JP2010005787A - Inner face working method - Google Patents

Inner face working method Download PDF

Info

Publication number
JP2010005787A
JP2010005787A JP2009238408A JP2009238408A JP2010005787A JP 2010005787 A JP2010005787 A JP 2010005787A JP 2009238408 A JP2009238408 A JP 2009238408A JP 2009238408 A JP2009238408 A JP 2009238408A JP 2010005787 A JP2010005787 A JP 2010005787A
Authority
JP
Japan
Prior art keywords
groove
grinding
machining
cutting
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009238408A
Other languages
Japanese (ja)
Other versions
JP5126193B2 (en
Inventor
Tsugio Honoki
継雄 朴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009238408A priority Critical patent/JP5126193B2/en
Publication of JP2010005787A publication Critical patent/JP2010005787A/en
Application granted granted Critical
Publication of JP5126193B2 publication Critical patent/JP5126193B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Multi-Process Working Machines And Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems such as setting of a wasteful working allowance corresponding to positioning errors, limitation on working accuracy, prolongment of working time, reduction of service lifetime of a grinding wheel or the like in conventional working process in which positioning accuracy has its limitation due to respectively independent processes though grinding finish working becomes important as secondary working in order to obtain a highly efficient compressor capable of suppressing leaking loss by improving the slidability of a vane. <P>SOLUTION: A cutting device for cutting an inner face of a material to be cut, a grinding device for grinding a working part of the inner face cut by the cutting device, a dimension measuring device for measuring the dimension of the cut and ground working part, and a transfer table movable to prescribed positions facing the cutting device, the grinding device, and the dimension measuring device in a state that the material to be cut is fixed are provided. Inner face working of the material to be cut is sequentially carried out by moving the transfer table. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば孔の内面やロータリ圧縮機のシリンダの内周面にベーン溝を加工するような溝内面を加工する装置、方法、および圧縮機に関するものである。   The present invention relates to an apparatus, a method, and a compressor for processing a groove inner surface such as processing a vane groove on an inner surface of a hole or an inner peripheral surface of a cylinder of a rotary compressor.

一般に、内面に溝などを切削加工するには、ブローチ盤を用い表面ブローチを被削物の穴に通し、引き抜きながら溝切削するブローチ加工が行われている。ロータリ圧縮機のシリンダのベーン溝においても、このブローチ加工により被削物専用の表面ブローチを用い加工される(例えば特許文献1)。また最近では、より高精度にベーン溝を仕上げ加工するために、二次加工として専用の研削盤を用い研削加工を施す(例えば特許文献2)。   In general, in order to cut a groove or the like on the inner surface, broaching is performed by using a broaching machine and passing a surface broach through a hole in a work piece and cutting the groove while drawing. The vane groove of the cylinder of the rotary compressor is also processed using a surface broach dedicated to the workpiece by this broaching (for example, Patent Document 1). Recently, in order to finish the vane groove with higher accuracy, grinding is performed using a dedicated grinder as secondary processing (for example, Patent Document 2).

特開平7−124818号公報JP-A-7-124818 特開2003−340705号公報JP 2003-340705 A

ロータリ圧縮機のシリンダ内においては偏芯リングが高速回転し、かつ、この偏芯リングにベーン溝に案内されたベーンが当接して偏芯に応じてバネで抑えられながらベーン溝内を往復動している。ベーンには複数の向きに変動する力が加わる。このようなシリンダベーン溝加工においては、表面粗さ、平面度、平行度、溝巾などに極端に高い加工精度が要求される。ベーンの摺動性を高め、漏れ損失を抑えた高効率な圧縮機を得るために、二次加工として研削仕上げ加工することが近年大変重要となってきた。しかしながら、従来のブローチ盤による一次加工、溝専用研削盤による二次加工では、独立した工程となるため二次加工における被削物の溝の位置決め精度に限界があり、位置決め誤差に応じた無駄な加工代を設定しなければならず、加工負荷の増大や溝左右側面加工代の不安定による仕上げ加工精度の限界、また加工時間が長くなる、また砥石寿命が短くなるなどの問題があった。   In the cylinder of the rotary compressor, the eccentric ring rotates at a high speed, and the vane guided by the vane groove comes into contact with the eccentric ring and reciprocates in the vane groove while being suppressed by a spring according to the eccentricity. is doing. The vane is subjected to forces that vary in multiple directions. In such cylinder vane groove machining, extremely high machining accuracy is required in terms of surface roughness, flatness, parallelism, groove width, and the like. In order to obtain a highly efficient compressor with improved vane slidability and reduced leakage loss, grinding finishing as a secondary process has become very important in recent years. However, the conventional primary processing with a broaching machine and secondary processing with a dedicated grinder for grooves are independent processes, so there is a limit to the positioning accuracy of the groove of the workpiece in the secondary processing, which is a wasteful use according to positioning errors. The machining allowance had to be set, and there were problems such as an increase in machining load and a limit of finishing machining accuracy due to instability of the machining allowance on the left and right sides of the groove, a longer machining time, and a shorter grinding wheel life.

また、従来のブローチ盤によるブローチ加工は量産性の点では有効であったが、しかしその反面、使用されるブローチ刃は高価なもので生産コストが高くなり、また油性切削液を使用しなければならず環境面、安全面においても問題があった。   In addition, broaching with a conventional broaching machine was effective in terms of mass productivity, but on the other hand, the broaching blade used is expensive and expensive to produce, and oil-based cutting fluid must be used. There were also problems in terms of environment and safety.

また一次加工、二次加工双方の加工精度面においても、被削物の両端面を全周リング状にクランプし加工することから、被削物両端面の平面度の影響により被削物が変形し加工されることになり、アンクランプ後の溝平行度が悪くなる問題があった。またクランプする基準面に切り粉噛みを起こし、直角度を悪くする等の問題もあった。   Also, in terms of both the primary and secondary machining accuracy, the work piece is deformed due to the influence of the flatness of both work surfaces because both work surfaces are clamped into a ring around the entire circumference. There is a problem that the groove parallelism after unclamping is deteriorated. In addition, there is a problem that chips are bitten on the reference surface to be clamped and the perpendicularity is deteriorated.

この発明は上記のような問題点を解決するためになされたもので、被削物の内面の同一加工部に高い加工精度を安定して得ることが出来る複合加工が可能な内面加工装置および方法を提供することを目的とする。又本発明は同一加工部に高精度の複合加工を連続して行える大量生産に適した装置および方法を得ることを目的とする。更に本発明は精度の良い溝加工されたシリンダを有し性能の良い圧縮機を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an inner surface machining apparatus and method capable of complex machining that can stably obtain high machining accuracy in the same machining portion of the inner surface of the workpiece. The purpose is to provide. Another object of the present invention is to provide an apparatus and method suitable for mass production in which high-precision composite processing can be continuously performed on the same processing portion. A further object of the present invention is to provide a compressor having a high-precision grooved cylinder.

本発明の内面加工方法は、搬送台に位置決めされた被削物の内面を切削加工する切削ステップと、被削物を搬送台にて移動させ切削された内面の加工部を研削する研削ステップと、切削する際被削物を搬送台にクランプにて固定した圧力を研削する前に解除し再び圧力印加して研削するクランプ圧力解除印加ステップと、を備えたものである。   The inner surface processing method of the present invention includes a cutting step for cutting an inner surface of a workpiece positioned on a conveyance table, and a grinding step for grinding a machined portion of the cut inner surface by moving the workpiece on the conveyance table. And a clamping pressure release applying step of releasing before grinding the pressure at which the work piece is fixed to the conveyance table by the clamp when cutting, and applying the pressure again for grinding.

本発明は、被削物の内面加工を精度良く、且つ高速で行えるものである。また本発明は、研削の除去量を最小化でき、低コストで量産加工することができる。更に本発明に係わる圧縮機は、ベーンとベーン溝の隙間からの漏れ損失を抑え高い性能を得ることができる。   The present invention is capable of accurately machining an inner surface of a workpiece at high speed. Further, the present invention can minimize the removal amount of grinding and can perform mass production processing at low cost. Furthermore, the compressor according to the present invention can obtain high performance by suppressing leakage loss from the gap between the vane and the vane groove.

この発明の溝複合加工装置の加工フロー図である。It is a processing flowchart of the groove | channel compound processing apparatus of this invention. この発明の溝複合加工装置の平面図である。It is a top view of the groove | channel compound processing apparatus of this invention. この発明の溝切削装置の部品加工中の斜視図である。It is a perspective view in the part processing of the groove cutting apparatus of this invention. この発明の溝面取り装置の部品加工中の斜視図である。It is a perspective view in process of components of the groove chamfering apparatus of this invention. この発明の溝研削装置の部品加工中の断面図である。It is sectional drawing in the part processing of the groove grinding apparatus of this invention. この発明の溝研削装置の部品加工中の右側面図である。It is a right view in the part processing of the groove grinding apparatus of this invention. この発明の溝研削装置の部品加工中の正面図である。It is a front view in the part processing of the groove grinding apparatus of this invention. この発明の溝測定装置の部品測定中の斜視図である。It is a perspective view in the part measurement of the groove | channel measuring apparatus of this invention. この発明の固定治具及びクランプ装置を説明する説明図である。It is explanatory drawing explaining the fixing jig and clamp apparatus of this invention. この発明の溝切削装置を説明する図で、(a)は部品加工中の断面図、(b)は回転刃具位置を示す正面図である。It is a figure explaining the groove cutting apparatus of this invention, (a) is sectional drawing in process of components, (b) is a front view which shows a rotary blade position. この発明の溝研削装置の送り制御の説明用斜視図である。It is a perspective view for explanation of feed control of the groove grinding device of this invention. この発明の溝測定装置の多点測定の説明用側面図である。It is a side view for explanation of multipoint measurement of the groove measuring device of this invention. この発明の別の例による溝複合加工装置の平面図である。It is a top view of the groove | channel compound processing apparatus by another example of this invention. この発明により加工される部品を使用した圧縮機の断面図である。It is sectional drawing of the compressor using the components processed by this invention. この発明の圧縮機圧縮機構の説明図である。It is explanatory drawing of the compressor compression mechanism of this invention.

実施の形態1.
本発明の被削物の内面加工を行う方法・装置として、例えば圧縮機のシリンダに設ける内側に向いた面を加工する溝加工であるベーン溝複合加工方法および装置についてを図1、図2で説明する。このベーン溝加工として、加工される被削物であるシリンダを搬送台に固定して搬送し順次加工する場合の例で先ず説明する。
Embodiment 1.
As a method and apparatus for machining an inner surface of a workpiece according to the present invention, for example, a vane groove combined machining method and apparatus, which is a groove machining for machining an inner surface provided in a cylinder of a compressor, are shown in FIGS. explain. The vane grooving process will be first described with reference to an example in which a cylinder, which is a workpiece to be processed, is fixed to a conveyance table, conveyed, and sequentially processed.

図1はこの発明のベーン溝複合加工装置の実施例を示す加工フロー図である。図2は回転する搬送台でシリンダを回転搬送しながら異なる加工装置などで加工を行うベーン溝複合加工装置である。11は回転搬送台、12a、12b、12c、12dはそれぞれの被削材100が回転搬送台11にクランプされる固定治具であって、図2のごとく4個の被削物が固定され搬送台が回転するに伴い順次処理が行われる。被削材である部品100は固定冶具12aの位置でクランプされ、12bの位置で溝切削装置13の刃具17によって左右から図3に示すように溝成形切削される。図3の切削装置は、図2Bのごとく前後、あるいは図2Cのごとく左右に移動可能なテーブル状に固定され、両持ち構造により工具回転軸である工具ホルダと切削刃具を備え、被削物100の内面に設定される加工部の成形切削加工を行う   FIG. 1 is a processing flow diagram showing an embodiment of the vane groove composite processing apparatus of the present invention. FIG. 2 shows a combined vane groove processing apparatus that performs processing with different processing apparatuses while rotating and transporting a cylinder on a rotating transport table. Reference numeral 11 denotes a rotary conveyance table, and 12a, 12b, 12c, and 12d are fixing jigs for clamping the work material 100 to the rotary conveyance table 11, and four workpieces are fixed and conveyed as shown in FIG. Processing is sequentially performed as the table rotates. The part 100 which is a work material is clamped at the position of the fixing jig 12a, and is grooved and cut from the left and right by the blade 17 of the groove cutting device 13 at the position of 12b as shown in FIG. The cutting apparatus of FIG. 3 is fixed in a table shape that can be moved back and forth as shown in FIG. 2B or left and right as shown in FIG. 2C, and includes a tool holder and a cutting blade as a tool rotation axis by a double-supported structure. Forming and cutting the processing part set on the inner surface of

次に搬送台11が回転し、12cの位置で溝面取り装置14のブローチ18によって溝の両面の上下端を図4に示すように面取り切削される。ここでクランプ装置の圧力を完全に抜いて切削加工後の被削材の内部応力を解放する。再びクランプし搬送台11が回転後12dの位置で溝研削装置15の砥石19によって図5、図6、図7に示すように研削仕上げ加工を行い、12aの位置で溝巾測定装置16の測定子22によって図8に示すように自動測定し計測値をフィードバックして任意の溝巾寸法に制御する。   Next, the transport table 11 is rotated, and the upper and lower ends of both sides of the groove are chamfered and cut as shown in FIG. 4 by the broach 18 of the groove chamfering device 14 at the position 12c. Here, the internal stress of the work material after cutting is released by completely releasing the pressure of the clamping device. Clamping is performed again, and the grinding table 19 is ground by the grindstone 19 of the groove grinding device 15 at the position 12d after the transport table 11 rotates, and the groove width measuring device 16 measures at the position 12a. As shown in FIG. 8, it is automatically measured by the element 22 and the measured value is fed back to control the groove width to an arbitrary dimension.

図2の複合加工装置は搬送台11を中に周囲を溝切削装置13、溝面取り装置14、溝研削装置15、溝測定装置16が取り囲み、加工や測定の制御をNC制御装置28で行う。この手順は図1に示すように被削物である圧縮機のシリンダ100を搬送台にクランプSTEP1して固定し、次に溝切削装置、すなわち溝切削、溝面取り切削の加工位置と合うように位置決めされた被削物の内面を切削加工する切削ステップSTEP2、STEP3と、被削物を搬送台にて移動させ切削された内面の加工部を研削する研削ステップSTEP5と、切削する際被削物を搬送台にクランプにて固定した圧力を研削する前に解除し再び圧力印加して研削するクランプ圧力解除印加ステップSTEP4と、溝測定装置で溝幅を測定STEP6しシリンダ100を取り出すSTEP7を備えている。すなわち、この複合加工においては、クランプ工程、溝成形切削工程、溝面取り切削工程、歪取り圧抜きアンクランプ工程、溝研削工程、溝巾測定工程、アンクランプ工程より構成されている。   2 is surrounded by a groove cutting device 13, a groove chamfering device 14, a groove grinding device 15, and a groove measuring device 16, and an NC control device 28 controls processing and measurement. In this procedure, as shown in FIG. 1, a cylinder 100 of a compressor as a work piece is clamped STEP1 and fixed to a conveying table, and then matched with a machining position of a groove cutting device, that is, groove cutting and chamfer cutting. Cutting steps STEP2 and STEP3 for cutting the inner surface of the positioned workpiece, grinding step STEP5 for grinding the machined portion of the cut inner surface by moving the workpiece on the carriage, and the workpiece when cutting Is provided with a clamp pressure release applying step STEP4 for releasing the pressure fixed to the carriage with the clamp before grinding and applying the pressure again for grinding, and STEP7 for measuring the groove width with the groove measuring device and taking out the cylinder 100. Yes. In other words, this combined processing includes a clamping process, a groove forming cutting process, a groove chamfering cutting process, a strain relief pressure unclamping process, a groove grinding process, a groove width measuring process, and an unclamping process.

シリンダである被削物100は搬送台11に取り付けられたクランパである固定冶具12により固定され、シリンダ内面の加工部を切削する切削装置13は、前後、左右に移動可能なテーブル上に固定され、両持ち構造により工具回転軸42である工具ホルダと切削刃具17を備え、主軸41の回転に応じて前記加工部の成形切削加工を行う。次に搬送台11が回転し、12cの位置で溝面取り装置14のブローチ18によって溝の両面の上下端を図4に示すように面取り切削される。溝面取り装置14は図2の7矢印Dが示すように加工する軸方向に動く。図4はクランパ32にて固定されたシリンダー100が面取りブローチ18にて角部が加工されている状態を示す。   A workpiece 100 as a cylinder is fixed by a fixing jig 12 as a clamper attached to a conveyance table 11, and a cutting device 13 for cutting a machining portion on the inner surface of the cylinder is fixed on a table that can be moved back and forth and from side to side. The tool holder which is the tool rotation shaft 42 and the cutting blade 17 are provided with a double-supported structure, and the machining portion is shaped and cut according to the rotation of the main shaft 41. Next, the transport table 11 is rotated, and the upper and lower ends of both sides of the groove are chamfered and cut as shown in FIG. 4 by the broach 18 of the groove chamfering device 14 at the position 12c. The groove chamfering device 14 moves in the axial direction of machining as indicated by an arrow D in FIG. FIG. 4 shows a state in which the corner portion of the cylinder 100 fixed by the clamper 32 is processed by the chamfering broach 18.

溝研削装置15の砥石19によって図5、図6、図7に示すように研削仕上げ加工を行う被削物を研削する研削装置は、砥石台金19を高速回転させる砥石ヘッド本体20を前後すなわち加工する軸の方向E、水平方向である左右Fに移動可能なテーブル上に固定され、左右に移動可能な切り込み軸サーボモータの負荷値を一定に制御するよう、前後に移動可能な送り軸サーボモータの送り速度を制御する加工を行う。図5、6、7に示すようにシリンダ100の内周側に切削して設けたぬすみ31を有するベーン溝40に対して砥石台金19の先端側に設けた砥粒層21により精度を得るための研削が行われる。シリンダ100の内周側の円形貫通孔30に挿入される研削ヘッド本体20は砥石台金19の回転軸両端をボールベアリングで支持しながら、高速で精度良い加工が行えるようにミスト用孔58から潤滑剤を供給し、静圧ポケット59にて研削時のスラスト荷重を受け溝片面ずつ加工することができる。この回転する砥石台金19は電動モータ51で駆動しプーリ50を介してベルトを回転させて回す。研削ヘッド本体20にはミスト入口55、静圧ポケット用水入口56が設けられ内部を油や水を流している。なお砥石台金19の先端にベルトで回転を伝えるベルト溝53を設けてある。またこの研削ヘッド本体20は研削ヘッドキャップ57を分解すれば砥石やこの回転を支持する深溝玉軸受またはアンギュラ玉軸受など必要な部品交換ができる分割可能なような組立品とし、砥石代金19を含む研削ヘッド本体の先端をシリンダのような加工品の狭い穴に挿入して研削できる構造である。   As shown in FIGS. 5, 6, and 7, the grinding device that grinds the work to be ground and finished by the grindstone 19 of the groove grinding device 15 moves the grindstone head body 20 that rotates the grindstone base 19 at a high speed. Feed axis servo that can be moved back and forth so that the load value of the cutting axis servo motor that is fixed on the table that can be moved in the direction E of the machining axis E and the horizontal F that is movable horizontally Processing to control the motor feed rate. As shown in FIGS. 5, 6, and 7, accuracy is obtained by the abrasive grain layer 21 provided on the front end side of the grindstone base 19 with respect to the vane groove 40 having the cutout 31 provided on the inner peripheral side of the cylinder 100. Grinding is performed. The grinding head main body 20 inserted into the circular through hole 30 on the inner peripheral side of the cylinder 100 supports the both ends of the rotating shaft of the grindstone base 19 with ball bearings, and allows the grinding head body 20 to be processed at high speed and with high accuracy. Lubricant is supplied, and a thrust load at the time of grinding can be received in the static pressure pocket 59 to process each groove surface. The rotating grindstone base 19 is driven by an electric motor 51 to rotate and rotate a belt via a pulley 50. The grinding head main body 20 is provided with a mist inlet 55 and a static pressure pocket water inlet 56, through which oil and water flow. A belt groove 53 for transmitting rotation by a belt is provided at the tip of the grindstone base 19. The grinding head body 20 is a separable assembly that can replace necessary parts such as a grindstone, a deep groove ball bearing or an angular ball bearing that supports the rotation if the grinding head cap 57 is disassembled, and includes a grindstone price 19. This structure allows grinding by inserting the tip of the grinding head body into a narrow hole in a workpiece such as a cylinder.

被削物の内面の切削され研削された加工部の寸法を測定する寸法測定装置16は、前後すなわち図2G方向に移動可能なテーブル上に固定され、NC制御可能な前後の移動軸サーボモータを備え、図8のように測定子22をベーン溝に突っ込むことで移動可能な搬送台に固定された内面加工部任意位置の多点測定を行う。   A dimension measuring device 16 for measuring the dimension of a cut and ground machining portion on the inner surface of a workpiece is fixed on a front and rear, that is, a table movable in the direction of FIG. In addition, as shown in FIG. 8, multipoint measurement is performed at an arbitrary position of the inner surface processing portion fixed to the movable carriage by pushing the measuring element 22 into the vane groove.

各工程の装置の構成、動作について図9にて説明する。図9(a)は複合加工装置の部品クランプ中の断面図で、100はクランプ中の圧縮機のシリンダである部品、30はシリンダの円形の貫通穴、31は溝を加工する際のぬすみ穴、12は固定治具、11は搬送台であるインデックステーブル、32はクランパ、33は固定冶具と被削物との位置決めピンである。図9(b)はAA方向から見たワークに対するクランパのクランプ箇所であり、図9(c)はアンクランプした部品100のない状態で、固定治具12の部品100を受ける箇所34を示している。部品100は予め加工された基準穴35に対し位置決めピンにより取り付けられ、油圧シリンダ36に連結されたクランパにより固定治具にクランプされる。溝加工部左右の近傍を2点でクランプすることにより、部品100基準面の平面度の影響による歪みを避け、また切削加工中の部品のビビリ振動を最小限に抑えることが出来、加工精度及び工具寿命を向上させることが出来る。またクランプする基準面34の面積を最小に設計でき、固定治具の受圧面は垂直になっているので、切り粉噛みが発生しにくい構造となっている。被削材の取り外し後取り付け前は切削液により洗浄され、取り付け後は受け面の小径孔回路を通したエアーでのエアー圧力センシングで密着取り付けされている確認が行われる。   The configuration and operation of the apparatus in each process will be described with reference to FIG. FIG. 9A is a cross-sectional view of a composite processing apparatus during component clamping, where 100 is a component of a compressor cylinder being clamped, 30 is a circular through hole of the cylinder, and 31 is a hollow hole when machining a groove. , 12 is a fixing jig, 11 is an index table which is a conveying table, 32 is a clamper, and 33 is a positioning pin between the fixing jig and the workpiece. FIG. 9B shows a clamper clamped portion of the workpiece viewed from the AA direction, and FIG. 9C shows a portion 34 for receiving the part 100 of the fixing jig 12 without the unclamped part 100. FIG. Yes. The component 100 is attached to a previously machined reference hole 35 by a positioning pin, and is clamped to a fixing jig by a clamper connected to a hydraulic cylinder 36. By clamping the vicinity of the left and right sides of the groove processing part at two points, distortion caused by the flatness of the reference surface of the part 100 can be avoided, and chatter vibrations of the part during cutting can be minimized. Tool life can be improved. In addition, the area of the reference surface 34 to be clamped can be designed to a minimum, and the pressure receiving surface of the fixing jig is vertical, so that it is difficult for chipping to occur. After removal of the work material, it is cleaned with cutting fluid before attachment, and after attachment is confirmed by air pressure sensing with air through a small-diameter hole circuit on the receiving surface.

また固定冶具12を組み立てるインデックステーブル11は図示していないが円形テーブルの中心部の内径を軸受けで支持され、台板下面に対しスラスト荷重を受けるように全周に潤滑油が供給された帯状の案内面で支持されている。この中心の軸受けで支持された軸に対して、下部に設けた減速機を介したモータにより回転させられてそれぞれの内面処理装置のあらかじめ設定された位置へと動かされる。この搬送台11の回転は一定の位相角分だけ回転された後で搬送台の下面から油圧シリンダにより自動的に上下するテーパーノックピン39により、ノック孔38に対しガタのない高精度の位相位置決めを常に行うことができる。このような回転体における高精度の位置決めは、例えば高精度ギアの噛み合わせによるカービックカップリング方式において他でも可能であることはいうまでもない。以上のように、クランパ32は固定冶具へ被削物100を固定するときには位置がずれないように位置決めピン33で位置決めするとともに、各加工装置や寸法計測装置の溝内面処理時に冶具などに邪魔にならない位置に、すなわち溝から若干離れた位置で且つ複数箇所でクランプしている。更に固定冶具12は搬送台であるインデックステーブル11に少なくとも2本以上のノックピンで位置決めしてボルトで固定されている。更に搬送台11は駆動装置で設定されて回転移動を行うとともに駆動装置がセットされた固定位置との間で確実に位置決め、例えばテーパーノックピン39がノック孔38で固定される。   Although not shown, the index table 11 for assembling the fixing jig 12 is supported by a bearing at the inner diameter of the center portion of the circular table, and a lubricant is supplied to the entire circumference so as to receive a thrust load on the bottom surface of the base plate. Supported by a guide surface. The shaft supported by the central bearing is rotated by a motor via a reduction gear provided at the lower portion and moved to a preset position of each inner surface treatment apparatus. The rotation of the conveying table 11 is rotated by a certain phase angle, and then the taper knock pin 39 that automatically moves up and down by the hydraulic cylinder from the lower surface of the conveying table is used for highly accurate phase positioning with no play against the knock hole 38. Can always be done. Needless to say, high-accuracy positioning in such a rotating body is possible in other cases, for example, in the Kirby coupling method by meshing high-precision gears. As described above, the clamper 32 is positioned by the positioning pins 33 so that the position of the clamper 32 is not shifted when the work piece 100 is fixed to the fixing jig, and the jig or the like gets in the way during processing of the groove inner surface of each processing apparatus or dimension measuring apparatus. Clamping is performed at a position that does not become necessary, that is, at a position slightly away from the groove and at a plurality of positions. Further, the fixing jig 12 is positioned with at least two knock pins on the index table 11 serving as a transport table and fixed with bolts. Further, the conveyance table 11 is set by a driving device and rotates and moves with a fixed position where the driving device is set, for example, a taper knock pin 39 is fixed by a knock hole 38.

図10(a)は溝成形切削中の断面図で、40はベーン溝、41は溝切削加工装置の主軸、42は工具ホルダ、43は両端を支える軸受メタル、17はメタルソーである。切削刃具17はより加工精度の高いサイドカッタでも構わない。溝切削加工装置13は前後、左右に移動することが出来、インデックステーブル11で搬送された固定治具12にクランプされた部品100は、溝切削加工装置のメタルソー17に依って図10(b)に示すように左右から溝成形加工することが出来る。部品100の内径、巾、溝の半径方向長さ等の寸法によって、最適な刃具径を設計し、部品100の加工穴44に依って削り残すことなく溝の全両面を加工できる。メタルソーは両持ち構造により強固に支持された工具回転軸である工具ホルダに取り付けられており、剛性を上げることにより切削抵抗による工具回転軸の撓みを最小に抑えて簡単な構造で高速に、しかも一枚の刃具で左右から加工するので左右の加工境界面の段差や溝巾寸法差がほとんど無い精度の良い溝成形加工をすることが出来る。もし両方から別々の刃具で加工するとカッターの厚みの違いなど誤差とナって現れるが1枚の刃具で両側から加工することによりこれらの問題がなくなる。またメタルソーのような安価な刃具を使うことができるので、ブローチ溝成形刃に比べ部品1個当たりの加工コストは約1/10に削減できる。またこの加工方法は、安価な水溶性切削液を使用できるので、廃液処理が簡単で、また火災等の心配もなく安全に生産できる。   FIG. 10A is a cross-sectional view during grooving, 40 is a vane groove, 41 is a main shaft of the groove cutting apparatus, 42 is a tool holder, 43 is a bearing metal that supports both ends, and 17 is a metal saw. The cutting blade 17 may be a side cutter with higher processing accuracy. The groove cutting device 13 can move back and forth, right and left, and the component 100 clamped by the fixing jig 12 conveyed by the index table 11 is shown in FIG. 10B by the metal saw 17 of the groove cutting device. As shown in Fig. 5, the groove can be formed from the left and right. The optimum blade diameter can be designed according to the dimensions of the part 100 such as the inner diameter, width, and length of the groove in the radial direction, and all the both sides of the groove can be machined without leaving the machining hole 44 of the part 100. The metal saw is attached to the tool holder, which is a tool rotation shaft that is firmly supported by a double-sided structure. By increasing the rigidity, the deflection of the tool rotation shaft due to cutting resistance is minimized, and the structure is fast and high speed. Since machining is performed from the left and right with a single cutting tool, it is possible to perform highly accurate groove forming with almost no step between the left and right machining boundary surfaces and no difference in groove width dimension. If both are processed with separate cutting tools, errors such as differences in the thickness of the cutter appear, but these problems are eliminated by processing from both sides with a single cutting tool. Further, since an inexpensive cutting tool such as a metal saw can be used, the machining cost per part can be reduced to about 1/10 compared to a broach groove forming blade. In addition, since this processing method can use an inexpensive water-soluble cutting fluid, the waste liquid treatment is simple, and it can be produced safely without worrying about a fire or the like.

溝面取り装置14は、図2に示すように前後に移動可能なテーブル上に設けられた上下移動可能な装置(図示せず)の先端にブローチ18が取り付けられており、図4に示すようにワークの溝の両側面の上下端を面取り切削加工する場合、ブローチ18の側面と溝の側面が平行になるよう部品100の内径及び溝に挿入され、前進したとき先ず上側もしくは下側が面取り加工され、上下方向にブローチ18を移動して後退したとき下側もしくは上側が面取り加工される。最初、ブローチ18と溝の中心を合わせ、均等に除去加工する。切削終了後の歪み取り圧抜き案クランプを行う場合、固定冶具12に内面処理する部品100を押しつけているクランパ32の圧力をゼロに近い状態まで外すが、部品100は取りつけた時と同じ状態で複数の位置決めピン33に自重がかかった状態で固定冶具に密着静止している。   The groove chamfering device 14 has a broach 18 attached to the tip of a vertically movable device (not shown) provided on a table movable back and forth as shown in FIG. 2, as shown in FIG. When chamfering the upper and lower ends of both sides of the groove of the workpiece, it is inserted into the inner diameter and the groove of the part 100 so that the side surface of the broach 18 and the side surface of the groove are parallel, and when moving forward, the upper side or the lower side is first chamfered. When the broach 18 is moved back and forth in the vertical direction, the lower side or upper side is chamfered. First, the broach 18 and the center of the groove are aligned and removed uniformly. When performing a strain relief pressure relief clamping after the end of cutting, the pressure of the clamper 32 pressing the part 100 to be internally processed against the fixing jig 12 is released to a state close to zero, but the part 100 is in the same state as when it was attached. The plurality of positioning pins 33 are in close contact with the fixing jig in a state where their own weight is applied.

溝研削装置15は、図2に示すように前後と左右に移動可能なテーブル上に設けられている。図5は部品加工中の断面図で、100は加工中の圧縮機のシリンダである部品、30は内径で円形の貫通穴、40はぬすみ31を設けた溝、20は研削ヘッド本体、19はシャフト一体型砥石台金、21は砥粒層である。図6、図7は研削装置全体を示し、50はプーリで電動モータ51によりプーリ軸52を介して駆動されている。20a、20bは強固に一体化された研削ヘッドの片側ずつのヘッドで、内部の空間にベルト溝53を有する砥石台金19を収納し、且つベルト54で砥石が回転させられている。図6において55はミスト入口でミスト用穴58a、58bへ連通している。56は静圧ポケット用水入口で、静圧ポケット59a、59bに連通している。以上のような構成により、研削ヘッドは前後、左右方向に移動することができ砥粒層で溝壁を加工することができる。   As shown in FIG. 2, the groove grinding device 15 is provided on a table that can move back and forth and from side to side. FIG. 5 is a cross-sectional view during processing of a part, 100 is a part that is a cylinder of a compressor being processed, 30 is a circular through hole with an inner diameter, 40 is a groove provided with a thinning 31, 20 is a grinding head body, 19 is A shaft-integrated grindstone base metal 21 is an abrasive layer. 6 and 7 show the entire grinding apparatus. Reference numeral 50 denotes a pulley, which is driven by an electric motor 51 through a pulley shaft 52. 20a and 20b are heads of each side of the grinding head that are firmly integrated. The grinding stone base 19 having the belt groove 53 is accommodated in the internal space, and the grinding stone is rotated by the belt 54. In FIG. 6, 55 is a mist inlet and communicates with mist holes 58a and 58b. A static pressure pocket water inlet 56 communicates with the static pressure pockets 59a and 59b. With the configuration as described above, the grinding head can be moved in the front-rear and left-right directions, and the groove wall can be processed with the abrasive layer.

前記のように構成された研削装置が部品100の溝40の側面を研削加工する場合、研削ヘッド本体20のシャフト一体型台金19の側面と溝40側面が平行になるよう部品100の円形の貫通穴30に挿入され、溝40の片側側面が加工される。最初、砥石台金19と溝40の中心を合わせ、均等に除去加工するように座標設定する。砥石台金19の外径は砥粒層の内側に溝40の側面全体が入るよう設計されており、部品100の巾方向中心に砥石台金中心が到達したとき、微少な切り込みを与え、砥粒層の内側の砥粒で砥石台金が抜けきるまで仕上げ研削加工する。次に研削ヘッド本体20を未加工面側に移動させ後退させながら同様に加工することにより、溝巾を任意の寸法にすることができる。 When the grinding apparatus configured as described above grinds the side surface of the groove 40 of the component 100, the circular shape of the component 100 is set so that the side surface of the shaft integrated base metal 19 of the grinding head body 20 and the side surface of the groove 40 are parallel to each other. It is inserted into the through hole 30 and one side surface of the groove 40 is processed. First, coordinates are set so that the center of the grindstone base 19 and the groove 40 are aligned and removed uniformly. The outer diameter of the grindstone base 19 is designed so that the entire side surface of the groove 40 enters the inside of the abrasive grain layer. When the grindstone base center reaches the center of the width direction of the part 100, a fine cut is given to the grindstone. Finish grinding until the grindstone is completely removed with the abrasive grains inside the grain layer. Next, the grinding head main body 20 is moved to the unprocessed surface side and processed in the same manner while being retracted, whereby the groove width can be set to an arbitrary dimension.

しかし、溝研削工程は溝切削工程の主軸41の回転数、及び回転刃具メタルソー17の刃数に起因する負荷変動による切削中の振動、及び工具ホルダ42の自励振動の影響を受け、研削加工精度が悪化するおそれがある。このため、溝研削装置15は溝切削装置13の180°反対に、固定治具12b,12cは同じ方向となるように配置する。これにより、メタルソー17の切削送り方向に発生する振動と、研削送り方向に受ける振動を同一方向に合わせ込み、研削切り込み方向つまり溝形状加工精度に及ぼす影響を最小にできる。また、溝切削工程の加工負荷に対し、インデックステーブルの回転方向及び上下方向の剛性を持たせると共に、固定治具12および油圧シリンダ36を含むクランパ装置とインデックステーブルの間に適当なばねとして図9のようにゴム材37を複数支持できるように配置し防振する。ゴム材のばね定数を適当に選ぶことにより、振幅の伝達率を1以下に抑え、振動絶縁することが可能となる。また、研削加工動作で説明したように、部品100の巾方向中心に砥石台金19の中心が到達し、微少な切り込みを与え仕上げ研削加工する間は、溝切削装置13の左右切り込みを切り換える早送り移動時間に合わせることも、切削振動による影響を抑制する有効な方法である。このような方法により、溝切削と溝研削を複合化した加工装置が可能となる。   However, the groove grinding process is affected by the vibration during cutting due to the load fluctuation caused by the number of rotations of the main shaft 41 and the number of blades of the rotary blade metal saw 17 and the self-excited vibration of the tool holder 42 in the groove cutting process. The accuracy may deteriorate. For this reason, the groove grinding device 15 is arranged 180 ° opposite to the groove cutting device 13 and the fixing jigs 12b and 12c are arranged in the same direction. Thereby, the vibration generated in the cutting feed direction of the metal saw 17 and the vibration received in the grinding feed direction are matched in the same direction, and the influence on the grinding cutting direction, that is, the groove shape machining accuracy can be minimized. Further, the rigidity of the index table in the rotational direction and the vertical direction is given to the processing load of the groove cutting process, and an appropriate spring is provided between the clamper device including the fixing jig 12 and the hydraulic cylinder 36 and the index table. As described above, the rubber material 37 is arranged and vibration-proof so that a plurality of rubber materials 37 can be supported. By appropriately selecting the spring constant of the rubber material, the amplitude transmission rate can be suppressed to 1 or less and vibration isolation can be achieved. Further, as described in the grinding operation, the center of the grindstone base 19 reaches the center in the width direction of the component 100, and fast feed is performed to switch the left and right cuts of the groove cutting device 13 while fine cutting is given and finish grinding is performed. Matching the moving time is also an effective method for suppressing the influence of cutting vibration. By such a method, a processing apparatus in which groove cutting and groove grinding are combined is possible.

また、加工中は溝40側面の形状に応じ砥粒層の接線が変化し、それに応じ研削負荷が変化する。図11に示すように、切り込み軸サーボモータ60の負荷値を検知し、演算回路62でこの値が一定になるよう送り軸サーボモータ61による送り速度を制御すれば、砥石台金19の微小な撓みを一定に制御でき、高精度な平面形状を得ることができる。溝測定装置16は図2に示すように、前後に移動可能なテーブル上に設けられた取付治具の先端に測定子22が取り付けられており、図8に示すように測定子22の側面と溝の側面が平行になるよう部品100の溝に挿入され、挿入が完了した時点で測定を行う。測定子の方式は接触式または非接触式のどちらでも構わない。   Further, during processing, the tangent of the abrasive layer changes according to the shape of the side surface of the groove 40, and the grinding load changes accordingly. As shown in FIG. 11, if the load value of the cutting axis servo motor 60 is detected and the feed speed by the feed axis servo motor 61 is controlled by the arithmetic circuit 62 so that this value becomes constant, The deflection can be controlled to be constant, and a highly accurate planar shape can be obtained. As shown in FIG. 2, the groove measuring device 16 has a measuring element 22 attached to the tip of a mounting jig provided on a table that can be moved back and forth. It is inserted into the groove of the component 100 so that the side surfaces of the groove are parallel, and measurement is performed when the insertion is completed. The method of the measuring element may be either a contact type or a non-contact type.

また図12に示すようにテーブル65の前後の送りをサーボモータ66でNC制御し行えば、任意の溝位置の測定データを測定アンプ67を介し多数サンプリングすることができ、より高精度に形状を測定することができる。更に多点形状を表示するデータ表示手段68を使用することにより現在の加工状態を一瞥で確実に把握することができる。被削材である部品100はインデックステーブル11上の固定治具12にクランプされ、同一の固定治具でクランプ保持し工程間搬送しながら、溝切削、溝面取り、溝研削、溝巾測定を同時に且つ連続的に行うので、工程間の位置決め誤差が無く溝研削除去量を従来方式に比べ1/2以下に最小化出来る。またこれによって従来方式に比べ高速で研削加工でき、また仕上げ加工精度も安定向上し、研削比に基づき約2倍の砥石の長寿命化をはかることができるので、低コストで量産加工が可能となる。また研削負荷の減少により、溝の形状精度が安定向上し、これにより圧縮機のベーンとベーン溝の隙間からの漏れ損失が低減し、圧縮機の性能が向上し性能のバラツキも低減する。   Also, as shown in FIG. 12, if the feed forward and backward of the table 65 is NC controlled by the servo motor 66, a large number of measurement data of arbitrary groove positions can be sampled via the measurement amplifier 67, and the shape can be formed with higher accuracy. Can be measured. Further, by using the data display means 68 for displaying the multipoint shape, the current machining state can be surely grasped at a glance. The workpiece 100 is clamped by a fixing jig 12 on the index table 11, and is held by the same fixing jig and conveyed between processes, while simultaneously performing groove cutting, groove chamfering, groove grinding, and groove width measurement. Moreover, since it is continuously performed, there is no positioning error between processes, and the groove grinding removal amount can be minimized to 1/2 or less compared with the conventional method. This also enables high-speed grinding compared to the conventional method, improves the finishing accuracy, and can increase the service life of the grinding wheel by approximately twice based on the grinding ratio, enabling mass production at low cost. Become. Further, the reduction in grinding load improves the accuracy of the groove shape, thereby reducing the leakage loss from the gap between the vane and the vane groove of the compressor, improving the performance of the compressor and reducing variations in performance.

また従来の溝研削盤のような複雑なクランプ装置や位置決め機構は不要となり、ディメンジョンの異なる多機種部品に対しても簡単に段取りし加工できる。そして設備を1台に集約出来るので、設備コスト、人件費、設置スペースを大幅に低減でき、工程間仕掛かりも無くなるので効率の高い生産が可能となる。また、部品の脱着は一カ所で一度だけ行えばよく、この脱着作業を専用マニピュレータや産業用ロボット等で簡単に自動化出来るので、生産ラインの無人運転化も可能となる。   In addition, complicated clamping devices and positioning mechanisms such as conventional groove grinding machines are not required, and multi-model parts with different dimensions can be easily set up and processed. Since the equipment can be consolidated into one unit, the equipment cost, labor cost, and installation space can be greatly reduced, and there is no in-process work in progress, so highly efficient production becomes possible. In addition, parts can be attached and detached only once in one place, and this attachment / detachment operation can be easily automated with a dedicated manipulator, industrial robot, etc., so that the production line can be unmanned.

図13は固定治具12の工程間搬送方法にチェーンコンベア24を使った例を示している。固定治具12は搬送パレット23の上に固定され、搬送パレット23はチェーンコンベア上を搬送される。各内面処理工程へのパレット23の搬送はチェーンコンベア上部に取り付けたフックなどを使用して引っ張られ、加工装置などの加工位置によって決まる工程間の距離分を矢印方向にピッチ送りされる。なおチェーンコンベアは駆動を行うモーターの回転をギアを介して直線運動に変えられており、所定量移動させる繰り返しで図13のように周回運動している。このためチェーンコンベア24は複数箇所に、パレット23を持ち上げて90度反転できる回転テーブルを備え加工装置との向きを搬送中に合わせている。加工および測定工程中の位置決めは、複数の位置決めピンであるテーパーノックピンにより持ち上げられパレット23の上面を基準面として、コンベア両側からパレット23の上部にL字形に突き出した位置決めストッパに押し当てクランプされる。即ち2本のテーパノックピンで持ち上げることによりパレット平面のX−Y方向の位置が決まりストッパによりZ方向も決まる。このように搬送パレットの位置制御は第1に駆動装置の制御にて位置決めが行われるが、この駆動装置の制御を例えばNC制御装置で行うだけでなく、各処理工程で位置決めピン(図示せず)により精密に位置決めすることができる。この方式により、インデックステーブル搬送方式と同様に加工でき同様な効果を得ることができる。   FIG. 13 shows an example in which a chain conveyor 24 is used for the inter-process conveying method of the fixing jig 12. The fixing jig 12 is fixed on the conveyance pallet 23, and the conveyance pallet 23 is conveyed on the chain conveyor. The conveyance of the pallet 23 to each inner surface treatment process is pulled using a hook or the like attached to the upper part of the chain conveyor, and the distance between the processes determined by the processing position of the processing apparatus or the like is pitched in the direction of the arrow. Incidentally, the rotation of the driving motor is changed to a linear motion through a gear, and the chain conveyor is revolving as shown in FIG. 13 by being repeatedly moved by a predetermined amount. For this reason, the chain conveyor 24 is provided with a rotary table capable of lifting the pallet 23 and turning 90 degrees at a plurality of locations, and the orientation with the processing apparatus is adjusted during conveyance. Positioning during the machining and measuring process is lifted by a taper knock pin, which is a plurality of positioning pins, and clamped against a positioning stopper protruding in an L-shape from both sides of the conveyor to the top of the pallet 23 using the upper surface of the pallet 23 as a reference surface. . That is, the position in the XY direction of the pallet plane is determined by lifting with two taper knock pins, and the Z direction is also determined by the stopper. As described above, the position control of the transport pallet is first performed by the control of the driving device. The driving device is not only controlled by the NC control device, for example, but also at each processing step, a positioning pin (not shown). ) Can be precisely positioned. This method can be processed in the same manner as the index table transport method, and the same effect can be obtained.

図14は本発明の溝複合加工装置により加工されたシリンダなる部品100を使用する冷凍空調用密閉型圧縮機の断面である。図15は図14の圧縮機の圧縮機構の説明図である。図14に示すように、密閉容器70内に電動機71及びこれにより駆動される圧縮機構部が内蔵されている。電動機71の回転子72に直結されたクランクシャフト73の偏芯部にはローリングピストン74が回転自在に挿嵌され、このローリングピストン74はクランクシャフト73の上下軸部を支持する軸受75,76、及びシリンダ100により形成される空間内で回転すると共に、図15に示すように、上記ローリングピストン74の外周と接しながらベーン溝40内を往復するベーン77によって、シリンダ内は冷媒吸入室78と圧縮室79に分割される。そしてクランクシャフト73の回転により吸入及び圧縮室の容積が変化することにより、冷媒ガスの吸入、圧縮、吐出が行われる。この圧縮機で使用されるシリンダ100には図9bにて説明した位置決めピンを通す基準穴35a、35bが少なくとも2個溝加工側と反加工側に設けられている。   FIG. 14 is a cross-sectional view of a refrigerating and air-conditioning hermetic compressor using a cylinder part 100 processed by the groove complex processing apparatus of the present invention. FIG. 15 is an explanatory diagram of a compression mechanism of the compressor of FIG. As shown in FIG. 14, an electric motor 71 and a compression mechanism driven by the motor 71 are built in the sealed container 70. A rolling piston 74 is rotatably inserted into an eccentric portion of the crankshaft 73 directly connected to the rotor 72 of the electric motor 71. The rolling piston 74 has bearings 75 and 76 for supporting the upper and lower shaft portions of the crankshaft 73, Further, as shown in FIG. 15, the inside of the cylinder is compressed with the refrigerant suction chamber 78 by a vane 77 that rotates in the space formed by the cylinder 100 and reciprocates in the vane groove 40 while being in contact with the outer periphery of the rolling piston 74. It is divided into chambers 79. Then, as the volume of the suction and compression chambers is changed by the rotation of the crankshaft 73, the refrigerant gas is sucked, compressed, and discharged. The cylinder 100 used in this compressor is provided with at least two reference holes 35a and 35b through which the positioning pins described in FIG.

本発明の溝複合加工装置は、被削物をクランプする複数の固定治具と、これを工程間搬送する装置と、少なくとも溝切削装置と、溝研削装置と、溝巾測定装置を備えたものである。本発明の溝複合加工装置は、固定治具が、リング状被削物の加工する溝の左右2点をクランプするものである。また本発明の溝複合加工装置は、溝切削装置が、前後、左右に移動可能なテーブル上に固定され、両持ち構造により強固に支持された工具回転軸である工具ホルダと切削刃具を備え、溝切削加工を行うものである。本発明の溝研削装置は、前後、左右に移動可能なテーブル上に固定され、左右に移動可能な切り込み軸サーボモータの負荷値を一定に制御するよう、前後に移動可能な送り軸サーボモータの送り速度を制御する加工を、本発明の溝複合加工装置を使用して行うものである。本発明の溝測定装置は、前後の移動可能なテーブル上に固定され、NC制御可能な前後の移動軸サーボモータを備え、任意の溝位置の多点測定を溝複合加工装置を使用して行うものである。本発明の圧縮機は、シリンダ内周面に設けられた偏心リングが当接して動くベーンを案内するベーン溝の加工を、本発明の溝複合加工装置を使用して行うものである。   The groove combined machining apparatus of the present invention includes a plurality of fixing jigs for clamping a workpiece, an apparatus for conveying the jig between processes, at least a groove cutting apparatus, a groove grinding apparatus, and a groove width measuring apparatus. It is. In the groove combined machining apparatus of the present invention, the fixing jig clamps the two left and right points of the groove to be processed by the ring-shaped workpiece. Moreover, the groove combined machining apparatus of the present invention includes a tool holder and a cutting blade that are tool rotation shafts that are fixed on a table that can move forward and backward, left and right, and are firmly supported by a both-end structure. Groove cutting is performed. The groove grinding apparatus of the present invention is a feed shaft servomotor that is fixed on a table that can be moved back and forth, left and right, and that can move back and forth so that the load value of the infeed shaft servomotor can be controlled to be constant. Processing for controlling the feed rate is performed using the groove complex processing apparatus of the present invention. The groove measuring apparatus according to the present invention includes front and rear moving axis servo motors fixed on front and rear movable tables and capable of NC control, and performs multipoint measurement of arbitrary groove positions using a groove compound processing apparatus. Is. The compressor of the present invention performs processing of a vane groove that guides a vane that moves by abutting an eccentric ring provided on an inner peripheral surface of a cylinder, using the combined groove processing apparatus of the present invention.

本発明は被削物をクランプする複数の固定治具と、これを工程間搬送する装置と、少なくとも溝切削装置と、溝研削装置と、溝巾測定装置とを備え、被削物をクランプ保持した状態で同時に且つ連続的に溝加工を行う。また固定治具が、リング状被削物の加工する溝の左右2点をクランプする。溝巾測定装置が、前後に移動可能なテーブル上に固定され、NC制御可能な前後の移動軸サーボモータを備え、任意の溝位置の多点測定を行う。   The present invention includes a plurality of fixing jigs for clamping a workpiece, a device for conveying the workpiece between processes, at least a groove cutting device, a groove grinding device, and a groove width measuring device, and holds the workpiece in a clamped manner. In this state, grooving is performed simultaneously and continuously. A fixing jig clamps two points on the left and right of the groove to be processed by the ring-shaped workpiece. A groove width measuring device is fixed on a table that can be moved back and forth, and includes a front and rear moving axis servo motor capable of NC control, and performs multipoint measurement of arbitrary groove positions.

シリンダ内周面に設けられた偏心リングが当接して動くベーンを案内するベーン溝の加工を、溝複合加工装置を使用して行う。   Processing of a vane groove for guiding a vane that moves by abutting an eccentric ring provided on the inner peripheral surface of the cylinder is performed using a groove composite processing apparatus.

本発明に係わる溝複合加工装置は、溝研削の除去量を最小化でき、高速で精度良く低コストで加工することができる。本発明に係わる溝複合加工装置は、1台の設備に工程集約し効率よく低コストで生産することができる。本発明に係わる溝複合加工装置は、簡単な2点クランプ構成で高精度に溝研削加工することができる。本発明に係わる溝複合加工装置は、安価な回転刃具を用い、溝切削加工することができる。本発明に係わる溝複合加工装置は、溝研削加工負荷に応じて送り制御でき、精度良く加工することができる。本発明に係わる溝複合加工装置は、溝巾を多点測定でき、精度良く溝形状を測定することができる。本発明に係わる圧縮機は、ベーンとベーン溝の隙間からの漏れ損失を抑え高い性能を得ることができる。   The groove complex processing apparatus according to the present invention can minimize the removal amount of groove grinding, and can perform high-speed, high-precision and low-cost processing. The groove complex processing apparatus according to the present invention can be produced efficiently and at low cost by integrating processes into one facility. The groove complex processing apparatus according to the present invention can perform groove grinding with high accuracy with a simple two-point clamp configuration. The groove combined machining apparatus according to the present invention can perform groove cutting using an inexpensive rotary blade. The groove complex machining apparatus according to the present invention can perform feed control according to the groove grinding load and can perform machining with high accuracy. The groove complex processing apparatus according to the present invention can measure the groove width at multiple points and can accurately measure the groove shape. The compressor according to the present invention can obtain high performance while suppressing leakage loss from the gap between the vane and the vane groove.

以上のように本発明は、確実な位置設定が可能なように、溝切削装置の工具ホルダ軸42はワークである部品100の受け面に対し平行となるように芯だし調整される。工具軸に取り付けられる刃具17の位置は両もちの中心になるように取り付けられ、且つ、機外で組み付け後、セッティングゲージで検証されて、位置が正確だけでなく回転振れなどがない様にされる。溝面取り装置のブローチ取り付けや研削冶具、溝測定装置などは、上下、左右方向の基準面に密着取り付けされる。この基準面は固定冶具の部品受け面に対し直角となるように芯だし調整される。加工部品100の基準孔35に対する溝位置精度は固定冶具の取り付け誤差を含めた固定冶具の基準ピン33の位置であり、各固定冶具12は搬送台上で各加工などの装置ごとに検知され認識されて個別に各加工装置の動きを位置補正することができる。ただし搬送台と被削材の位置決めや固定は加工ごとに変化させずに搬送台の移動の割り出し、例えば回転搬送台であれば4分割の割り出しを行うのみである。溝研削後の溝幅寸法を制御するため寸法測定値に対し補正したい量を溝研削装置の切り込み方向NC制御装置にフィードバックするので、次もしくは次の次の部品に対し補正が加えられた加工が行える。このように同一溝など内面の加工部への複数の加工を搬送台、固定冶具に対し、相対位置を固定したまま同時に違う加工間の悪影響なしに続けて行えるので、精度の良い被削物の量産が可能になる。   As described above, according to the present invention, the tool holder shaft 42 of the grooving device is centered and adjusted so as to be parallel to the receiving surface of the component 100 that is a workpiece so that a reliable position setting is possible. The position of the cutting tool 17 attached to the tool shaft is attached so that it is at the center of both ends, and after being assembled outside the machine, it is verified with a setting gauge so that the position is not only accurate but also free from rotational runout. The A broaching attachment of a groove chamfering device, a grinding jig, a groove measuring device and the like are closely attached to a reference surface in the vertical and horizontal directions. The reference surface is centered and adjusted so as to be perpendicular to the component receiving surface of the fixing jig. The accuracy of the groove position of the workpiece 100 with respect to the reference hole 35 is the position of the reference pin 33 of the fixing jig including the fixing jig mounting error, and each fixing jig 12 is detected and recognized for each apparatus such as processing on the transport table. Thus, the position of the movement of each processing apparatus can be corrected individually. However, the positioning and fixing of the conveying table and the work material are not changed for each processing, but the movement of the conveying table is indexed, for example, if the rotary conveying table is divided, only four divisions are performed. The amount to be corrected for the measured dimension value is fed back to the NC controller for the cutting direction of the groove grinding machine to control the groove width dimension after groove grinding. Yes. In this way, it is possible to carry out multiple machining operations on the machining part on the inner surface such as the same groove continuously with no adverse effects between different machining operations at the same time while fixing the relative position with respect to the carriage and fixing jig. Mass production becomes possible.

なおこの発明では溝などの内面処理を行う装置の特定の位置へ加工すべき部品を固定した状態で動かす搬送とその特定位置での加工などの処理を連続的に行い被削物の着脱や段取りや仕掛り等無しに精度良く断続的に内面処理を切削から仕上げ、計測まで行う。固定冶具上に取り付けた位置決めピンは摩耗交換するまでそのままであり、位置寸法が変化することなく、更に部品100の基準孔が位置精度が必要なすべての加工基準、組立基準となっており、各処理で位置決め精度が確実に得られることになる。本発明のような内面加工装置は溝や穴などの大部分の切削を行う切削装置の中に精度を得るための仕上げ加工として出来るだけ除去量を最小化したい研削加工を取り入れたものである。このため精度良く加工できる切削装置は1枚の刃具を使用した両持ちの高い剛性とし、加工する部品を搬送装置から脱着させず動かさないで基準位置を保たせたまま1次加工から仕上げ加工まで行い、この時加工など処理すべき位置へ動かす搬送装置は精度の高い位置決め精度を持たせることにより量産品の精度を高め且つ研削除去量を最小にして加工の無駄やエネルギー使用量を最小にしている。又複数の加工部品を一つの搬送装置で同時に流し切削と研削を同時に加工しても振動など相互の影響が少ない加工装置の配置あるいはゴムなどの防振装置の採用等により精度の高い量産を可能にしたものである。   In the present invention, the part to be processed is fixedly moved to a specific position of an apparatus for performing an inner surface processing such as a groove, and the processing such as processing at the specific position is continuously performed to attach / detach or set up a work piece. The internal surface treatment is performed from cutting to finishing and measurement accurately and intermittently without any work in progress. The positioning pin mounted on the fixing jig remains as it is until the wear is changed, and the position dimension does not change, and the reference hole of the component 100 becomes all the processing standards and assembly standards that require positional accuracy. The positioning accuracy can be reliably obtained by the processing. An inner surface processing apparatus such as the present invention incorporates a grinding process for minimizing the removal amount as much as possible in a finishing process for obtaining accuracy in a cutting apparatus for cutting most of grooves and holes. For this reason, the cutting machine that can be machined with high accuracy has high rigidity with both ends using a single cutting tool, and from the primary machining to the finishing machining while keeping the reference position without moving the parts to be machined without detaching them from the conveyor. At this time, the transfer device that moves to the processing position, such as processing, increases the accuracy of mass-produced products by giving high-precision positioning accuracy, minimizes grinding removal amount, and minimizes processing waste and energy consumption. Yes. In addition, even if multiple parts to be processed are flowed simultaneously with a single conveying device and cutting and grinding are performed simultaneously, high-accuracy mass production is possible due to the placement of processing devices that have little mutual influence such as vibration or the use of anti-vibration devices such as rubber. It is a thing.

本実施の形態の内面加工装置は、被削物の内面を切削加工する切削装置と、切削装置にて切削された内面の加工部を研削する研削装置と、切削され研削された加工部の寸法を測定する寸法測定装置と、切削装置、研削装置および寸法測定装置と対向した所定の位置に被削物を固定した状態で移動可能な搬送台と、を備え、搬送台の移動と被削物の内面加工処理を順次連続して行うものである。   The inner surface machining apparatus according to the present embodiment includes a cutting device that cuts the inner surface of a workpiece, a grinding device that grinds a machining portion of the inner surface cut by the cutting device, and dimensions of the machining portion that has been cut and ground. A dimension measuring device for measuring the thickness of the workpiece, a cutting table, a grinding device, and a conveyance table that can be moved in a state where the workpiece is fixed at a predetermined position facing the dimension measuring device. The inner surface processing is sequentially performed continuously.

本実施の形態の内面加工装置は、被削物の内面を切削加工する切削装置と、切削装置にて切削された内面の加工部を研削する研削装置と、切削装置および研削装置と対向した所定の位置に被削物を固定した状態で移動可能な搬送台と、を備え、加工部に対し切削装置および研削装置のそれぞれの加工冶具は同一の水平方向にて内面加工処理を行うものである。   An inner surface machining apparatus according to the present embodiment includes a cutting device that cuts the inner surface of a workpiece, a grinding device that grinds a machining portion of the inner surface cut by the cutting device, and a predetermined device that faces the cutting device and the grinding device. And a carrier that is movable in a state where the work piece is fixed at the position of the workpiece, and each processing jig of the cutting device and the grinding device performs the inner surface processing in the same horizontal direction with respect to the processing portion. .

11 インデックステーブル、12、12a、12b、12c、12d 固定治具、13 溝切削装置、14 溝面取り装置、15 溝研削装置、16 溝測定装置、17 メタルソー、18 面取りブローチ、19 砥石台金、20、20a、20b 研削ヘッド本体、21 砥粒層、22 測定子、23 パレット、24 チェーンコンベア、30 円形の貫通穴、31 ぬすみ、32 クランパ、33、33a、33b 位置決めピン、34a、34b 受け面、35a、35b 基準穴、36 油圧シリンダ、37 ゴム材、38 ノック孔、39 テーパーノックピン、40 ベーン溝、41 主軸、42 工具軸、43 軸受メタル、44 加工穴、50 プーリ、51 電動モータ、52 プーリ軸、53 ベルト溝、54 ベルト、55 ミスト入口、56 静圧ポケット用水入口、57a、57b 研削ヘッドキャップ、58a、58b ミスト用穴、59a、59b 静圧ポケット、60 切り込み軸サーボモータ、61 送り軸サーボモータ、62 演算回路、65 テーブル、66 サーボモータ、67 測定アンプ、68 データ表示、70 密閉容器、71 電動機、72 回転子、73 クランクシャフト、74 ローリングピストン、75、76 軸受、77 ベーン、78 吸入室、79 圧縮室、100、100a、100b、100c、100d 被削物である部品。   11 Index table, 12, 12a, 12b, 12c, 12d Fixing jig, 13 Groove cutting device, 14 Groove chamfering device, 15 Groove grinding device, 16 Groove measuring device, 17 Metal saw, 18 Chamfering broach, 19 Whetstone base metal, 20 , 20a, 20b Grinding head main body, 21 Abrasive layer, 22 Measuring element, 23 Pallet, 24 Chain conveyor, 30 Circular through-hole, 31 Thinning, 32 Clamper, 33, 33a, 33b Positioning pin, 34a, 34b Receiving surface, 35a, 35b Reference hole, 36 Hydraulic cylinder, 37 Rubber material, 38 Knock hole, 39 Taper knock pin, 40 Vane groove, 41 Main shaft, 42 Tool shaft, 43 Bearing metal, 44 Drilling hole, 50 Pulley, 51 Electric motor, 52 Pulley Shaft, 53 Belt groove, 54 Belt, 55 Mist inlet , 56 Water inlet for static pressure pocket, 57a, 57b Grinding head cap, 58a, 58b Mist hole, 59a, 59b Static pressure pocket, 60 Infeed axis servo motor, 61 Feed axis servo motor, 62 Arithmetic circuit, 65 Table, 66 Servo Motor, 67 Measuring amplifier, 68 Data display, 70 Airtight container, 71 Electric motor, 72 Rotor, 73 Crankshaft, 74 Rolling piston, 75, 76 Bearing, 77 Vane, 78 Suction chamber, 79 Compression chamber, 100, 100a, 100b , 100c, 100d Parts that are workpieces.

Claims (4)

搬送台に位置決めされた被削物の内面を切削加工する切削ステップと、前記被削物を前記搬送台にて移動させ切削された内面の加工部を研削する研削ステップと、切削する際前記被削物を前記搬送台にクランプにて固定した圧力を研削する前に解除し再び圧力印加して研削するクランプ圧力解除印加ステップと、を備えたことを特徴とする内面加工方法。 A cutting step for cutting the inner surface of the workpiece positioned on the conveyance table, a grinding step for moving the workpiece on the conveyance table and grinding a machined portion of the cut inner surface, and the workpiece during cutting An internal surface machining method comprising: a clamp pressure release applying step of releasing a pressure by which a work piece is fixed to the conveyance table by a clamp before grinding and applying a pressure again to grind the workpiece. 搬送台に位置決めされた被削物の内面の同一加工部を順次複合加工する複合加工ステップと、前記複合加工された前記加工部の加工寸法を測定するステップと、を備え、前記測定された寸法により前記複合加工する複数の加工装置の加工位置の設定を変更可能にすることを特徴とする内面加工方法。 A combined machining step for sequentially complex machining the same machining portion of the inner surface of the work piece positioned on the conveyance table, and a step for measuring a machining dimension of the machining portion after the complex machining; The inner surface processing method characterized in that the setting of the processing positions of the plurality of processing devices that perform the composite processing can be changed. 前記加工部の寸法を測定する際、寸法計測装置を少なくとも前後に移動させ、任意の位置の多点測定を行うステップと、を備えたことを特徴とする請求項1または2記載の内面加工方法。 3. The inner surface machining method according to claim 1, further comprising: a step of moving the dimension measuring device at least back and forth to measure multipoints at an arbitrary position when measuring the dimension of the machining portion. . 前記搬送台は複数の被削物を固定し同時に複数の異なる加工処理を行なったあとで、それぞれ次の加工処理へ移動させることを特徴とする請求項1乃至3のいずれかに記載の内面加工方法。 The inner surface machining according to any one of claims 1 to 3, wherein the transport table fixes a plurality of workpieces and simultaneously performs a plurality of different machining processes and then moves them to the next machining process. Method.
JP2009238408A 2009-10-15 2009-10-15 Internal processing method Expired - Lifetime JP5126193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238408A JP5126193B2 (en) 2009-10-15 2009-10-15 Internal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238408A JP5126193B2 (en) 2009-10-15 2009-10-15 Internal processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004173187A Division JP4506293B2 (en) 2004-06-10 2004-06-10 Groove compounding machine

Publications (2)

Publication Number Publication Date
JP2010005787A true JP2010005787A (en) 2010-01-14
JP5126193B2 JP5126193B2 (en) 2013-01-23

Family

ID=41586837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238408A Expired - Lifetime JP5126193B2 (en) 2009-10-15 2009-10-15 Internal processing method

Country Status (1)

Country Link
JP (1) JP5126193B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699774A (en) * 2012-06-03 2012-10-03 浙江金火科技实业有限公司 Dual-station automatic machining machine tool and using method thereof
CN105618806A (en) * 2016-03-23 2016-06-01 宁波普锐明汽车零部件有限公司 Multi-station automatic drilling equipment
JP2017205852A (en) * 2016-05-16 2017-11-24 株式会社ジェイテクト Manufacturing method of hub unit
CN115502730A (en) * 2022-09-29 2022-12-23 湖南华煜恒远企业管理合伙企业(有限合伙) Automatic production line for motor brake groove discs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389236A (en) * 1986-10-03 1988-04-20 Miyauchi Seisakusho:Kk Plate body machining device
JPH01115535A (en) * 1987-10-23 1989-05-08 Mazda Motor Corp Machining method
JPH02185347A (en) * 1989-01-10 1990-07-19 Nissan Motor Co Ltd Processing method for work
JPH06258037A (en) * 1993-03-08 1994-09-16 Koyo Mach Ind Co Ltd Outer diameter measuring equipment for work
JP2002200501A (en) * 2000-12-28 2002-07-16 Matsushita Electric Ind Co Ltd Lathe for machining fluid bearing sleeve and machining method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389236A (en) * 1986-10-03 1988-04-20 Miyauchi Seisakusho:Kk Plate body machining device
JPH01115535A (en) * 1987-10-23 1989-05-08 Mazda Motor Corp Machining method
JPH02185347A (en) * 1989-01-10 1990-07-19 Nissan Motor Co Ltd Processing method for work
JPH06258037A (en) * 1993-03-08 1994-09-16 Koyo Mach Ind Co Ltd Outer diameter measuring equipment for work
JP2002200501A (en) * 2000-12-28 2002-07-16 Matsushita Electric Ind Co Ltd Lathe for machining fluid bearing sleeve and machining method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699774A (en) * 2012-06-03 2012-10-03 浙江金火科技实业有限公司 Dual-station automatic machining machine tool and using method thereof
CN105618806A (en) * 2016-03-23 2016-06-01 宁波普锐明汽车零部件有限公司 Multi-station automatic drilling equipment
JP2017205852A (en) * 2016-05-16 2017-11-24 株式会社ジェイテクト Manufacturing method of hub unit
CN115502730A (en) * 2022-09-29 2022-12-23 湖南华煜恒远企业管理合伙企业(有限合伙) Automatic production line for motor brake groove discs

Also Published As

Publication number Publication date
JP5126193B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
CN205237770U (en) Compound grinding machine of non - round curved surface of ultrahigh precision numerical control
CN101088706B (en) Grinding and polishing machine for grinding and/or polishing workpieces in optical quality
KR101547205B1 (en) Multi axis Manufacturing Machine of Silicon
JP4506293B2 (en) Groove compounding machine
CN105437032A (en) Ultrahigh-precision numerically-controlled non-circular curved surface composite grinder
JP5126193B2 (en) Internal processing method
CN106181760A (en) 8-axes 5-linkage numerical control tool grinder
TWM444904U (en) Edge processing device for hard brittle board
CN106239290A (en) The clamping workpiece device of 8-axes 5-linkage numerical control tool grinder
CN118288129A (en) Numerical control end face cylindrical grinding machine for efficiently and ultra-precisely grinding high-speed knife handle
CN107962479B (en) Polishing device and method for rectangular discontinuous inner wall coating in confined space of composite material
JP6238784B2 (en) Manufacturing method of rotary compressor and rotary compressor obtained by the manufacturing method
CN104097087A (en) Inspection fixture and machining method for finish planing of long shaft parts with guide surfaces
TWI597114B (en) Horizontal turning machine for milling machines (1)
JP6440872B2 (en) Grinding equipment
CN210731620U (en) Full-automatic drilling and milling composite machine tool
CN212044080U (en) Automatic grinding device of communication box shell
CN106239357A (en) The grinding head device of 8-axes 5-linkage numerical control tool grinder
CN106217139A (en) The tray device of 8-axes 5-linkage numerical control tool grinder
CN105881120A (en) Numerical control vertical internal grinding machine structure
CN219945752U (en) Positioning and rotating device and superfine grinding equipment
CN103084838A (en) Equipment for machining machine shell of scroll compressor
CN214720883U (en) Processing device
CN106271905A (en) The robot device of 8-axes 5-linkage numerical control tool grinder
CN212350387U (en) Spindle for a machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R151 Written notification of patent or utility model registration

Ref document number: 5126193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250