of the vehicle means a state in which the electric power for the vehicle to travel is output from the battery cell 2 in a discharged state, and a state in which the vehicle is not charged from an external power source while the vehicle is stopped.
  • the state in which electric power is not exchanged with respect to the battery cell 2 can be expressed as during soaking of the vehicle.
  • FIG. 6 is a flowchart showing an abnormality detection control flow. The control shown in FIG. 6 is executed by the ECU 20.
  • the ECU 20 determines whether or not it is the usage time of the battery pack, which is the time for detecting an abnormality in the cooling system 1 (step S1).
  • abnormality detection timing information which is a timing for detecting whether or not an abnormality has occurred in the loop type thermosiphon 10 of the cooling system 1, is stored.
  • the abnormality detection time information includes the usage time of the battery pack, the mileage of the vehicle, and the like.
  • step S1 it is determined whether or not it is time to detect an abnormality in the cooling system 1.
  • step S1: No If it is not the time to detect an abnormality in the cooling system 1 (step S1: No), this control routine ends.
  • step S2 the ECU 20 determines whether or not there is a temperature difference between the refrigerant temperature in the condenser 12 and the refrigerant temperature in the cooler 11 (step S2). ).
  • step S2 the temperature difference is calculated between the refrigerant temperature in the cooler 11 detected by the first temperature sensor 31 and the refrigerant temperature in the condenser 12 detected by the second temperature sensor 32.
  • the refrigerant temperature in the condenser 12 is lower than the refrigerant temperature in the cooler 11.
  • the refrigerant temperature detected by the first temperature sensor 31 is a representative temperature of the refrigerant in the cooler 11.
  • the refrigerant temperature detected by the second temperature sensor 32 is a representative temperature of the refrigerant in the condenser 12.
  • step S2 When there is no temperature difference between the refrigerant temperature in the condenser 12 and the refrigerant temperature in the cooler 11 (step S2: No), this control routine ends.
  • the ECU 20 determines whether or not there is a drive request for the shut valve 15 by another control. (Step S3).
  • the drive request for the shut valve 15 may be either when the shut valve 15 is switched from the open state to the closed state or when the shut valve 15 is switched from the closed state to the open state.
  • the other control in step S3 is a control executed for a purpose different from the abnormality detection.
  • a control for switching the opening and closing of the shut valve 15 for the purpose of suppressing the variation in the battery temperature during soaking of the vehicle or for the purpose of lowering the temperature of the entire battery is a control for switching the shut valve 15 from an open state to a closed state for the purpose of preventing supercooling of the battery when the outside air temperature is low.
  • step S3: No If there is no drive request for the shut valve 15 by another control (step S3: No), this control routine ends.
  • step S3 When there is a drive request for the shut valve 15 by another control (step S3: Yes), the ECU 20 executes a control for switching the open / closed state of the shut valve 15 and drives the shut valve 15 (step S4). If the shut valve 15 is closed, in step S4, control for opening the shut valve 15 is executed. When the shut valve 15 is open, the control for closing the shut valve 15 is executed in step S4. At this time, a command signal for switching the open / closed state is output from the ECU 20 to the shut valve 15 composed of the solenoid valve.
  • the ECU 20 determines whether or not the internal pressure (refrigerant pressure) of the loop type thermosiphon 10 has changed before and after opening and closing the shut valve 15 (step S5).
  • step S5 it is determined whether or not the internal pressure of the loop type thermosiphon 10 has increased.
  • step S5 it is determined whether or not the internal pressure (refrigerant pressure) of the loop type thermosiphon 10 has decreased.
  • the internal pressure used in step S5 is the pressure of the gas refrigerant measured by the pressure sensor 33 provided in the gas pipe 13.
  • "internal pressure of loop type thermosiphon 10" may be described as "refrigerant pressure in loop type thermosiphon 10.”
  • the ECU 20 has a first determination unit that executes the determination process of step S5.
  • step S5 not only the presence / absence of the pressure change but also the determination process based on the refrigerant pressure after the shut valve 15 is driven can be performed. For example, when the shut valve 15 is switched from the open state to the closed state, in step S5, it is determined whether or not the refrigerant pressure after closing the shut valve 15 has risen to a first predetermined value or more. When the refrigerant pressure is equal to or higher than the first predetermined value, a positive determination is made in step S5. On the other hand, when the shut valve 15 is switched from the closed state to the open state, in step S5, it is determined whether or not the refrigerant pressure after closing the shut valve 15 has dropped to the second predetermined value or less. When the refrigerant pressure is equal to or less than the second predetermined value, a positive determination is made in step S5.
  • step S6 determines that the cooling system 1 is abnormal.
  • step S6 it is determined that the refrigerant in the loop type thermosiphon 10 is not normally circulated, that is, a circulation abnormality.
  • the ECU 20 can detect that the circulation state in the loop type thermosiphon 10 is abnormal.
  • Step S5 when the refrigerant pressure in the loop type thermosiphon 10 changes before and after opening and closing the shut valve 15 (step S5: Yes), the ECU 20 determines that the refrigerant in the loop type thermosiphon 10 is normally circulating. (Step S7). By executing step S7, the ECU 20 can detect that the circulation state in the loop type thermosiphon 10 is normal.
  • the processes of steps S1 to S7 described above are included in the control for detecting the circulation abnormality in the loop type thermosiphon 10 (circulation state determination control).
  • the ECU 20 determines whether or not the shut valve 15 is currently closed (step S8).
  • step S8: No If the shut valve 15 is currently open (step S8: No), this control routine ends.
  • step S8 Yes
  • the ECU 20 determines the actual characteristics determined by the refrigerant pressure and the refrigerant temperature in the loop type thermosiphon 10 by the theoretical saturation pressure and the theoretical saturation temperature. Compare with the characteristic (step S9).
  • step S9 the actual refrigerant characteristics (characteristics of pressure and temperature) obtained from the sensor values and the theoretical characteristics (characteristics of pressure and temperature) obtained from the physical property values of the refrigerant are compared.
  • the ECU 20 loops based on the refrigerant pressure (gas refrigerant pressure) in the gas pipe 13 measured by the pressure sensor 33 and the refrigerant temperature in the cooler 11 measured by the first temperature sensor 31.
  • the actual refrigerant characteristics of the type thermo siphon 10 are obtained.
  • the ECU 20 is configured to plot the refrigerant pressure and the refrigerant temperature measured in several states to create characteristic data (actual characteristics) based on the actual saturation pressure and saturation temperature.
  • the created characteristic data can be used for comparison processing as actual characteristics.
  • the theoretical characteristic is a value determined by the physical property value of the refrigerant.
  • the refrigerant in the cooler 11 is basically saturated. Therefore, the saturation pressure and the saturation temperature, which are determined as the physical property values of the refrigerant, are uniquely determined.
  • step S9 it is possible to determine not only whether or not there is a deviation from the theoretical characteristics, but also whether or not the actual refrigerant characteristics (measured value) deviates from the theoretical characteristics (theoretical value) by a predetermined value or more.
  • the predetermined value used here is a preset value.
  • the internal pressure of the loop type thermosiphon 10 in the state where the refrigerant is circulated converges to a value slightly different from the theoretical saturation pressure and the theoretical saturation temperature obtained from the physical property values.
  • the ECU 20 determines whether or not the amount of deviation from the theoretical characteristics is large with respect to the characteristics of the actual refrigerant.
  • the ECU 20 determines whether or not the actual refrigerant characteristics determined by the measured refrigerant pressure and the refrigerant temperature deviate from the theoretical characteristics by a predetermined value or more (step S10). Further, the ECU 20 has a second determination unit that executes the determination process of step S10.
  • step S10 such a deviation (deviation) from the normal state is determined.
  • step S10 such a deviation (deviation) from the normal state is determined.
  • step S10 When the actual refrigerant characteristics determined by the measured refrigerant pressure and the refrigerant temperature deviate from the theoretical characteristics by a predetermined value or more (step S10: Yes), the ECU 20 determines that the refrigerant characteristics in the loop type thermosiphon 10 are abnormal. (Step S11). By executing step S11, the ECU 20 can detect that an abnormality in the refrigerant characteristics has occurred in the loop type thermosiphon 10. When step S11 is performed, this control routine ends.
  • step S10 When the actual refrigerant characteristics determined by the measured refrigerant pressure and the refrigerant temperature do not deviate from the theoretical characteristics by a predetermined value or more (step S10: No), the ECU 20 determines that the refrigerant characteristics in the loop type thermosiphon 10 are normal. (Step S12). By carrying out step S12, the ECU 20 can detect that the refrigerant characteristics in the loop type thermosiphon 10 are normal. When step S12 is performed, this control routine ends.
  • the open / closed state of the shut valve 15 is switched, and the refrigerant pressure at that time is changed.
  • the abnormality of the loop type thermosiphon 10 can be detected.
  • the shut valve 15 may be provided in the gas pipe 13. That is, in the loop type thermosiphon 10, the shut valve 15 may be provided in the gas pipe 13 or the liquid pipe 14.
  • step S2 it is determined whether or not there is a drive request for the shut valve 15 by another control, but the processes of steps S3 and S4 may not be performed. That is, if a positive determination is made in step S2 (step S2: Yes), the control routine may be configured to proceed to step S5. That is, the control may be an abnormality detection control executed independently of the other controls, instead of the control parallel to the drive request of the shut valve 15 by the other controls.
  • steps S3 and S4 when steps S3 and S4 are not performed, it may be configured to determine in step S1 whether or not the vehicle is soaking. That is, the soaking of the vehicle can be included in the abnormality detection time of step S1.
  • step S5 it is possible to determine not only whether or not there is a pressure change, but also whether or not the amount of pressure change before and after opening and closing the shut valve 15 is equal to or greater than a predetermined value. For example, when the shut valve 15 is switched from the open state to the closed state, in step S5, it is determined whether or not the amount of increase in the refrigerant pressure is equal to or greater than a predetermined value. When the shut valve 15 is switched from the closed state to the open state, in step S5, it is determined whether or not the amount of decrease in the refrigerant pressure is equal to or greater than a predetermined value.
  • the rising amount, the falling amount, and the predetermined value described here represent absolute values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Algebra (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A cooling system (1) is provided with a looped thermosiphon (10) including a cooler (11) and a condenser (12), wherein a refrigerant naturally circulates between the cooler (11) and the condenser (12). The cooling system (1) is provided with a shut-off valve (15) for closing a liquid pipe (14), an ECU (20) for controlling opening and closing of the shut-off valve (15), and a pressure sensor (33) for detecting the pressure of the gas refrigerant. The ECU (20) closes the shut-off valve (15) in a state in which there is a temperature difference between a refrigerant temperature in the cooler (11) and a refrigerant temperature in the condenser (12). When the pressure detected by the pressure sensor (33) has increased to a predetermined value or above, the ECU (20) determines that the refrigerant is normally circulating in the looped thermosiphon (10). If the pressure detected by the pressure sensor (33) does not increase to the predetermined value when the shut-off valve (15) is closed, the ECU (20) determines that the looped thermosiphon (10) has abnormality.

Description

冷却システムCooling system 関連出願の相互参照Cross-reference of related applications
 この出願は、2019年4月26日に日本に出願された特許出願第2019-086770号に基づくもので、ここにその記載内容を援用する。 This application is based on Patent Application No. 2019-086770 filed in Japan on April 26, 2019, the contents of which are incorporated herein by reference.
 この明細書における開示は、冷却システムに関する。 The disclosure in this specification relates to a cooling system.
 特許文献1には、液相の冷媒を蒸発される蒸発器(冷却器)と、気相の冷媒を凝縮させる凝縮器とを有するループ型サーモサイフォンを備え、液相と気相とに相変化する冷媒を用いて熱を輸送し、冷却器と凝縮器との間で冷媒が自然循環する冷却システムが開示されている。特許文献1に記載の構成では、凝縮器と冷却器との間の液体配管に開閉弁を設け、電池セルの過冷却を防止する目的で、制御部が開閉弁の開閉を制御する。 Patent Document 1 includes a loop-type thermosiphon having an evaporator (cooler) that evaporates the liquid phase refrigerant and a condenser that condenses the gas phase refrigerant, and phase changes between the liquid phase and the gas phase. A cooling system is disclosed in which heat is transported by using a refrigerant to be used, and the refrigerant naturally circulates between the cooler and the condenser. In the configuration described in Patent Document 1, an on-off valve is provided in the liquid pipe between the condenser and the cooler, and the control unit controls the opening and closing of the on-off valve for the purpose of preventing supercooling of the battery cell.
国際公開第2018/047531号International Publication No. 2018/047531
 冷媒が循環する冷却装置としては、冷媒を強制循環させる構成と、冷媒が自然循環する構成とが挙げられる。強制循環の場合、例えば電動ポンプによって冷媒を循環させる構成では、ポンプ回転数や駆動電流を監視することによって、冷媒が正常に循環しているか否かを判定することができる。すなわち、ポンプ回転数と駆動電流に基づいて、冷媒の循環異常を検出することが可能である。一方、自然循環の場合、例えばループ型サーモサイフォンを備える構成では、電動ポンプが存在しないため、ポンプ回転数と駆動電流に基づいた状態判別が行えない。そこで、冷媒が自然循環するループ型サーモサイフォンについて、内部の冷媒が正常に循環していることを正確に判定できることが望まれる。 Examples of the cooling device in which the refrigerant circulates include a configuration in which the refrigerant is forcibly circulated and a configuration in which the refrigerant circulates naturally. In the case of forced circulation, for example, in a configuration in which the refrigerant is circulated by an electric pump, it is possible to determine whether or not the refrigerant is normally circulated by monitoring the pump rotation speed and the drive current. That is, it is possible to detect a refrigerant circulation abnormality based on the pump rotation speed and the drive current. On the other hand, in the case of natural circulation, for example, in a configuration provided with a loop type thermosiphon, since the electric pump does not exist, the state cannot be determined based on the pump rotation speed and the drive current. Therefore, it is desired that the loop type thermosiphon in which the refrigerant naturally circulates can be accurately determined that the internal refrigerant circulates normally.
 本開示は、上記事情に鑑みてなされたものであって、液相と気相とに相変化する冷媒が自然循環するループ型サーモサイフォンについて、簡素な構成で冷媒の循環状態を判別することができる冷却システムを提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and it is possible to determine the circulation state of the refrigerant with a simple configuration for a loop type thermosiphon in which the refrigerant that changes phase between the liquid phase and the gas phase naturally circulates. The purpose is to provide a cooling system that can.
 本開示は、発熱体の熱を吸熱して液体冷媒を蒸発させる冷却器と、冷却器よりも上方に配置され、冷却器で気化された気体冷媒を凝縮させる凝縮器と、冷却器で気化された気体冷媒を凝縮器に流通させる気体配管と、凝縮器で液化された液体冷媒を冷却器に流通させる液体配管と、を有するループ型サーモサイフォンを備え、冷却器と凝縮器との間で冷媒が自然循環する冷却システムであって、気体配管または液体配管に設けられ、配管を閉塞するシャット弁と、シャット弁の開閉を制御する制御部と、気体配管に設けられ、気体冷媒の圧力を検出する圧力センサと、を備え、制御部は、冷却器での冷媒温度と凝縮器での冷媒温度とに温度差がある状態でシャット弁を閉じ、圧力センサで検出される圧力が所定値以上まで上昇した場合には、ループ型サーモサイフォン内を冷媒が正常に循環していると判定する第1判定部を有し、第1判定部は、温度差がある状態でシャット弁を閉じても、圧力センサで検出される圧力が所定値まで上昇しない場合には、ループ型サーモサイフォンの異常と判定する。 The present disclosure is a cooler that absorbs the heat of a heating element to evaporate a liquid refrigerant, a condenser that is arranged above the cooler and condenses a gaseous refrigerant vaporized by the cooler, and is vaporized by the cooler. It is provided with a loop type thermosiphon having a gas pipe for circulating the gas refrigerant to the condenser and a liquid pipe for circulating the liquid refrigerant liquefied by the condenser to the cooler, and the refrigerant is provided between the cooler and the condenser. Is a cooling system that circulates naturally. It is installed in a gas pipe or a liquid pipe and is provided in a shut valve that closes the pipe, a control unit that controls the opening and closing of the shut valve, and a gas pipe that detects the pressure of the gaseous refrigerant. The control unit closes the shut valve when there is a temperature difference between the refrigerant temperature in the cooler and the refrigerant temperature in the condenser, and the pressure detected by the pressure sensor reaches a predetermined value or higher. When it rises, it has a first determination unit that determines that the liquid is normally circulating in the loop type thermosiphon, and the first determination unit has a first determination unit even if the shut valve is closed with a temperature difference. If the pressure detected by the pressure sensor does not rise to a predetermined value, it is determined that the loop type thermosiphon is abnormal.
 また、ループ型サーモサイフォン内の冷媒の温度を検出する温度センサ、をさらに備え、制御部は、第1判定部により正常と判定された場合に、圧力センサで検出された圧力と温度センサで検出された温度とにより定まる実際の冷媒特性と、冷媒の物性値から得られる飽和圧力と飽和温度とにより定まる理論特性とを比較し、実際の冷媒特性が理論特性から所定値以上ずれているか否かを判定する第2判定部を有し、第2判定部は、実際の冷媒特性が理論特性から所定値以上ずれている場合には、冷媒特性に異常があると判定し、実際の冷媒特性が理論特性から所定値以上ずれていない場合には、冷媒特性は正常であると判定してもよい。 Further, a temperature sensor for detecting the temperature of the refrigerant in the loop type thermo siphon is further provided, and the control unit detects the pressure detected by the pressure sensor and the temperature sensor when it is determined to be normal by the first determination unit. By comparing the actual refrigerant characteristics determined by the determined temperature with the theoretical characteristics determined by the saturation pressure and saturation temperature obtained from the physical property values of the refrigerant, whether or not the actual refrigerant characteristics deviate from the theoretical characteristics by a predetermined value or more. The second determination unit has a second determination unit that determines that the refrigerant characteristics are abnormal when the actual refrigerant characteristics deviate from the theoretical characteristics by a predetermined value or more, and the actual refrigerant characteristics are determined. If it does not deviate from the theoretical characteristics by a predetermined value or more, it may be determined that the refrigerant characteristics are normal.
 この構成によれば、ループ型サーモサイフォン内部における実際の冷媒特性と、冷媒の物性値から得られる理論特性とを比較することによって、冷媒の特性異常を検出することができる。 According to this configuration, it is possible to detect an abnormality in the characteristics of the refrigerant by comparing the actual refrigerant characteristics inside the loop type thermosiphon with the theoretical characteristics obtained from the physical property values of the refrigerant.
 また、発熱体は、車両に搭載された電池であり、制御部は、車両のソーク中にシャット弁の開閉状態を切り替える制御を実行する際、第1判定部による判定処理を実施してもよい。 Further, the heating element is a battery mounted on the vehicle, and the control unit may perform a determination process by the first determination unit when executing control for switching the open / closed state of the shut valve during soaking of the vehicle. ..
 この構成によれば、車両のソーク中に実行される制御と並行して、ループ型サーモサイフォンの異常検出制御を行うことができる。 According to this configuration, it is possible to perform abnormality detection control of the loop type thermosiphon in parallel with the control executed during the soaking of the vehicle.
 また、制御部は、車両のソーク中に、電池の温度バラツキを抑制するための制御を実行してシャット弁を閉じる際に、第1判定部による判定処理を実施してもよい。 Further, the control unit may perform a determination process by the first determination unit when closing the shut valve by executing control for suppressing the temperature variation of the battery during soaking of the vehicle.
 この構成によれば、車両のソーク中に実行される温度バラツキの抑制制御と並行して、ループ型サーモサイフォンの異常検出制御を行うことができる。 According to this configuration, it is possible to control the abnormality detection of the loop type thermosiphon in parallel with the control of suppressing the temperature variation executed during the soaking of the vehicle.
 また、制御部は、車両のソーク中に、車両の外気温が低いことによる電池の過冷却を抑制するための制御を実行してシャット弁を閉じる際に、第1判定部による判定処理を実施してもよい。 In addition, the control unit performs a determination process by the first determination unit when the shut valve is closed by executing control for suppressing supercooling of the battery due to the low outside air temperature of the vehicle during soaking of the vehicle. You may.
 この構成によれば、車両のソーク中に実行される過冷却の抑制制御と並行して、ループ型サーモサイフォンの異常検出制御を行うことができる。 According to this configuration, it is possible to perform abnormality detection control of the loop type thermosiphon in parallel with suppression control of supercooling executed during soaking of the vehicle.
 本開示では、気相と液相とに相変化する冷媒が自然循環する冷却システムについて、シャット弁の開閉に応じた圧力変化を監視することにより、ループ型サーモサイフォン内での冷媒の循環状態を正確に判別することができる。 In the present disclosure, in a cooling system in which a refrigerant that changes phase between a gas phase and a liquid phase naturally circulates, the circulation state of the refrigerant in the loop type thermosiphon is monitored by monitoring the pressure change according to the opening and closing of the shut valve. It can be determined accurately.
実施形態における冷却システムの概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the cooling system in an embodiment. 冷却器と凝縮器との間で冷媒が自然循環する状態を示す模式図である。It is a schematic diagram which shows the state which the refrigerant naturally circulates between a cooler and a condenser. ループ型サーモサイフォンの動作原理を説明するための図である。It is a figure for demonstrating the operation principle of a loop type thermosiphon. シャット弁の開閉前後における圧力変化の一例を示す図である。It is a figure which shows an example of the pressure change before and after opening and closing of a shut valve. シャット弁の開閉状態に応じた温度と圧力との関係を示す図である。It is a figure which shows the relationship between the temperature and pressure according to the open / closed state of a shut valve. 異常検出制御フローの一例を示すフローチャートである。It is a flowchart which shows an example of an abnormality detection control flow.
 以下、図面を参照して、実施形態における冷却システムについて具体的に説明する。なお、本開示は、以下に説明する実施形態に限定されるものではない。 Hereinafter, the cooling system in the embodiment will be specifically described with reference to the drawings. The present disclosure is not limited to the embodiments described below.
 図1は、実施形態における冷却システムの概略構成を示す模式図である。図2は、冷却器と凝縮器との間で冷媒が自然循環する状態を示す模式図である。図3は、ループ型サーモサイフォンの動作原理を説明するための図である。なお、図2には、冷媒が循環する際の流れが矢印で示されている。 FIG. 1 is a schematic diagram showing a schematic configuration of a cooling system according to an embodiment. FIG. 2 is a schematic view showing a state in which the refrigerant naturally circulates between the cooler and the condenser. FIG. 3 is a diagram for explaining the operating principle of the loop type thermosiphon. In FIG. 2, the flow when the refrigerant circulates is indicated by an arrow.
 冷却システム1は、電池セル2を冷却対象とするものである。この冷却システム1は、液相と気相とに相変化する作動流体(冷媒)を利用して熱を輸送するループ型サーモサイフォン10を備える。冷媒は、熱輸送媒体であり、気液変化する際に潜熱を利用して吸熱もしくは放熱するものである。ここでは、「液相の作動流体」を「液体冷媒」、「気相の作動流体」を「気体冷媒」と記載する。 The cooling system 1 targets the battery cell 2 for cooling. The cooling system 1 includes a loop-type thermosiphon 10 that transports heat by using a working fluid (refrigerant) that changes phase between a liquid phase and a gas phase. The refrigerant is a heat transport medium that absorbs or dissipates heat by utilizing latent heat when gas-liquid changes occur. Here, the "liquid phase working fluid" is referred to as "liquid refrigerant", and the "gas phase working fluid" is referred to as "gas refrigerant".
 電池セル2は、角型に構成されている。この電池セル2は電池パックを構成するものである。電池パックは、複数のバッテリモジュールにより構成されている。このバッテリモジュールは、複数の電池セル2が積層するように配置された構造を有する。このように、複数の電池セル2からなるバッテリモジュールでは、電池セル2間で温度のバラツキが発生する。 The battery cell 2 has a square shape. The battery cell 2 constitutes a battery pack. The battery pack is composed of a plurality of battery modules. This battery module has a structure in which a plurality of battery cells 2 are arranged so as to be stacked. As described above, in the battery module composed of the plurality of battery cells 2, the temperature varies between the battery cells 2.
 例えば、電池セル2は電動車両やプラグインハイブリッド車両に搭載される車載バッテリである。この場合、電池セル2には走行用モータに供給するための電力が蓄えられている。そして、車両が走行する際に、電池セル2から走行用モータに電力を供給する。また、充電スタンドなどの外部電源から充電する際には、外部電源から車載の電池セル2に電力が供給される。このように、放電時と充電時には、通電に伴って電池セル2で熱が発生する。この電池セル2の熱をループ型サーモサイフォン10によって輸送し放熱する。 For example, the battery cell 2 is an in-vehicle battery mounted on an electric vehicle or a plug-in hybrid vehicle. In this case, the battery cell 2 stores electric power for supplying the traveling motor. Then, when the vehicle travels, electric power is supplied from the battery cell 2 to the traveling motor. Further, when charging from an external power source such as a charging stand, power is supplied from the external power source to the battery cell 2 in the vehicle. As described above, during discharging and charging, heat is generated in the battery cell 2 with energization. The heat of the battery cell 2 is transported by the loop type thermosiphon 10 and dissipated.
 ループ型サーモサイフォン10は、冷却器11と、凝縮器12と、気体冷媒が流通する気体配管13と、液体冷媒が流通する液体配管14と、を備える。ループ型サーモサイフォン10では、閉ループ回路内に冷媒が封入されており、冷却器11と凝縮器12との間で冷媒を自然循環させることができる。冷却器11の蒸気出口と凝縮器12の蒸気入口とを繋ぐように気体配管13が配管されている。凝縮器12の液体出口と冷却器11の液体入口とを繋ぐように液体配管14が配管されている。 The loop type thermosiphon 10 includes a cooler 11, a condenser 12, a gas pipe 13 through which a gas refrigerant flows, and a liquid pipe 14 through which a liquid refrigerant flows. In the loop type thermosiphon 10, the refrigerant is sealed in the closed loop circuit, and the refrigerant can be naturally circulated between the cooler 11 and the condenser 12. A gas pipe 13 is laid so as to connect the steam outlet of the cooler 11 and the steam inlet of the condenser 12. A liquid pipe 14 is piped so as to connect the liquid outlet of the condenser 12 and the liquid inlet of the cooler 11.
 冷却器11は、電池セル2で発生した熱を吸熱して液体冷媒を蒸発させるものである。すなわち、冷却器11は、ループ型サーモサイフォン10における蒸発器として機能する。冷却器11の内部には液体冷媒が供給される。冷却器11の外表面は電池セル2の表面に接触している。冷却器11の内部に供給された液体冷媒は、電池セル2の熱を受け取って沸騰して蒸発する。図3に示すように、冷却器11で液体冷媒が蒸発する際、蒸発に伴う潜熱の移動により、電池セル2から冷却器11に熱が移動する。このように、冷却器11は電池セル2の熱を吸熱して電池セル2を冷却する。 The cooler 11 absorbs the heat generated in the battery cell 2 to evaporate the liquid refrigerant. That is, the cooler 11 functions as an evaporator in the loop type thermosiphon 10. A liquid refrigerant is supplied to the inside of the cooler 11. The outer surface of the cooler 11 is in contact with the surface of the battery cell 2. The liquid refrigerant supplied to the inside of the cooler 11 receives the heat of the battery cell 2 and boils to evaporate. As shown in FIG. 3, when the liquid refrigerant evaporates in the cooler 11, heat is transferred from the battery cell 2 to the cooler 11 due to the transfer of latent heat accompanying the evaporation. In this way, the cooler 11 absorbs the heat of the battery cell 2 to cool the battery cell 2.
 冷却器11内部で気化した蒸気(気体冷媒)は蒸気出口から気体配管13に流出する。そして、電池セル2で生じた熱が気体冷媒によって凝縮器12に輸送される。電池セル2の熱は凝縮器12で放熱される。 The steam (gas refrigerant) vaporized inside the cooler 11 flows out from the steam outlet to the gas pipe 13. Then, the heat generated in the battery cell 2 is transported to the condenser 12 by the gas refrigerant. The heat of the battery cell 2 is dissipated by the condenser 12.
 凝縮器12は、冷却器11よりも上方に配置され、冷却器11で気化された気体冷媒を凝縮させるものである。例えば、凝縮器12は、空冷式の放熱器であるラジエータにより構成される。ラジエータからなる凝縮器12は、図3に示すように、気体冷媒と車両の外気との間で熱交換を行う。例えば、車両が走行中はラジエータに走行風が当たるため、気体冷媒を放熱させることができる。 The condenser 12 is arranged above the cooler 11 and condenses the gaseous refrigerant vaporized by the cooler 11. For example, the condenser 12 is composed of a radiator which is an air-cooled radiator. As shown in FIG. 3, the condenser 12 composed of a radiator exchanges heat between the gaseous refrigerant and the outside air of the vehicle. For example, since the running wind hits the radiator while the vehicle is running, the gaseous refrigerant can dissipate heat.
 気体配管13と液体配管14とは、冷媒配管として環状に形成されている。気体配管13は、冷却器11で気化された気体冷媒を凝縮器12に流通させる配管である。液体配管14は、凝縮器12で液化された液体冷媒を冷却器11に流通させる配管である。 The gas pipe 13 and the liquid pipe 14 are formed in an annular shape as a refrigerant pipe. The gas pipe 13 is a pipe that circulates the gas refrigerant vaporized by the cooler 11 to the condenser 12. The liquid pipe 14 is a pipe for circulating the liquid refrigerant liquefied by the condenser 12 to the cooler 11.
 気体配管13は、下方側の端部が冷却器11の蒸気出口に接続され、鉛直方向で上方に向けて延びている。気体配管13の上方側の端部は凝縮器12の蒸気入口に接続されている。気体配管13内を凝縮器12に向けて流通する気体冷媒は、鉛直方向の上方に向けて流れた後、凝縮器12に到達する。 The lower end of the gas pipe 13 is connected to the steam outlet of the cooler 11, and extends upward in the vertical direction. The upper end of the gas pipe 13 is connected to the steam inlet of the condenser 12. The gaseous refrigerant flowing in the gas pipe 13 toward the condenser 12 flows upward in the vertical direction and then reaches the condenser 12.
 液体配管14は、上方側の端部が凝縮器12の液体出口に接続されている。この液体配管14は、図3に示すように、凝縮器12で液化した液体冷媒が自重(重力)で鉛直方向の下方に向けて流れるように、上方側の端部から鉛直方向に沿って下方に延在している。また、液体配管14の下側の端部は冷却器11の液体入口に接続されている。液体配管14内を自重により鉛直方向で下方に流れた液体冷媒は、液体入口から冷却器11に流入する。 The upper end of the liquid pipe 14 is connected to the liquid outlet of the condenser 12. As shown in FIG. 3, the liquid pipe 14 is lowered along the vertical direction from the upper end so that the liquid refrigerant liquefied by the condenser 12 flows downward in the vertical direction by its own weight (gravity). It is extended to. Further, the lower end of the liquid pipe 14 is connected to the liquid inlet of the cooler 11. The liquid refrigerant that has flowed downward in the vertical direction due to its own weight in the liquid pipe 14 flows into the cooler 11 from the liquid inlet.
 また、液体配管14には、液体配管14を閉塞するシャット弁15が設けられている。シャット弁15は、開いた状態と閉じた状態とに切り替わる開閉弁である。シャット弁15が開いた状態では、液体冷媒が液体配管14を流通できるため、冷却器11と凝縮器12との間で冷媒が循環可能となる。一方、シャット弁15が閉じた状態では、液体冷媒が液体配管14を流通できないため、冷却器11と凝縮器12との間で冷媒が循環不可となる。このシャット弁15は、電磁弁により構成されており、電子制御装置(以下、ECUという)20によって制御される。なお、シャット弁15の開状態を「OPEN」、シャット弁15の閉状態を「CLOSE」と記載する場合がある。 Further, the liquid pipe 14 is provided with a shut valve 15 for closing the liquid pipe 14. The shut valve 15 is an on-off valve that switches between an open state and a closed state. When the shut valve 15 is open, the liquid refrigerant can flow through the liquid pipe 14, so that the refrigerant can circulate between the cooler 11 and the condenser 12. On the other hand, when the shut valve 15 is closed, the liquid refrigerant cannot flow through the liquid pipe 14, so that the refrigerant cannot circulate between the cooler 11 and the condenser 12. The shut valve 15 is composed of an electromagnetic valve, and is controlled by an electronic control device (hereinafter, referred to as ECU) 20. The open state of the shut valve 15 may be described as "OPEN", and the closed state of the shut valve 15 may be described as "CLOSE".
 ECU20は、CPUと、各種プログラム等のデータが格納された記憶部と、電池セル2の温度を制御するための各種の演算を行う演算処理部と、を備える。ECU20には各種のセンサからの信号が入力される。図1に示すように、冷却システム1は、冷却器11内での冷媒の温度を検出する第1温度センサ31と、凝縮器12内での冷媒の温度を検出する第2温度センサ32と、気体配管13内での気体冷媒の圧力を検出する圧力センサ33とを備える。ECU20には、第1温度センサ31、第2温度センサ32、圧力センサ33とからの信号が入力される。第1温度センサ31は、冷却器11内の冷媒(液体、気体を問わず)の代表温度を計測することが可能な場所に設けられている。第2温度センサ32は、凝縮器12内の冷媒(液体、気体を問わず)の代表温度を計測することが可能な場所に設けられている。さらに、ECU20には、電池セル2の温度を検出する電池温度センサ(不図示)、外気の温度を検出する外気温度センサ(不図示)等からの信号が入力されてもよい。電池温度センサは、電池セル2の表面に取り付けられ、電池温度を検出する。なお、この説明では、電池セル2の温度を「電池温度」と記載する場合がある。 The ECU 20 includes a CPU, a storage unit that stores data such as various programs, and an arithmetic processing unit that performs various operations for controlling the temperature of the battery cell 2. Signals from various sensors are input to the ECU 20. As shown in FIG. 1, the cooling system 1 includes a first temperature sensor 31 that detects the temperature of the refrigerant in the cooler 11, a second temperature sensor 32 that detects the temperature of the refrigerant in the condenser 12, and the like. It is provided with a pressure sensor 33 that detects the pressure of the gas refrigerant in the gas pipe 13. Signals from the first temperature sensor 31, the second temperature sensor 32, and the pressure sensor 33 are input to the ECU 20. The first temperature sensor 31 is provided in a place where the representative temperature of the refrigerant (whether liquid or gas) in the cooler 11 can be measured. The second temperature sensor 32 is provided at a place where the representative temperature of the refrigerant (whether liquid or gas) in the condenser 12 can be measured. Further, signals from a battery temperature sensor (not shown) for detecting the temperature of the battery cell 2, an outside air temperature sensor (not shown) for detecting the temperature of the outside air, and the like may be input to the ECU 20. The battery temperature sensor is attached to the surface of the battery cell 2 and detects the battery temperature. In this description, the temperature of the battery cell 2 may be described as "battery temperature".
 ECU20は、第1温度センサ31と第2温度センサ32と圧力センサ33とからの入力信号に基づいて、冷却システム1の異常を検出するための制御である異常検出制御を実行する。ECU20は、異常検出制御として、冷媒が正常に循環していないことを検出するための制御(循環状態判別制御)と、冷媒自体に異常が発生していることを検出するための制御(冷媒状態判別制御)とを実行する。 The ECU 20 executes abnormality detection control, which is a control for detecting an abnormality in the cooling system 1, based on input signals from the first temperature sensor 31, the second temperature sensor 32, and the pressure sensor 33. As abnormality detection control, the ECU 20 controls for detecting that the refrigerant is not normally circulated (circulation state determination control) and control for detecting that an abnormality has occurred in the refrigerant itself (refrigerant state). Discrimination control) and is executed.
 循環状態判別制御では、第1温度センサ31により検出された冷媒温度と、第2温度センサ32により検出された冷媒温度と、圧力センサ33により検出された冷媒圧力とを用いて、ループ型サーモサイフォン10の内部で冷媒が正常に循環しているか否かを判定する。循環状態判別制御は、ループ型サーモサイフォン10の特性に着目した制御である。まず、ループ型サーモサイフォン10の特性として、冷却器11での冷媒温度と凝縮器12での冷媒温度とに差がある場合には、この温度差に応じた圧力差が、ループ型サーモサイフォン10内に発生する。この場合、シャット弁15が開いた状態では、この温度差に伴う圧力差によって冷媒が自然循環する。そして、冷媒が自然循環している状態でのループ型サーモサイフォン10の内圧は、シャット弁15を閉じて閉空間相当(液体配管14を閉塞)にした状態でのループ型サーモサイフォン10の内圧とは異なる値となる。 In the circulation state discrimination control, the loop type thermosiphon uses the refrigerant temperature detected by the first temperature sensor 31, the refrigerant temperature detected by the second temperature sensor 32, and the refrigerant pressure detected by the pressure sensor 33. It is determined whether or not the refrigerant is normally circulated inside the 10. The circulation state discrimination control is a control focusing on the characteristics of the loop type thermosiphon 10. First, as a characteristic of the loop type thermosiphon 10, when there is a difference between the refrigerant temperature in the cooler 11 and the refrigerant temperature in the condenser 12, the pressure difference according to the temperature difference is the loop type thermosiphon 10. Occurs within. In this case, when the shut valve 15 is open, the refrigerant naturally circulates due to the pressure difference caused by this temperature difference. The internal pressure of the loop type thermosiphon 10 in the state where the refrigerant is naturally circulated is the same as the internal pressure of the loop type thermosiphon 10 in the state where the shut valve 15 is closed to correspond to a closed space (the liquid pipe 14 is closed). Will be different values.
 そこで、シャット弁15を開状態から閉状態に切り替えて、その際に発生する圧力変化を圧力センサ33によって検出する。そして、検出した圧力が所定値以上に上昇した場合には、ループ型サーモサイフォン10内を冷媒が正常に循環していると判断する。一方、検出した圧力が所定値よりも低い場合には、ループ型サーモサイフォン10内で冷媒が正常に循環していない状態(循環異常)と判断する。 Therefore, the shut valve 15 is switched from the open state to the closed state, and the pressure change generated at that time is detected by the pressure sensor 33. Then, when the detected pressure rises to a predetermined value or more, it is determined that the refrigerant is normally circulated in the loop type thermosiphon 10. On the other hand, when the detected pressure is lower than the predetermined value, it is determined that the refrigerant is not normally circulated in the loop type thermosiphon 10 (circulation abnormality).
 図4に示すように、同じ温度で比較した場合、シャット弁15が開いた状態の冷媒圧力は、シャット弁15が閉じた状態の冷媒圧力よりも低い。例えば、同じ温度での圧力差は数十kPaとなる。これは、ループ型サーモサイフォン10において、シャット弁15を閉じて閉空間相当にした際の内圧が、冷媒が循環している際の内圧よりも高いことを表している。そのため、図5に示すように、シャット弁15を閉じた状態から開いた状態に切り替えた場合(時刻t1)、凝縮器12の前に位置する気体配管13内の圧力、すなわち気体冷媒の圧力は、シャット弁15の開閉前後で急激に低下する。そして、シャット弁15が開いた状態では、理論飽和状態よりも低い圧力となる。なお、図4には示さないが、理論飽和状態における圧力(理論飽和圧力)と温度(理論飽和温度)との関係は、比例関係になる。理論飽和状態では、温度が上昇するに連れて比例的(直線的)に圧力が上昇する。また、シャット弁15が閉じた状態の冷媒圧力は、シャット弁15が開いた状態の冷媒圧力よりも理論飽和状態に近い圧力となる。さらに、シャット弁15を開いた状態では冷媒が流れるため、シャット弁15を開いた状態の冷媒圧力は、シャット弁15を閉じた状態の冷媒圧力よりも乱れる(比例的な変化からのずれが大きくなる)。 As shown in FIG. 4, when compared at the same temperature, the refrigerant pressure when the shut valve 15 is open is lower than the refrigerant pressure when the shut valve 15 is closed. For example, the pressure difference at the same temperature is several tens of kPa. This means that in the loop type thermosiphon 10, the internal pressure when the shut valve 15 is closed to correspond to a closed space is higher than the internal pressure when the refrigerant is circulating. Therefore, as shown in FIG. 5, when the shut valve 15 is switched from the closed state to the open state (time t1), the pressure in the gas pipe 13 located in front of the condenser 12, that is, the pressure of the gas refrigerant becomes , It drops sharply before and after opening and closing the shut valve 15. Then, when the shut valve 15 is open, the pressure becomes lower than the theoretical saturation state. Although not shown in FIG. 4, the relationship between the pressure (theoretical saturation pressure) and the temperature (theoretical saturation temperature) in the theoretical saturation state is proportional. In theoretical saturation, the pressure rises proportionally (linearly) as the temperature rises. Further, the refrigerant pressure when the shut valve 15 is closed is closer to the theoretical saturation state than the refrigerant pressure when the shut valve 15 is open. Further, since the refrigerant flows when the shut valve 15 is open, the refrigerant pressure when the shut valve 15 is open is more turbulent than the refrigerant pressure when the shut valve 15 is closed (the deviation from the proportional change is large). Become).
 冷媒状態判別制御は、ループ型サーモサイフォン10内に異物が混入している冷媒異常(異物混入)や、ループ型サーモサイフォン10内に封入されていた冷媒が外部に漏れてしまった冷媒異常(冷媒抜け)を検出するための制御である。この冷媒状態判別制御では、シャット弁15を閉じてループ型サーモサイフォン10内を閉空間相当にした状態において、センサで計測した実測値に基づいた実際の冷媒特性と、冷媒の物性値に基づいた理論値である理論特性とを比較することによって、冷媒特性の異常を検出する。理論値は、冷媒の物性値から得られる理論飽和圧力と理論飽和温度とである。すなわち、理論値とは冷媒の物性値のことである。理論的に物性値から得られる飽和圧力および飽和温度は、閉空間に飽和状態で冷媒を封入した際の圧力なので、シャット弁15を閉じて冷媒配管を閉塞させた場合に相当する。 Refrigerant state determination control includes a refrigerant abnormality (foreign matter mixed) in which foreign matter is mixed in the loop type thermosiphon 10 and a refrigerant abnormality (refrigerant) in which the refrigerant sealed in the loop type thermosiphon 10 leaks to the outside. This is a control for detecting omission). In this refrigerant state discrimination control, in a state where the shut valve 15 is closed and the inside of the loop type thermosiphon 10 is equivalent to a closed space, the actual refrigerant characteristics based on the measured values measured by the sensor and the physical property values of the refrigerant are used. Abnormality of the refrigerant characteristics is detected by comparing with the theoretical characteristics which are the theoretical values. The theoretical values are the theoretical saturation pressure and the theoretical saturation temperature obtained from the physical property values of the refrigerant. That is, the theoretical value is the physical property value of the refrigerant. The saturation pressure and saturation temperature theoretically obtained from the physical property values are the pressures when the refrigerant is filled in the closed space in a saturated state, and therefore correspond to the case where the shut valve 15 is closed and the refrigerant pipe is closed.
 そこで、ECU20は、圧力と温度との関係を示す冷媒の特性について、実測値と理論値(物性値)とを比較し、実測値が理論値から大きくずれている場合には、ループ型サーモサイフォン10で冷媒の異常が発生していると判断する。 Therefore, the ECU 20 compares the measured value and the theoretical value (physical property value) with respect to the characteristics of the refrigerant indicating the relationship between pressure and temperature, and if the measured value deviates significantly from the theoretical value, the loop type thermosiphon. At 10, it is determined that an abnormality of the refrigerant has occurred.
 また、ECU20は、電池温度センサにより検出した電池セル2の温度に基づいて、シャット弁15の開閉を制御して、電池温度を最適な温度に調整する。ECU20は、ループ型サーモサイフォン10によってバッテリモジュールの温度を最適な温度に調整する温度制御を実行する。温度制御には、車両のソーク中に複数の電池セル2間での温度のバラツキを抑制するための制御や、車両のソーク中に外気温が低いことによる電池セル2の過冷却を抑制するための制御が含まれる。 Further, the ECU 20 controls the opening and closing of the shut valve 15 based on the temperature of the battery cell 2 detected by the battery temperature sensor, and adjusts the battery temperature to the optimum temperature. The ECU 20 executes temperature control for adjusting the temperature of the battery module to an optimum temperature by the loop type thermosiphon 10. The temperature control is for controlling the temperature variation among a plurality of battery cells 2 during the soaking of the vehicle and for suppressing the supercooling of the battery cells 2 due to the low outside air temperature during the soaking of the vehicle. Includes control of.
 冷却システム1を搭載した車両は、イグニッションスイッチを備えている。イグニッションスイッチは、ユーザによる車両の駆動システムの起動操作(イグニッションオン操作)および駆動システムの停止操作(イグニッションオフ操作)を受け付ける。この説明では、イグニッションオン操作を「IG-ON」と記載し、イグニッションオフ操作を「IG-OFF」と記載する場合がある。IG-ONした場合、IG-ON信号がイグニッションスイッチからECU20に出力される。IG-OFFした場合、IG-OFF信号がイグニッションスイッチからECU20に出力される。なお、イグニッションスイッチはスタートスイッチまたはイグニッションキーのいずれであってもよい。 The vehicle equipped with the cooling system 1 is equipped with an ignition switch. The ignition switch accepts a user's start operation of the vehicle drive system (ignition on operation) and stop operation of the drive system (ignition off operation). In this description, the ignition on operation may be described as "IG-ON" and the ignition off operation may be described as "IG-OFF". When IG-ON is turned on, an IG-ON signal is output from the ignition switch to the ECU 20. When the IG-OFF signal is turned off, the IG-OFF signal is output from the ignition switch to the ECU 20. The ignition switch may be either a start switch or an ignition key.
 ECU20は、イグニッションスイッチからIG-OFF信号が入力された場合には、車両のソーク時であると判断する。車両のソーク中とは、車両が走行するための電力を電池セル2から出力する放電状態、および停車中に外部電源からの充電状態とはならない状況であることを表す。電池セル2について電力の授受が発生しない状態を、車両のソーク中と表現することができる。 When the IG-OFF signal is input from the ignition switch, the ECU 20 determines that the vehicle is soaking. The soaking of the vehicle means a state in which the electric power for the vehicle to travel is output from the battery cell 2 in a discharged state, and a state in which the vehicle is not charged from an external power source while the vehicle is stopped. The state in which electric power is not exchanged with respect to the battery cell 2 can be expressed as during soaking of the vehicle.
 図6は、異常検出制御フローを示すフローチャートである。図6に示す制御は、ECU20によって実行される。 FIG. 6 is a flowchart showing an abnormality detection control flow. The control shown in FIG. 6 is executed by the ECU 20.
 ECU20は、冷却システム1の異常検出時期となる電池パックの使用時間であるか否かを判定する(ステップS1)。ECU20の記憶部には、冷却システム1のループ型サーモサイフォン10に異常が発生しているか否かを検出するタイミングである異常検出時期情報が記憶されている。異常検出時期情報には、電池パックの使用時間や、車両の走行距離などが含まれる。ステップS1では、冷却システム1の異常検出時期であるか否かが判定される。 The ECU 20 determines whether or not it is the usage time of the battery pack, which is the time for detecting an abnormality in the cooling system 1 (step S1). In the storage unit of the ECU 20, abnormality detection timing information, which is a timing for detecting whether or not an abnormality has occurred in the loop type thermosiphon 10 of the cooling system 1, is stored. The abnormality detection time information includes the usage time of the battery pack, the mileage of the vehicle, and the like. In step S1, it is determined whether or not it is time to detect an abnormality in the cooling system 1.
 冷却システム1の異常検出時期ではない場合(ステップS1:No)、この制御ルーチンは終了する。 If it is not the time to detect an abnormality in the cooling system 1 (step S1: No), this control routine ends.
 冷却システム1の異常検出時期である場合(ステップS1:Yes)、ECU20は、凝縮器12内の冷媒温度と冷却器11内の冷媒温度とに温度差があるか否かを判定する(ステップS2)。ステップS2では、第1温度センサ31より検出された冷却器11内の冷媒温度と、第2温度センサ32により検出された凝縮器12内の冷媒温度とについて温度差を算出する。この場合、凝縮器12内の冷媒温度は、冷却器11内の冷媒温度よりも低い。なお、第1温度センサ31により検出される冷媒温度は、冷却器11内の冷媒の代表温度である。同様に、第2温度センサ32により検出される冷媒温度は、凝縮器12内の冷媒の代表温度である。 When it is the time for detecting an abnormality in the cooling system 1 (step S1: Yes), the ECU 20 determines whether or not there is a temperature difference between the refrigerant temperature in the condenser 12 and the refrigerant temperature in the cooler 11 (step S2). ). In step S2, the temperature difference is calculated between the refrigerant temperature in the cooler 11 detected by the first temperature sensor 31 and the refrigerant temperature in the condenser 12 detected by the second temperature sensor 32. In this case, the refrigerant temperature in the condenser 12 is lower than the refrigerant temperature in the cooler 11. The refrigerant temperature detected by the first temperature sensor 31 is a representative temperature of the refrigerant in the cooler 11. Similarly, the refrigerant temperature detected by the second temperature sensor 32 is a representative temperature of the refrigerant in the condenser 12.
 凝縮器12内の冷媒温度と冷却器11内の冷媒温度とに温度差がない場合(ステップS2:No)、この制御ルーチンは終了する。 When there is no temperature difference between the refrigerant temperature in the condenser 12 and the refrigerant temperature in the cooler 11 (step S2: No), this control routine ends.
 凝縮器12内の冷媒温度と冷却器11内の冷媒温度とに温度差がある場合(ステップS2:Yes)、ECU20は、他の制御によるシャット弁15の駆動要求があるか否かを判定する(ステップS3)。シャット弁15の駆動要求は、シャット弁15が開状態から閉状態に切り替わる場合、またはシャット弁15が閉状態から開状態に切り替わる場合のどちらでもよい。 When there is a temperature difference between the refrigerant temperature in the condenser 12 and the refrigerant temperature in the cooler 11 (step S2: Yes), the ECU 20 determines whether or not there is a drive request for the shut valve 15 by another control. (Step S3). The drive request for the shut valve 15 may be either when the shut valve 15 is switched from the open state to the closed state or when the shut valve 15 is switched from the closed state to the open state.
 ステップS3における他の制御は、異常検出とは異なる目的で実行される制御である。例えば、他の制御として、車両のソーク中に電池温度のバラツキを抑制する目的、または電池全体の温度を低下させる目的で、シャット弁15の開閉を切り替える制御が挙げられる。また、他の制御として、外気温が低い場合に電池の過冷却を防止する目的で、シャット弁15を開状態から閉状態に切り替える制御が挙げられる。 The other control in step S3 is a control executed for a purpose different from the abnormality detection. For example, as another control, there is a control for switching the opening and closing of the shut valve 15 for the purpose of suppressing the variation in the battery temperature during soaking of the vehicle or for the purpose of lowering the temperature of the entire battery. Another control includes a control for switching the shut valve 15 from an open state to a closed state for the purpose of preventing supercooling of the battery when the outside air temperature is low.
 他の制御によるシャット弁15の駆動要求がない場合(ステップS3:No)、この制御ルーチンは終了する。 If there is no drive request for the shut valve 15 by another control (step S3: No), this control routine ends.
 他の制御によるシャット弁15の駆動要求がある場合(ステップS3:Yes)、ECU20は、シャット弁15の開閉状態を切り替える制御を実行し、シャット弁15を駆動させる(ステップS4)。シャット弁15が閉じていた場合には、ステップS4では、シャット弁15を開く制御が実行される。シャット弁15が開いていた場合には、ステップS4では、シャット弁15を閉じる制御が実行される。この際、電磁弁より構成されたシャット弁15には、ECU20から開閉状態を切り替える指令信号が出力される。 When there is a drive request for the shut valve 15 by another control (step S3: Yes), the ECU 20 executes a control for switching the open / closed state of the shut valve 15 and drives the shut valve 15 (step S4). If the shut valve 15 is closed, in step S4, control for opening the shut valve 15 is executed. When the shut valve 15 is open, the control for closing the shut valve 15 is executed in step S4. At this time, a command signal for switching the open / closed state is output from the ECU 20 to the shut valve 15 composed of the solenoid valve.
 ECU20は、シャット弁15の開閉前後で、ループ型サーモサイフォン10の内圧(冷媒圧力)が変化したか否かを判定する(ステップS5)。シャット弁15が開状態から閉状態に切り替わった場合には、ステップS5では、ループ型サーモサイフォン10の内圧が上昇したか否かが判定される。シャット弁15が閉状態から開状態に切り替わった場合には、ステップS5では、ループ型サーモサイフォン10の内圧(冷媒圧力)が下降したか否かが判定される。また、ステップS5で用いる内圧は、気体配管13に設けられた圧力センサ33により計測した気体冷媒の圧力である。なお、「ループ型サーモサイフォン10の内圧」を「ループ型サーモサイフォン10内の冷媒圧力」と記載する場合がある。また、ECU20は、ステップS5の判定処理を実施する第1判定部を有する。 The ECU 20 determines whether or not the internal pressure (refrigerant pressure) of the loop type thermosiphon 10 has changed before and after opening and closing the shut valve 15 (step S5). When the shut valve 15 is switched from the open state to the closed state, in step S5, it is determined whether or not the internal pressure of the loop type thermosiphon 10 has increased. When the shut valve 15 is switched from the closed state to the open state, in step S5, it is determined whether or not the internal pressure (refrigerant pressure) of the loop type thermosiphon 10 has decreased. The internal pressure used in step S5 is the pressure of the gas refrigerant measured by the pressure sensor 33 provided in the gas pipe 13. In addition, "internal pressure of loop type thermosiphon 10" may be described as "refrigerant pressure in loop type thermosiphon 10." Further, the ECU 20 has a first determination unit that executes the determination process of step S5.
 さらに、ステップS5では、圧力変化の有無だけでなく、シャット弁15が駆動後の冷媒圧力に基づいた判定処理を行うこともできる。例えば、シャット弁15が開状態から閉状態に切り替わった場合、ステップS5では、シャット弁15を閉じた後の冷媒圧力が第1所定値以上まで上昇したか否かが判定される。この冷媒圧力が第1所定値以上である場合には、ステップS5で肯定的に判定される。一方、シャット弁15を閉状態から開状態に切り替わった場合、ステップS5では、シャット弁15を閉じた後の冷媒圧力が第2所定値以下まで低下したか否かが判定される。この冷媒圧力が第2所定値以下である場合、ステップS5で肯定的に判定される。 Further, in step S5, not only the presence / absence of the pressure change but also the determination process based on the refrigerant pressure after the shut valve 15 is driven can be performed. For example, when the shut valve 15 is switched from the open state to the closed state, in step S5, it is determined whether or not the refrigerant pressure after closing the shut valve 15 has risen to a first predetermined value or more. When the refrigerant pressure is equal to or higher than the first predetermined value, a positive determination is made in step S5. On the other hand, when the shut valve 15 is switched from the closed state to the open state, in step S5, it is determined whether or not the refrigerant pressure after closing the shut valve 15 has dropped to the second predetermined value or less. When the refrigerant pressure is equal to or less than the second predetermined value, a positive determination is made in step S5.
 シャット弁15の開閉前後で、ループ型サーモサイフォン10内の冷媒圧力が変化していない場合(ステップS5:No)、ECU20は、冷却システム1の異常と判定する(ステップS6)。ステップS6では、ループ型サーモサイフォン10内の冷媒が正常に循環していない状態、すなわち循環異常と判断される。ステップS6が実施されることにより、ECU20は、ループ型サーモサイフォン10内の循環状態が異常であることを検出できる。ステップS6を実施すると、この制御ルーチンは終了する。 When the refrigerant pressure in the loop type thermosiphon 10 does not change before and after opening and closing the shut valve 15 (step S5: No), the ECU 20 determines that the cooling system 1 is abnormal (step S6). In step S6, it is determined that the refrigerant in the loop type thermosiphon 10 is not normally circulated, that is, a circulation abnormality. By executing step S6, the ECU 20 can detect that the circulation state in the loop type thermosiphon 10 is abnormal. When step S6 is performed, this control routine ends.
 一方、シャット弁15の開閉前後で、ループ型サーモサイフォン10内の冷媒圧力が変化した場合(ステップS5:Yes)、ECU20は、ループ型サーモサイフォン10内の冷媒は正常に循環していると判定する(ステップS7)。ステップS7が実施されることにより、ECU20は、ループ型サーモサイフォン10内の循環状態が正常であることを検出できる。上述したステップS1~S7までの処理が、ループ型サーモサイフォン10での循環異常を検出するための制御(循環状態判別制御)に含まれる。 On the other hand, when the refrigerant pressure in the loop type thermosiphon 10 changes before and after opening and closing the shut valve 15 (step S5: Yes), the ECU 20 determines that the refrigerant in the loop type thermosiphon 10 is normally circulating. (Step S7). By executing step S7, the ECU 20 can detect that the circulation state in the loop type thermosiphon 10 is normal. The processes of steps S1 to S7 described above are included in the control for detecting the circulation abnormality in the loop type thermosiphon 10 (circulation state determination control).
 さらに、ECU20は、シャット弁15が現在閉じているか否かを判定する(ステップS8)。 Further, the ECU 20 determines whether or not the shut valve 15 is currently closed (step S8).
 シャット弁15が現在開いている場合(ステップS8:No)、この制御ルーチンは終了する。 If the shut valve 15 is currently open (step S8: No), this control routine ends.
 シャット弁15が現在閉じている場合(ステップS8:Yes)、ECU20は、ループ型サーモサイフォン10内の冷媒圧力と冷媒温度とにより定まる実際の特性を、理論飽和圧力と理論飽和温度とにより定まる理論特性と比較する(ステップS9)。ステップS9では、センサ値から得られる実際の冷媒特性(圧力と温度との特性)と、冷媒の物性値から得られる理論特性(圧力と温度との特性)とを比較する。 When the shut valve 15 is currently closed (step S8: Yes), the ECU 20 determines the actual characteristics determined by the refrigerant pressure and the refrigerant temperature in the loop type thermosiphon 10 by the theoretical saturation pressure and the theoretical saturation temperature. Compare with the characteristic (step S9). In step S9, the actual refrigerant characteristics (characteristics of pressure and temperature) obtained from the sensor values and the theoretical characteristics (characteristics of pressure and temperature) obtained from the physical property values of the refrigerant are compared.
 具体的には、ECU20は、圧力センサ33で計測した気体配管13内の冷媒圧力(気体冷媒の圧力)と、第1温度センサ31で計測した冷却器11内の冷媒温度とに基づいて、ループ型サーモサイフォン10における実際の冷媒特性を求める。ECU20は、いくつかの状態で計測した冷媒圧力および冷媒温度をプロットして、実際の飽和圧力および飽和温度に基づく特性データ(実際の特性)を作成するように構成されている。この作成した特性データを実際の特性として比較処理に用いることができる。一方、理論特性は、冷媒の物性値により決まる値である。冷却器11内の冷媒は、基本的に飽和状態となっている。そのため、冷媒の物性値として決まる飽和圧力と飽和温度は一義的に定まる。 Specifically, the ECU 20 loops based on the refrigerant pressure (gas refrigerant pressure) in the gas pipe 13 measured by the pressure sensor 33 and the refrigerant temperature in the cooler 11 measured by the first temperature sensor 31. The actual refrigerant characteristics of the type thermo siphon 10 are obtained. The ECU 20 is configured to plot the refrigerant pressure and the refrigerant temperature measured in several states to create characteristic data (actual characteristics) based on the actual saturation pressure and saturation temperature. The created characteristic data can be used for comparison processing as actual characteristics. On the other hand, the theoretical characteristic is a value determined by the physical property value of the refrigerant. The refrigerant in the cooler 11 is basically saturated. Therefore, the saturation pressure and the saturation temperature, which are determined as the physical property values of the refrigerant, are uniquely determined.
 さらに、ステップS9では、理論特性からのずれの有無だけでなく、実際の冷媒特性(実測値)が理論特性(理論値)から所定値以上ずれているか否かを判定することもできる。ここで用いる所定値は、予め設定された値である。また、上述した図3に示すように、ループ型サーモサイフォン10で冷媒が自然循環する原理は、冷却器11と凝縮器12との冷媒の温度差に伴う冷媒の圧力差に加え、凝縮された液体冷媒が液体配管14内を自重(重力)により鉛直方向下方に流れることを含む。そのため、冷媒が循環している状態でのループ型サーモサイフォン10の内圧は、物性値から得られる理論飽和圧力と理論飽和温度とは若干異なる値に収束することになる。これを考慮して、ECU20では、実際の冷媒の特性について、理論特性からのずれ量が大きいか否かを判定する。 Further, in step S9, it is possible to determine not only whether or not there is a deviation from the theoretical characteristics, but also whether or not the actual refrigerant characteristics (measured value) deviates from the theoretical characteristics (theoretical value) by a predetermined value or more. The predetermined value used here is a preset value. Further, as shown in FIG. 3 described above, the principle that the refrigerant naturally circulates in the loop type thermosiphon 10 is condensed in addition to the pressure difference of the refrigerant due to the temperature difference of the refrigerant between the cooler 11 and the condenser 12. This includes the liquid refrigerant flowing downward in the vertical direction due to its own weight (gravity) in the liquid pipe 14. Therefore, the internal pressure of the loop type thermosiphon 10 in the state where the refrigerant is circulated converges to a value slightly different from the theoretical saturation pressure and the theoretical saturation temperature obtained from the physical property values. In consideration of this, the ECU 20 determines whether or not the amount of deviation from the theoretical characteristics is large with respect to the characteristics of the actual refrigerant.
 ECU20は、計測した冷媒圧力と冷媒温度とにより定まる実際の冷媒特性が理論特性から所定値以上ずれているか否かを判定する(ステップS10)。また、ECU20は、ステップS10の判定処理を実施する第2判定部を有する。 The ECU 20 determines whether or not the actual refrigerant characteristics determined by the measured refrigerant pressure and the refrigerant temperature deviate from the theoretical characteristics by a predetermined value or more (step S10). Further, the ECU 20 has a second determination unit that executes the determination process of step S10.
 例えば、仮にループ型サーモサイフォン10内に異物が混入していた場合、冷媒の流路が狭くなり、冷媒が循環している状態の内圧が正常時よりも高くなる。そのため、異物混入による異常状態では、シャット弁15を閉じた状態から開いた状態に切り替えた際、圧力の降下量が正常時よりも小さくなる。このように、正常時の理論特性からずれた圧力変化が発生する。ステップS10では、このような正常状態からの乖離(ずれ)を判別する。 For example, if a foreign substance is mixed in the loop type thermosiphon 10, the flow path of the refrigerant becomes narrow and the internal pressure in the state where the refrigerant is circulating becomes higher than in the normal state. Therefore, in an abnormal state due to foreign matter contamination, when the shut valve 15 is switched from the closed state to the open state, the amount of pressure drop becomes smaller than in the normal state. In this way, a pressure change that deviates from the theoretical characteristics at the normal time occurs. In step S10, such a deviation (deviation) from the normal state is determined.
 また、仮にループ型サーモサイフォン10から冷媒が外部に漏れていた場合、全ての冷媒が外部に漏れていると、そもそも冷媒が循環していないことになる。そのため、冷媒抜けによる異常状態では、シャット弁15を閉じた状態から開いた状態に切り替えた際、圧力変化が起きない。このように、正常時の理論特性からずれた圧力変化が発生する。ステップS10では、このような正常状態からの乖離(ずれ)を判別する。 Also, if the refrigerant leaks from the loop type thermosiphon 10 to the outside, and if all the refrigerant leaks to the outside, the refrigerant does not circulate in the first place. Therefore, in an abnormal state due to the outflow of the refrigerant, no pressure change occurs when the shut valve 15 is switched from the closed state to the open state. In this way, a pressure change that deviates from the theoretical characteristics at the normal time occurs. In step S10, such a deviation (deviation) from the normal state is determined.
 計測した冷媒圧力と冷媒温度とにより定まる実際の冷媒特性が理論特性から所定値以上ずれている場合(ステップS10:Yes)、ECU20は、ループ型サーモサイフォン10内の冷媒特性は異常であると判断する(ステップS11)。ステップS11が実施されることにより、ECU20は、ループ型サーモサイフォン10内で冷媒特性の異常が発生していることを検出できる。ステップS11を実施すると、この制御ルーチンは終了する。 When the actual refrigerant characteristics determined by the measured refrigerant pressure and the refrigerant temperature deviate from the theoretical characteristics by a predetermined value or more (step S10: Yes), the ECU 20 determines that the refrigerant characteristics in the loop type thermosiphon 10 are abnormal. (Step S11). By executing step S11, the ECU 20 can detect that an abnormality in the refrigerant characteristics has occurred in the loop type thermosiphon 10. When step S11 is performed, this control routine ends.
 計測した冷媒圧力と冷媒温度とにより定まる実際の冷媒特性が理論特性から所定値以上ずれていない場合(ステップS10:No)、ECU20は、ループ型サーモサイフォン10内の冷媒特性は正常であると判断する(ステップS12)。ステップS12が実施されることにより、ECU20は、ループ型サーモサイフォン10内の冷媒特性が正常であることを検出できる。ステップS12を実施すると、この制御ルーチンは終了する。 When the actual refrigerant characteristics determined by the measured refrigerant pressure and the refrigerant temperature do not deviate from the theoretical characteristics by a predetermined value or more (step S10: No), the ECU 20 determines that the refrigerant characteristics in the loop type thermosiphon 10 are normal. (Step S12). By carrying out step S12, the ECU 20 can detect that the refrigerant characteristics in the loop type thermosiphon 10 are normal. When step S12 is performed, this control routine ends.
 以上説明した通り、実施形態によれば、冷却器11での冷媒温度と凝縮器12での冷媒温度とに差がある状態で、シャット弁15の開閉状態を切り替えて、その際の冷媒圧力の変化を監視することによって、ループ型サーモサイフォン10の異常を検出することができる。これにより、簡素な構成で、ループ型サーモサイフォン10内での循環状態と、冷媒特性とが正常状態であるか異常状態であるかを判別することができる。 As described above, according to the embodiment, when there is a difference between the refrigerant temperature in the cooler 11 and the refrigerant temperature in the condenser 12, the open / closed state of the shut valve 15 is switched, and the refrigerant pressure at that time is changed. By monitoring the change, the abnormality of the loop type thermosiphon 10 can be detected. Thereby, with a simple configuration, it is possible to determine whether the circulation state in the loop type thermosiphon 10 and the refrigerant characteristics are in a normal state or an abnormal state.
 なお、上述した実施形態の変形例として、シャット弁15は、気体配管13に設けられてもよい。つまり、ループ型サーモサイフォン10では、気体配管13または液体配管14にシャット弁15が設けられていればよい。 As a modification of the above-described embodiment, the shut valve 15 may be provided in the gas pipe 13. That is, in the loop type thermosiphon 10, the shut valve 15 may be provided in the gas pipe 13 or the liquid pipe 14.
 また、上述した図6に示す制御では、他の制御によるシャット弁15の駆動要求の有無を判定していたが、ステップS3とステップS4の処理は実施されてなくてもよい。つまり、ステップS2で肯定的に判定された場合(ステップS2:Yes)、制御ルーチンはステップS5に進むように構成されてもよい。すなわち、他の制御によるシャット弁15の駆動要求と並行した制御ではなく、他の制御とは独立して実行される異常検出制御であってもよい。 Further, in the control shown in FIG. 6 described above, it is determined whether or not there is a drive request for the shut valve 15 by another control, but the processes of steps S3 and S4 may not be performed. That is, if a positive determination is made in step S2 (step S2: Yes), the control routine may be configured to proceed to step S5. That is, the control may be an abnormality detection control executed independently of the other controls, instead of the control parallel to the drive request of the shut valve 15 by the other controls.
 さらに、ステップS3,S4を実施しない場合には、ステップS1において、車両がソーク中であるか否かを判定するように構成されてもよい。つまり、ステップS1の異常検出時期であることに、車両のソーク中を含めることができる。 Further, when steps S3 and S4 are not performed, it may be configured to determine in step S1 whether or not the vehicle is soaking. That is, the soaking of the vehicle can be included in the abnormality detection time of step S1.
 さらに、ステップS5では、圧力変化の有無だけでなく、シャット弁15の開閉前後での圧力の変化量が所定値以上であるか否かを判定することもできる。例えば、シャット弁15が開状態から閉状態に切り替わった場合、ステップS5では、冷媒圧力の上昇量が所定値以上であるか否かが判定される。シャット弁15を閉状態から開状態に切り替わった場合、ステップS5では、冷媒圧力の下降量が所定値以上であるか否かが判定される。なお、ここで記載した上昇量、下降量、所定値は、絶対値を表している。 Further, in step S5, it is possible to determine not only whether or not there is a pressure change, but also whether or not the amount of pressure change before and after opening and closing the shut valve 15 is equal to or greater than a predetermined value. For example, when the shut valve 15 is switched from the open state to the closed state, in step S5, it is determined whether or not the amount of increase in the refrigerant pressure is equal to or greater than a predetermined value. When the shut valve 15 is switched from the closed state to the open state, in step S5, it is determined whether or not the amount of decrease in the refrigerant pressure is equal to or greater than a predetermined value. The rising amount, the falling amount, and the predetermined value described here represent absolute values.

Claims (5)

  1.  発熱体の熱を吸熱して液体冷媒を蒸発させる冷却器と、
     前記冷却器よりも上方に配置され、前記冷却器で気化された気体冷媒を凝縮させる凝縮器と、
     前記冷却器で気化された気体冷媒を前記凝縮器に流通させる気体配管と、
     前記凝縮器で液化された液体冷媒を前記冷却器に流通させる液体配管と、
     を有するループ型サーモサイフォンを備え、前記冷却器と前記凝縮器との間で冷媒が自然循環する冷却システムであって、
     前記気体配管または前記液体配管に設けられ、配管を閉塞するシャット弁と、
     前記シャット弁の開閉を制御する制御部と、
     前記気体配管に設けられ、気体冷媒の圧力を検出する圧力センサと、
     を備え、
     前記制御部は、前記冷却器での冷媒温度と前記凝縮器での冷媒温度とに温度差がある状態で前記シャット弁を閉じ、前記圧力センサで検出される圧力が所定値以上まで上昇した場合には、前記ループ型サーモサイフォン内を冷媒が正常に循環していると判定する第1判定部を有し、
     前記第1判定部は、前記温度差がある状態で前記シャット弁を閉じても、前記圧力センサで検出される圧力が所定値まで上昇しない場合には、前記ループ型サーモサイフォンの異常と判定する冷却システム。
    A cooler that absorbs the heat of the heating element and evaporates the liquid refrigerant,
    A condenser that is placed above the cooler and condenses the gaseous refrigerant vaporized by the cooler.
    A gas pipe that distributes the gaseous refrigerant vaporized by the cooler to the condenser, and
    A liquid pipe that distributes the liquid refrigerant liquefied by the condenser to the cooler, and
    A cooling system comprising a loop type thermosiphon having a structure in which a refrigerant naturally circulates between the cooler and the condenser.
    A shut valve provided on the gas pipe or the liquid pipe to close the pipe,
    A control unit that controls the opening and closing of the shut valve,
    A pressure sensor provided in the gas pipe to detect the pressure of the gaseous refrigerant,
    With
    When the control unit closes the shut valve in a state where there is a temperature difference between the refrigerant temperature in the cooler and the refrigerant temperature in the condenser, and the pressure detected by the pressure sensor rises to a predetermined value or more. Has a first determination unit that determines that the refrigerant is normally circulating in the loop type thermosiphon.
    If the pressure detected by the pressure sensor does not rise to a predetermined value even if the shut valve is closed in a state where there is a temperature difference, the first determination unit determines that the loop type thermosiphon is abnormal. Cooling system.
  2.  前記ループ型サーモサイフォン内の冷媒の温度を検出する温度センサ、をさらに備え、
     前記制御部は、前記第1判定部により正常と判定された場合に、前記圧力センサで検出された圧力と前記温度センサで検出された温度とにより定まる実際の冷媒特性と、冷媒の物性値から得られる飽和圧力と飽和温度とにより定まる理論特性とを比較し、前記実際の冷媒特性が前記理論特性から所定値以上ずれているか否かを判定する第2判定部を有し、
     前記第2判定部は、
     前記実際の冷媒特性が前記理論特性から所定値以上ずれている場合には、冷媒特性に異常があると判定し、
     前記実際の冷媒特性が前記理論特性から所定値以上ずれていない場合には、冷媒特性は正常であると判定する請求項1に記載の冷却システム。
    A temperature sensor for detecting the temperature of the refrigerant in the loop type thermosiphon is further provided.
    When the control unit is determined to be normal by the first determination unit, the control unit is based on the actual refrigerant characteristics determined by the pressure detected by the pressure sensor and the temperature detected by the temperature sensor, and the physical property value of the refrigerant. It has a second determination unit that compares the obtained saturation pressure with the theoretical characteristics determined by the saturation temperature and determines whether or not the actual refrigerant characteristics deviate from the theoretical characteristics by a predetermined value or more.
    The second determination unit
    If the actual refrigerant characteristics deviate from the theoretical characteristics by a predetermined value or more, it is determined that the refrigerant characteristics are abnormal.
    The cooling system according to claim 1, wherein when the actual refrigerant characteristics do not deviate from the theoretical characteristics by a predetermined value or more, the refrigerant characteristics are determined to be normal.
  3.  前記発熱体は、車両に搭載された電池であり、
     前記制御部は、前記車両のソーク中に前記シャット弁の開閉状態を切り替える制御を実行する際、前記第1判定部による判定処理を実施する請求項1または2に記載の冷却システム。
    The heating element is a battery mounted on a vehicle.
    The cooling system according to claim 1 or 2, wherein the control unit performs a determination process by the first determination unit when executing control for switching the open / closed state of the shut valve during soaking of the vehicle.
  4.  前記制御部は、前記車両のソーク中に、前記電池の温度バラツキを抑制するための制御を実行して前記シャット弁を閉じる際に、前記第1判定部による判定処理を実施する請求項3に記載の冷却システム。 According to claim 3, the control unit executes a control for suppressing temperature variation of the battery during the soaking of the vehicle, and when the shut valve is closed, the determination process by the first determination unit is performed. The cooling system described.
  5.  前記制御部は、前記車両のソーク中に、前記車両の外気温が低いことによる前記電池の過冷却を抑制するための制御を実行して前記シャット弁を閉じる際に、前記第1判定部による判定処理を実施する請求項3または4に記載の冷却システム。 When the control unit executes control for suppressing supercooling of the battery due to the low outside air temperature of the vehicle during soaking of the vehicle and closes the shut valve, the first determination unit determines the control unit. The cooling system according to claim 3 or 4, wherein the determination process is performed.
PCT/JP2020/015945 2019-04-26 2020-04-09 Cooling system WO2020218008A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-086770 2019-04-26
JP2019086770A JP2020183815A (en) 2019-04-26 2019-04-26 Cooling system

Publications (1)

Publication Number Publication Date
WO2020218008A1 true WO2020218008A1 (en) 2020-10-29

Family

ID=72941964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015945 WO2020218008A1 (en) 2019-04-26 2020-04-09 Cooling system

Country Status (2)

Country Link
JP (1) JP2020183815A (en)
WO (1) WO2020218008A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7567676B2 (en) 2021-06-16 2024-10-16 トヨタ自動車株式会社 Battery Cooling Device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284191A (en) * 1986-06-02 1987-12-10 Toshiba Corp Heat pipe
JPH0460384A (en) * 1990-06-27 1992-02-26 Fujikura Ltd Controlling method for heat accumulation type hot water supplying apparatus and heat accumulation type hot water supplying apparatus for executing the same
JP2005525691A (en) * 2001-09-28 2005-08-25 ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ Electroosmotic microchannel cooling system
JP2008096084A (en) * 2006-10-16 2008-04-24 Hoshizaki Electric Co Ltd Thermosiphon
JP2008255945A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Warming up device for engine
US20150077938A1 (en) * 2012-05-11 2015-03-19 Dantherm Cooling A/S Variable conductance thermosiphon
JP2019052837A (en) * 2017-09-13 2019-04-04 株式会社デンソー Apparatus temperature adjustment device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284191A (en) * 1986-06-02 1987-12-10 Toshiba Corp Heat pipe
JPH0460384A (en) * 1990-06-27 1992-02-26 Fujikura Ltd Controlling method for heat accumulation type hot water supplying apparatus and heat accumulation type hot water supplying apparatus for executing the same
JP2005525691A (en) * 2001-09-28 2005-08-25 ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ Electroosmotic microchannel cooling system
JP2008096084A (en) * 2006-10-16 2008-04-24 Hoshizaki Electric Co Ltd Thermosiphon
JP2008255945A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Warming up device for engine
US20150077938A1 (en) * 2012-05-11 2015-03-19 Dantherm Cooling A/S Variable conductance thermosiphon
JP2019052837A (en) * 2017-09-13 2019-04-04 株式会社デンソー Apparatus temperature adjustment device

Also Published As

Publication number Publication date
JP2020183815A (en) 2020-11-12

Similar Documents

Publication Publication Date Title
RU2711902C2 (en) Cooling system condenser fan control method
US6349552B2 (en) Temperature control device for thermal medium fluid
WO2020218009A1 (en) Battery cooling device
WO2006087840A1 (en) Refrigerator
CN103814443B (en) Inclination monitor and pressure controller for absorption chiller
WO2020218008A1 (en) Cooling system
CN104246397A (en) A method of controlling one or more fans of a heat rejecting heat exchanger
CN112467246A (en) Battery cooling system and battery cooling control method
JP2016146279A (en) Air conditioning controller of battery pack
WO2017144666A1 (en) Heat exchanger assembly and method for operating a heat exchanger assembly
JP2000028208A (en) Controller for refrigerating apparatus
JP7003582B2 (en) Thermosiphon type temperature controller
CN102287975A (en) Refrigerator refrigerating system, refrigerator and control method of refrigerator
KR102018610B1 (en) Control method of air dryer
KR20170119840A (en) Control method that can prevent excessive cooling of moments using bi-cooled water purifier
JP2002022300A (en) Refrigeration apparatus
CN206831851U (en) Energy saver, the environmental test chamber of environmental test chamber
KR102036107B1 (en) absoption system and a controlling method of the same
JPH09318188A (en) Method of controlling absorption cold/hot water generator
JP7505452B2 (en) Battery Cooling Device
JP4872367B2 (en) vending machine
CN118361872B (en) Control method and device of heat pump system, medium, heat pump system and energy storage device
CN219608432U (en) Mixed water tank system in air can laboratory
JP2014125111A (en) Air conditioner, air conditioner control method, and program
US20240363925A1 (en) Battery thermal management via heat from water cooled condenser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20796091

Country of ref document: EP

Kind code of ref document: A1