WO2006087840A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2006087840A1
WO2006087840A1 PCT/JP2005/016912 JP2005016912W WO2006087840A1 WO 2006087840 A1 WO2006087840 A1 WO 2006087840A1 JP 2005016912 W JP2005016912 W JP 2005016912W WO 2006087840 A1 WO2006087840 A1 WO 2006087840A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cooling fan
stirling refrigeration
refrigerant
refrigeration engine
Prior art date
Application number
PCT/JP2005/016912
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Miyamoto
Hiroshi Tatsumi
Wei Chen
Mizuho Fukaya
Junji Miyakami
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005040640A external-priority patent/JP3935912B2/en
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to EP05783201A priority Critical patent/EP1852665A1/en
Priority to US11/884,444 priority patent/US20080155994A1/en
Publication of WO2006087840A1 publication Critical patent/WO2006087840A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0682Two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow
    • F25D2323/00265Details for cooling refrigerating machinery characterised by the incoming air flow through the front top part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/02Sensors detecting door opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/10Sensors measuring the temperature of the evaporator

Definitions

  • the present invention relates to a refrigerator, and more particularly to a refrigerator that cools the interior of a refrigerator with a Stirling refrigeration engine.
  • Patent Document 1 JP 2002-221384 A
  • the Stirling refrigeration engine has a characteristic that the output cannot be increased when the cold head is at a high temperature. For this reason, it is desirable to cool the inside of the refrigerator rapidly even when the cold head is at a high temperature, for example, when the refrigerator is turned on or when the quick freezing operation mode is switched.
  • the present invention was made to solve the above-described problems, and one of the objects of the present invention is that the Stirling refrigeration engine is overcooled before the Stirling refrigeration engine is overcooled. It is to provide a refrigerator that can be prevented.
  • Another object of the present invention is to provide a refrigerator having improved efficiency for cooling the interior of the refrigerator.
  • the refrigerator is a refrigerator that cools the interior of the refrigerator with a Stirling refrigeration engine, and detects an overcooled state of the Stirling refrigeration engine. And a supercooling prevention unit that prevents the Stirling refrigeration engine from being overcooled based on the detection of the overcooled state by the state detection unit.
  • a door state detection unit that detects an open / closed state of a door provided in a cooling chamber of the refrigerator, a cooling fan that supplies cold air cooled by a Stirling refrigeration engine, and a door state detection unit
  • a cooling fan control unit that stops the cooling fan while the door is detected to be open, and the state detection unit detects that the door has been opened for a predetermined time by the door state detection unit.
  • the present invention it is detected that the door has been opened for a predetermined time. Since the cooling fan stops while the door is open, the air around the cooler cooler stagnates during that time. For this reason, if the Stirling refrigeration engine continues to drive, the temperature of the secondary refrigerant will decrease. For this reason, the state just before the secondary refrigerant freezes can be detected based on the time when the cooling fan is stopped.
  • the refrigerator includes a first cooling chamber and a second cooling chamber, each of which is partitioned by a heat insulating material and has an opening / closing door, and the cooling fan receives cold air cooled by a Stirling refrigeration engine.
  • a blower fan that blows cool air cooled by the Stirling refrigeration engine to the air passage, and the overcooling prevention unit is configured to detect whether the door of the first cooling chamber is closed by the door state detection unit.
  • the air blocking passage is blocked by the blocking section and the cooling fan is released and driven, and the door state detecting section opens the first cooling chamber door. If the closed state of the door of the state and the second cold ⁇ is detected, it drives the blower fan together when to release the blocking of the air passage to the blocking portion. [0012]
  • the air passage is blocked and the cooling fan is driven, When the open state of the cooling chamber door 1 and the closed state of the second cooling chamber door are detected, the air passage is unblocked and the blower fan is driven.
  • the air cooled by the Stirling refrigeration engine is supplied to the first cooling chamber.
  • the air cooled by the Stirling refrigeration engine is supplied to the second cooling chamber. Regardless of whether the first door or the second door is opened, the air cooled by the Stirling refrigeration engine is convected, so that the Stirling refrigeration engine can be prevented from being overcooled.
  • the cool air sent to the cooling chamber with the door open can be reduced, it is possible to prevent the cool air inside the cabinet from leaking outside.
  • the refrigerator further includes a low temperature side evaporator that receives cold heat from a low temperature portion formed in the Stirling refrigeration engine via a secondary refrigerant.
  • the state detection unit is a low-temperature part, a low-temperature side evaporator or a low-temperature side condenser that is paired with a low-temperature side evaporator (secondary refrigerant circulation that circulates secondary refrigerant between the low-temperature side evaporator and the low-temperature side condenser)
  • a temperature detection unit for detecting the temperature of the circuit), and detects that the temperature detected by the temperature detection unit has fallen below a predetermined temperature.
  • the temperature of the low temperature part and the secondary refrigerant circulation circuit (typically, the low temperature side evaporator or the low temperature side condenser) is below a predetermined temperature. For this reason, it can be detected that the Stirling refrigeration engine is supercooled.
  • the anti-freezing unit is a control different from the stop control and performs a supercooling for preventing the Stirling refrigeration engine from being overcooled before performing the stop control for controlling and stopping the Stirling refrigeration engine. Perform prevention control.
  • the Stirling refrigeration engine is controlled by performing the supercooling prevention control different from the stop control before performing the stop control for stopping the Stirling refrigeration engine in order to prevent the Stirling refrigeration engine from being overcooled. Prevent the engine from overcooling. For this reason, the Stirling refrigeration engine is overcooled by the supercooling prevention control. If this can be prevented, it is not necessary to perform stop control of the Stirling refrigeration engine. As a result, it is possible to prevent the Stirling refrigeration engine from being stopped as much as possible. Thereby, the reliability of a refrigerator can be improved.
  • the predetermined temperature is a first temperature that is higher than a temperature at which the Stirling refrigeration engine is supercooled, and a second temperature that is higher than the temperature at which the Stirling refrigeration engine is supercooled and lower than the first temperature.
  • the supercooling prevention unit performs supercooling prevention control when the state detection unit detects that the temperature is below the first temperature, and further, the state detection unit sets the second temperature. Stop control is performed when it is detected that the value has fallen below.
  • the supercooling prevention control is performed when the temperature is lower than the first temperature higher than the temperature at which the Stirling refrigeration engine is supercooled, and the Stirling refrigeration engine is further supercooled. Stop control is performed when the temperature falls below a second temperature that is higher than the temperature and lower than the first temperature. Therefore, if the supercooling prevention control can prevent the Stirling refrigeration engine from being overcooled without falling below the second temperature, the Stirling refrigeration engine stop control need not be performed. As a result, the Stirling freezing engine can be stopped as much as possible.
  • the apparatus further includes a temperature detection abnormality detection unit that detects an abnormality in temperature detection by the temperature detection unit when the temperature detection unit detects the temperature.
  • a cooling fan that supplies cold air cooled by the low-temperature side evaporator to the interior is further provided, and the overcooling prevention unit drives the cooling fan or increases the air volume of the cooling fan.
  • the cooling fan is driven or the air volume of the cooling fan is increased, so that air around the low-temperature side evaporator is convected. For this reason, since the air newly sent to the low temperature side evaporator gives heat to the secondary refrigerant, the temperature of the secondary refrigerant rises. As a result, the Stirling refrigeration engine can be prevented from being overcooled. In addition, since the air in the cabinet is convected by the cooling fan, the air in the cabinet is driven by the Stirling refrigeration engine. Can be efficiently cooled. As a result, the COP (Coef ficient Of Performance, coefficient of performance) of the Stirling refrigeration engine can be improved.
  • the overcooling prevention unit drives the cooling fan or increases the air volume of the cooling fan when it is detected by the state detection unit that the temperature is lower than the first temperature.
  • the cooling power is controlled by controlling the Stirling refrigeration engine when the condition detection unit detects that the temperature has dropped below the first temperature after a predetermined time has elapsed by driving the rejection fan or increasing the air volume of the cooling fan. Reduce.
  • the Stirling refrigeration engine Control to reduce the cooling capacity. For this reason, since the cooling of the secondary refrigerant is suppressed, the temperature of the secondary refrigerant rises. As a result, the Stirling refrigeration engine can be prevented from being overcooled.
  • the supercooling prevention unit includes a rotation speed control unit that controls the rotation speed of the cooling fan, and the supercooling prevention unit is detected by the state detection unit to have fallen below the first temperature.
  • the cooling fan is driven with the rotational speed of the cooling fan being maximized and the cooling fan is driven with the rotational speed of the cooling fan being maximized with the rotational capacity of the cooling fan.
  • the detection unit detects that the temperature is lower than the first temperature, the Stirling refrigeration engine is controlled to reduce the cooling capacity.
  • the cooling fan is driven with the maximum rotational speed, the Stirling refrigeration engine is overcooled compared to when the rotational speed is not maximum. More can be prevented.
  • the air in the cabinet is further convected by the cooling fan by maximizing the rotation speed, the COP of the Stirling refrigeration engine can be further improved.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a refrigerator according to the present invention.
  • FIG. 2 is a diagram schematically showing the flow of cool air in a refrigerator in the present embodiment.
  • FIG. 3 is a functional block diagram showing a freeze prevention function of the refrigerator in the first embodiment.
  • FIG. 4 is a flowchart showing the flow of anti-freezing processing executed in the refrigerator in the first embodiment.
  • FIG. 5 is a flowchart showing a flow of a modified anti-freezing process executed in the refrigerator in the first embodiment.
  • FIG. 6 is a functional block diagram showing a freeze prevention function of the refrigerator in the second embodiment.
  • FIG. 7 is a flowchart showing a flow of anti-freezing processing executed in the refrigerator in the second embodiment.
  • FIG. 8 is a flowchart showing a flow of a modified anti-freezing process executed in the refrigerator in the second embodiment.
  • FIG. 9 is a functional block diagram showing a freeze prevention function of the refrigerator in the third embodiment.
  • FIG. 10 is a flowchart showing a flow of anti-freezing processing executed in the refrigerator in the third embodiment. Explanation of symbols
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a refrigerator according to the present invention.
  • FIG. 2 is a diagram schematically showing the flow of cool air in the refrigerator in the present embodiment.
  • the refrigerator 1 is for food preservation and includes a housing 10 having a heat insulating structure. Inside the housing 10, cooling chambers 11 and 12 are provided that are partitioned into two upper and lower stages. Each of the cooling chambers 11 and 12 has an opening on the front side (left side in FIG. 1) of the housing 10, and the opening is closed by an openable and closable upper door 14 and lower door 15.
  • the upper door 14 and the lower door 15 include a heat insulating material, and packings 17 each having a shape surrounding the openings of the cooling chambers 11 and 12 are mounted on the back surfaces thereof. Inside the cooling chambers 11 and 12, shelves 18 suitable for the type of food to be stored are installed as appropriate.
  • a cooling system and a heat dissipation system having a Stirling refrigeration engine 30 as a central element are disposed from the upper surface to the rear surface and further to the lower surface of the housing 10.
  • a machine room 19 is provided at one corner of the upper and rear surfaces of the housing 10, and the Stirling refrigeration engine 30 is installed in the machine room 19.
  • a part of the Stirling refrigerating engine 30 forms a low temperature part (hereinafter referred to as a cold head) when driven.
  • a low temperature side condenser 41 is attached to the cold head.
  • a low-temperature evaporator 42 is installed in the back of the cooling chamber 12.
  • the low temperature side condenser 41 and the low temperature side evaporator 42 are connected via a refrigerant pipe, and a low temperature side circulation circuit (secondary refrigerant circulation circuit) 40 is configured by both.
  • the low-temperature side circulation circuit 40 contains natural refrigerant such as CO.
  • ducts 20 and 21 are provided for distributing the cold air obtained by the low temperature side evaporator 42 to the cooling chambers 11 and 12.
  • the duct 20 has a cooling air outlet (first cooling chamber) 12 having a cold air outlet 20A communicating therewith in a proper position.
  • a cooling fan 22 is installed in the duct 20 at an appropriate place. The cooling fan 22 forcibly sends the cool air in the duct 20 to the cooling chamber 12. Further, when the cooling fan 22 is driven, the air around the low temperature side evaporator 42 is convected. As a result, another air having a relatively high temperature is supplied to the low temperature side evaporator 42.
  • the duct 21 has a cold air outlet 21 A communicating with the cooling chamber (second cooling chamber) 11 at an appropriate place.
  • a blower fan 62 is installed in the duct 21 at an appropriate place. The blower fan 62 blows air to the data 21 and forcibly sends the cool air in the duct 21 to the cooling chamber 11.
  • an openable / closable damper 61 is installed at one end of the duct 21 on the low temperature side evaporator 42 side. When the damper 61 is closed, the duct 21 and the duct 20 are separated. Therefore, the cold air in the duct 20 is blocked by the damper 61 and is prevented from moving into the duct 21. When the damper 61 is open, the duct 21 and the duct 20 communicate with each other. Therefore, when the blower fan 62 is driven with the damper 61 open, the cold air in the duct 20 flows into the duct 21 and the cold air is forcibly sent to the cooling chamber 11.
  • the cooling fan 22 and the blower fan 62 can be driven.
  • the cool air in the duct 20 may be sent to the cooling chamber 12 by the cooling fan 22, or may be sent to the cooling chamber 11 via the duct 21 by the blower fan 62.
  • the air around the low temperature side evaporator 42 is convected, and another air having a relatively high temperature is supplied to the low temperature side evaporator 42.
  • a duct for collecting air from the cooling chambers 11 and 12 is also provided inside the housing 10.
  • the duct has a blower outlet below the low-temperature evaporator 42. Then, the air to be cooled is supplied to the low temperature side evaporator 42 as indicated by the broken line arrow in FIG.
  • the other part of the Stirling refrigerating engine 30 forms a worm head (high temperature part) when driven.
  • a high temperature side evaporator 51 is attached to the worm head.
  • a high-temperature side condenser 52 and a blower fan 53 for dissipating heat to the outside environment are provided on the upper surface of the housing 10.
  • the high temperature side evaporator 51 and the high temperature side condenser 52 are connected via a refrigerant pipe, and a high temperature side natural circulation circuit 50 is configured by both.
  • the high temperature side natural circulation circuit 50 is sealed with water (including an aqueous solution) or a hydrocarbon-based natural refrigerant, and the refrigerant naturally circulates in the high temperature side natural circulation circuit 50.
  • the refrigerant condensed in the low temperature side condenser 41 flows into the low temperature side evaporator 42 through the low temperature side circulation circuit 40.
  • the refrigerant flowing into the low temperature side evaporator 42 is evaporated by the heat of the airflow passing outside the low temperature side evaporator 42 and the surface temperature of the low temperature side evaporator 42 is lowered. Therefore, the air passing through the low-temperature side evaporator 42 becomes cold air, and is blown out from the cold air outlet 20A of the duct 20 to the cooling chamber 11 and blown out to the cold air outlet 21A of the duct 21. Thereby, the temperature of the cooling chambers 11 and 12 is lowered. Thereafter, the air in the cooling chambers 11 and 12 returns to the low-temperature evaporator 42 through a duct (not shown).
  • the refrigerant evaporated in the low temperature side evaporator 42 passes through the low temperature side circulation circuit 40 and returns to the low temperature side condenser 41, where it is deprived of heat and condensed again. Then, the heat exchange operation described above is repeated.
  • the heat generated by driving the Stirling refrigeration engine 30 and the heat recovered from the interior by the cold head are radiated from the worm head as exhaust heat. Therefore, the high temperature side evaporator 51 is heated and the internal refrigerant evaporates.
  • the gas phase refrigerant generated in the high temperature side evaporator 51 flows through the high temperature side natural circulation circuit 50 into the high temperature side condenser 52 provided above.
  • the refrigerant that has flowed into the high-temperature side condenser 52 is converted into an airflow introduced into the high-temperature side condenser 52 from the outside by the blower fan 53. Therefore, it is deprived of heat and condensed.
  • the refrigerant condensed in the high temperature side condenser 52 returns to the high temperature side evaporator 51 through the high temperature side natural circulation circuit 50, where it receives heat and evaporates again. Then, the heat exchange operation described above is repeated.
  • FIG. 3 is a functional block diagram showing the freeze prevention function of the refrigerator in the first embodiment.
  • the refrigerator 1 includes a control unit 90 for controlling the entire refrigerator, and a temperature sensor 81 connected thereto.
  • the control unit 90 is connected to the Stirling refrigeration engine 30, the cooling P fan 22, the damper 61, and the blower fan 62.
  • the temperature sensor 81 detects the temperature of the low temperature side evaporator 42 or the low temperature side circulation circuit (typically, the low temperature side condenser 41 or the cold head of the Stirling refrigerating engine 30). In the present embodiment, it is sufficient that the temperature of the refrigerant in the low-temperature side circulation circuit 40 can be directly detected, but instead of the direct detection, the low-temperature side evaporator 42, the low-temperature side condenser 41, or the Stirling refrigeration is used. The temperature of the cold head of the engine 30 is detected. Therefore, the temperature sensor 81 may detect the cold head of the low temperature side evaporator 42, the low temperature side condenser 41, and the Stirling refrigeration engine 30! /, But the temperature of the deviation is preferably detected. It is the temperature of the side condenser 41, more preferably the temperature of the cold head.
  • the control unit 90 controls the drive of the Stirling refrigeration engine 30.
  • the Stirling refrigeration engine can be driven by changing its load.
  • a Stirling refrigeration engine has a high cooling capacity when driving a heavy load and a low cooling capacity when driving a small load.
  • the controller 90 controls the air volume of the cooling fan 22 and the blower fan 62.
  • the control unit 90 may perform switching control for driving or stopping the cooling fan 22 and the blower fan 62. Further, the control unit 90 performs switching control of the damper 61 between an open state and a closed state.
  • FIG. 4 is a flowchart showing the flow of the freeze prevention process executed in the refrigerator in the first embodiment.
  • control unit 90 of refrigerator 1 receives the temperature of the cold head of Stirling refrigeration engine 30 from temperature sensor 81.
  • the controller 90 determines whether or not the temperature of the cold head is lower than a predetermined temperature T (step S01). If true, the process proceeds to step S02. If false, the process is terminated.
  • the predetermined value T is a value determined in advance from the freezing point of the refrigerant in the low-temperature side circulation circuit 40, and is set to a temperature about 3 ° C. higher than the freezing temperature of the refrigerant.
  • the coolant temperature is not necessarily the same as the cold head temperature.
  • the predetermined temperature should be equal to or greater than the value obtained by subtracting the temperature difference D from the freezing point of the refrigerant.
  • the temperature of the low temperature side evaporator 42 or the low temperature side condenser 41 is equal to the temperature of the refrigerant. It doesn't always match! However, the temperature of the refrigerant cannot be higher than the temperature of the low-temperature evaporator 42 or the low-temperature condenser 41. If the temperature difference D1 between the refrigerant temperature and the low-temperature side evaporator 42 or the low-temperature side condenser 41 is divided, the predetermined temperature is equal to or greater than the refrigerant freezing point plus the temperature difference D1. If you do.
  • step S02 the Stirling refrigeration engine is stopped. This prevents the refrigerant from being cooled and freezing.
  • a force Stirling refrigeration engine that stops the Stirling refrigeration engine may be driven with a small load.
  • the refrigerant is cooled, it is possible to prevent the refrigerant from freezing if it is driven with a load sufficient to maintain the temperature of the refrigerant at that temperature.
  • FIG. 5 is a flowchart showing a flow of the modified anti-freezing process executed in the refrigerator in the first embodiment.
  • control unit 90 of refrigerator 1 receives the temperature of the cold head of Stirling refrigeration engine 30 from temperature sensor 81.
  • the control unit 90 determines whether or not the temperature of the cold head is lower than a predetermined temperature T (step S11). If true, proceed to step S12, and if false, proceed to step S20.
  • step S 12 it is determined whether or not the cooling fan 22 has stopped power. If the cooling fan 22 is stopped, the process proceeds to step S13, and if stopped, the process proceeds to step S14.
  • step S13 the cooling fan 22 is driven.
  • the cooling fan 22 is driven, air around the low temperature side evaporator 42 is convected, and the low temperature side evaporator 42 is supplied with air at a relatively high temperature. For this reason, it is prevented that the temperature of a refrigerant
  • step S14 since the cooling fan 22 is driven, the air flow of the cooling fan is increased and driven. As a result, the air around the low-temperature evaporator 42 convects more violently and the refrigerant temperature The degree is prevented from decreasing.
  • step S15 it is determined whether or not a predetermined time has passed. If true, the process proceeds to step S16, and if false, the process returns to step S11.
  • step S16 it is determined whether or not the blower fan 62 is stopped. If the blower fan 62 is stopped, the process proceeds to step S17, and if not stopped, the process proceeds to step S19.
  • step S17 the damper is opened, and the blower fan 62 is driven in the next step S18. When the blower fan 62 is driven, air around the low-temperature side evaporator 42 is convected, and air having a relatively high temperature is supplied to the low-temperature side evaporator 42.
  • Step S19 since the blower fan 62 is driven, the blower fan is driven by increasing the air volume. As a result, the air around the low-temperature evaporator 42 is more convectively prevented from lowering the refrigerant temperature.
  • step S18 or step S19 the process returns to step S11.
  • step S11 it is determined again whether the temperature of the cold head is lower than a predetermined temperature T. If the temperature is not lower than the predetermined temperature T, the process proceeds to step S12 if the force to proceed to step S20 is low. That is, the processes of Step S12 to Step S19 described above are executed until the temperature of the cold head is equal to or exceeds the predetermined temperature T.
  • step S20 the cooling fan 22, the damper 61, and the blower fan 62 are driven in the normal operation mode.
  • the cooling fan or both the cooling fan and the blower fan are driven. For this reason, the air around the low-temperature side evaporator 42 can be convected to prevent the refrigerant temperature from being lowered. In addition, the refrigerant can be prevented from freezing.
  • the refrigerator 1 in the first embodiment is configured such that the temperature of the cold head 42, the low temperature condenser 41, or the cold head of the Stirling refrigeration engine 30 falls below a predetermined temperature T. , Power to reduce the cooling capacity of Stirling refrigeration engine or stopped Make it. For this reason, it is possible to suppress the cooling of the refrigerant and to prevent the refrigerant from freezing.
  • the cooling fan 22 is driven or the air volume is increased. Therefore, the air around the low-temperature side evaporator 42 can be convected to prevent the refrigerant from freezing.
  • the predetermined temperature T is about 3 ° C higher than the freezing point of the refrigerant.
  • the predetermined temperature T may be other temperature as long as it is higher than the freezing point of the refrigerant. /.
  • the refrigerant temperature can be reduced. It is possible to prevent the temperature from falling below the temperature range of the refrigerant that can be obtained during rated operation.
  • the refrigerator in the second embodiment has the same configuration except that the refrigerator in the first embodiment has a different freeze prevention function.
  • the freeze prevention function in the second embodiment will be described.
  • FIG. 6 is a functional block diagram showing the freeze prevention function of the refrigerator in the second embodiment.
  • refrigerator 1 includes a control unit 90 for controlling the entire refrigerator, an upper door opening / closing detection switch 82 connected thereto, and a lower door opening / closing detection switch 83.
  • the control unit 90 is connected to the Stirling refrigeration engine 30, the cooling fan 22, the damper 61, and the air supply fan 62.
  • the upper door open / close detection switch 82 has the force of closing or closing the upper door 14 open. Detect whether it is in a closed state.
  • the lower door opening / closing detection switch 83 detects whether the lower door 15 is in an open state or in a closed state.
  • FIG. 7 is a flowchart showing a flow of anti-freezing processing executed in the refrigerator in the second embodiment.
  • control unit 90 of refrigerator 1 receives the open / close state of upper door 14 and lower door 15 from upper door open / close detection switch 82 or lower door open / close detection switch 83.
  • the control unit 90 determines whether one of the upper door 14 and the lower door 15 has been opened (step S21). If either the upper door 14 or the lower door 15 is open, the process proceeds to step S22, and if not, the process ends.
  • step S22 the cooling fan 22 is stopped. As a result, it is possible to prevent the cold air in the cooling chambers 11 and 12 of the door that has been opened from being forced out.
  • step S23 it is determined whether or not a predetermined time has elapsed. This elapsed time is the time measured after step S21 detects that either upper door 14 or lower door 15 is open, or the time measured when the cooling fan is stopped. Either may be used. If the predetermined time has elapsed, the process proceeds to step S24, and if not, the process returns to step S21. By stopping the cooling fan, the air around the low-temperature evaporator 42 will not convect.
  • the predetermined time is shorter than the time until the temperature of the refrigerant starts to decrease and the force freezing point is reached.
  • the predetermined time may be a single predetermined time, or may be a predetermined time for each load of the Stirling refrigeration engine. Furthermore, it is possible to set a predetermined time for each of the temperature in the refrigerator and the load of the Stirling freezing engine.
  • step S24 the Stirling refrigeration engine is stopped. This prevents the refrigerant from being cooled and prevents the refrigerant from freezing.
  • step S24 the Stirling refrigeration engine that stops the Stirling refrigeration engine may be driven with a small load.
  • the refrigerant is cooled, it is possible to prevent the refrigerant from freezing if it is driven with a load sufficient to maintain the temperature of the refrigerant at that temperature.
  • FIG. 8 shows a modified anti-freezing process executed in the refrigerator in the second embodiment. It is a flowchart which shows the flow. Referring to FIG. 8, control unit 90 determines whether the upper door 14 is open or not (step S31). If the upper door 14 is in the open state, the process proceeds to step S32, and if not, the process proceeds to step S38.
  • step S32 the blower fan 62 is stopped, and in step S33, the cooling fan 22 is stopped. Thereby, even if the upper door 14 is in the open state, it is possible to prevent the cold air in the cooling chamber 11 from being forced out to the outside. Then, it is determined whether or not the force has passed for a predetermined time (step S34). If the predetermined time has elapsed, the process proceeds to step S35, and if not, the process returns to step S31. That is, if a predetermined time elapses with the upper door 14 open, the force proceeds to step S35. If the upper door 14 is closed before the predetermined time elapses, the process proceeds to step S38.
  • the predetermined time is a time shorter than the time until the temperature of the refrigerant reaches the freezing point.
  • the predetermined time may be a single predetermined time, or may be a predetermined time for each load of the Stirling freezing engine. Furthermore, it is possible to set a predetermined time for each temperature in the refrigerator and the load of the Stirling refrigeration engine.
  • step S35 the damper 61 is closed, and in step S36, the cooling fan 22 is driven.
  • the cold air around the low-temperature side evaporator 42 is sent to the cooling chamber 12 and is not sent to the cooling chamber 11 because the force damper 61 is closed! /.
  • air around the low-temperature side evaporator 42 is convected, and air having a relatively high temperature is supplied to the low-temperature side evaporator 42. And it prevents that the temperature of a refrigerant falls. As a result, the refrigerant is prevented from freezing.
  • the cool air around the low-temperature side evaporator 42 is not sent to the cooling chamber 11, it is possible to prevent the cool air in the opened upper door cooling chamber 11 from being forced to flow out.
  • step S37 it is determined whether or not the upper door 14 is closed. If the upper door 14 is closed, the process proceeds to step S38, and if not, the process returns to step S35. Until the upper door 14 is closed, the cool air around the low-temperature side evaporator 42 is sent to the cooling chamber 12, thereby preventing the refrigerant from freezing. In step S38, the cooling fan 22, the damper 61, and the blower fan 62 are driven in the normal operation mode.
  • step S39 the control unit 90 determines whether or not the lower door 15 is open. If the lower door 15 is opened, the process proceeds to step S40, and if not, the process is terminated.
  • step S40 the blower fan 62 is stopped, and in step S41, the cooling fan 22 is stopped. Thereby, even if the lower door 15 is opened, it is possible to prevent the cold air in the cooling chamber 12 from being forced out. Also, the air around the low-temperature evaporator 42 will not convect. Then, it is determined whether or not the force has passed for a predetermined time (step S42). If the predetermined time has elapsed, the process proceeds to step S43, and if not, the process returns to step S39. That is, when a predetermined time elapses while the lower door 15 is open, the force proceeds to step S43. If the lower door 15 is closed before the predetermined time elapses, the process is terminated. The predetermined time is the same time as in step S34.
  • step S43 the damper 61 is opened, and in step S44, the blower fan 62 is driven.
  • the cold air around the low-temperature side evaporator 42 is sent to the cooling chamber 11, but is not sent to the cooling chamber 12.
  • the air around the low-temperature side evaporator 42 is convected, and air having a relatively high temperature is supplied to the low-temperature side evaporator 42.
  • coolant falls.
  • the refrigerant is prevented from freezing.
  • the amount of cool air around the low-temperature side evaporator 42 is not sent to the cooling chamber 12, it is possible to reduce the forced outflow of cool air in the cooling chamber 12 from the opened lower door. .
  • Step S45 it is determined whether or not the lower door 15 is closed. If the lower door 15 is closed, the process proceeds to step S46, and if not, the process returns to step S43. Therefore, until the lower door 15 is closed, the cool air around the low-temperature side evaporator 42 is sent to the cooling chamber 11, thereby preventing the refrigerant from freezing.
  • step S46 the cooling fan 22, the damper 61, and the blower fan 62 are driven in a normal operation mode.
  • the refrigerator 1 in the second embodiment reduces the cooling capacity of the Stirling refrigeration engine when the open state of either the upper door 14 or the lower door 15 continues for a predetermined time. Or stop. For this reason, it is possible to suppress the cooling of the refrigerant and to prevent the refrigerant from freezing.
  • the cooling fan 22 is driven or the air volume is increased, so the air around the low-temperature side evaporator 42 is increased.
  • the refrigerant can be prevented from freezing by convection.
  • the cooling fan 22 is stopped to cool the air around the low-temperature side evaporator 42 in order to quickly pass through the maximum ice crystal formation zone (13 ° C to 17 ° C) when the food is frozen. It is also applicable to the quick freezing operation in which the cooling fan 22 is driven after the temperature is lowered to a very low temperature.
  • the present invention is not limited to this, and when the upper door 14 or the lower door 15 is opened, the cooling fan 22 may be stopped and the Stirling refrigeration engine 30 may be stopped. In order to prevent the temperature in the refrigerator 1 from rising, if control is performed to rapidly reduce the temperature of the cold head of the Stirling refrigeration engine 30, a refrigerant freezing accident may occur due to a control delay in stopping the Stirling refrigeration engine 30. May occur.
  • the cooling fan 22 when the upper door 14 or the lower door 15 is opened, the cooling fan 22 is stopped, and after a predetermined time has elapsed, the Stirling freezing engine 30 is stopped. I tried to make it. [0088]
  • the present invention is not limited to this, and when the upper door 14 or the lower door 15 is opened, the cooling fan 22 is stopped and the temperature of the cold head of the Stirling refrigeration engine 30 is lowered to a predetermined temperature. Sometimes, the Stirling refrigeration engine 30 may be stopped.
  • the electric power input to the Stirling refrigeration engine 30 may be reduced stepwise until the door is opened and the force is also stopped until the Stirling refrigeration engine 30 is stopped. Thereby, even when the door is in an open state, it is possible to suppress an increase in temperature in the refrigerator 1 due to the outflow of cold air, and at the same time, it is possible to prevent the refrigerant from freezing.
  • the Stirling refrigeration engine 30 when the temperature of the cold head of the Stirling refrigeration engine 30 rises to a predetermined temperature after the Stirling refrigeration engine 30 is stopped when the upper door 14 or the lower door 15 is opened, the Stirling refrigeration engine 30 is stopped. It is preferable to operate the refrigeration engine 30. As a result, the temperature in the refrigerator 1 can be prevented from rising excessively.
  • the cooling fan 22 is stopped when the upper door 14 or the lower door 15 is opened.
  • the present invention is not limited to this, and the cooling fan 22 may be operated at a low rotational speed.
  • the Stirling refrigeration engine 30 is stopped when the upper door 14 or the lower door 15 is opened.
  • the present invention is not limited to this, and the input power to the Stirling refrigeration engine 30 may be reduced. This also reduces the amount of heat taken from the refrigerant, increasing the temperature of the refrigerant and freezing the refrigerant. Can be prevented.
  • the predetermined time is shorter than the time from when the cooling fan 22 is stopped until the temperature of the dynamic cooling medium reaches the freezing point.
  • the present invention is not limited to this, and the predetermined time may be the time from when the cooling fan 22 is stopped until the refrigerant reaches the predetermined temperature!
  • the predetermined temperature may be a temperature higher than the freezing point of the refrigerant.
  • the temperature of the refrigerant can be prevented from reaching a predetermined temperature. For this reason, by setting the lower temperature of the refrigerant temperature range that can be obtained in the rated operation of the Stirling refrigeration engine 30 to a predetermined temperature, the refrigerant temperature range that can be obtained in the rated operation of the Stirling refrigeration engine 30 The following can be prevented.
  • the refrigerator in the third embodiment has the same configuration except that the refrigerator in the first embodiment has a different freeze prevention function.
  • the antifreezing function in the third embodiment will be described.
  • FIG. 9 is a functional block diagram showing the freeze prevention function of the refrigerator in the third embodiment.
  • the refrigerator 1 includes a control unit 90 for controlling the entire refrigerator 1, a temperature sensor 81 connected thereto, an upper door opening / closing detection switch 82, and a lower door opening / closing detection switch. 83.
  • the control unit 90 is connected to the Stirling refrigeration engine 30, the cooling fan 22, the damper 61, the blower fan 62, and the display unit 91.
  • Display unit 91 displays information related to the operating state of the refrigerator. For example, the display unit 91 displays that the Sternling refrigeration engine 30 is abnormal, the temperature sensor 81 displays that there is an abnormal force S, and the upper door 14 and the lower door 15 are open. To indicate that it is in normal operation. Also, let us notify you of the abnormality by voice according to the display on the display unit 91.
  • FIG. 10 is a flowchart showing the flow of the freeze prevention process executed in the refrigerator in the third embodiment. Referring to FIG. 10, control unit 90 of refrigerator 1 detects whether or not temperature sensor 8 1 has an abnormality. The controller 90 determines whether or not the thermistor of the temperature sensor 81 is abnormal (step S71).
  • step S72 If the thermistor is abnormal, the process proceeds to step S72. If the thermistor is not abnormal, the process proceeds to step S74. In step S72, the display unit 91 displays that the thermistor is abnormal. Then, the Stirling refrigerating engine 30 is stopped (step S73). Thereafter, the process ends.
  • the temperature of the cold head of the Stirling refrigeration engine 30 is input from the temperature sensor 81 to the control unit 90 of the refrigerator 1.
  • the control unit 90 has a cold head temperature T
  • step S74 It is determined whether it is lower than 1 (step S74). If the temperature is lower than T, proceed to step S75.
  • the temperature T is, for example, that of the refrigerant
  • the temperature is about 3 ° C higher than the solidification temperature.
  • the open / close state of the upper door 14 and the lower door 15 is input to the control unit 90 of the refrigerator 1 from the upper door open / close detection switch 82 or the lower door open / close detection switch 83.
  • the control unit 90 determines whether one of the upper door 14 and the lower door 15 is open (step S75). If either the upper door 14 or the lower door 15 is opened, the process proceeds to step S76, and if not, the process proceeds to step S77.
  • step S76 the control unit 90 notifies the display unit 91 of a warning that the upper door 14 and the lower door 15 are open. Then, return to S71.
  • step S77 the rotation speed of the cooling fan 22 is equal to the maximum allowable rotation speed of the cooling fan 22. It is determined whether or not it is correct. If the maximum allowable rotational speed is not set, the process proceeds to step S78. If the maximum allowable rotational speed is set, the process proceeds to step S81.
  • step S78 the rotation speed of the cooling fan 22 is set as the maximum allowable rotation speed of the cooling fan 22.
  • the air around the low-temperature side evaporator 42 convects more violently than when the number of rotations of the cooling fan 22 is less than the maximum allowable number of rotations, and a decrease in the refrigerant temperature can be suppressed.
  • the predetermined time when the rotation speed of the cooling fan 22 is set to the maximum allowable rotation speed during normal operation, the temperature of the refrigerant increases at least by a temperature at which the temperature sensor 81 can detect that the temperature has increased. It is preferable that it is more than the time required to do. For example, when the temperature detection error of the temperature sensor 81 is ⁇ 0.5 ° C., the predetermined time may be a time longer than the time required for the refrigerant temperature to rise by at least 1 ° C.
  • step S81 the input power to the Stirling refrigeration engine 30 is decreased by a predetermined amount. As a result, the cooling capacity of the Stirling refrigeration engine 30 is reduced. Therefore, the amount of heat deprived of the refrigerant power can be reduced, and the temperature drop of the refrigerant can be suppressed.
  • step S82 the controller 90 determines whether or not the temperature of the cold head is lower than the temperature T.
  • step S84 If 1 1, go to step S84.
  • step S83 when the process proceeds to step S83, the rotation speed of the cooling fan 22 is set to the maximum allowable rotation speed in step S78, or the input power to the Stirling refrigeration engine 30 is decreased in step S81.
  • the temperature of the lid remains abnormal.
  • step S83 Stirling refrigeration engine 30, cooling fan 22, damper 61 and The operation mode of the blower fan 62 is switched to the normal operation mode. Thereafter, the process returns to step S71.
  • step S84 the controller 90 determines whether or not the temperature of the cold head is lower than the temperature T.
  • step S81 If it is not lower than the temperature T, return to step S81, and if it is lower than the temperature T,
  • the temperature T is, for example, about 1 ° C higher than the solidification temperature of the refrigerant.
  • step S85 the control unit 90 displays on the display unit 91 that the Stirling refrigeration engine 30 is abnormal.
  • step S86 the control unit 90 stops the Stirling refrigeration engine 30. Thereafter, the process ends.
  • the rotational speed of cooling fan 22 is set to the maximum allowable rotational speed in step S78, but the rotational speed of cooling fan 22 may be increased stepwise. If the temperature of the cold head exceeds the temperature T after a predetermined time
  • Electricity consumption that does not need to be burned can be reduced.
  • the temperature change of the refrigerant becomes gentle, the temperature of the refrigerant can be controlled with higher accuracy than when the temperature change of the refrigerant is abrupt.
  • the refrigerant may freeze.
  • the refrigerator 1 in the third embodiment differs from the stop control before performing the stop control for stopping the Stirling refrigeration engine 30 to prevent the refrigerant from freezing.
  • Anti-freezing control to prevent the refrigerant from freezing, eg cooling
  • the rotational speed of the fan 22 By controlling the rotational speed of the fan 22 to the maximum allowable rotational speed or reducing the input power to the Stirling refrigeration engine 30, the refrigerant is prevented from freezing.
  • the Stirling refrigeration engine 30 can be prevented from being stopped in step S86.
  • anti-freezing control is performed when the temperature falls below a temperature T higher than the temperature at which the refrigerant freezes.
  • the Stirling refrigeration engine 30 is controlled to stop. Therefore, if the freezing prevention control prevents the refrigerant from freezing below the temperature T, the Stirling cooling
  • the low-temperature evaporator 42 can efficiently cool the air in the box.
  • the COP Coefficient Of Performance
  • COP indicates the heating or cooling capacity per power consumption of the heating device or the cooling device, the amount of heat given to the non-heated material or the amount of heat taken from the non-cooled material, and the heating or cooling capacity. Therefore, it is calculated as the ratio of the input energy consumed for heat generation to the calorific value conversion value.
  • the cooling device is the refrigerator 1 and the non-cooled material is cooled by the refrigerant cooled by the cold head of the Stirling refrigeration engine 30. It is the air in the storage 1. Also, let Q be the amount of heat taken from uncooled material, and input energy
  • COP Q / Q
  • the cooling capacity of the engine 30 is reduced, that is, the input power input to the Stirling refrigeration engine 30 is controlled to be reduced.
  • the rotation speed of the cooling fan 22 is driven at the maximum allowable rotation speed of the cooling fan 22, it is possible to further prevent the refrigerant from freezing compared to when the rotation speed is not the maximum allowable rotation speed. it can.
  • the convection air force S is further convected by the cooling fan 22 by setting the maximum allowable rotation speed, the COP of the Stirling refrigeration engine 30 can be further improved.
  • the temperature T is about 3 ° C from the freezing point of the refrigerant.
  • the temperature ⁇ is higher than the freezing point of the refrigerant.
  • the temperature was about 2c higher. However, the temperatures ⁇ and ⁇ are higher than the freezing point of the refrigerant,
  • the lower temperature of the temperature range of the refrigerant that can be obtained when the Stirling refrigeration engine 30 is operated in the rated state is defined as the temperature T, and the higher temperature of the aforementioned temperature range.
  • the refrigerant is not cooled excessively by the operation of the Stirling refrigerating engine 30 and the cold head can be prevented from being overcooled, so that the Stirling refrigerating engine 30 exceeds the rated state and is overloaded. Can be prevented. As a result, deterioration of the Stirling refrigeration engine 30 can be prevented.
  • the force of the first embodiment up to the third embodiment is the same as the force described for the refrigerator 1 as shown in FIG. 4, FIG. 5, FIG. 7, FIG. 8, and FIG.
  • the invention can be captured as a Stirling refrigeration engine 30 provided in the refrigerator 1

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

A refrigerator so designed that its inside is cooled by a Stirling refrigerating engine, comprising a state detection means (S01) detecting the supercooling critical state of the Stirling refrigerating engine and a supercooling prevention means (S02) preventing the Stirling refrigerating engine from being supercooled based on the detection of the supercooling critical state by the state detection means. Thus, the Stirling refrigerating engine can be prevented from being supercooled.

Description

明 細 書  Specification
冷却庫  Refrigerator
技術分野  Technical field
[0001] この発明は冷却庫に関し、特に、スターリング冷凍エンジンによって庫内を冷却す る冷却庫に関する。  TECHNICAL FIELD [0001] The present invention relates to a refrigerator, and more particularly to a refrigerator that cools the interior of a refrigerator with a Stirling refrigeration engine.
背景技術  Background art
[0002] 近年、フロンガスの地球環境への悪影響が指摘されており、フロンガスを使用しな V、冷却庫としてスターリング冷凍エンジンを搭載したものが注目されて 、る。この冷却 庫では、スターリング冷凍エンジンのコールドヘッドの冷熱が二次冷媒を介して低温 側蒸発器に伝達され、低温側蒸発器で生成された冷気が冷却庫内に供給される(た とえば、特開 2002— 221384号公報 (特許文献 1)参照)。  [0002] In recent years, the adverse effects of chlorofluorocarbons on the global environment have been pointed out, and V-types that do not use chlorofluorocarbons, and those equipped with a Stirling refrigeration engine as a refrigerator are attracting attention. In this refrigerator, the cold heat of the cold head of the Stirling refrigeration engine is transmitted to the low-temperature evaporator via the secondary refrigerant, and the cold air generated by the low-temperature evaporator is supplied into the refrigerator (for example, JP 2002-221384 A (see Patent Document 1).
特許文献 1 :特開 2002— 221384号公報  Patent Document 1: JP 2002-221384 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかし、従来の冷却機器では、スターリング冷凍エンジンの冷却能力が大きい場合 、二次冷媒が凍結し、スターリング冷凍エンジンのコールドヘッドの冷熱が低温側蒸 発器に伝達されなくなり、冷却庫内が冷却されなくなるという問題がある。  [0003] However, in the conventional cooling device, when the cooling capacity of the Stirling refrigeration engine is large, the secondary refrigerant freezes and the cold heat of the cold head of the Stirling refrigeration engine is not transmitted to the low-temperature side evaporator, There is a problem that it will not be cooled.
[0004] また、スターリング冷凍エンジンは、コールドヘッドが高温の時には出力を上げるこ とができないといった特性を有する。このため、たとえば冷却庫の電源投入時、急速 冷凍運転モードの切換時などのコールドヘッドが高温の場合であっても、急速に庫 内を冷却することが望まれる。  [0004] Further, the Stirling refrigeration engine has a characteristic that the output cannot be increased when the cold head is at a high temperature. For this reason, it is desirable to cool the inside of the refrigerator rapidly even when the cold head is at a high temperature, for example, when the refrigerator is turned on or when the quick freezing operation mode is switched.
[0005] この発明は上述した問題点を解決するためになされたもので、この発明の目的の 1 つは、スターリング冷凍エンジンが過冷却となる前にスターリング冷凍エンジンが過冷 却となるのを防止することが可能な冷却庫を提供することである。  [0005] The present invention was made to solve the above-described problems, and one of the objects of the present invention is that the Stirling refrigeration engine is overcooled before the Stirling refrigeration engine is overcooled. It is to provide a refrigerator that can be prevented.
[0006] この発明の他の目的は、庫内を冷却する効率を向上した冷却庫を提供することで ある。  [0006] Another object of the present invention is to provide a refrigerator having improved efficiency for cooling the interior of the refrigerator.
課題を解決するための手段 [0007] 上述した目的を達成するためにこの発明のある局面によれば、冷却庫は、スターリ ング冷凍エンジンで庫内を冷却する冷却庫であって、スターリング冷凍エンジンの過 冷却危惧状態を検出する状態検出部と、状態検出部による過冷却危惧状態の検出 に基づきスターリング冷凍エンジンが過冷却となるのを防止する過冷却防止部とを備 える。 Means for solving the problem [0007] In order to achieve the above-described object, according to one aspect of the present invention, the refrigerator is a refrigerator that cools the interior of the refrigerator with a Stirling refrigeration engine, and detects an overcooled state of the Stirling refrigeration engine. And a supercooling prevention unit that prevents the Stirling refrigeration engine from being overcooled based on the detection of the overcooled state by the state detection unit.
[0008] この発明に従えば、スターリング冷凍エンジンが過冷却となる前にスターリング冷凍 エンジンが過冷却となることを回避することが可能な冷却庫を提供できる。  [0008] According to the present invention, it is possible to provide a refrigerator capable of avoiding that the Stirling refrigeration engine is overcooled before the Stirling refrigeration engine is overcooled.
[0009] 好ましくは、冷却庫の冷却室に設けられた扉の開閉状態を検出する扉状態検出部 と、スターリング冷凍エンジンによって冷やされた冷気を庫内に供給する冷却ファンと 、扉状態検出部により扉が開状態にあることが検出されている間、冷却ファンを停止 させる冷却ファン制御部とをさらに備え、状態検出部は、扉状態検出部による扉の開 状態が所定時間経過したことを検出する。  [0009] Preferably, a door state detection unit that detects an open / closed state of a door provided in a cooling chamber of the refrigerator, a cooling fan that supplies cold air cooled by a Stirling refrigeration engine, and a door state detection unit And a cooling fan control unit that stops the cooling fan while the door is detected to be open, and the state detection unit detects that the door has been opened for a predetermined time by the door state detection unit. To detect.
[0010] この発明に従えば、扉の開状態が所定時間経過したことが検出される。冷却ファン は、扉が開状態にある間は停止するので、その間低温側冷却器周辺の空気が停滞 する。このため、スターリング冷凍エンジンが駆動しつづけると二次冷媒の温度が低 下する。このため、冷却ファンが停止している時間に基いて二次冷媒が凍結する点 前の状態を検出することができる。  According to the present invention, it is detected that the door has been opened for a predetermined time. Since the cooling fan stops while the door is open, the air around the cooler cooler stagnates during that time. For this reason, if the Stirling refrigeration engine continues to drive, the temperature of the secondary refrigerant will decrease. For this reason, the state just before the secondary refrigerant freezes can be detected based on the time when the cooling fan is stopped.
[0011] 好ましくは、冷却庫は、断熱材で仕切られ、それぞれが開閉扉を有する第 1の冷却 室と第 2の冷却室とを含み、冷却ファンは、スターリング冷凍エンジンによって冷やさ れた冷気を第 1の冷却室に供給し、スターリング冷凍エンジンによって冷やされた冷 気を第 2の冷却室に導くための送風路と、送風路に設けられ、スターリング冷凍ェン ジンによって冷やされた冷気を遮断するための遮断部と、スターリング冷凍エンジン によって冷やされた冷気を送風路に送風する送風ファンとをさらに備え、過冷却防止 部は、扉状態検出部により第 1の冷却室の扉の閉状態および第 2の冷却室の扉の開 状態が検出された場合は遮断部に送風路を遮断させるとともに冷却ファンの停止を 解除して駆動させ、扉状態検出部により第 1の冷却室の扉の開状態および第 2の冷 却室の扉の閉状態が検出された場合は、遮断部に送風路の遮断を解除させるととも に送風ファンを駆動させる。 [0012] この発明に従えば、第 1の冷却室の扉の閉状態および第 2の冷却室の扉の開状態 が検出された場合は送風路が遮断されるとともに冷却ファンが駆動され、第 1の冷却 室の扉の開状態および第 2の冷却室の扉の閉状態が検出された場合は送風路の遮 断が解除されるとともに送風ファンが駆動される。このため、第 1の冷却室の扉が閉じ られた状態で第 2の冷却室の扉が開かれた場合には、スターリング冷凍エンジンによ つて冷やされた空気が第 1の冷却室に供給され、第 2の冷却室の扉が閉じられた状 態で第 1の冷却室の扉が開かれた場合には、スターリング冷凍エンジンによって冷や された空気が第 2の冷却室に供給される。第 1の扉と第 2の扉のいずれが開かれた場 合でも、スターリング冷凍エンジンによって冷やされた空気を対流させるので、スター リング冷凍エンジンが過冷却となるのを防止することができる。また、扉が開かれた冷 却室に送込まれる冷気を少なくできるので、庫内の冷気が外部に漏れ出すのを防止 することができる。 [0011] Preferably, the refrigerator includes a first cooling chamber and a second cooling chamber, each of which is partitioned by a heat insulating material and has an opening / closing door, and the cooling fan receives cold air cooled by a Stirling refrigeration engine. Supplying air to the first cooling chamber and guiding the air cooled by the Stirling refrigeration engine to the second cooling chamber, and the cooling air provided in the air passage and cooled by the Stirling refrigeration engine is shut off And a blower fan that blows cool air cooled by the Stirling refrigeration engine to the air passage, and the overcooling prevention unit is configured to detect whether the door of the first cooling chamber is closed by the door state detection unit. When the opening state of the second cooling chamber door is detected, the air blocking passage is blocked by the blocking section and the cooling fan is released and driven, and the door state detecting section opens the first cooling chamber door. If the closed state of the door of the state and the second cold 却室 is detected, it drives the blower fan together when to release the blocking of the air passage to the blocking portion. [0012] According to the present invention, when the closed state of the first cooling chamber door and the open state of the second cooling chamber door are detected, the air passage is blocked and the cooling fan is driven, When the open state of the cooling chamber door 1 and the closed state of the second cooling chamber door are detected, the air passage is unblocked and the blower fan is driven. Therefore, when the second cooling chamber door is opened with the first cooling chamber door closed, the air cooled by the Stirling refrigeration engine is supplied to the first cooling chamber. When the door of the first cooling chamber is opened while the door of the second cooling chamber is closed, the air cooled by the Stirling refrigeration engine is supplied to the second cooling chamber. Regardless of whether the first door or the second door is opened, the air cooled by the Stirling refrigeration engine is convected, so that the Stirling refrigeration engine can be prevented from being overcooled. In addition, since the cool air sent to the cooling chamber with the door open can be reduced, it is possible to prevent the cool air inside the cabinet from leaking outside.
[0013] 好ましくは、冷却庫は、スターリング冷凍エンジンに形成される低温部から二次冷媒 を介して冷熱を受ける低温側蒸発器をさらに備える。状態検出部は、低温部、低温 側蒸発器または低温側蒸発器と対をなす低温側凝縮器 (低温側蒸発器と低温側凝 縮器との間で二次冷媒を循環させる二次冷媒循環回路)の温度を検出する温度検 出部を含み、温度検出部により検出された温度が所定温度を下回ったことを検出す る。  [0013] Preferably, the refrigerator further includes a low temperature side evaporator that receives cold heat from a low temperature portion formed in the Stirling refrigeration engine via a secondary refrigerant. The state detection unit is a low-temperature part, a low-temperature side evaporator or a low-temperature side condenser that is paired with a low-temperature side evaporator (secondary refrigerant circulation that circulates secondary refrigerant between the low-temperature side evaporator and the low-temperature side condenser) A temperature detection unit for detecting the temperature of the circuit), and detects that the temperature detected by the temperature detection unit has fallen below a predetermined temperature.
[0014] この発明に従えば、低温部、二次冷媒循環回路 (代表的には低温側蒸発器または 低温側凝縮器)の温度が所定温度を下回ったことが検出される。このため、スターリン グ冷凍エンジンが過冷却であることを検出することができる。  According to the present invention, it is detected that the temperature of the low temperature part and the secondary refrigerant circulation circuit (typically, the low temperature side evaporator or the low temperature side condenser) is below a predetermined temperature. For this reason, it can be detected that the Stirling refrigeration engine is supercooled.
[0015] 好ましくは、凍結防止部は、スターリング冷凍エンジンを制御して停止させる停止制 御を行なう前に、停止制御と異なる制御であってスターリング冷凍エンジンが過冷却 となるのを防止する過冷却防止制御を行なう。  [0015] Preferably, the anti-freezing unit is a control different from the stop control and performs a supercooling for preventing the Stirling refrigeration engine from being overcooled before performing the stop control for controlling and stopping the Stirling refrigeration engine. Perform prevention control.
[0016] この発明に従えば、スターリング冷凍エンジンが過冷却となるのを防止するために スターリング冷凍エンジンを停止させる停止制御を行なう前に、停止制御と異なる過 冷却防止制御を行なうことによってスターリング冷凍エンジンが過冷却となるのを防 止する。このため、過冷却防止制御によってスターリング冷凍エンジンが過冷却とな るのを防止できた場合は、スターリング冷凍エンジンの停止制御を行なう必要がなく なる。その結果、スターリング冷凍エンジンを極力停止させないようにすることができる 。これにより、冷却庫の信頼性を向上させることができる。 [0016] According to the present invention, the Stirling refrigeration engine is controlled by performing the supercooling prevention control different from the stop control before performing the stop control for stopping the Stirling refrigeration engine in order to prevent the Stirling refrigeration engine from being overcooled. Prevent the engine from overcooling. For this reason, the Stirling refrigeration engine is overcooled by the supercooling prevention control. If this can be prevented, it is not necessary to perform stop control of the Stirling refrigeration engine. As a result, it is possible to prevent the Stirling refrigeration engine from being stopped as much as possible. Thereby, the reliability of a refrigerator can be improved.
[0017] 好ましくは、所定温度は、スターリング冷凍エンジンが過冷却となる温度よりも高い 第 1の温度と、スターリング冷凍エンジンが過冷却となる温度よりも高く第 1の温度より も低い第 2の温度とを含み、過冷却防止部は、状態検出部により第 1の温度を下回つ たことが検出されたときに過冷却防止制御を行い、さらに、状態検出部により第 2の温 度を下回ったことが検出されたときに停止制御を行なう。  [0017] Preferably, the predetermined temperature is a first temperature that is higher than a temperature at which the Stirling refrigeration engine is supercooled, and a second temperature that is higher than the temperature at which the Stirling refrigeration engine is supercooled and lower than the first temperature. The supercooling prevention unit performs supercooling prevention control when the state detection unit detects that the temperature is below the first temperature, and further, the state detection unit sets the second temperature. Stop control is performed when it is detected that the value has fallen below.
[0018] この発明に従えば、まず、スターリング冷凍エンジンが過冷却となる温度よりも高い 第 1の温度を下回ったときに過冷却防止制御が行なわれ、さらに、スターリング冷凍 エンジンが過冷却となる温度よりも高く第 1の温度よりも低い第 2の温度を下回ったと きに停止制御が行なわれる。このため、過冷却防止制御によって第 2の温度を下回る ことがなくスターリング冷凍エンジンが過冷却となるのを防止できた場合は、スターリ ング冷凍エンジンの停止制御を行なう必要がなくなる。その結果、スターリング冷凍ェ ンジンを極力停止させな 、ようにすることができる。  [0018] According to the present invention, first, the supercooling prevention control is performed when the temperature is lower than the first temperature higher than the temperature at which the Stirling refrigeration engine is supercooled, and the Stirling refrigeration engine is further supercooled. Stop control is performed when the temperature falls below a second temperature that is higher than the temperature and lower than the first temperature. Therefore, if the supercooling prevention control can prevent the Stirling refrigeration engine from being overcooled without falling below the second temperature, the Stirling refrigeration engine stop control need not be performed. As a result, the Stirling freezing engine can be stopped as much as possible.
[0019] 好ましくは、温度検知部により温度が検出されるときに、温度検出部による温度の 検出の異常を検知する温度検出異常検知部をさらに備える。  [0019] Preferably, the apparatus further includes a temperature detection abnormality detection unit that detects an abnormality in temperature detection by the temperature detection unit when the temperature detection unit detects the temperature.
[0020] この発明に従えば、温度を検出するときに温度の検出の異常を検知するので、温 度の誤検出を防止することができる。このため、所定温度を下回ったことの誤検出に 基づ 、てスターリング冷凍エンジンを停止させな 、ようにすることができる。  [0020] According to the present invention, since temperature detection abnormality is detected when temperature is detected, erroneous detection of temperature can be prevented. For this reason, the Stirling refrigeration engine can be prevented from being stopped based on the erroneous detection that the temperature is lower than the predetermined temperature.
[0021] 好ましくは、低温側蒸発器によって冷やされた冷気を庫内に供給する冷却ファンを さらに備え、過冷却防止部は、冷却ファンを駆動させる、または、冷却ファンの風量を 増加させる。  [0021] Preferably, a cooling fan that supplies cold air cooled by the low-temperature side evaporator to the interior is further provided, and the overcooling prevention unit drives the cooling fan or increases the air volume of the cooling fan.
[0022] この発明に従えば、冷却ファンが駆動される、または、冷却ファンの風量が増加され るので、低温側蒸発器周辺の空気が対流する。このため、低温側蒸発器に新たに送 込まれた空気が二次冷媒に熱を与えるので、二次冷媒の温度が上昇する。その結果 、スターリング冷凍エンジンが過冷却となるのを防止することができる。また、冷却ファ ンにより庫内の空気が対流するので、スターリング冷凍エンジンによって庫内の空気 を効率的に冷却することができる。その結果、スターリング冷凍エンジンの COP (Coef ficient Of Performance、成績係数)を向上させることができる。 According to the present invention, the cooling fan is driven or the air volume of the cooling fan is increased, so that air around the low-temperature side evaporator is convected. For this reason, since the air newly sent to the low temperature side evaporator gives heat to the secondary refrigerant, the temperature of the secondary refrigerant rises. As a result, the Stirling refrigeration engine can be prevented from being overcooled. In addition, since the air in the cabinet is convected by the cooling fan, the air in the cabinet is driven by the Stirling refrigeration engine. Can be efficiently cooled. As a result, the COP (Coef ficient Of Performance, coefficient of performance) of the Stirling refrigeration engine can be improved.
[0023] 好ましくは、過冷却防止部は、状態検出部により第 1の温度を下回ったことが検出さ れているときに冷却ファンを駆動させまたは冷却ファンの風量を増カロさせ、さらに、冷 却ファンを駆動させまたは冷却ファンの風量を増加させて力 所定時間経過した後 に状態検出部により第 1の温度を下回ったことが検出されているときにスターリング冷 凍エンジンを制御して冷却能力を低下させる。  [0023] Preferably, the overcooling prevention unit drives the cooling fan or increases the air volume of the cooling fan when it is detected by the state detection unit that the temperature is lower than the first temperature. The cooling power is controlled by controlling the Stirling refrigeration engine when the condition detection unit detects that the temperature has dropped below the first temperature after a predetermined time has elapsed by driving the rejection fan or increasing the air volume of the cooling fan. Reduce.
[0024] この発明に従えば、二次冷媒に熱が与えられているにも関わらず、二次冷媒の温 度が上昇せず、第 1の温度を下回っている場合には、スターリング冷凍エンジンの冷 却能力を低下させるように制御する。このため、二次冷媒の冷却が抑えられるので、 二次冷媒の温度が上昇する。その結果、スターリング冷凍エンジンが過冷却となるの を防止することができる。  [0024] According to the present invention, when the temperature of the secondary refrigerant does not increase and is lower than the first temperature even though heat is given to the secondary refrigerant, the Stirling refrigeration engine Control to reduce the cooling capacity. For this reason, since the cooling of the secondary refrigerant is suppressed, the temperature of the secondary refrigerant rises. As a result, the Stirling refrigeration engine can be prevented from being overcooled.
[0025] 好ましくは、過冷却防止部は、冷却ファンの回転数を制御する回転数制御部を備 え、過冷却防止部は、状態検出部により第 1の温度を下回ったことが検出されている ときに冷却ファンの回転数を回転能力の最大限にして冷却ファンを駆動させ、さらに 、冷却ファンの回転数を冷却ファンの回転能力の最大限にして駆動させて力 所定 時間経過した後に状態検出部により第 1の温度を下回ったことが検出されているとき にスターリング冷凍エンジンを制御して冷却能力を低下させる。  [0025] Preferably, the supercooling prevention unit includes a rotation speed control unit that controls the rotation speed of the cooling fan, and the supercooling prevention unit is detected by the state detection unit to have fallen below the first temperature. When the cooling fan is driven with the rotational speed of the cooling fan being maximized and the cooling fan is driven with the rotational speed of the cooling fan being maximized with the rotational capacity of the cooling fan. When the detection unit detects that the temperature is lower than the first temperature, the Stirling refrigeration engine is controlled to reduce the cooling capacity.
[0026] この発明に従えば、冷却ファンが回転数を回転能力の最大限にして駆動されるの で、回転数が最大限でないときと比較して、スターリング冷凍エンジンが過冷却となる のをより防止することができる。また、回転数を最大限にすることにより冷却ファンによ つて庫内の空気がさらに対流するので、スターリング冷凍エンジンの COPをより向上 させることがでさる。 [0026] According to the present invention, since the cooling fan is driven with the maximum rotational speed, the Stirling refrigeration engine is overcooled compared to when the rotational speed is not maximum. More can be prevented. In addition, since the air in the cabinet is further convected by the cooling fan by maximizing the rotation speed, the COP of the Stirling refrigeration engine can be further improved.
[0027] また、二次冷媒に熱が与えられているにも関わらず、二次冷媒の温度が上昇せず、 第 1の温度を下回っている場合には、スターリング冷凍エンジンの冷却能力を低下さ せるように制御する。このため、二次冷媒の冷却が抑えられるので、二次冷媒の温度 が上昇する。その結果、スターリング冷凍エンジンが過冷却となるのを防止することが できる。この凍結防止制御は扉が閉状態にあるときに行なわれるのが好ましい。扉が 開状態にあるときに、冷却ファンを駆動させまたは冷却ファンの風量を増カロさせた場 合、庫内の空気が外部に漏れ出し、その後、扉が閉状態となったときに、庫内の空気 を再度冷却するために、スターリング冷凍エンジンの冷却能力を上昇させる必要があ るカゝらである。 [0027] If the temperature of the secondary refrigerant does not increase and is lower than the first temperature even though heat is given to the secondary refrigerant, the cooling capacity of the Stirling refrigeration engine is reduced. Control so that For this reason, since the cooling of the secondary refrigerant is suppressed, the temperature of the secondary refrigerant rises. As a result, the Stirling refrigeration engine can be prevented from being overcooled. This anti-freezing control is preferably performed when the door is closed. The door If the cooling fan is driven or the air flow of the cooling fan is increased in the open state, the air in the cabinet leaks to the outside, and then the door is closed when the door is closed. They need to increase the cooling capacity of the Stirling refrigeration engine to cool the air again.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]本発明に係る冷却庫の一実施形態を示す概略断面図である。  FIG. 1 is a schematic cross-sectional view showing an embodiment of a refrigerator according to the present invention.
[図 2]本実施形態における冷却庫の冷気の流れを模式的に示す図である。  FIG. 2 is a diagram schematically showing the flow of cool air in a refrigerator in the present embodiment.
[図 3]第 1の実施の形態における冷却庫の凍結防止機能を示す機能ブロック図であ る。  FIG. 3 is a functional block diagram showing a freeze prevention function of the refrigerator in the first embodiment.
[図 4]第 1の実施の形態における冷却庫で実行される凍結防止処理の流れを示すフ ローチャートである。  FIG. 4 is a flowchart showing the flow of anti-freezing processing executed in the refrigerator in the first embodiment.
[図 5]第 1の実施の形態における冷却庫で実行される変形された凍結防止処理の流 れを示すフローチャートである。 FIG. 5 is a flowchart showing a flow of a modified anti-freezing process executed in the refrigerator in the first embodiment.
[図 6]第 2の実施の形態における冷却庫の凍結防止機能を示す機能ブロック図であ る。  FIG. 6 is a functional block diagram showing a freeze prevention function of the refrigerator in the second embodiment.
[図 7]第 2の実施の形態における冷却庫で実行される凍結防止処理の流れを示すフ ローチャートである。  FIG. 7 is a flowchart showing a flow of anti-freezing processing executed in the refrigerator in the second embodiment.
[図 8]第 2の実施の形態における冷却庫で実行される変形された凍結防止処理の流 れを示すフローチャートである。 FIG. 8 is a flowchart showing a flow of a modified anti-freezing process executed in the refrigerator in the second embodiment.
[図 9]第 3の実施の形態における冷却庫の凍結防止機能を示す機能ブロック図であ る。  FIG. 9 is a functional block diagram showing a freeze prevention function of the refrigerator in the third embodiment.
[図 10]第 3の実施の形態における冷却庫で実行される凍結防止処理の流れを示すフ ローチャートである。 符号の説明  FIG. 10 is a flowchart showing a flow of anti-freezing processing executed in the refrigerator in the third embodiment. Explanation of symbols
[0029] 1 冷却庫、 2 冷却ファン、 10 ハウジング、 11 第 2の冷却室、 12 第 1の冷却室 、 14 上部扉、 15 下部扉、 17 パッキング、 18 棚、 19 機械室、 20, 21 ダクト、 20A, 20B 冷気吹出口、 22 冷却ファン、 30 スターリング冷凍エンジン、 40 低 温側循環回路、 41 低温側凝縮器、 42 低温側蒸発器、 50 高温側自然循環回路 、 51 高温側蒸発器、 52 高温側凝縮器、 61 ダンバ、 62 送風ファン、 81 温度 センサ、 82 上部扉開閉検出スィッチ、 83 下部扉開閉検出スィッチ、 84 扉開閉 検出スィッチ、 90 制御部、 91 表示部。 [0029] 1 refrigerator, 2 cooling fans, 10 housing, 11 second cooling chamber, 12 first cooling chamber, 14 upper door, 15 lower door, 17 packing, 18 shelves, 19 machine room, 20, 21 duct 20A, 20B Cold air outlet, 22 Cooling fan, 30 Stirling refrigeration engine, 40 Low temperature side circulation circuit, 41 Low temperature side condenser, 42 Low temperature side evaporator, 50 High temperature side natural circulation circuit , 51 High-temperature side evaporator, 52 High-temperature side condenser, 61 Damper, 62 Blower, 81 Temperature sensor, 82 Upper door open / close detection switch, 83 Lower door open / close detection switch, 84 Door open / close detection switch, 90 Control unit, 91 Display Department.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、図面を参照しつつ本発明の実施の形態について説明する。以下の説明で は、同一の部品は同一の符号を付してある。それらの名称および機能も同じである。 したがってそれらにつ!、ての詳細な説明は繰返さな!/、。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, I won't repeat the detailed explanation!
[0031] <第 1の実施の形態 >  [0031] <First embodiment>
図 1は、本発明に係る冷却庫の一実施形態を示す概略断面図である。図 2は、本 実施形態における冷却庫の冷気の流れを模式的に示す図である。図 1および図 2を 参照して、冷却庫 1は、食品保存用であり、断熱構造のハウジング 10を備えてなる。 ハウジング 10の内部には、上下 2段に仕切られた冷却室 11, 12が設けられている。 冷却室 11, 12は、各々ハウジング 10の正面側(図 1では左側)に開口部を有し、該 開口部は開閉自在の上部扉 14および下部扉 15によって閉ざされている。上部扉 14 および下部扉 15は、断熱材を含み、それらの裏面には、冷却室 11, 12の開口部を それぞれ囲む形のパッキング 17が装着されている。冷却室 11, 12の内部には、収 納する食品の種類に適合した棚 18が適宜設置されている。  FIG. 1 is a schematic cross-sectional view showing an embodiment of a refrigerator according to the present invention. FIG. 2 is a diagram schematically showing the flow of cool air in the refrigerator in the present embodiment. With reference to FIG. 1 and FIG. 2, the refrigerator 1 is for food preservation and includes a housing 10 having a heat insulating structure. Inside the housing 10, cooling chambers 11 and 12 are provided that are partitioned into two upper and lower stages. Each of the cooling chambers 11 and 12 has an opening on the front side (left side in FIG. 1) of the housing 10, and the opening is closed by an openable and closable upper door 14 and lower door 15. The upper door 14 and the lower door 15 include a heat insulating material, and packings 17 each having a shape surrounding the openings of the cooling chambers 11 and 12 are mounted on the back surfaces thereof. Inside the cooling chambers 11 and 12, shelves 18 suitable for the type of food to be stored are installed as appropriate.
[0032] ハウジング 10の上面から背面、さらに下面にかけては、スターリング冷凍エンジン 3 0を中心要素とする冷却システムおよび放熱システムが配設されている。なお、ハウ ジング 10の上背面の一角には機械室 19が設けられており、スターリング冷凍ェンジ ン 30は該機械室 19に設置されて 、る。  [0032] A cooling system and a heat dissipation system having a Stirling refrigeration engine 30 as a central element are disposed from the upper surface to the rear surface and further to the lower surface of the housing 10. A machine room 19 is provided at one corner of the upper and rear surfaces of the housing 10, and the Stirling refrigeration engine 30 is installed in the machine room 19.
[0033] スターリング冷凍エンジン 30の一部は駆動時に低温部(以下コールドヘッドと称す) を形成する。該コールドヘッドには、低温側凝縮器 41が取付けられている。また冷却 室 12の奥には、低温側蒸発器 42が設置されている。低温側凝縮器 41と低温側蒸発 器 42は冷媒配管を介して接続されており、両者によって低温側循環回路 (二次冷媒 循環回路) 40が構成されている。低温側循環回路 40には、 COなどの自然冷媒が  A part of the Stirling refrigerating engine 30 forms a low temperature part (hereinafter referred to as a cold head) when driven. A low temperature side condenser 41 is attached to the cold head. In the back of the cooling chamber 12, a low-temperature evaporator 42 is installed. The low temperature side condenser 41 and the low temperature side evaporator 42 are connected via a refrigerant pipe, and a low temperature side circulation circuit (secondary refrigerant circulation circuit) 40 is configured by both. The low-temperature side circulation circuit 40 contains natural refrigerant such as CO.
2  2
封入されており、低温側蒸発器 42および低温側凝縮器 41で熱の授受が行なわれる [0034] ノ、ウジング 10の内部には、低温側蒸発器 42によって得られた冷気を冷却室 11, 1 2へ分配するためのダクト 20, 21が設けられている。ダクト 20は冷却室 (第 1の冷却 室) 12連通する冷気吹出口 20Aを適所に有してなる。ダクト 20内には、冷却ファン 2 2が適所に設置されている。冷却ファン 22は、ダクト 20内の冷気を強制的に冷却室 1 2へ送り出す。また、冷却ファン 22が駆動すると、低温側蒸発器 42周辺の空気を対 流させる。これにより、低温側蒸発器 42には、比較的温度の高い別の空気が供給さ れる。 It is enclosed and heat is transferred by the low-temperature side evaporator 42 and the low-temperature side condenser 41. [0034] Inside the housing 10, ducts 20 and 21 are provided for distributing the cold air obtained by the low temperature side evaporator 42 to the cooling chambers 11 and 12. The duct 20 has a cooling air outlet (first cooling chamber) 12 having a cold air outlet 20A communicating therewith in a proper position. A cooling fan 22 is installed in the duct 20 at an appropriate place. The cooling fan 22 forcibly sends the cool air in the duct 20 to the cooling chamber 12. Further, when the cooling fan 22 is driven, the air around the low temperature side evaporator 42 is convected. As a result, another air having a relatively high temperature is supplied to the low temperature side evaporator 42.
[0035] ダクト 21は冷却室 (第 2の冷却室) 11に連通する冷気吹出口 21Aを適所に有して なる。ダクト 21内には、送風ファン 62が適所に設置されている。送風ファン 62は、ダ タト 21に送風し、ダクト 21内の冷気を強制的に冷却室 11へ送り出す。また、ダクト 21 の低温側蒸発器 42側の一端には、開閉自在なダンバ 61が設置される。ダンバ 61が 閉じた状態では、ダクト 21とダクト 20とが分離される。したがって、ダクト 20内の冷気 は、ダンバ 61により遮断されて、ダクト 21内に移動するのが妨げられる。ダンバ 61が 開いた状態では、ダクト 21とダクト 20とが連通する。したがって、ダンバ 61が開いた 状態で送風ファン 62が駆動すると、ダクト 20内の冷気がダクト 21内に流れ込み、そ の冷気が強制的に冷却室 11に送込まれる。  The duct 21 has a cold air outlet 21 A communicating with the cooling chamber (second cooling chamber) 11 at an appropriate place. A blower fan 62 is installed in the duct 21 at an appropriate place. The blower fan 62 blows air to the data 21 and forcibly sends the cool air in the duct 21 to the cooling chamber 11. In addition, an openable / closable damper 61 is installed at one end of the duct 21 on the low temperature side evaporator 42 side. When the damper 61 is closed, the duct 21 and the duct 20 are separated. Therefore, the cold air in the duct 20 is blocked by the damper 61 and is prevented from moving into the duct 21. When the damper 61 is open, the duct 21 and the duct 20 communicate with each other. Therefore, when the blower fan 62 is driven with the damper 61 open, the cold air in the duct 20 flows into the duct 21 and the cold air is forcibly sent to the cooling chamber 11.
[0036] また、ダンバ 61が開いた状態では、冷却ファン 22を駆動することなぐ送風ファン 6 2を駆動することも可能である。この状態でもダクト 20内の冷気がダクト 21内に流れ 込み、その冷気が強制的に冷却室 11に送込まれる。また、送風ファン 62が駆動する と、低温側蒸発器 42周辺の空気を対流させる。これにより、低温側蒸発器 42には、 比較的温度の高!、別の空気が供給される。  In the state where the damper 61 is opened, it is possible to drive the blower fan 62 without driving the cooling fan 22. Even in this state, the cold air in the duct 20 flows into the duct 21, and the cold air is forced into the cooling chamber 11. Further, when the blower fan 62 is driven, the air around the low temperature side evaporator 42 is convected. As a result, the low temperature side evaporator 42 is supplied with a relatively high temperature and another air.
[0037] さらに、ダンバ 61が開いた状態では、冷却ファン 22と送風ファン 62とを駆動するこ とも可能である。この状態では、ダクト 20内の冷気は、冷却ファン 22により冷却室 12 に送込まれるものと、送風ファン 62によりダクト 21を経由して冷却室 11に送り込まれ るものとがある。この場合でも、低温側蒸発器 42周辺の空気を対流させ、低温側蒸 発器 42には、比較的温度の高い別の空気が供給される。  [0037] Further, when the damper 61 is open, the cooling fan 22 and the blower fan 62 can be driven. In this state, the cool air in the duct 20 may be sent to the cooling chamber 12 by the cooling fan 22, or may be sent to the cooling chamber 11 via the duct 21 by the blower fan 62. Even in this case, the air around the low temperature side evaporator 42 is convected, and another air having a relatively high temperature is supplied to the low temperature side evaporator 42.
[0038] なお、本図には示していないが、ハウジング 10内部には、冷却室 11, 12から空気 を回収するダクトも設けられている。該ダクトは低温側蒸発器 42の下方に吹出口を有 し、冷却されるべき空気を図 1の破線矢印のように低温側蒸発器 42に供給する。 Although not shown in the figure, a duct for collecting air from the cooling chambers 11 and 12 is also provided inside the housing 10. The duct has a blower outlet below the low-temperature evaporator 42. Then, the air to be cooled is supplied to the low temperature side evaporator 42 as indicated by the broken line arrow in FIG.
[0039] スターリング冷凍エンジン 30の他の一部は、駆動時にウォームヘッド (高温部)を形 成する。該ウォームヘッドには、高温側蒸発器 51が取付けられている。また、ハウジ ング 10の上面には、庫外環境に放熱を行なう高温側凝縮器 52と送風ファン 53が設 けられている。高温側蒸発器 51と高温側凝縮器 52は冷媒配管を介して接続されて おり、両者によって高温側自然循環回路 50が構成されている。高温側自然循環回 路 50には、水(水溶液を含む)あるいは炭化水素系の自然冷媒が密封されており、 該冷媒は高温側自然循環回路 50内を自然循環する。  [0039] The other part of the Stirling refrigerating engine 30 forms a worm head (high temperature part) when driven. A high temperature side evaporator 51 is attached to the worm head. Further, on the upper surface of the housing 10, a high-temperature side condenser 52 and a blower fan 53 for dissipating heat to the outside environment are provided. The high temperature side evaporator 51 and the high temperature side condenser 52 are connected via a refrigerant pipe, and a high temperature side natural circulation circuit 50 is configured by both. The high temperature side natural circulation circuit 50 is sealed with water (including an aqueous solution) or a hydrocarbon-based natural refrigerant, and the refrigerant naturally circulates in the high temperature side natural circulation circuit 50.
[0040] 続、て、上記構成力もなる冷却庫 1の動作にっ 、て説明を行なう。上記構成からな る冷却庫 1において、スターリング冷凍エンジン 30が駆動されると、コールドヘッドの 温度は低下する。したがって、低温側凝縮器 41は冷却され、内部の二次冷媒 (以下 省略して冷媒と称す)は凝縮される。  [0040] Next, the operation of the refrigerator 1 having the above-described structural force will be described. When the Stirling refrigeration engine 30 is driven in the refrigerator 1 having the above-described configuration, the temperature of the cold head decreases. Therefore, the low temperature side condenser 41 is cooled, and the internal secondary refrigerant (hereinafter abbreviated as refrigerant) is condensed.
[0041] 低温側凝縮器 41で凝縮された冷媒は、低温側循環回路 40を通って低温側蒸発 器 42に流れ込む。低温側蒸発器 42に流れ込んだ冷媒は、低温側蒸発器 42の外側 を通過する気流の熱で蒸発し、低温側蒸発器 42の表面温度を下げる。したがって、 低温側蒸発器 42を通り抜ける空気は冷気となり、ダクト 20の冷気吹出口 20Aから冷 却室 11に吹出し、また、ダクト 21の冷気吹出口 21Aに吹出す。これにより、冷却室 1 1, 12の温度を下げる。その後、冷却室 11, 12内の空気は図示しないダクトを通って 低温側蒸発器 42に還流する。  [0041] The refrigerant condensed in the low temperature side condenser 41 flows into the low temperature side evaporator 42 through the low temperature side circulation circuit 40. The refrigerant flowing into the low temperature side evaporator 42 is evaporated by the heat of the airflow passing outside the low temperature side evaporator 42 and the surface temperature of the low temperature side evaporator 42 is lowered. Therefore, the air passing through the low-temperature side evaporator 42 becomes cold air, and is blown out from the cold air outlet 20A of the duct 20 to the cooling chamber 11 and blown out to the cold air outlet 21A of the duct 21. Thereby, the temperature of the cooling chambers 11 and 12 is lowered. Thereafter, the air in the cooling chambers 11 and 12 returns to the low-temperature evaporator 42 through a duct (not shown).
[0042] なお、低温側蒸発器 42で蒸発した冷媒は、低温側循環回路 40を通って低温側凝 縮器 41に戻り、そこで熱を奪われて再び凝縮する。そして、上記した熱交換動作が 繰返される。  It should be noted that the refrigerant evaporated in the low temperature side evaporator 42 passes through the low temperature side circulation circuit 40 and returns to the low temperature side condenser 41, where it is deprived of heat and condensed again. Then, the heat exchange operation described above is repeated.
[0043] 一方、スターリング冷凍エンジン 30の駆動によって発熱する熱や、コールドヘッドに よって庫内から回収された熱は、排熱としてウォームヘッドから放熱される。したがつ て、高温側蒸発器 51は加熱され、内部の冷媒は蒸発する。  On the other hand, the heat generated by driving the Stirling refrigeration engine 30 and the heat recovered from the interior by the cold head are radiated from the worm head as exhaust heat. Therefore, the high temperature side evaporator 51 is heated and the internal refrigerant evaporates.
[0044] 高温側蒸発器 51で発熱した気相状態の冷媒は、高温側自然循環回路 50を通つ て、上方に設けられた高温側凝縮器 52に流れ込む。高温側凝縮器 52に流れ込ん だ冷媒は、送風ファン 53によって庫外から高温側凝縮器 52内に導入された気流に よって熱を奪われて凝縮する。なお、高温側凝縮器 52で凝縮した冷媒は高温側自 然循環回路 50を通って高温側蒸発器 51に戻り、そこで熱を受取って再び蒸発する 。そして、上記した熱交換動作が繰返される。 [0044] The gas phase refrigerant generated in the high temperature side evaporator 51 flows through the high temperature side natural circulation circuit 50 into the high temperature side condenser 52 provided above. The refrigerant that has flowed into the high-temperature side condenser 52 is converted into an airflow introduced into the high-temperature side condenser 52 from the outside by the blower fan 53. Therefore, it is deprived of heat and condensed. The refrigerant condensed in the high temperature side condenser 52 returns to the high temperature side evaporator 51 through the high temperature side natural circulation circuit 50, where it receives heat and evaporates again. Then, the heat exchange operation described above is repeated.
[0045] 図 3は、第 1の実施の形態における冷却庫の凍結防止機能を示す機能ブロック図 である。図 3を参照して、冷却庫 1は、冷却庫の全体を制御するための制御部 90と、 それに接続された温度センサ 81とを備える。制御部 90は、スターリング冷凍エンジン 30と、冷去 Pファン 22と、ダンパ 61と、送風ファン 62と接続される。  FIG. 3 is a functional block diagram showing the freeze prevention function of the refrigerator in the first embodiment. Referring to FIG. 3, the refrigerator 1 includes a control unit 90 for controlling the entire refrigerator, and a temperature sensor 81 connected thereto. The control unit 90 is connected to the Stirling refrigeration engine 30, the cooling P fan 22, the damper 61, and the blower fan 62.
[0046] 温度センサ 81は、低温側蒸発器 42、あるいは低温側循環回路 (代表的には低温 側凝縮器 41またはスターリング冷凍エンジン 30のコールドヘッド)の温度を検出する 。本実施の形態においては、低温側循環回路 40内の冷媒の温度を直接検出できれ ばよいが、直接検出するのに代えて、低温側蒸発器 42、低温側凝縮器 41またはスタ 一リング冷凍エンジン 30のコールドヘッドの温度を検出するようにしている。したがつ て、温度センサ 81は、低温側蒸発器 42、低温側凝縮器 41およびスターリング冷凍 エンジン 30のコールドヘッド!/、ずれの温度を検出するようにしてもょ 、が、好ましくは 、低温側凝縮器 41の温度であり、さらに好ましくはコールドヘッドの温度である。  [0046] The temperature sensor 81 detects the temperature of the low temperature side evaporator 42 or the low temperature side circulation circuit (typically, the low temperature side condenser 41 or the cold head of the Stirling refrigerating engine 30). In the present embodiment, it is sufficient that the temperature of the refrigerant in the low-temperature side circulation circuit 40 can be directly detected, but instead of the direct detection, the low-temperature side evaporator 42, the low-temperature side condenser 41, or the Stirling refrigeration is used. The temperature of the cold head of the engine 30 is detected. Therefore, the temperature sensor 81 may detect the cold head of the low temperature side evaporator 42, the low temperature side condenser 41, and the Stirling refrigeration engine 30! /, But the temperature of the deviation is preferably detected. It is the temperature of the side condenser 41, more preferably the temperature of the cold head.
[0047] 制御部 90は、スターリング冷凍エンジン 30を駆動制御する。スターリング冷凍ェン ジンは、その負荷を変動させて駆動することが可能である。スターリング冷凍エンジン は、負荷が大きい駆動では冷却能力が高ぐ負荷が小さい駆動では冷却能力が低い 。制御部 90は、冷却ファン 22および送風ファン 62の風量を制御する。また、制御部 90は、冷却ファン 22および送風ファン 62を駆動または停止の切換制御をするように してもよい。さらに、制御部 90は、ダンバ 61を開状態と閉状態との切換制御をする。  The control unit 90 controls the drive of the Stirling refrigeration engine 30. The Stirling refrigeration engine can be driven by changing its load. A Stirling refrigeration engine has a high cooling capacity when driving a heavy load and a low cooling capacity when driving a small load. The controller 90 controls the air volume of the cooling fan 22 and the blower fan 62. The control unit 90 may perform switching control for driving or stopping the cooling fan 22 and the blower fan 62. Further, the control unit 90 performs switching control of the damper 61 between an open state and a closed state.
[0048] 図 4は、第 1の実施の形態における冷却庫で実行される凍結防止処理の流れを示 すフローチャートである。図 4を参照して、冷却庫 1の制御部 90は、温度センサ 81か らスターリング冷凍エンジン 30のコールドヘッドの温度が入力される。制御部 90は、 コールドヘッドの温度が所定温度 Tより低 、か否かを判断する (ステップ S01)。真の 場合にはステップ S02へ進み、偽の場合には処理を終了する。所定の値 Tは、低温 側循環回路 40内の冷媒の凝固点から予め定められた値で、冷媒の凝固温度より 3 °C程度高い温度に設定してある。冷媒の温度は、コールドヘッドの温度と必ずしも一 致しないが、コールドヘッドの温度よりも低くなることはない。冷媒の温度とコールドへ ッドの温度との温度差 Dが分力 ている場合には、所定温度は、冷媒の凝固点に温 度差 Dを減算した値以上とすればょ ヽ。 FIG. 4 is a flowchart showing the flow of the freeze prevention process executed in the refrigerator in the first embodiment. Referring to FIG. 4, control unit 90 of refrigerator 1 receives the temperature of the cold head of Stirling refrigeration engine 30 from temperature sensor 81. The controller 90 determines whether or not the temperature of the cold head is lower than a predetermined temperature T (step S01). If true, the process proceeds to step S02. If false, the process is terminated. The predetermined value T is a value determined in advance from the freezing point of the refrigerant in the low-temperature side circulation circuit 40, and is set to a temperature about 3 ° C. higher than the freezing temperature of the refrigerant. The coolant temperature is not necessarily the same as the cold head temperature. I won't do it, but it won't be lower than the cold head temperature. If the temperature difference D between the refrigerant temperature and the cold head temperature is a component, the predetermined temperature should be equal to or greater than the value obtained by subtracting the temperature difference D from the freezing point of the refrigerant.
[0049] また、温度センサ 81が、低温側蒸発器 42または低温側凝縮器 41の温度を検出す る場合には、低温側蒸発器 42または低温側凝縮器 41の温度は、冷媒の温度と必ず しも一致しな!ヽが、冷媒の温度は低温側蒸発器 42または低温側凝縮器 41の温度よ りも高くなることはな ヽ。冷媒の温度と低温側蒸発器 42または低温側凝縮器 41の温 度との温度差 D1が分力つている場合には、所定温度は、冷媒の凝固点に温度差 D 1を加算した値以上とすればょ 、。  [0049] When the temperature sensor 81 detects the temperature of the low temperature side evaporator 42 or the low temperature side condenser 41, the temperature of the low temperature side evaporator 42 or the low temperature side condenser 41 is equal to the temperature of the refrigerant. It doesn't always match! However, the temperature of the refrigerant cannot be higher than the temperature of the low-temperature evaporator 42 or the low-temperature condenser 41. If the temperature difference D1 between the refrigerant temperature and the low-temperature side evaporator 42 or the low-temperature side condenser 41 is divided, the predetermined temperature is equal to or greater than the refrigerant freezing point plus the temperature difference D1. If you do.
[0050] ステップ S02では、スターリング冷凍エンジンを停止させる。これにより、冷媒が冷却 されなくなり、凍結することはない。  [0050] In step S02, the Stirling refrigeration engine is stopped. This prevents the refrigerant from being cooled and freezing.
[0051] なお、ステップ S02では、スターリング冷凍エンジンを停止するようにした力 スター リング冷凍エンジンを少ない負荷で駆動するようにしてもよい。この場合には、冷媒が 冷却されるけれども、冷媒の温度をその温度に維持する程度の負荷で駆動すれば、 冷媒が凍結するのを防止することができる。  [0051] In step S02, a force Stirling refrigeration engine that stops the Stirling refrigeration engine may be driven with a small load. In this case, although the refrigerant is cooled, it is possible to prevent the refrigerant from freezing if it is driven with a load sufficient to maintain the temperature of the refrigerant at that temperature.
[0052] <凍結防止処理の変形例 >  [0052] <Modification of antifreeze treatment>
図 5は、第 1の実施の形態における冷却庫で実行される変形された凍結防止処理 の流れを示すフローチャートである。図 5を参照して、冷却庫 1の制御部 90は、温度 センサ 81からスターリング冷凍エンジン 30のコールドヘッドの温度が入力される。制 御部 90は、コールドヘッドの温度が所定温度 Tより低いか否かを判断する (ステップ S 11)。真の場合にはステップ S12へ進み、偽の場合にはステップ S20に進む。  FIG. 5 is a flowchart showing a flow of the modified anti-freezing process executed in the refrigerator in the first embodiment. Referring to FIG. 5, control unit 90 of refrigerator 1 receives the temperature of the cold head of Stirling refrigeration engine 30 from temperature sensor 81. The control unit 90 determines whether or not the temperature of the cold head is lower than a predetermined temperature T (step S11). If true, proceed to step S12, and if false, proceed to step S20.
[0053] ステップ S 12では、冷却ファン 22が停止している力否かを判断する。冷却ファン 22 が停止して 、る場合はステップ S 13に進み、停止して ヽな 、場合はステップ S 14に 進む。ステップ S13では、冷却ファン 22を駆動する。冷却ファン 22が駆動すると、低 温側蒸発器 42周辺の空気が対流し、低温側蒸発器 42には比較的温度の高 、空気 が供給される。このため、冷媒の温度が低下するのが妨げられる。一方、ステップ S1 4に進む場合は、冷却ファン 22が駆動しているので、冷却ファンの風量を増大させて 駆動させる。これにより、低温側蒸発器 42周辺の空気がより激しく対流し、冷媒の温 度が低下するのが妨げられる。 In step S 12, it is determined whether or not the cooling fan 22 has stopped power. If the cooling fan 22 is stopped, the process proceeds to step S13, and if stopped, the process proceeds to step S14. In step S13, the cooling fan 22 is driven. When the cooling fan 22 is driven, air around the low temperature side evaporator 42 is convected, and the low temperature side evaporator 42 is supplied with air at a relatively high temperature. For this reason, it is prevented that the temperature of a refrigerant | coolant falls. On the other hand, when proceeding to step S14, since the cooling fan 22 is driven, the air flow of the cooling fan is increased and driven. As a result, the air around the low-temperature evaporator 42 convects more violently and the refrigerant temperature The degree is prevented from decreasing.
[0054] ステップ S 15では、所定時間経過したカゝ否かを判断する。真の場合にはステップ S 16に進み、偽の場合にはステップ S11に戻る。ステップ S16では、送風ファン 62が 停止している力否かを判断する。送風ファン 62が停止している場合はステップ S17に 進み、停止していない場合はステップ S 19に進む。ステップ S 17では、ダンパを開の 状態にし、次のステップ S18で送風ファン 62を駆動する。送風ファン 62が駆動すると 、低温側蒸発器 42周辺の空気が対流し、低温側蒸発器 42には比較的温度の高い 空気が供給される。このため、冷媒の温度が低下するのがさらに妨げられる。一方、 ステップ S 19に進む場合は、送風ファン 62が駆動しているので、送風ファンを風量を 増大させて駆動させる。これにより、低温側蒸発器 42周辺の空気がより激しく対流し 、冷媒の温度が低下するのが妨げられる。  [0054] In step S15, it is determined whether or not a predetermined time has passed. If true, the process proceeds to step S16, and if false, the process returns to step S11. In step S16, it is determined whether or not the blower fan 62 is stopped. If the blower fan 62 is stopped, the process proceeds to step S17, and if not stopped, the process proceeds to step S19. In step S17, the damper is opened, and the blower fan 62 is driven in the next step S18. When the blower fan 62 is driven, air around the low-temperature side evaporator 42 is convected, and air having a relatively high temperature is supplied to the low-temperature side evaporator 42. For this reason, it is further prevented that the temperature of a refrigerant | coolant falls. On the other hand, when proceeding to Step S19, since the blower fan 62 is driven, the blower fan is driven by increasing the air volume. As a result, the air around the low-temperature evaporator 42 is more convectively prevented from lowering the refrigerant temperature.
[0055] ステップ S18またはステップ S19の後、処理はステップ S 11に戻る。ステップ S11で は、コールドヘッドの温度が所定温度 Tより低いか否かを再度判断する。所定温度 T より低くない場合にはステップ S20に進む力 低い場合にはステップ S 12に進む。即 ち、コールドヘッドの温度が所定温度 Tと等しいか超えるまで、上述したステップ S12 〜ステップ S 19の処理が実行される。ステップ S20では、冷却ファン 22、ダンバ 61お よび送風ファン 62が通常の運転モードで駆動する。  [0055] After step S18 or step S19, the process returns to step S11. In step S11, it is determined again whether the temperature of the cold head is lower than a predetermined temperature T. If the temperature is not lower than the predetermined temperature T, the process proceeds to step S12 if the force to proceed to step S20 is low. That is, the processes of Step S12 to Step S19 described above are executed until the temperature of the cold head is equal to or exceeds the predetermined temperature T. In step S20, the cooling fan 22, the damper 61, and the blower fan 62 are driven in the normal operation mode.
[0056] このように、第 1の実施の形態における変形例においては、冷却ファン、または冷却 ファンと送風ファンの両方を駆動するようにした。このため、低温側蒸発器 42周辺の 空気を対流させて、冷媒の温度が低下するのを妨げることができる。そして、冷媒が 凍結するのを防止することができる。  As described above, in the modified example of the first embodiment, the cooling fan or both the cooling fan and the blower fan are driven. For this reason, the air around the low-temperature side evaporator 42 can be convected to prevent the refrigerant temperature from being lowered. In addition, the refrigerant can be prevented from freezing.
[0057] なお、上述したスターリング冷凍エンジン 30を、停止または冷却能力を低下させて 駆動する制御と、冷却ファン、または冷却ファンと送風ファンの両方を駆動する制御と を併せて実行するようにしてもよい。これにより、冷媒が凍結するのをより防止すること ができる。  [0057] It should be noted that the above-described control for driving the Stirling refrigeration engine 30 while stopping or lowering the cooling capacity and the control for driving the cooling fan or both the cooling fan and the blower fan are executed in combination. Also good. Thereby, it is possible to further prevent the refrigerant from freezing.
[0058] 以上説明したように第 1の実施の形態における冷却庫 1は、低温側蒸発器 42、低 温側凝縮器 41またはスターリング冷凍エンジン 30のコールドヘッドの温度が所定温 度 Tを下回ると、スターリング冷凍エンジンの冷却能力を低下させる力 または停止さ せる。このため、冷媒が冷えるのが抑制され、冷媒が凍結するのを防止することがで きる。 [0058] As described above, the refrigerator 1 in the first embodiment is configured such that the temperature of the cold head 42, the low temperature condenser 41, or the cold head of the Stirling refrigeration engine 30 falls below a predetermined temperature T. , Power to reduce the cooling capacity of Stirling refrigeration engine or stopped Make it. For this reason, it is possible to suppress the cooling of the refrigerant and to prevent the refrigerant from freezing.
[0059] また、低温側蒸発器 42、低温側凝縮器 41またはスターリング冷凍エンジン 30のコ 一ルドヘッドの温度が所定温度 Tを下回ると、冷却ファン 22を駆動させる、または、風 量を増加させるので、このため低温側蒸発器 42の周辺の空気を対流させて、冷媒が 凍結するのを防止することができる。  [0059] Further, when the temperature of the cold head 42 of the low temperature side evaporator 42, the low temperature side condenser 41 or the Stirling refrigeration engine 30 falls below the predetermined temperature T, the cooling fan 22 is driven or the air volume is increased. Therefore, the air around the low-temperature side evaporator 42 can be convected to prevent the refrigerant from freezing.
[0060] なお、第 1の実施の形態においては、たとえば、所定温度 Tが冷媒の凝固点より 3 °C程度高い温度であることとした。しかし、所定温度 Tは冷媒の凝固点より高い温度 であれば他の温度であってもよ 、ことは 、うまでもな!/、。  [0060] In the first embodiment, for example, the predetermined temperature T is about 3 ° C higher than the freezing point of the refrigerant. However, the predetermined temperature T may be other temperature as long as it is higher than the freezing point of the refrigerant. /.
[0061] この場合、スターリング冷凍エンジン 30を定格状態で運転したときに取り得る冷媒 の温度範囲のうち低い方の温度を所定温度 Tとすることによって、冷媒の温度がスタ 一リング冷凍エンジン 30の定格運転で取り得る冷媒の温度範囲以下となることを防 止することができる。  [0061] In this case, by setting the lower temperature in the temperature range of the refrigerant that can be obtained when the Stirling refrigeration engine 30 is operated in the rated state as the predetermined temperature T, the refrigerant temperature can be reduced. It is possible to prevent the temperature from falling below the temperature range of the refrigerant that can be obtained during rated operation.
[0062] これによつて、スターリング冷凍エンジン 30の運転によって冷媒が冷却され過ぎず 、コールドヘッドが過冷却となることが防止できるので、スターリング冷凍エンジン 30 が定格状態を超えて過負荷状態となることが防止できる。その結果、スターリング冷 凍エンジン 30の劣化を防止することができる。  [0062] This prevents the refrigerant from being overcooled by the operation of the Stirling refrigeration engine 30 and prevents the cold head from being overcooled, so that the Stirling refrigeration engine 30 exceeds the rated state and becomes overloaded. Can be prevented. As a result, deterioration of the Stirling refrigeration engine 30 can be prevented.
[0063] <第 2の実施の形態 >  [0063] <Second Embodiment>
次に第 2の実施の形態における冷却庫について説明する。第 2の実施の形態にお ける冷却庫は、第 1の実施の形態における冷却庫と凍結防止機能が異なる点を除き 、構成は同じである。以下、第 2の実施の形態における凍結防止機能について説明 する。  Next, the refrigerator in the second embodiment will be described. The refrigerator in the second embodiment has the same configuration except that the refrigerator in the first embodiment has a different freeze prevention function. Hereinafter, the freeze prevention function in the second embodiment will be described.
[0064] 図 6は、第 2の実施の形態における冷却庫の凍結防止機能を示す機能ブロック図 である。図 6を参照して、冷却庫 1は、冷却庫の全体を制御するための制御部 90と、 それに接続された上部扉開閉検出スィッチ 82と、下部扉開閉検出スィッチ 83とを備 える。制御部 90は、スターリング冷凍エンジン 30と、冷却ファン 22と、ダンバ 61と、送 風ファン 62と接続される。  [0064] FIG. 6 is a functional block diagram showing the freeze prevention function of the refrigerator in the second embodiment. Referring to FIG. 6, refrigerator 1 includes a control unit 90 for controlling the entire refrigerator, an upper door opening / closing detection switch 82 connected thereto, and a lower door opening / closing detection switch 83. The control unit 90 is connected to the Stirling refrigeration engine 30, the cooling fan 22, the damper 61, and the air supply fan 62.
[0065] 上部扉開閉検出スィッチ 82は、上部扉 14が開いた開状態にあるの力 または閉じ た閉状態にあるのかを検出する。下部扉開閉検出スィッチ 83は、下部扉 15が開いた 開状態にあるの力、または閉じた閉状態にあるのかを検出する。 [0065] The upper door open / close detection switch 82 has the force of closing or closing the upper door 14 open. Detect whether it is in a closed state. The lower door opening / closing detection switch 83 detects whether the lower door 15 is in an open state or in a closed state.
[0066] 図 7は、第 2の実施の形態における冷却庫で実行される凍結防止処理の流れを示 すフローチャートである。図 7を参照して、冷却庫 1の制御部 90は、上部扉開閉検出 スィッチ 82または下部扉開閉検出スィッチ 83より、上部扉 14と下部扉 15の開閉状 態が入力される。制御部 90は、上部扉 14と下部扉 15のいずれかが開状態となった か否かを判断する (ステップ S21)。上部扉 14と下部扉 15のいずれかが開状態となつ た場合にはステップ S22へ進み、そうでない場合には処理を終了する。  [0066] FIG. 7 is a flowchart showing a flow of anti-freezing processing executed in the refrigerator in the second embodiment. Referring to FIG. 7, control unit 90 of refrigerator 1 receives the open / close state of upper door 14 and lower door 15 from upper door open / close detection switch 82 or lower door open / close detection switch 83. The control unit 90 determines whether one of the upper door 14 and the lower door 15 has been opened (step S21). If either the upper door 14 or the lower door 15 is open, the process proceeds to step S22, and if not, the process ends.
[0067] ステップ S22では、冷却ファン 22を停止させる。これにより、開状態とされた扉の冷 却室 11, 12内の冷気が強制的に外部に流出されるのを防止することができる。次の ステップ S23では、所定時間が経過したか否かを判断する。この経過時間は、ステツ プ S21で上部扉 14または下部扉 15のいずれかが開状態となったことが検出されて から計時される時間、または、冷却ファンを停止させて力 計時される時間のいずれ であってもよい。所定時間が経過した場合にはステップ S 24に進み、経過しない場合 にはステップ S21に戻る。冷却ファンを停止することにより、低温側蒸発器 42周辺の 空気が対流しなくなる。これにより、冷媒の温度が低下することになる。所定時間は、 冷媒の温度が低下し始めて力 凝固点に達するまでの時間より短い時間である。所 定の時間は、予め定めた単一の時間としてもよいし、スターリング冷凍エンジンの負 荷ごとに予め定めた時間としてもよい。さらに、庫内の温度およびスターリング冷凍ェ ンジンの負荷ごと予め定めた時間とすることもできる。  [0067] In step S22, the cooling fan 22 is stopped. As a result, it is possible to prevent the cold air in the cooling chambers 11 and 12 of the door that has been opened from being forced out. In the next step S23, it is determined whether or not a predetermined time has elapsed. This elapsed time is the time measured after step S21 detects that either upper door 14 or lower door 15 is open, or the time measured when the cooling fan is stopped. Either may be used. If the predetermined time has elapsed, the process proceeds to step S24, and if not, the process returns to step S21. By stopping the cooling fan, the air around the low-temperature evaporator 42 will not convect. Thereby, the temperature of a refrigerant | coolant will fall. The predetermined time is shorter than the time until the temperature of the refrigerant starts to decrease and the force freezing point is reached. The predetermined time may be a single predetermined time, or may be a predetermined time for each load of the Stirling refrigeration engine. Furthermore, it is possible to set a predetermined time for each of the temperature in the refrigerator and the load of the Stirling freezing engine.
[0068] 次のステップ S24では、スターリング冷凍エンジンを停止させる。これにより、冷媒が 冷却されなくなり、冷媒が凍結するのを防止することができる。  [0068] In the next step S24, the Stirling refrigeration engine is stopped. This prevents the refrigerant from being cooled and prevents the refrigerant from freezing.
[0069] なお、ステップ S24では、スターリング冷凍エンジンを停止するようにした力 スター リング冷凍エンジンを少ない負荷で駆動するようにしてもよい。この場合には、冷媒が 冷却されるけれども、冷媒の温度をその温度に維持する程度の負荷で駆動すれば、 冷媒が凍結するのを防止することができる。  [0069] In step S24, the Stirling refrigeration engine that stops the Stirling refrigeration engine may be driven with a small load. In this case, although the refrigerant is cooled, it is possible to prevent the refrigerant from freezing if it is driven with a load sufficient to maintain the temperature of the refrigerant at that temperature.
[0070] <凍結防止処理の第 1の変形例 >  [0070] <First Modification of Freezing Prevention Treatment>
図 8は、第 2の実施の形態における冷却庫で実行される変形された凍結防止処理 の流れを示すフローチャートである。図 8を参照して、制御部 90は、上部扉 14が開状 態となつた力否かを判断する (ステップ S31)。上部扉 14が開状態となった場合には ステップ S32へ進み、そうでない場合にはステップ S38に進む。 FIG. 8 shows a modified anti-freezing process executed in the refrigerator in the second embodiment. It is a flowchart which shows the flow. Referring to FIG. 8, control unit 90 determines whether the upper door 14 is open or not (step S31). If the upper door 14 is in the open state, the process proceeds to step S32, and if not, the process proceeds to step S38.
[0071] ステップ S32では、送風ファン 62を停止させ、ステップ S33では冷却ファン 22を停 止させる。これにより、上部扉 14が開状態となっても冷却室 11内の冷気が強制的に 外部に流出されるのを防止することができる。そして、所定時間経過した力否かを判 断する (ステップ S34)。所定時間経過した場合にはステップ S35に進み、そうでない 場合にはステップ S31に戻る。即ち、上部扉 14が開状態となったまま所定時間経過 するとステップ S35に進む力 所定時間経過する前に上部扉 14が閉状態となればス テツプ S38に進む。ステップ S33で冷却ファン 22を停止することにより、低温側蒸発 器 42周辺の空気が対流しなくなる。これにより、冷媒の温度が低下することになる。 冷却ファン 22を停止したままにしておくと、冷媒の温度が低下して凝固点に達してし まう。したがって、所定時間は、冷媒の温度が凝固点に達するまでの時間より短い時 間である。所定の時間は、予め定めた単一の時間としてもよいし、スターリング冷凍ェ ンジンの負荷ごとに予め定めた時間としてもよい。さらに、庫内の温度およびスターリ ング冷凍エンジンの負荷ごと予め定めた時間とすることもできる。 [0071] In step S32, the blower fan 62 is stopped, and in step S33, the cooling fan 22 is stopped. Thereby, even if the upper door 14 is in the open state, it is possible to prevent the cold air in the cooling chamber 11 from being forced out to the outside. Then, it is determined whether or not the force has passed for a predetermined time (step S34). If the predetermined time has elapsed, the process proceeds to step S35, and if not, the process returns to step S31. That is, if a predetermined time elapses with the upper door 14 open, the force proceeds to step S35. If the upper door 14 is closed before the predetermined time elapses, the process proceeds to step S38. By stopping the cooling fan 22 in step S33, the air around the low temperature evaporator 42 is not convected. Thereby, the temperature of a refrigerant | coolant will fall. If the cooling fan 22 is left stopped, the temperature of the refrigerant will drop and reach the freezing point. Therefore, the predetermined time is a time shorter than the time until the temperature of the refrigerant reaches the freezing point. The predetermined time may be a single predetermined time, or may be a predetermined time for each load of the Stirling freezing engine. Furthermore, it is possible to set a predetermined time for each temperature in the refrigerator and the load of the Stirling refrigeration engine.
[0072] ステップ S35では、ダンバ 61を閉の状態とし、ステップ S36では、冷却ファン 22を 駆動する。これにより、低温側蒸発器 42周辺の冷気が冷却室 12に送込まれる力 ダ ンパ 61が閉状態なので冷却室 11には送込まれな!/、。このため低温側蒸発器 42周 辺の空気が対流し、低温側蒸発器 42には比較的温度の高い空気が供給される。そ して、冷媒の温度が低下するのが妨げられる。その結果、冷媒が凍結するのが防止 される。また、低温側蒸発器 42周辺の冷気は、冷却室 11に送込まれないので、開か れた上部扉力 冷却室 11内の冷気が強制的に流出されるのを防止することができる  [0072] In step S35, the damper 61 is closed, and in step S36, the cooling fan 22 is driven. As a result, the cold air around the low-temperature side evaporator 42 is sent to the cooling chamber 12 and is not sent to the cooling chamber 11 because the force damper 61 is closed! /. For this reason, air around the low-temperature side evaporator 42 is convected, and air having a relatively high temperature is supplied to the low-temperature side evaporator 42. And it prevents that the temperature of a refrigerant falls. As a result, the refrigerant is prevented from freezing. Further, since the cool air around the low-temperature side evaporator 42 is not sent to the cooling chamber 11, it is possible to prevent the cool air in the opened upper door cooling chamber 11 from being forced to flow out.
[0073] ステップ S37では、上部扉 14が閉状態となった力否かを判断する。上部扉 14が閉 状態となった場合にはステップ S38へ進み、そうでない場合にはステップ S35に戻る 。上部扉 14が閉状態となるまで、低温側蒸発器 42周辺の冷気が冷却室 12に送込ま れ、これにより、冷媒が凍結するのが防止される。 [0074] ステップ S38では、冷却ファン 22、ダンバ 61および送風ファン 62を通常の運転モ ードで駆動する。 [0073] In step S37, it is determined whether or not the upper door 14 is closed. If the upper door 14 is closed, the process proceeds to step S38, and if not, the process returns to step S35. Until the upper door 14 is closed, the cool air around the low-temperature side evaporator 42 is sent to the cooling chamber 12, thereby preventing the refrigerant from freezing. In step S38, the cooling fan 22, the damper 61, and the blower fan 62 are driven in the normal operation mode.
[0075] 次のステップ S39では、制御部 90は、下部扉 15が開状態となった力否かを判断す る。下部扉 15が開状態となった場合にはステップ S40へ進み、そうでない場合には 処理を終了する。  [0075] In the next step S39, the control unit 90 determines whether or not the lower door 15 is open. If the lower door 15 is opened, the process proceeds to step S40, and if not, the process is terminated.
[0076] ステップ S40では、送風ファン 62を停止させ、ステップ S41では冷却ファン 22を停 止させる。これにより、下部扉 15が開状態となっても冷却室 12内の冷気が強制的に 外部に流出されるのを防止することができる。また、低温側蒸発器 42周辺の空気が 対流しなくなる。そして、所定時間経過した力否かを判断する (ステップ S42)。所定 時間経過した場合にはステップ S43に進み、そうでない場合にはステップ S39に戻る 。即ち、下部扉 15が開状態となったまま所定時間経過するとステップ S43に進む力 所定時間経過する前に下部扉 15が閉状態となれば処理を終了する。所定時間は、 ステップ S34におけるのと同じ時間である。  [0076] In step S40, the blower fan 62 is stopped, and in step S41, the cooling fan 22 is stopped. Thereby, even if the lower door 15 is opened, it is possible to prevent the cold air in the cooling chamber 12 from being forced out. Also, the air around the low-temperature evaporator 42 will not convect. Then, it is determined whether or not the force has passed for a predetermined time (step S42). If the predetermined time has elapsed, the process proceeds to step S43, and if not, the process returns to step S39. That is, when a predetermined time elapses while the lower door 15 is open, the force proceeds to step S43. If the lower door 15 is closed before the predetermined time elapses, the process is terminated. The predetermined time is the same time as in step S34.
[0077] ステップ S43では、ダンバ 61を開の状態とし、ステップ S44では、送風ファン 62を 駆動する。これにより、低温側蒸発器 42周辺の冷気が冷却室 11に送込まれるが、冷 却室 12には送込まれない。このため低温側蒸発器 42周辺の空気が対流し、低温側 蒸発器 42には比較的温度の高い空気が供給される。このため、冷媒の温度が低下 するのが妨げられる。その結果、冷媒が凍結するのが防止される。また、低温側蒸発 器 42周辺の冷気は、冷却室 12に送込まれる量が少ないので、開かれた下部扉から 冷却室 12内の冷気が強制的に流出されるのを低減することができる。  In step S43, the damper 61 is opened, and in step S44, the blower fan 62 is driven. As a result, the cold air around the low-temperature side evaporator 42 is sent to the cooling chamber 11, but is not sent to the cooling chamber 12. For this reason, the air around the low-temperature side evaporator 42 is convected, and air having a relatively high temperature is supplied to the low-temperature side evaporator 42. For this reason, it is prevented that the temperature of a refrigerant | coolant falls. As a result, the refrigerant is prevented from freezing. Further, since the amount of cool air around the low-temperature side evaporator 42 is not sent to the cooling chamber 12, it is possible to reduce the forced outflow of cool air in the cooling chamber 12 from the opened lower door. .
[0078] ステップ S45では、下部扉 15が閉状態となった力否かを判断する。下部扉 15が閉 状態となった場合にはステップ S46へ進み、そうでない場合にはステップ S43に戻る 。このため、下部扉 15が閉状態となるまで、低温側蒸発器 42周辺の冷気が冷却室 1 1に送込まれ、これにより、冷媒が凍結するのが防止される。  In Step S45, it is determined whether or not the lower door 15 is closed. If the lower door 15 is closed, the process proceeds to step S46, and if not, the process returns to step S43. Therefore, until the lower door 15 is closed, the cool air around the low-temperature side evaporator 42 is sent to the cooling chamber 11, thereby preventing the refrigerant from freezing.
[0079] ステップ S46では、冷却ファン 22、ダンバ 61および送風ファン 62を通常の運転モ ードで駆動する。  [0079] In step S46, the cooling fan 22, the damper 61, and the blower fan 62 are driven in a normal operation mode.
[0080] 第 2の実施の形態における冷却庫 1は、上部扉 14または下部扉 15のいずれかの 開状態が所定時間継続すると、スターリング冷凍エンジンの冷却能力を低下させる、 または停止させる。このため、冷媒が冷えるのが抑制され、冷媒が凍結するのを防止 することができる。 [0080] The refrigerator 1 in the second embodiment reduces the cooling capacity of the Stirling refrigeration engine when the open state of either the upper door 14 or the lower door 15 continues for a predetermined time. Or stop. For this reason, it is possible to suppress the cooling of the refrigerant and to prevent the refrigerant from freezing.
[0081] また、上部扉 14または下部扉 15のいずれかの開状態が所定時間継続すると、冷 却ファン 22を駆動させる、または、風量を増カロさせるので、低温側蒸発器 42の周辺 の空気を対流させて、冷媒が凍結するのを防止することができる。  [0081] In addition, when the open state of either the upper door 14 or the lower door 15 continues for a predetermined time, the cooling fan 22 is driven or the air volume is increased, so the air around the low-temperature side evaporator 42 is increased. The refrigerant can be prevented from freezing by convection.
[0082] さらに、下部扉 15の開状態が所定時間継続するとダンバ 61を閉状態とするとともに 冷却ファン 22を駆動し、上部扉の開状態が所定時間継続するとダンバ 61を開状態と し送風ファン 62を駆動する。このため、上部扉 14と下部扉 15のいずれが開かれた場 合でも、冷媒が凍結するのを防止することができるとともに、庫内の冷気が外部に漏 れ出すのを防止することができる。  [0082] Further, when the lower door 15 is kept open for a predetermined time, the damper 61 is closed and the cooling fan 22 is driven. When the upper door is kept open for a predetermined time, the damper 61 is opened and the blower fan is turned on. Drive 62. For this reason, it is possible to prevent the refrigerant from freezing and prevent the cool air inside the cabinet from leaking outside, regardless of whether the upper door 14 or the lower door 15 is opened. .
[0083] 本願発明は、食品を冷凍するときに最大氷結晶生成帯(一 3°C〜一 7°C)を素早く 通過させるため、冷却ファン 22を停止させて低温側蒸発器 42周辺の冷気を超低温 にしてから冷却ファン 22を駆動する急速冷凍運転においても適用価値がある。  [0083] In the present invention, the cooling fan 22 is stopped to cool the air around the low-temperature side evaporator 42 in order to quickly pass through the maximum ice crystal formation zone (13 ° C to 17 ° C) when the food is frozen. It is also applicable to the quick freezing operation in which the cooling fan 22 is driven after the temperature is lowered to a very low temperature.
[0084] なお、第 2の実施の形態においては、上部扉 14または下部扉 15が開状態となった 場合に、冷気の流出を防止するために、冷却ファン 22を停止させ、所定時間経過し た後に、スターリング冷凍エンジン 30を停止させるようにした。  [0084] In the second embodiment, when the upper door 14 or the lower door 15 is opened, the cooling fan 22 is stopped to prevent the cool air from flowing out, and a predetermined time has elapsed. After that, the Stirling refrigeration engine 30 was stopped.
[0085] しかし、これに限定されず、上部扉 14または下部扉 15が開状態となった場合に、 冷却ファン 22を停止させるとともに、スターリング冷凍エンジン 30を停止させるように してもよい。冷却庫 1内の温度上昇を防ぐため、スターリング冷凍エンジン 30のコー ルドヘッドの温度を急激に低下させる制御をした場合には、スターリング冷凍ェンジ ン 30を停止させる制御の制御遅れにより冷媒の凍結事故が発生する場合がある。  However, the present invention is not limited to this, and when the upper door 14 or the lower door 15 is opened, the cooling fan 22 may be stopped and the Stirling refrigeration engine 30 may be stopped. In order to prevent the temperature in the refrigerator 1 from rising, if control is performed to rapidly reduce the temperature of the cold head of the Stirling refrigeration engine 30, a refrigerant freezing accident may occur due to a control delay in stopping the Stirling refrigeration engine 30. May occur.
[0086] このため、冷却庫 1の扉が開状態となったときであっても、冷却庫 1内の温度上昇を 防ぐためのスターリング冷凍エンジン 30のコールドヘッドの温度を低下させる制御を しな 、でスターリング冷凍エンジン 30を停止させるので、冷媒の凍結を防止すること ができる。  [0086] For this reason, even when the door of the refrigerator 1 is in an open state, control is performed to reduce the temperature of the cold head of the Stirling refrigeration engine 30 to prevent the temperature inside the refrigerator 1 from rising. Since the Stirling refrigeration engine 30 is stopped at, the refrigerant can be prevented from freezing.
[0087] また、第 2の実施の形態においては、上部扉 14または下部扉 15が開状態となった 場合に、冷却ファン 22を停止させ、所定時間経過した後に、スターリング冷凍ェンジ ン 30を停止させるようにした。 [0088] しかし、これに限定されず、上部扉 14または下部扉 15が開状態となった場合に、 冷却ファン 22を停止させ、スターリング冷凍エンジン 30のコールドヘッドの温度が所 定温度まで下がったときに、スターリング冷凍エンジン 30を停止させるようにしてもよ い。 [0087] In the second embodiment, when the upper door 14 or the lower door 15 is opened, the cooling fan 22 is stopped, and after a predetermined time has elapsed, the Stirling freezing engine 30 is stopped. I tried to make it. [0088] However, the present invention is not limited to this, and when the upper door 14 or the lower door 15 is opened, the cooling fan 22 is stopped and the temperature of the cold head of the Stirling refrigeration engine 30 is lowered to a predetermined temperature. Sometimes, the Stirling refrigeration engine 30 may be stopped.
[0089] これにより、スターリング冷凍エンジン 30のコールドヘッドの温度低下による冷媒の 凍結を防止することができる。また、扉が開状態となって力もスターリング冷凍ェンジ ン 30を停止させるまでの間で、スターリング冷凍エンジン 30への入力電力を段階的 に減少させるようにしてもよい。これにより、扉が開状態の場合であっても、冷気の流 出による冷却庫 1内の温度の上昇を抑えることができると同時に、冷媒の凍結を防止 することができる。  Thereby, it is possible to prevent the refrigerant from freezing due to the temperature drop of the cold head of the Stirling refrigerating engine 30. Further, the electric power input to the Stirling refrigeration engine 30 may be reduced stepwise until the door is opened and the force is also stopped until the Stirling refrigeration engine 30 is stopped. Thereby, even when the door is in an open state, it is possible to suppress an increase in temperature in the refrigerator 1 due to the outflow of cold air, and at the same time, it is possible to prevent the refrigerant from freezing.
[0090] また、上部扉 14または下部扉 15が開状態となったときに、スターリング冷凍ェンジ ン 30を停止した後、上部扉 14および下部扉 15が閉状態となった場合には、直ちに または所定時間後(たとえば、 5秒後)に、スターリング冷凍エンジン 30を運転させる ことが好ましい。これにより、流出した冷気のために上昇した冷却庫 1内の温度を早急 に冷却することができる。  [0090] Further, when the upper door 14 or the lower door 15 is opened, when the upper door 14 and the lower door 15 are closed after the Stirling freezing engine 30 is stopped, immediately or It is preferable to operate the Stirling refrigeration engine 30 after a predetermined time (for example, after 5 seconds). Thereby, the temperature in the refrigerator 1 that has risen due to the cold air that has flowed out can be quickly cooled.
[0091] また、上部扉 14または下部扉 15が開状態となったときに、スターリング冷凍ェンジ ン 30を停止した後、スターリング冷凍エンジン 30のコールドヘッドの温度が所定温度 まで上昇した場合に、スターリング冷凍エンジン 30を運転させることが好ましい。これ により、冷却庫 1内の温度が上昇し過ぎることを防止できる。  [0091] Also, when the temperature of the cold head of the Stirling refrigeration engine 30 rises to a predetermined temperature after the Stirling refrigeration engine 30 is stopped when the upper door 14 or the lower door 15 is opened, the Stirling refrigeration engine 30 is stopped. It is preferable to operate the refrigeration engine 30. As a result, the temperature in the refrigerator 1 can be prevented from rising excessively.
[0092] また、第 2の実施の形態においては、上部扉 14または下部扉 15が開状態となった ときに、冷却ファン 22を停止するようにした。しかし、これに限定されず、冷却ファン 2 2を低い回転数で運転するようにしてもよい。これにより、冷媒の温度よりも高い冷却 庫 1内の空気力 冷媒に熱が与えられるため冷媒の温度が徐々に上昇し、冷媒の凍 結を防止することができる。  Further, in the second embodiment, the cooling fan 22 is stopped when the upper door 14 or the lower door 15 is opened. However, the present invention is not limited to this, and the cooling fan 22 may be operated at a low rotational speed. As a result, since heat is applied to the aerodynamic refrigerant in the refrigerator 1 that is higher than the temperature of the refrigerant, the temperature of the refrigerant gradually increases, and the refrigerant can be prevented from freezing.
[0093] また、第 2の実施の形態においては、上部扉 14または下部扉 15が開状態となった ときに、スターリング冷凍エンジン 30を停止するようにした。しかし、これに限定されず 、スターリング冷凍エンジン 30への入力電力を減少させるようにしてもよい。これによ つても、冷媒から奪われる熱量が減少するため冷媒の温度が上昇し、冷媒の凍結を 防止することができる。 In the second embodiment, the Stirling refrigeration engine 30 is stopped when the upper door 14 or the lower door 15 is opened. However, the present invention is not limited to this, and the input power to the Stirling refrigeration engine 30 may be reduced. This also reduces the amount of heat taken from the refrigerant, increasing the temperature of the refrigerant and freezing the refrigerant. Can be prevented.
[0094] また、第 2の実施の形態においては、所定時間は、冷却ファン 22を停止して力 冷 媒の温度が凝固点に達するまでの時間より短い時間とした。しかし、これに限定され ず、所定時間が、冷却ファン 22を停止してから冷媒の温度が所定温度に達するまで の時間としてもよ!、。所定温度は冷媒の凝固点よりも高 、温度であってもよ 、。  [0094] In the second embodiment, the predetermined time is shorter than the time from when the cooling fan 22 is stopped until the temperature of the dynamic cooling medium reaches the freezing point. However, the present invention is not limited to this, and the predetermined time may be the time from when the cooling fan 22 is stopped until the refrigerant reaches the predetermined temperature! The predetermined temperature may be a temperature higher than the freezing point of the refrigerant.
[0095] これにより、冷媒の温度が所定温度に達することが防止できる。このため、スターリ ング冷凍エンジン 30の定格運転で取り得る冷媒の温度範囲のうち低い方の温度を 所定温度とすることによって、冷媒の温度がスターリング冷凍エンジン 30の定格運転 で取り得る冷媒の温度範囲以下となることを防止することができる。  Thereby, the temperature of the refrigerant can be prevented from reaching a predetermined temperature. For this reason, by setting the lower temperature of the refrigerant temperature range that can be obtained in the rated operation of the Stirling refrigeration engine 30 to a predetermined temperature, the refrigerant temperature range that can be obtained in the rated operation of the Stirling refrigeration engine 30 The following can be prevented.
[0096] これによつて、スターリング冷凍エンジン 30の運転によって冷媒が冷却され過ぎず 、コールドヘッドが過冷却となることが防止できるので、スターリング冷凍エンジン 30 が定格状態を超えて過負荷状態となることを防止することができる。その結果、スター リング冷凍エンジン 30の劣化を防止することができる。  [0096] This prevents the refrigerant from being overcooled by the operation of the Stirling refrigeration engine 30 and prevents the cold head from being overcooled, so that the Stirling refrigeration engine 30 exceeds the rated state and becomes overloaded. This can be prevented. As a result, deterioration of the Stirling refrigeration engine 30 can be prevented.
[0097] <第 3の実施の形態 >  <Third Embodiment>
次に、第 3の実施の形態における冷却庫について説明する。第 3の実施の形態に おける冷却庫は、第 1の実施の形態における冷却庫と凍結防止機能が異なる点を除 き、構成は同じである。以下、第 3の実施の形態における凍結防止機能について説 明する。  Next, the refrigerator in the third embodiment will be described. The refrigerator in the third embodiment has the same configuration except that the refrigerator in the first embodiment has a different freeze prevention function. Hereinafter, the antifreezing function in the third embodiment will be described.
[0098] 図 9は、第 3の実施の形態における冷却庫の凍結防止機能を示す機能ブロック図 である。図 9を参照して、冷却庫 1は、冷却庫 1の全体を制御するための制御部 90と 、それに接続された温度センサ 81と、上部扉開閉検出スィッチ 82と、下部扉開閉検 出スィッチ 83とを備える。制御部 90は、スターリング冷凍エンジン 30と、冷却ファン 2 2と、ダンバ 61と、送風ファン 62と、表示部 91と接続される。  [0098] FIG. 9 is a functional block diagram showing the freeze prevention function of the refrigerator in the third embodiment. Referring to FIG. 9, the refrigerator 1 includes a control unit 90 for controlling the entire refrigerator 1, a temperature sensor 81 connected thereto, an upper door opening / closing detection switch 82, and a lower door opening / closing detection switch. 83. The control unit 90 is connected to the Stirling refrigeration engine 30, the cooling fan 22, the damper 61, the blower fan 62, and the display unit 91.
[0099] 表示部 91は、冷却庫の運転状況に関する情報を表示する。たとえば、表示部 91は 、スターンリング冷凍エンジン 30に異常がある旨を表示したり、温度センサ 81に異常 力 Sある旨を表示したり、上部扉 14や下部扉 15が開状態となっている旨を表示したり、 通常運転中である旨を表示したりする。また、表示部 91での表示に合せて音声で異 常を報知するようにしてもょ 、。 [0100] 図 10は、第 3の実施の形態における冷却庫で実行される凍結防止処理の流れを 示すフローチャートである。図 10を参照して、冷却庫 1の制御部 90は、温度センサ 8 1に異常がある力否かを検出する。制御部 90は、温度センサ 81のサーミスタが異常 か否かを判断する (ステップ S71)。サーミスタが異常である場合にはステップ S72に 進み、サーミスタが異常でない場合にはステップ S 74に進む。ステップ S72では、サ 一ミスタが異常である旨を表示部 91に表示する。そして、スターリング冷凍エンジン 3 0を停止させる(ステップ S73)。その後、処理を終了する。 [0099] Display unit 91 displays information related to the operating state of the refrigerator. For example, the display unit 91 displays that the Sternling refrigeration engine 30 is abnormal, the temperature sensor 81 displays that there is an abnormal force S, and the upper door 14 and the lower door 15 are open. To indicate that it is in normal operation. Also, let us notify you of the abnormality by voice according to the display on the display unit 91. [0100] FIG. 10 is a flowchart showing the flow of the freeze prevention process executed in the refrigerator in the third embodiment. Referring to FIG. 10, control unit 90 of refrigerator 1 detects whether or not temperature sensor 8 1 has an abnormality. The controller 90 determines whether or not the thermistor of the temperature sensor 81 is abnormal (step S71). If the thermistor is abnormal, the process proceeds to step S72. If the thermistor is not abnormal, the process proceeds to step S74. In step S72, the display unit 91 displays that the thermistor is abnormal. Then, the Stirling refrigerating engine 30 is stopped (step S73). Thereafter, the process ends.
[0101] このように、サーミスタに異常がある場合は、冷媒の温度に関わらず、スターリング 冷凍エンジン 30を停止させる。これにより、スターリング冷凍エンジン 30により冷媒が 冷却されなくなるので、冷媒が凍結するのを防止することができる。また、サーミスタ の誤動作により、後述する S83で実際の温度よりも低い温度が検出され、 S86でスタ 一リング冷凍エンジン 30が不用意に停止されることを防止することができる。また、サ 一ミスタの誤動作により、後述する S83で実際の温度よりも高い温度が検出され、冷 媒が凍結する温度に達して冷媒が凍結しているにも関わらず、スターリング冷凍ェン ジン 30が停止されないことを防止することができる。  [0101] As described above, when the thermistor is abnormal, the Stirling refrigerating engine 30 is stopped regardless of the refrigerant temperature. As a result, the refrigerant is no longer cooled by the Stirling refrigerating engine 30, so that the refrigerant can be prevented from freezing. In addition, it is possible to prevent the Stirling refrigeration engine 30 from being inadvertently stopped in S86 due to a malfunction of the thermistor that is detected at a temperature lower than the actual temperature in S83 described later. Also, due to the malfunction of the thermistor, a temperature higher than the actual temperature is detected in S83, which will be described later, and the Stirling refrigeration engine 30 despite the fact that the refrigerant has been frozen by reaching the freezing temperature. Can be prevented from being stopped.
[0102] また、冷却庫 1の制御部 90には、温度センサ 81からスターリング冷凍エンジン 30の コールドヘッドの温度が入力される。制御部 90は、コールドヘッドの温度が温度 Tよ  Further, the temperature of the cold head of the Stirling refrigeration engine 30 is input from the temperature sensor 81 to the control unit 90 of the refrigerator 1. The control unit 90 has a cold head temperature T
1 り低いか否かを判断する (ステップ S74)。温度 Tより低い場合にはステップ S75へ進  It is determined whether it is lower than 1 (step S74). If the temperature is lower than T, proceed to step S75.
1  1
み、温度 Tより低くない場合にはステップ S71に戻る。温度 Tは、たとえば、冷媒の  If the temperature is not lower than T, return to step S71. The temperature T is, for example, that of the refrigerant
1 1  1 1
凝固温度より 3°C程度高い温度である。  The temperature is about 3 ° C higher than the solidification temperature.
[0103] 冷却庫 1の制御部 90には、上部扉開閉検出スィッチ 82または下部扉開閉検出スィ ツチ 83から、上部扉 14と下部扉 15の開閉状態が入力される。制御部 90は、上部扉 14と下部扉 15のいずれかが開状態となったか否かを判断する (ステップ S75)。上部 扉 14と下部扉 15のいずれかが開状態となった場合にはステップ S76に進み、そうで な 、場合にはステップ S 77に進む。  The open / close state of the upper door 14 and the lower door 15 is input to the control unit 90 of the refrigerator 1 from the upper door open / close detection switch 82 or the lower door open / close detection switch 83. The control unit 90 determines whether one of the upper door 14 and the lower door 15 is open (step S75). If either the upper door 14 or the lower door 15 is opened, the process proceeds to step S76, and if not, the process proceeds to step S77.
[0104] ステップ S76では、制御部 90は、上部扉 14や下部扉 15が開状態となっている旨の 警告を表示部 91で報知する。その後、 S71に戻る。  [0104] In step S76, the control unit 90 notifies the display unit 91 of a warning that the upper door 14 and the lower door 15 are open. Then, return to S71.
[0105] ステップ S77では、冷却ファン 22の回転数が冷却ファン 22の最大許容回転数とさ れているカゝ否かが判断される。最大許容回転数とされていない場合にはステップ S7 8に進み、最大許容回転数とされている場合にはステップ S81に進む。 [0105] In step S77, the rotation speed of the cooling fan 22 is equal to the maximum allowable rotation speed of the cooling fan 22. It is determined whether or not it is correct. If the maximum allowable rotational speed is not set, the process proceeds to step S78. If the maximum allowable rotational speed is set, the process proceeds to step S81.
[0106] ステップ S78では、冷却ファン 22の回転数が冷却ファン 22の最大許容回転数とさ れる。これにより、冷却ファン 22の回転数が最大許容回転数未満であるときと比較し て、低温側蒸発器 42周辺の空気がより激しく対流し、冷媒の温度の低下を抑えること ができる。そして、冷却ファン 22の回転数が最大許容回転数とされて力も所定時間 経過した力否かが判断される (ステップ S79)。所定時間経過していない場合には S7 9を繰返し、所定時間経過した場合にはステップ S82に進む。  In step S78, the rotation speed of the cooling fan 22 is set as the maximum allowable rotation speed of the cooling fan 22. As a result, the air around the low-temperature side evaporator 42 convects more violently than when the number of rotations of the cooling fan 22 is less than the maximum allowable number of rotations, and a decrease in the refrigerant temperature can be suppressed. Then, it is determined whether or not the rotation speed of the cooling fan 22 is the maximum allowable rotation speed and the force has also passed for a predetermined time (step S79). If the predetermined time has not elapsed, S79 is repeated, and if the predetermined time has elapsed, the process proceeds to step S82.
[0107] この所定時間は、通常運転時に冷却ファン 22の回転数が最大許容回転数にされ たときに、少なくとも温度センサ 81が温度が上昇したことを検出可能な温度分、冷媒 の温度が上昇するのに要する時間以上であることが好ましい。たとえば、温度センサ 81の温度検出誤差が ±0. 5°Cである場合は、冷媒の温度が少なくとも 1°C上昇する のに要する時間以上の時間を所定時間とすればよい。  [0107] During this predetermined time, when the rotation speed of the cooling fan 22 is set to the maximum allowable rotation speed during normal operation, the temperature of the refrigerant increases at least by a temperature at which the temperature sensor 81 can detect that the temperature has increased. It is preferable that it is more than the time required to do. For example, when the temperature detection error of the temperature sensor 81 is ± 0.5 ° C., the predetermined time may be a time longer than the time required for the refrigerant temperature to rise by at least 1 ° C.
[0108] また、この所定時間は、異常運転時に冷却ファン 22の回転数が最大許容回転数に されたときに、コールドヘッドの温度が温度 Tから後述する温度 Tに下降するまでの  [0108] In addition, during the predetermined time, when the rotation speed of the cooling fan 22 is set to the maximum allowable rotation speed during abnormal operation, the temperature of the cold head is decreased from the temperature T to a temperature T described later.
1 2  1 2
時間未満であることが好まし 、。  Preferred to be less than an hour.
[0109] ステップ S81では、スターリング冷凍エンジン 30への入力電力が所定量減少される 。これにより、スターリング冷凍エンジン 30の冷却能力が低下する。したがって、冷媒 力も奪う熱量を減少させることができ、冷媒の温度低下を抑えることができる。  In step S81, the input power to the Stirling refrigeration engine 30 is decreased by a predetermined amount. As a result, the cooling capacity of the Stirling refrigeration engine 30 is reduced. Therefore, the amount of heat deprived of the refrigerant power can be reduced, and the temperature drop of the refrigerant can be suppressed.
[0110] ステップ S82では、制御部 90は、コールドヘッドの温度が温度 Tより低いか否かを  [0110] In step S82, the controller 90 determines whether or not the temperature of the cold head is lower than the temperature T.
1  1
再度判断する。温度 Tより低くない場合は、ステップ S83に進み、温度 Tより低い場  Judge again. If it is not lower than the temperature T, proceed to step S83.
1 1 合は、ステップ S84に進む。  If 1 1, go to step S84.
[0111] つまり、ステップ S83に進んだ場合は、ステップ S78で冷却ファン 22の回転数を最 大許容回転数にしたり、ステップ S81でスターリング冷凍エンジン 30への入力電力を 減少させたりしたことにより、コールドヘッドの温度が温度 Tより低い異常値から温度 [0111] That is, when the process proceeds to step S83, the rotation speed of the cooling fan 22 is set to the maximum allowable rotation speed in step S78, or the input power to the Stirling refrigeration engine 30 is decreased in step S81. The temperature from the abnormal value where the temperature of the cold head is lower than the temperature T
1  1
Tより低くない正常値に戻ったこととなる。ステップ S84に進んだ場合は、コールドへ It means that the normal value is not lower than T. If you proceed to Step S84, go to Cold
1 1
ッドの温度が異常値のままである。  The temperature of the lid remains abnormal.
[0112] ステップ S83では、スターリング冷凍エンジン 30、冷却ファン 22、ダンバ 61および 送風ファン 62の運転モードを通常運転モードに切替える。その後、ステップ S71に戻 る。 [0112] In step S83, Stirling refrigeration engine 30, cooling fan 22, damper 61 and The operation mode of the blower fan 62 is switched to the normal operation mode. Thereafter, the process returns to step S71.
[0113] ステップ S84では、制御部 90は、コールドヘッドの温度が温度 Tより低いか否かを  [0113] In step S84, the controller 90 determines whether or not the temperature of the cold head is lower than the temperature T.
2  2
判断する。温度 Tより低くない場合は、ステップ S81に戻り、温度 Tより低い場合は、  to decide. If it is not lower than the temperature T, return to step S81, and if it is lower than the temperature T,
2 2  twenty two
ステップ S85に進む。温度 Tは、たとえば、冷媒の凝固温度より 1°C程度高い温度で  Proceed to step S85. The temperature T is, for example, about 1 ° C higher than the solidification temperature of the refrigerant.
2  2
ある。  is there.
[0114] ステップ S85では、制御部 90は、スターリング冷凍エンジン 30が異常である旨を表 示部 91に表示する。そして、ステップ S86で、制御部 90は、スターリング冷凍ェンジ ン 30を停止させる。その後、処理を終了する。  [0114] In step S85, the control unit 90 displays on the display unit 91 that the Stirling refrigeration engine 30 is abnormal. In step S86, the control unit 90 stops the Stirling refrigeration engine 30. Thereafter, the process ends.
[0115] なお、本実施の形態においては、ステップ S78で冷却ファン 22の回転数を最大許 容回転数としたが、段階的に冷却ファン 22の回転数を増加させるようにしてもよい。 そして、所定時間経過したときに、コールドヘッドの温度が温度 T以上となった場合  In the present embodiment, the rotational speed of cooling fan 22 is set to the maximum allowable rotational speed in step S78, but the rotational speed of cooling fan 22 may be increased stepwise. If the temperature of the cold head exceeds the temperature T after a predetermined time
1  1
には、通常運転に戻すようにする。  Return to normal operation.
[0116] これにより、冷却ファン 22の回転数が最大許容回転数に達するまえに、コールドへ ッドの温度が温度 T以上となった場合には、必要以上に冷却ファン 22の回転数を増  [0116] Thus, if the temperature of the cold head exceeds the temperature T before the rotation speed of the cooling fan 22 reaches the maximum allowable rotation speed, the rotation speed of the cooling fan 22 is increased more than necessary.
1  1
カロさせる必要がなぐ電力の消費を抑えることができる。また、冷媒の温度変化が緩 やかになるため、冷媒の温度変化が急激な場合と比較してより精度よく冷媒の温度を 帘 U御することができる。  Electricity consumption that does not need to be burned can be reduced. In addition, since the temperature change of the refrigerant becomes gentle, the temperature of the refrigerant can be controlled with higher accuracy than when the temperature change of the refrigerant is abrupt.
[0117] 冷媒を用いて冷却庫 1の庫内を冷やす方式では、冷媒が凍結する可能性がある。  [0117] In the method of cooling the inside of the refrigerator 1 using the refrigerant, the refrigerant may freeze.
冷媒が凍結した状態でスターリング冷凍エンジン 30の運転を継続すると、コールドへ ッドの温度が急激に低下しスターリング冷凍エンジン 30が故障する可能性が生じる。  If the operation of the Stirling refrigeration engine 30 is continued with the refrigerant frozen, there is a possibility that the temperature of the cold head rapidly decreases and the Stirling refrigeration engine 30 breaks down.
[0118] したがって、スターリング冷凍エンジン 30の低温側循環回路 40の温度を検出し、低 温側循環回路 40の温度が冷媒の凍結温度近くに達すると、スターリング冷凍ェンジ ン 30を停止させる必要がある。しかし、スターリング冷凍エンジン 30を突然停止させ た場合は、冷却庫 1の商品としての信頼性が大きく損なわれ好ましくない。  [0118] Therefore, it is necessary to detect the temperature of the low-temperature side circulation circuit 40 of the Stirling refrigeration engine 30 and stop the Stirling refrigeration engine 30 when the temperature of the low-temperature side circulation circuit 40 reaches near the freezing temperature of the refrigerant. . However, suddenly stopping the Stirling refrigeration engine 30 is not preferable because the reliability of the refrigerator 1 as a product is greatly impaired.
[0119] 以上説明したように、第 3の実施の形態における冷却庫 1は、冷媒が凍結するのを 防止するためにスターリング冷凍エンジン 30を停止させる停止制御を行なう前に、停 止制御と異なる冷媒が凍結するのを防止するための凍結防止制御、たとえば、冷却 ファン 22の回転数を最大許容回転数にする制御や、スターリング冷凍エンジン 30へ の入力電力を減少させる制御を行なうことによって冷媒が凍結するのを防止する。 [0119] As described above, the refrigerator 1 in the third embodiment differs from the stop control before performing the stop control for stopping the Stirling refrigeration engine 30 to prevent the refrigerant from freezing. Anti-freezing control to prevent the refrigerant from freezing, eg cooling By controlling the rotational speed of the fan 22 to the maximum allowable rotational speed or reducing the input power to the Stirling refrigeration engine 30, the refrigerant is prevented from freezing.
[0120] このため、凍結防止制御によって冷媒の凍結が防止できた場合には、スターリング 冷凍エンジン 30の停止制御を行なう必要がなくなる。その結果、スターリング冷凍ェ ンジン 30を極力停止させないようにすることができる。これにより、冷却庫の商品とし ての信頼性を向上させることができる。  [0120] Therefore, when the refrigerant can be prevented from freezing by the freeze prevention control, it is not necessary to perform the stop control of the Stirling refrigerating engine 30. As a result, the Stirling freezing engine 30 can be prevented from being stopped as much as possible. As a result, the reliability of the refrigerator as a product can be improved.
[0121] また、温度センサ 81により温度を検出するときに、たとえば、温度センサ 81のサーミ スタの異常などの温度の検出の異常を検知するので、温度センサ 81の温度の誤検 出を防止することができる。このため、ステップ S84における温度 Tを下回ったことの  [0121] Further, when the temperature is detected by the temperature sensor 81, for example, an abnormality in temperature detection such as an abnormality in the thermistor of the temperature sensor 81 is detected, thereby preventing erroneous detection of the temperature of the temperature sensor 81. be able to. For this reason, the temperature T in step S84
2  2
誤検出に基づいて、ステップ S86でスターリング冷凍エンジン 30を停止させないよう にすることができる。  Based on the false detection, the Stirling refrigeration engine 30 can be prevented from being stopped in step S86.
[0122] また、冷媒が凍結する温度よりも高い温度 Tを下回ったときに凍結防止制御が行な  [0122] Further, anti-freezing control is performed when the temperature falls below a temperature T higher than the temperature at which the refrigerant freezes.
1  1
われ、さらに、冷媒が凍結する温度よりも高く温度 τよりも低い温度 τを下回ったとき  And when the temperature falls below the temperature τ higher than the temperature at which the refrigerant freezes and lower than the temperature τ.
1 2  1 2
にスターリング冷凍エンジン 30の停止制御が行なわれる。このため、凍結防止制御 によって温度 Tを下回ることがなく冷媒の凍結を防止できた場合は、スターリング冷  Then, the Stirling refrigeration engine 30 is controlled to stop. Therefore, if the freezing prevention control prevents the refrigerant from freezing below the temperature T, the Stirling cooling
2  2
凍エンジン 30の停止制御を行なう必要がなくなる。その結果、スターリング冷凍ェン ジン 30を極力停止させな 、ようにすることができる。  It is not necessary to perform stop control of the frost engine 30. As a result, the Stirling freezing engine 30 can be prevented from being stopped as much as possible.
[0123] また、冷却ファン 22の風量が増加されるので、低温側蒸発器 42周辺の空気が対流 する。このため、低温側蒸発器 42に新たに送込まれた空気が冷媒に熱を与えるので 、冷媒の温度が上昇する。その結果、冷媒が凍結するのを防止することができる。  [0123] Further, since the air volume of the cooling fan 22 is increased, the air around the low-temperature side evaporator 42 is convected. For this reason, since the air newly sent to the low temperature side evaporator 42 gives heat to the refrigerant, the temperature of the refrigerant rises. As a result, the refrigerant can be prevented from freezing.
[0124] また、冷却ファン 22により庫内の空気が対流するので、低温側蒸発器 42によって 庫内の空気を効率的に冷却することができる。その結果、スターリング冷凍エンジン 3 0の COP (Coefficient Of Performance、成績係数)を向上させることができる。  [0124] In addition, since the air in the box is convected by the cooling fan 22, the low-temperature evaporator 42 can efficiently cool the air in the box. As a result, the COP (Coefficient Of Performance) of the Stirling refrigeration engine 30 can be improved.
[0125] ここで、 COPは、加熱装置または冷却装置それぞれの消費電力あたりの加熱また は冷却能力を示し、非加熱物に与えた熱量または非冷却物から奪った熱量と、その 加熱または冷却のために消費した投入エネルギー量の熱量換算値との比で計算さ れる。本実施の形態においては、冷却装置は冷却庫 1であり、非冷却物は、スターリ ング冷凍エンジン 30のコールドヘッドにより冷却された冷媒によって冷却される冷却 庫 1内の空気である。また、非冷却物から奪った熱量を Q とし、投入エネルギー量 [0125] Here, COP indicates the heating or cooling capacity per power consumption of the heating device or the cooling device, the amount of heat given to the non-heated material or the amount of heat taken from the non-cooled material, and the heating or cooling capacity. Therefore, it is calculated as the ratio of the input energy consumed for heat generation to the calorific value conversion value. In the present embodiment, the cooling device is the refrigerator 1 and the non-cooled material is cooled by the refrigerant cooled by the cold head of the Stirling refrigeration engine 30. It is the air in the storage 1. Also, let Q be the amount of heat taken from uncooled material, and input energy
OUT  OUT
の熱量換算値を Q とした場合、 COPは、 COP = Q /Q の式で求めることができ  COP can be calculated by the following formula: COP = Q / Q
IN OUT IN  IN OUT IN
る。  The
[0126] つまり、スターリング冷凍エンジン 30で冷却された冷媒によって、冷却ファン 22によ り対流された空気力 効率よく熱量が奪われるので、投入した電力の熱量換算値 Q  In other words, the amount of heat efficiently deprived from the aerodynamic force convected by the cooling fan 22 by the refrigerant cooled by the Stirling refrigeration engine 30, so that the converted amount of heat Q
IN  IN
に対して空気力 奪う熱量 Q が増加し、 COPが向上する。  However, the amount of heat Q deprived of aerodynamic force increases and COP improves.
OUT  OUT
[0127] また、空気力も熱量を奪うことによって冷媒に熱量が与えられているにも関わらず、 冷媒の温度が上昇せず、温度 Tを下回っている場合には、スターリング冷凍ェンジ  [0127] Further, if the air temperature is deprived of heat, and the heat is given to the refrigerant, the temperature of the refrigerant does not rise and is lower than the temperature T.
1  1
ン 30の冷却能力を低下させる、つまり、スターリング冷凍エンジン 30に投入する入力 電力を減少させるように制御する。  The cooling capacity of the engine 30 is reduced, that is, the input power input to the Stirling refrigeration engine 30 is controlled to be reduced.
[0128] このため、スターリング冷凍エンジン 30による冷媒の冷却が抑えられるので、冷媒 の温度が上昇する。その結果、冷媒が凍結するのを防止することができる。 [0128] For this reason, since the cooling of the refrigerant by the Stirling refrigerating engine 30 is suppressed, the temperature of the refrigerant rises. As a result, the refrigerant can be prevented from freezing.
[0129] また、冷却ファン 22の回転数が冷却ファン 22の最大許容回転数にされて駆動され るので、最大許容回転数でないときと比較して、冷媒が凍結するのをより防止すること ができる。また、最大許容回転数にすることにより冷却ファン 22によって庫内の空気 力 Sさらに対流するので、スターリング冷凍エンジン 30の COPをより向上させることがで きる。 [0129] Further, since the rotation speed of the cooling fan 22 is driven at the maximum allowable rotation speed of the cooling fan 22, it is possible to further prevent the refrigerant from freezing compared to when the rotation speed is not the maximum allowable rotation speed. it can. In addition, since the convection air force S is further convected by the cooling fan 22 by setting the maximum allowable rotation speed, the COP of the Stirling refrigeration engine 30 can be further improved.
[0130] また、冷却ファン 22の風量を増力!]させ、冷媒に熱量が与えられているにも関わらず 、冷媒の温度が上昇せず、温度 Tを下回っている場合には、スターリング冷凍ェンジ  [0130] Also, increase the air volume of the cooling fan 22! If the temperature of the refrigerant does not rise and is below the temperature T even though the amount of heat is given to the refrigerant, the Stirling refrigeration engine
1  1
ン 30の入力電力を減少させるように制御する。このため、冷媒の冷却が抑えられるの で、冷媒の温度が上昇する。その結果、冷媒が凍結するのを防止することができる。  Control to reduce the input power of 30. For this reason, since cooling of a refrigerant | coolant is suppressed, the temperature of a refrigerant | coolant rises. As a result, the refrigerant can be prevented from freezing.
[0131] また、冷媒が凍結する前に、スターリング冷凍エンジン 30に異常があるため冷媒が 凍結する旨が報知されるので、扉を開閉する等の冷媒の凍結に対する応急処置を 促すことができる。 [0131] Further, since the Stirling refrigeration engine 30 has an abnormality before the refrigerant freezes, the fact that the refrigerant is frozen is notified, so that an emergency measure against the refrigerant freezing, such as opening and closing the door, can be urged.
[0132] なお、第 3の実施の形態においては、たとえば、温度 Tが冷媒の凝固点より 3°C程  [0132] In the third embodiment, for example, the temperature T is about 3 ° C from the freezing point of the refrigerant.
1  1
度高い温度であり、温度 τが冷媒の凝固点より  The temperature τ is higher than the freezing point of the refrigerant.
2 c程度高い温度であることとした。し かし、温度 τ , τは冷媒の凝固点より高い温度であり、  The temperature was about 2c higher. However, the temperatures τ and τ are higher than the freezing point of the refrigerant,
1 2 τ 1 >τであれば他の温度で  1 2 τ 1> τ at other temperatures
2  2
あってもよ!ヽことは!ヽうまでもな!/、。 [0133] この場合、スターリング冷凍エンジン 30を定格状態で運転したときに取り得る冷媒 の温度範囲のうち低い方の温度を温度 Tとし、前述の温度範囲のうち高い方の温度 Even if there is! [0133] In this case, the lower temperature of the temperature range of the refrigerant that can be obtained when the Stirling refrigeration engine 30 is operated in the rated state is defined as the temperature T, and the higher temperature of the aforementioned temperature range.
2  2
より低い温度であって、温度 Tより数。 C高い温度を温度 Tとすることによって、冷媒の  Lower temperature, a number from temperature T. C By setting the high temperature to temperature T,
2 1  twenty one
温度がスターリング冷凍エンジン 30の定格運転で取り得る冷媒の温度範囲以下とな ることを防止することができる。  It is possible to prevent the temperature from becoming below the temperature range of the refrigerant that can be taken in the rated operation of the Stirling refrigeration engine 30.
[0134] これによつて、スターリング冷凍エンジン 30の運転によって冷媒が冷却され過ぎず 、コールドヘッドが過冷却となることが防止できるので、スターリング冷凍エンジン 30 が定格状態を超えて過負荷状態となることが防止できる。その結果、スターリング冷 凍エンジン 30の劣化を防止することができる。  Accordingly, the refrigerant is not cooled excessively by the operation of the Stirling refrigerating engine 30 and the cold head can be prevented from being overcooled, so that the Stirling refrigerating engine 30 exceeds the rated state and is overloaded. Can be prevented. As a result, deterioration of the Stirling refrigeration engine 30 can be prevented.
[0135] 第 1の実施の形態力も第 3の実施の形態までにおいては、冷却庫 1について説明し た力 図 4、図 5、図 7、図 8、および図 10に示した処理を実行する冷却庫 1またはスタ 一リング冷凍エンジン 30の制御方法、図 4、図 5、図 7、図 8、および図 10に示した処 理を実行する冷却庫 1またはスターリング冷凍エンジン 30の制御プログラム、および 、冷却庫 1に設けられるスターリング冷凍エンジン 30として発明を捉えることができる  [0135] The force of the first embodiment up to the third embodiment is the same as the force described for the refrigerator 1 as shown in FIG. 4, FIG. 5, FIG. 7, FIG. 8, and FIG. Control method of the refrigerator 1 or the Stirling refrigeration engine 30, a control program for the refrigerator 1 or the Stirling refrigeration engine 30 that executes the processes shown in FIG. 4, FIG. 5, FIG. 7, FIG. 8, and FIG. The invention can be captured as a Stirling refrigeration engine 30 provided in the refrigerator 1
[0136] この発明を詳細に説明し示してきた力 これは例示のためのみであって、限定とな つてはならず、発明の精神と範囲は添付の請求の範囲によってのみ限定されることが 明らかに理解されるであろう。 [0136] Power that has described and illustrated this invention in detail. This is by way of example only and should not be limiting, and the spirit and scope of the invention is limited only by the scope of the appended claims. It will be clearly understood.

Claims

請求の範囲 The scope of the claims
[1] スターリング冷凍エンジン(30)で庫内を冷却する冷却庫(1)であって、  [1] A refrigerator (1) that cools the interior with a Stirling refrigeration engine (30),
前記スターリング冷凍エンジンの過冷却危惧状態を検出する状態検出手段 (81, S State detection means (81, S) for detecting an overcooled state of the Stirling refrigeration engine
01, Sl l, S21, S31, S37, S39, S45, S74, S75, S82, S84)と、 01, Sl l, S21, S31, S37, S39, S45, S74, S75, S82, S84), and
前記状態検出手段による前記過冷却危惧状態の検出に基づき前記スターリング冷 凍エンジンが過冷却となるのを防止する過冷却防止手段(S02)とを備えた、冷却庫  A cooling cabinet comprising supercooling prevention means (S02) for preventing the Stirling refrigeration engine from being overcooled based on detection of the overcooled state by the state detection means;
[2] 前記冷却庫の冷却室(11, 12)に設けられた扉(14, 15)の開閉状態を検出する 扉状態検出手段 (82, 83)と、 [2] Door state detection means (82, 83) for detecting the open / closed state of the doors (14, 15) provided in the cooling chambers (11, 12) of the refrigerator,
前記スターリング冷凍エンジンによって冷やされた冷気を庫内に供給する冷却ファ ン(22)と、  A cooling fan (22) for supplying cold air cooled by the Stirling refrigeration engine into the cabinet;
前記扉状態検出手段により扉が開状態にあることが検出されている間、前記冷却フ アンを停止させる冷却ファン制御手段 (S22)とをさらに備え、  Cooling fan control means (S22) for stopping the cooling fan while the door state detecting means detects that the door is in an open state,
前記状態検出手段は、前記扉状態検出手段による扉の開状態が所定時間経過し たことを検出する(S23)、請求項 1に記載の冷却庫。  The refrigerator according to claim 1, wherein the state detecting means detects that a predetermined time has elapsed since the door state is detected by the door state detecting means (S23).
[3] 前記冷却庫は、断熱材で仕切られ、それぞれが扉を有する第 1の冷却室(12)と第 2の冷却室(11)とを含み、 [3] The refrigerator includes a first cooling chamber (12) and a second cooling chamber (11) each partitioned by a heat insulating material and having a door,
前記冷却ファンは、前記スターリング冷凍エンジンによって冷やされた冷気を前記 第 1の冷却室に供給し、  The cooling fan supplies cold air cooled by the Stirling refrigeration engine to the first cooling chamber,
前記スターリング冷凍エンジンによって冷やされた冷気を前記第 2の冷却室に導く ための送風路(20, 21, 21A)と、  An air passage (20, 21, 21A) for guiding the cold air cooled by the Stirling refrigeration engine to the second cooling chamber;
前記送風路に設けられ、前記スターリング冷凍エンジンによって冷やされた冷気を 遮断するための遮断手段 (61)と、  A blocking means (61) provided in the air passage for blocking the cool air cooled by the Stirling refrigeration engine;
前記スターリング冷凍エンジンによって冷やされた冷気を前記送風路に送風する送 風ファン(62)とをさらに備え、  An air supply fan (62) for blowing cool air cooled by the Stirling refrigerating engine to the air passage,
前記過冷却防止手段は、前記扉状態検出手段により前記第 1の冷却室の扉の閉 状態および前記第 2の冷却室の扉の開状態が検出された場合 (S31)は前記遮断手 段に前記送風路を遮断させる(S35)とともに前記冷却ファンの停止を解除して駆動 させ (S36)、前記扉状態検出手段により前記第 1の冷却室の扉の開状態および前 記第 2の冷却室の扉の閉状態が検出された場合 (S39)は、前記遮断手段に前記送 風路の遮断を解除させる(S43)とともに前記送風ファンを駆動させる(S44)、請求項 2に記載の冷却庫。 The overcooling prevention means is used as the blocking means when the door state detection means detects the closed state of the first cooling chamber door and the open state of the second cooling chamber door (S31). The air passage is shut off (S35) and the stop of the cooling fan is released to drive (S36) When the door state detection means detects the open state of the first cooling chamber door and the closed state of the second cooling chamber door (S39), 3. The refrigerator according to claim 2, wherein the air blower is blocked (S43) and the blower fan is driven (S44).
[4] 前記スターリング冷凍エンジンに形成される低温部から二次冷媒を介して冷熱を受 ける低温側蒸発器 (42)をさらに備え、  [4] The apparatus further includes a low-temperature side evaporator (42) that receives cold from a low-temperature portion formed in the Stirling refrigeration engine via a secondary refrigerant,
前記状態検出手段は、前記低温部、前記低温側蒸発器または前記低温側蒸発器 と対をなす低温側凝縮器 (41)の温度を検出する温度検出手段 (81)を含み、前記 温度検出手段により検出された温度が所定温度を下回ったことを検出する(SOI, S The state detection means includes temperature detection means (81) for detecting the temperature of the low temperature part, the low temperature side evaporator or the low temperature side condenser (41) paired with the low temperature side evaporator, and the temperature detection means Detects that the temperature detected by is below the specified temperature (SOI, S
11, S74, S82, S84)、請求項 1に記載の冷却庫。 11, S74, S82, S84), the refrigerator according to claim 1.
[5] 前記過冷却防止手段は、前記スターリング冷凍エンジンを制御して停止させる停止 制御(S24, S86)を行なう前に、前記停止制御と異なる制御であって前記スターリン グ冷凍エンジンが過冷却となるのを防止する過冷却防止制御(S22, S78, S81)を 行なう、請求項 4に記載の冷却庫。 [5] The overcooling prevention means is a control different from the stop control before the Stirling refrigeration engine is overcooled before the stop control (S24, S86) for controlling and stopping the Stirling refrigeration engine. 5. The refrigerator according to claim 4, wherein a supercooling prevention control (S22, S78, S81) is performed to prevent the occurrence of failure.
[6] 前記所定温度は、前記スターリング冷凍エンジンが過冷却となる温度よりも高い第 1 の温度 (T )と、前記スターリング冷凍エンジンが過冷却となる温度よりも高く前記第 1 [6] The predetermined temperature includes a first temperature (T) higher than a temperature at which the Stirling refrigeration engine is supercooled and a temperature higher than the temperature at which the Stirling refrigeration engine is supercooled.
1  1
の温度よりも低 、第 2の温度 (T )とを含み、  And a second temperature (T) lower than the temperature of
2  2
前記過冷却防止手段は、前記状態検出手段により前記第 1の温度を下回ったこと が検出されたときに前記過冷却防止制御を行い、さらに、前記冷媒状態検出手段に より前記第 2の温度を下回ったことが検出されたときに前記停止制御を行なう、請求 項 5に記載の冷却庫。  The supercooling prevention unit performs the supercooling prevention control when the state detection unit detects that the temperature is lower than the first temperature, and further, the refrigerant state detection unit sets the second temperature. 6. The refrigerator according to claim 5, wherein the stop control is performed when it is detected that the value has fallen below.
[7] 前記温度検知手段により温度が検出されるときに、前記温度検出手段による温度 の検出の異常を検知する温度検出異常検知手段(81)をさらに備える、請求項 4に 記載の冷却庫。  [7] The refrigerator according to claim 4, further comprising temperature detection abnormality detection means (81) for detecting abnormality of temperature detection by the temperature detection means when temperature is detected by the temperature detection means.
[8] 前記低温側蒸発器によって冷やされた冷気を庫内に供給する冷却ファン (22)をさ らに備え、  [8] A cooling fan (22) for supplying cold air cooled by the low-temperature side evaporator into the cabinet is further provided,
前記過冷却防止手段は、前記冷却ファンを駆動させる(S13, S36)、または、前記 冷却ファンの風量を増加させる(S14, S78)、請求項 4に記載の冷却庫。 5. The refrigerator according to claim 4, wherein the overcooling prevention means drives the cooling fan (S13, S36) or increases the air volume of the cooling fan (S14, S78).
[9] 前記過冷却防止手段は、前記状態検出手段により前記第 1の温度を下回ったこと が検出されているときに(S74)前記冷却ファンを駆動させまたは前記冷却ファンの風 量を増加させ (S78)、さらに、前記冷却ファンを駆動させまたは前記冷却ファンの風 量を増加させてから所定時間経過した後に (S79)前記状態検出手段により前記第 1 の温度を下回ったことが検出されているときに(S82)前記スターリング冷凍エンジン を制御して冷却能力を低下させる(S81)、請求項 8に記載の冷却庫。 [9] The overcooling preventing means drives the cooling fan or increases the airflow of the cooling fan when the state detecting means detects that the temperature is below the first temperature (S74). (S78) Further, after a predetermined time has elapsed since the cooling fan was driven or the air volume of the cooling fan was increased (S79), it was detected by the state detection means that the temperature was below the first temperature. 9. The refrigerator according to claim 8, wherein the cooling capacity is reduced by controlling the Stirling refrigeration engine (S81) when the engine is in operation (S82).
[10] 前記過冷却防止手段は、前記冷却ファンの回転数を制御する回転数制御手段(9 0)を備え、  [10] The overcooling prevention means includes a rotation speed control means (90) for controlling the rotation speed of the cooling fan,
前記過冷却防止手段は、前記状態検出手段により前記第 1の温度を下回ったこと が検出されているときに前記冷却ファンの回転数を回転能力の最大限にして前記冷 却ファンを駆動させ (S78)、さらに、前記冷却ファンの回転数を最大限にして駆動さ せてから所定時間経過した後に(S79)前記状態検出手段により前記第 1の温度を 下回ったことが検出されているときに(S82)前記スターリング冷凍エンジンを制御し て冷却能力を低下させる(S81)、請求項 8に記載の冷却庫。  The overcooling prevention means drives the cooling fan by setting the rotational speed of the cooling fan to the maximum rotational capacity when the state detection means detects that the temperature is below the first temperature. (S78) and, after a predetermined time has elapsed since the cooling fan was driven at the maximum speed (S79), when the state detecting means detects that the temperature has dropped below the first temperature. (S82) The refrigerator according to claim 8, wherein the Stirling refrigeration engine is controlled to reduce the cooling capacity (S81).
PCT/JP2005/016912 2005-02-17 2005-09-14 Refrigerator WO2006087840A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05783201A EP1852665A1 (en) 2005-02-17 2005-09-14 Refrigerator
US11/884,444 US20080155994A1 (en) 2005-02-17 2005-09-14 Refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005040640A JP3935912B2 (en) 2004-03-31 2005-02-17 Refrigerator
JP2005-040640 2005-02-17

Publications (1)

Publication Number Publication Date
WO2006087840A1 true WO2006087840A1 (en) 2006-08-24

Family

ID=36916254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016912 WO2006087840A1 (en) 2005-02-17 2005-09-14 Refrigerator

Country Status (5)

Country Link
US (1) US20080155994A1 (en)
EP (1) EP1852665A1 (en)
KR (1) KR20070103504A (en)
CN (1) CN101120215A (en)
WO (1) WO2006087840A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2623892A3 (en) * 2006-10-21 2015-01-21 ACTON, Elizabeth Controlled rate freezing
CN115218602A (en) * 2022-06-27 2022-10-21 青岛海尔生物医疗股份有限公司 Method and device for controlling temperature of refrigerator, refrigerator and storage medium

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9010145B2 (en) * 2009-06-01 2015-04-21 Samsung Electronics Co., Ltd. Refrigerator
CN102997546A (en) * 2011-09-19 2013-03-27 博西华电器(江苏)有限公司 Household refrigerator
US9434474B2 (en) * 2012-11-16 2016-09-06 B/E Aerospace, Inc. Aircraft galley cart door interlock
EP2762796A1 (en) * 2013-02-04 2014-08-06 ABB Oy Cooling assembly
US9733008B2 (en) * 2013-03-13 2017-08-15 Whirlpool Corporation Air flow design for controlling temperature in a refrigerator compartment
KR101977204B1 (en) * 2013-06-10 2019-05-10 주식회사 대유위니아 Method for refrigerant control of refrigerator
ITTO20131093A1 (en) * 2013-12-31 2015-07-01 Indesit Co Spa METHOD AND DEVICE FOR CHECKING A DEEP FREEZING PHASE IN A REFRIGERATOR OF THE COMBINED SINGLE-ADJUSTMENT TYPE, AND ITS REFRIGERATOR APPARATUS
ITTO20131094A1 (en) * 2013-12-31 2015-07-01 Indesit Co Spa METHOD AND DEVICE FOR CHECKING A DEEP FREEZING PHASE IN A REFRIGERATOR OF THE COMBINED SINGLE-ADJUSTMENT TYPE, AND ITS REFRIGERATOR APPARATUS
ITTO20131095A1 (en) * 2013-12-31 2015-07-01 Indesit Co Spa METHOD AND DEVICE FOR CHECKING A DEEP FREEZING PHASE IN A REFRIGERATOR OF THE COMBINED SINGLE-ADJUSTMENT TYPE, AND ITS REFRIGERATOR APPARATUS
US10126024B1 (en) * 2014-09-26 2018-11-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Cryogenic heat transfer system
DE102015007359A1 (en) * 2014-10-29 2016-05-04 Liebherr-Hausgeräte Ochsenhausen GmbH Fridge and / or freezer
KR20170128958A (en) * 2016-05-16 2017-11-24 엘지전자 주식회사 Laundry Treating Apparatus
CN106839578A (en) * 2017-03-07 2017-06-13 宁波华斯特林电机制造有限公司 A kind of family expenses fast freezing case
EP3450888B1 (en) * 2017-08-28 2020-10-07 Liebherr-Hausgeräte Lienz GmbH Cabinet for storing wine with two compartments
CN108800713B (en) * 2018-05-09 2021-07-20 上海理工大学 Multi-temperature-zone air-cooled refrigerator adopting Stirling refrigerator and temperature control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236369A (en) * 1996-02-26 1997-09-09 Matsushita Refrig Co Ltd Refrigerator
JP2000018747A (en) * 1998-07-03 2000-01-18 Sanyo Electric Co Ltd Stirling chiller
JP2003314937A (en) * 2002-04-19 2003-11-06 Sharp Corp Operating method of stirling cooling device and stirling refrigerator using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292813A (en) * 1979-03-08 1981-10-06 Whirlpool Corporation Adaptive temperature control system
US4481787A (en) * 1982-07-16 1984-11-13 Whirlpool Corporation Sequentially controlled single evaporator refrigerator
US5355686A (en) * 1993-08-11 1994-10-18 Micro Weiss Electronics, Inc. Dual temperature control of refrigerator-freezer
US6272867B1 (en) * 1999-09-22 2001-08-14 The Coca-Cola Company Apparatus using stirling cooler system and methods of use
US6931863B2 (en) * 2000-08-22 2005-08-23 Sharp Kabushiki Kaisha Stirling refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236369A (en) * 1996-02-26 1997-09-09 Matsushita Refrig Co Ltd Refrigerator
JP2000018747A (en) * 1998-07-03 2000-01-18 Sanyo Electric Co Ltd Stirling chiller
JP2003314937A (en) * 2002-04-19 2003-11-06 Sharp Corp Operating method of stirling cooling device and stirling refrigerator using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2623892A3 (en) * 2006-10-21 2015-01-21 ACTON, Elizabeth Controlled rate freezing
CN115218602A (en) * 2022-06-27 2022-10-21 青岛海尔生物医疗股份有限公司 Method and device for controlling temperature of refrigerator, refrigerator and storage medium
CN115218602B (en) * 2022-06-27 2023-08-11 青岛海尔生物医疗股份有限公司 Method and device for controlling temperature of refrigerator, refrigerator and storage medium

Also Published As

Publication number Publication date
US20080155994A1 (en) 2008-07-03
KR20070103504A (en) 2007-10-23
EP1852665A1 (en) 2007-11-07
CN101120215A (en) 2008-02-06

Similar Documents

Publication Publication Date Title
WO2006087840A1 (en) Refrigerator
US8365543B2 (en) Cooling storage
JP2007071505A (en) Refrigerating plant
JP2005249254A (en) Refrigerator-freezer
US20100095691A1 (en) Cooling storage and method of operating the same
JP4461038B2 (en) refrigerator
JP3935912B2 (en) Refrigerator
JP2001349659A (en) Refrigerator
JP3541149B2 (en) refrigerator
KR101450664B1 (en) Defrosting apparatus for a refrigerator and method thereof
KR20080068233A (en) Method and apparatus for prevention supercooling of refrigerator
JP2001056173A (en) Freezer/refrigerator
JP2004092939A (en) Refrigerator-freezer
KR100772233B1 (en) Refrigerator and controlling method thereof
JP3819815B2 (en) Refrigerant leak detection method for refrigerator
JP7507338B2 (en) refrigerator
JP2001263884A (en) Method for controlling operation of storage shed
JP3851246B2 (en) Control method of flammable refrigerant refrigerator
CN114234529B (en) Refrigerator and control method thereof
JP2005337635A (en) Cooling apparatus
JP5463874B2 (en) Container refrigeration equipment
KR20030015050A (en) Refrigeration system and method for controlling the same
JP2021181850A (en) refrigerator
JP2006112661A (en) Refrigerator
JP2000249446A (en) Food refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005783201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580048156.6

Country of ref document: CN

Ref document number: 11884444

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077021113

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005783201

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2005783201

Country of ref document: EP