JP2009545757A - 超音波照射によるガラス融液の特性決定のための方法及び装置 - Google Patents

超音波照射によるガラス融液の特性決定のための方法及び装置 Download PDF

Info

Publication number
JP2009545757A
JP2009545757A JP2009523769A JP2009523769A JP2009545757A JP 2009545757 A JP2009545757 A JP 2009545757A JP 2009523769 A JP2009523769 A JP 2009523769A JP 2009523769 A JP2009523769 A JP 2009523769A JP 2009545757 A JP2009545757 A JP 2009545757A
Authority
JP
Japan
Prior art keywords
container
waveguide
glass melt
glass
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009523769A
Other languages
English (en)
Inventor
ブレーウエル,レネ
イェー ファーベル,アンネ
ダブリュ ジョンソン,ウィリアム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2009545757A publication Critical patent/JP2009545757A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/24Automatically regulating the melting process
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2462Probes with waveguides, e.g. SAW devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0252Melting, molten solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Glass Compositions (AREA)

Abstract

【課題】溶融ガラスの特性決定を行うためのシステムを提供する。
【解決手段】ある量のガラス融液を保持している容器(10)の外表面(34)に導波路(20a)が音響結合される。第1の変換器(24a)によって音波がガラス融液(15)に送り込まれ、音波の一部はガラス融液内で反射されて、第2の導波路(20b)を介して受け取られる。この結果、信号が第2の変換器(24b)でつくられて、ガラス融液の特性決定を行うために解析される。
【選択図】なし

Description

本発明は流体の特性決定に関し、さらに詳しくは、ガラス融液を超音波で照射することによるガラス融液の特性決定に関する。
高品質ガラスはガラス融液の制御された冷却によって形成される。しかし、ガラス融液は、固体及び気体の混在物並びに少量の、一般に脈理と称される、密度及び化学組成の偏りのような、不均一性を有し得る。特に、脈理の形成の結果、屈折率が異なる局所領域が生じる。得られるガラスは、屈折率が異なる局所領域のため、多くの精密用途に不適になり得る。
一般に、ガラス融液の特性は、プロセスの様々な段階中のガラスのサンプリングによるかまたは、熱電対のような、インラインセンサの装着によって決定される。ガラス工業生産プロセスにおいて、高温の溶融ガラスは一般に、全外周が熱絶縁された、密閉コンジットに収められ、及び/またはそのような密閉コンジットを通って流れ、サンプリングはほとんど不可能になっている。
一方、僅かな数のインラインセンサにはガラスの処理に用いられる高温における工程を維持する能力しかない。熱電対はいくつかのプロセスにおいてガラス融液内の温度を測定するために用いられているが、熱電対は許容できない率で劣化するから、熱電対の使用は望ましくない。さらに、ガラス融液内のセンサの挿入は、センサを汚すか、乱流を生じさせるか、または許容できない熱損失をシステムに生じさせることができ、よって製品品質を低下させ得る。
本発明の課題は、ガラス融液の特性決定を非侵襲性態様で行う手段を提供することである。
本発明のシステムはガラス融液の特性決定を非侵襲性態様で行い、公称特性を有するガラス製品が得られるように、検知された特性に応答してガラス融液処理パラメータに補正操作を行うかまたは修正を加えることができる。すなわち、本システムはガラス融液特性の高められた知見を提供し、この知見によって、処理パラメータを対応して調節し、よって得られる製品の品質を高めることが可能になる。
さらに詳しくは、本システムは、ある量のガラス融液を保持する容器の外表面を介して、ガラス融液内の不均一性から反射する、音波をガラス融液に結合し、反射音波を検出して、検出された反射音波に対応するガラス融液内の(気体及び固体のいずれをも含む)不均一性の存在を決定または検出することによりガラス融液の特性決定を行う方法を提供できる。
別の構成において、ガラス融液の特性決定を行うためのシステムは、ガラス融液を収容するための容器、第1の変換器からの音波をガラス融液に音響結合するために容器の外表面に結合された第1の音響導波路、及びガラス融液から反射された音波を第2の変換器に音響結合するために耐熱金属容器の外表面に結合された第2の音響導波路を備え、反射音波はガラス融液内の不均一性に符号し、第1の音響導波路及び第2の音響導波路のいずれもガラス融液の直接に接触しない。
上記の全般的説明及び以下の詳細な説明がいずれも本発明の例示に過ぎず、特許請求されるような本発明の性質及び特徴を理解するための概要または枠組みの提供が目的とされていることは当然である。
添付図面は本発明のさらに深い理解を提供するために含められ、本明細書に組み入れられて、本明細書の一部をなす。図面は必ずしも比例拡縮されておらず、様々な要素の寸法は明解さのために歪められることがある。図面は本発明の1つ以上の実施形態を示し、記述とともに本発明の原理及び動作の説明に役立つ。
図1は本発明の一実施形態にしたがうガラス融液を検知及び/または特性決定するための簡略な断面図である。 図2は、図1の装置についての、導波路とガラス融液を収容するための容器の壁の間の結合の拡大断面図である。 図3は、図1の装置についての、導波路とガラス融液を収容するための容器とを結合する別の方法の拡大断面図である。 図4は実験構成における音響経路に対する温度の関数としての音響信号走行時間のグラフである。 図5は図1の検知/特性決定装置を用いる例示的ガラス製造システムの概念図である。 図6は検知変換器出力電圧を時間の経過にともなうサンプル(レコード)の関数として示すグラフである。
音は液体または空気のような媒質を通って進行または伝搬する振動である。この振動の源は媒質の反復する揺動である。例えば、鐘は叩かれると振動する。鐘の側面はその周囲の空気に対して動き、初めに側面が外側に動くときに空気中に高圧領域を形成し、次いで側面が内側に動くときに低圧領域を形成する。高圧領域及び低圧領域はそれぞれ密領域及び粗領域として知られ、空気中の隣り合う分子に影響することにより、波として媒質を通って伝搬する。空気中の分子は交互する高圧及び低圧に応答して前後に動いて隣の分子に作用し、次いで隣の分子はまた隣の分子に作用し、以下同様である。このようにして、高圧領域及び低圧領域は定められた速度及び波長を有する波として媒質を通って伝搬する。
本発明にしたがえば、基本的なパルス−エコー法を用いる、溶融ガラスの特性決定方法が開示される。電気パルスが高周波パルス発生器でつくられ、第1の導波路によってガラス融液に音響結合された適する変換器、例えば圧電変換器によって音波に変換される。超音波は導波路を通って伝搬し、ガラス融液を収容している容器を介してガラス融液に送り込まれる。ガラス融液内で、音波は減衰し、存在すれば、不完全性によって散乱され、境界から反射される。反射波は第2の導波路を介してガラス融液に音響結合された、音波を変換されて電気信号に戻すことができる、第2の変換器によって検出することができる。信号は増幅して、適するデータ収集システムによって処理することができる。信号は、例えば、音波の走行時間、振幅及び周波数のようなパラメータを測定することができるコンピュータによって、処理することができる。これらのパラメータは溶融ガラス媒質の物理的及び幾何学的特性、例えば、超音波減衰、不均一性(気泡)の存在、融液内の流れ、融液の温度等、に関する情報を伝える。
用語「ガラス」には、無秩序な、液体様(非結晶質)の分子構造をもつ材料が含まれる。ガラスの製造プロセスには、冷却されると結晶化せずに硬化する、比較的低粘度の融液を生じるに十分な温度まで原料を加熱することが必要である。ガラス融液は、ソーダ石灰ガラス、鉛ガラス、ホウケイ酸ガラス、アルミノケイ酸ガラス、96%石英ガラス、石英ガラス及びアルミノ−ホウケイ酸ガラスを含む、様々な組成のいずれかとすることができる。用語「ガラス融液」または「溶融ガラス」は、それぞれの軟化点より高い温度にある、様々なガラス組成のいずれをも包含する。一般には、ガラス融液の温度は1200℃〜1700℃程度である。用語「音波」の意味には、媒質を通って送られる機械的振動が含まれる。一構成において、音波は超音波域内、すなわちほぼ100kHzと300kHzの間の範囲内にある。
本発明の一実施形態にしたがえば、ガラス融液の特性決定を行う例示的装置8が図1に示され、装置8は、容器10,一対の集成音響導波路12,14及びコントローラ16を備える。容器10は熱絶縁耐熱ジャケット18でくるむことができる。
容器10はある量のガラス融液を保持する様々な構成のいずれかとすることができる。容器10は、上部が開かれているかまたは閉じられていて、ある量のガラス融液を保持する、自蔵型とすることができる。一構成において、容器10は流路を定め、流路は、流路の断面積の与えられた百分率の範囲内の検知を可能にするように、集成導波路12,14とともに選ばれる。すなわち、容器10はガラス融液を保持することができ、あるいは上流の位置からガラス融液を受け取ることができ、下流の位置にガラス融液を流すことができる。容器10は例えば、ガラス融液がそれを通って流れる、チューブとすることができ、図1はチューブの断面図を示す。
容器10は、一般にほぼ800℃〜ほぼ1700℃程度の、ガラス融液に対して意図された工程温度に耐え得る材料からなるべきである。容器は、白金、ロジウム、イリジウム、ルテニウム、パラジウム、オスミウムまたはこれらの合金を含む、白金族金属から選ばれる金属からなることが好ましい。しかし、その他の高温材料を用いることもできる。例えば、モリブデンは、それ自体で、または他の材料との組合せで、有効な容器材料としてはたらくことができる。
集成導波路12,14は容器10に音響結合されて、第1の集成導波路12から容器壁の一部分を通って容器内に保持されるガラス融液15内に延び、融液から容器壁の対向部分を通って他方の集成導波路14内に延びる音響路を定める。
図1は、同一線上にあって容器の直径を挟んで対向し、よって集成導波路間の直線音響路を提供するような、音響結合された導波路12,14の対を開示している。この配置は、音響路と交差する、直径が1mm程度のような、大きなガラス気泡のような、音響波長に対して有意な寸法を有する不均一性の検出に特に適する。そのような経路を通過する超音波信号には受信変換器によって検出される振幅の減少がおこり得る。サブミリメートルスケールの小気泡のような小さな不均一性の検出に適する別の配置では、導波路をV字形に配置することができる。
別の構成において、複数の集成導波路対12,14を容器に音響結合させ得ると考えられる。導波路対は、同一直線上にあって、容器に対して直径を挟んで対向することが好ましいが、用途に応じて、必要であれば複数のV字形に配置することもできる。
集成導波路12,14は基本的に同等であるから、以下の説明は、別途に言明されない限り、個々のコンポーネントの説明は集成導波路14にも等しくあてはまるという理解の下に、集成導波路12に向けてなされるであろう。集成導波路12及び14のコンポーネントはそれぞれ、図において個々のコンポーネントに付される添字‘a’及び‘b’で区別される。集成導波路12は、コアロッド21aとクラッドチューブ22aを有する導波路20a及び変換器24aを有し、導波路20aの一端は変換器24aに音響結合され、導波路20aの他端は容器10に音響結合される。導波路20aは容器10に、音響結合されるだけでなく、物理的に結合されるかまたは取り付けられることが好ましい。いくつかの実施形態において、導波路20aは変換器24aにも物理的に結合される。導波路20aを物理的に結合する方法には、鑞付け/溶接、ねじ込嵌合または実用になり得るようなその他のいずれかの方法を含めることができる。
変換器24aはガラス融液及び耐熱容器10にともなう高温では確実に機能できないから、導波路20aで変換器24aと耐熱容器10の間を音響結合して、変換器を容器から隔てる。この間隔により、耐熱容器及びガラス融液より低温での変換器の動作を可能にする、導波路20aの長さに沿う温度勾配が生じる。
変換器24aは超音波信号の発生に適する変換器である。例えば、変換器24aはランジュバン型またはトンピルズ(Tonpilz)型の変換器とすることができる。変換器24aは、信号発生器23で発生され、増幅器25で増幅された電気信号を、音響信号すなわち音波に変換する。信号発生器23及び増幅器25は従来の態様で制御配線29,31を介して変換器24aに動作可能な態様で接続することができる。コントローラ16は制御配線27を介して信号発生器23に動作可能な態様で接続することができる。コントローラ16は、例えば、専用プロセッサまたはコンピュータとすることができる。
音響信号すなわち音波をガラス融液に伝えるための変換器24aの導波路20aへの音響結合には、変換器24aに対する導波路20aへのバイアス印加を含めることができる。バイアス印加は導波路(または変換器)への負荷印加またはバネのような個別バイアス印加部材によって達成することができる。しかし、鑞付け/溶接またはねじ込嵌合のような、より堅固な結合によって変換器から導波路への信号伝達を強めることができる。
導波路20aは超音波信号を伝達できる細長部材である。導波路20aは、段付またはテーパ付のホーンまたは折返し形状のような、様々な形状のいずれかをとることができるが、細長部材は適する導波路としてはたらくことがわかった。導波路20aは一端で容器10に結合されるであろうから、導波路20aは容器から受ける高温に耐え得るべきであり、同時に、有効な導波路としてはたらくべきである。したがって、導波路20aは、白金または、白金−ロジウム合金のような、白金合金のような耐熱金属コアロッド21aを有することが好ましい。一構成において、コアロッド21aの外径は約3mmである。導波路20aはクラッドチューブ22aも有することが好ましい。クラッドチューブ22aは、ムライト(3Al・2SiO)のような、セラミック材料でからなることが好ましく、音波に対してコアロッドよりも高速な経路を提供することが好ましい。クラッドチューブ22aはコアロッド21aの実質的に全長に沿って延びることが好ましい。コアロッド21aの外径は、クラッドチューブ22aの内腔に楽に嵌まるように選ばれるべきである。選ばれた構成において、コアロッド21aとクラッドチューブ22aの間の十分な音響結合を確保するために、コアロッド21aとクラッドチューブ22aの間に音響結合剤を配することができる。あるいは、導波路クラッド22aをコアロッド21aを囲んで形成することができる。
変換器24aの適する動作温度を維持するため、変換器24aに接する末端側においてコアロッド21aがほぼ8〜10mmの長さで露出するように、クラッドチューブ22aを縮めることができる。変換器24aと導波路20aの界面における温度をほぼ50℃以下に維持するため、コアロッド21aの露出部分にかけて通路30aを通して冷却空気を流すことができる。
図1を参照すれば、それぞれの導波路を同心で囲む、外囲チューブ32aを配することができる。外囲チューブ32aは、導波路20aと外囲チューブ32aの間に環状領域が形成されるように、導波路20aから隔てて配置されるべきである。環状領域には、例えば空気を入れることができる。
外囲チューブ32aの一端は容器10の外表面34に接合される。容器壁への外囲チューブ32aの接合により、音響エネルギー(すなわち音波)の放射及び受取りのための容器壁上の面積の限定が強められる。容器10は一般に耐熱絶縁材料18で囲まれているから、外囲チューブ32aは導波路と容器の間の接触点の近傍から絶縁材料を離しておくためにはたらき、導波路を冷却するためのスペースも提供する。外囲チューブ32aは、例えばAlのようなセラミックからなることができる。容器10への外囲チューブ32aの接合または物理的結合には、例えば耐熱接着剤を用いることができる。
いくつかの実施形態において、導波路20aは、図2に示されるように、容器10に受栓35のようなねじ込嵌合具を先に鑞付け/溶接することによって、容器10に結合させることができる。相補的ねじ山が導波20の末端(すなわちコアロッド21の末端)に形成され、導波路を受栓にねじ込むことによって導波路が容器に結合される。図2に示されるように、受栓35は内側にねじ溝をもつカラーの形態にあり、導波路20aはその一端で外側に受栓35、したがって容器10に物理的に結合するためのネジ山を有する。受栓35は白金または白金合金からなることが好ましい。あるいは、図3に示されるように、容器10にねじ山付スタブ40を(例えば鑞付けまたは溶接により)取り付け、導波路20a(すなわちコアロッド21a)に相補的内ねじ溝を形成することで、導波路20aを上からスタブ40に被せてねじ込み、よってスタブ40を介して導波路20aを容器10に結合することができるから、導波路20aと容器10の間の結合を達成することができる。簡単な手法では、コアロッド21aを容器10に直接に鑞付け/溶接することができる。
導波路20aを受栓35またはスタブ40に結合する場合、物理的結合手段間に良好な平面接触を確保することが有益であることがわかった。すなわち、実質的な音響結合が、ロッドと受栓35の間のねじ間接触領域ではなく、ロッドの端面と受栓35の間の界面接触領域36に依存するように、好ましくは、コアロッド21aの端面は、導波路の軸線に直交すべきであり、受栓35のねじ溝付内腔の内底と完全に接触するべきである。この原則は、コアロッド21aの端面と、用いられていれば、スタブ40の間の界面接触領域38にもあてはまる。
動作において、音響信号(音波)が変換器24aによってつくられ、導波路20aに音響結合される。音響信号は導波路20aを通って容器10に伝搬し、続いて容器によってガラス融液15に導入される。伝搬している音波は溶融ガラス内の不均一性によって反射される。反射音波は容器壁を通って伝搬し、コアロッド21b及びクラッド21bからなる第2の集成導波路14に受け取られる。音響信号は導波路20bを通って受信変換器24bに進み、そこで、対応する電気信号が変換器によってつくられ、配線37を介して前置増幅器33に、次いで配線39を介して増幅器26に導かれてから、配線40を介してコントローラ16に到達する。電気信号は次いでサンプリングし、記録することができる。受信信号をデジタル化するためにデジタルオシロスコープを用いることもでき、それぞれのデジタル化サンプルは「レコード」からなる。
変換器24でつくられる音波の周波数は、小気泡、脈理または着目するその他の欠陥の存在を検出するように選ばれる。しかし、音響路に沿う損失が許容範囲内であるように、信号周波数が十分に低くなければならないことは当然である。音波の周波数は約100kHzと300kHzの間であることが好ましい。
ガラス融液内の音波の走行時間の測定値はガラス融液の温度に対応する。ある温度範囲内で走行時間と温度の間の相関は実質的に線形であることがわかった。したがって、集成導波路間の音響パルスの走行時間を決定し、融液の温度を計算するために用いることができる。すなわち、ある温度範囲に対して走行時間を決定することができる。次いで、得られた相関を用い、測定された走行時間に基づいて融液の温度を確定することができる。例えば、図4は、容器の送出部分と容器の受取り部分の間のガラス融液を通る経路が55mmでしかない実験構成についての温度の関数として走行時間を縦軸に示す。図は約1400℃〜約1550℃での温度と時間の間の実質的に線形の相関を示す。約1550℃と1575℃の間でのグラフの勾配の反転はそのような高温における白金容器の軟化によると考えられる。別の材料を用いるような、この問題への対処により、温度範囲をおそらく1600℃まで広げることができ、経路をより長くすることにより2℃以内の精度を達成できるであろうと考えられる。
気泡の存在を検出するため、デジタル化データは、記憶装置から取り出されて、またはオシロスコープ上で実時間で、パルス時間及び受信信号の強度(電圧)の関数として走行時間について調べられる。
すなわち、本構成により、ガラス融液内の気泡検出の目的に加えて、融液の温度を決定する目的のための、ガラス融液を通る音響信号走行時間の決定が可能になる。本発明の装置及び方法は、ガラス板形成のための製造システムのような、ガラス製造システムに用い得る点で有益である。
図5を参照すれば、融解接合プロセスを用いてガラス板を作成する、本発明の一実施形態にしたがう例示的ガラス製造システム42の略図が示されている。融解接合プロセスは、例えば(ドカーティ(Dockerty)の)米国特許第3338696号明細書に説明されている。ガラス製造システム42は、供給原料が矢印46に示されるように投入され、次いで溶融されて溶融ガラス48を形成する、融解炉44(溶解装置44)を備える。ガラス製造システム42はさらに、一般には白金または白金−ロジウム、白金−イリジウム及びこれらの組合せのような白金含有金属でつくられるが、モリブデン、パラジウム、レニウム、タンタル、チタン、タングステンまたはこれらの合金のような耐熱金属からなることもできる、コンポーネントを備える。白金含有コンポーネントには、精製槽50(例えば精製管50),融解炉−精製槽接続管52、混合槽54(例えば攪拌室54),精製槽−攪拌室接続管56,送出槽58(例えばボウル58),攪拌室−ボウル接続管60及び竪樋62を含めることができる。溶融ガラスは形成槽66(例えば融着パイプ66)に連結された流入口64に供給される。流入口64を通して形成槽66に供給された溶融ガラスは、形成槽66から溢れ出して、形成槽66の収斂外面を流れ下る2つの独立ガラス流に分れる。2つの独立溶融ガラス流は形成槽収斂面が合する線で再結合して単一のガラス板68を形成する。一般に、形成槽66はセラミックまたはガラス−セラミックの耐熱材料でつくられる。
形成槽66の収斂形成表面を流れ下る独立ガラス流の外表面は形成面に接触しないから、新生外表面を有する結合ガラス板は液晶ディスプレイの製造に十分に適する。
本発明の一実施形態にしたがえば、装置8はガラス製造システム42の白金含有部内に用いることができる点で有利である。例えば、溶融ガラス内の不均一性の存在を検出するために、1つ以上の装置8を、以下のコンポーネント、融解炉−精製槽接続管52,精製槽50,精製槽−攪拌室接続管56または攪拌室54の内の1つ以上のいずれにも結合させることができる。不均一性が検出されると、そのような不均一性を低減するための技術上既知の補正操作を行うことができる。例えば、気泡は精製槽の外部雰囲気を変えることによって(例えば、雰囲気に含まれる水素の量を増やすことによって)減少させることができる。脈理は攪拌槽における攪拌速度を高めることによって軽減することができる。本発明の方法及び装置が、本明細書に説明されるような、融解接合ガラス製造システムでの使用に限定されず、溶融ガラスを処理するために金属容器を用いるいかなるガラス形成作業にも用いられ得ることは当然である。
実施例1
それぞれがほぼ3mm径の白金−ロジウムコアロッドを有するいくつかの導波路を、外形がほぼ9.5mmのムライトクラッドチューブに乾式挿入した。コアロッドを直径がほぼ55mmの概ね円筒形の白金−ロジウムるつぼの外表面に、それぞれの導波路の軸線が一致するように共線関係で鑞付けした。それぞれの白金合金ロッド上でムライトクラッドチューブを縮めて、ロッドの露出端がステンレス鋼チューブの穴を垂直に通過できるようにした。市販の1MHz 0.25インチ(6.35mm)超音波変換器(例えば送出変換器及び受取変換器)をそれぞれの導波路のそれぞれの白金ロッドに、変換器とロッドの間に超音波接触媒質を配して、軽く押し付けた。導波路と変換器の間の界面の温度をほぼ50℃に維持する冷却空気流をステンレス鋼チューブで送った。
次いで、Al外囲チューブをそれぞれの導波路を囲んで同心に配置し、るつぼに取り付けて、るつぼの放射領域及び受け領域を定めた。得られた集成体を、導波路がオーブンを貫通して延び出せるように準備が施してある管状オーブン内に入れた。
アルミノホウケイ酸ガラスを、ガラス内に既存の気泡の除去を確実にするため、別の容器内で予備溶融した。次いで、ガラスをるつぼに移した。一構成において、最大のパルス幅、ダンピング抵抗及び振幅で動作させた、Metrotek MP217パルス発生器で送信変換器を駆動した。第2の導波路を介して受取変換器で検出された受信信号に、0.05〜1.4MHzの帯域幅及び20dBの増幅率に設定したBruel & Kaer 2638調整増幅器と組み合せた、0.14〜1.4MHzフィルタを備えるBruel & Kaer 2637前置増幅器を通る経路をとらせた。信号は、80μsトリガーディレイ後に開始して、10MHzのサンプリングレートで記録された総計2500のサンプルについて、LeCroy 9450デジタルオシロスコープにより8ビット分解能でデジタル化した。
ガラス融液内の音響路が清澄な、実験の第1部において、約250レコードについて時間ドメイン応答を記録し、平均した。炉の天井を通して、外径が約10mmで内径が約6mmの細いセラミックチューブをるつぼ内の融液に挿入した。チューブを通して圧縮窒素をガラス融液に緩やかに吹き込んで、融液の表面に向かって上昇する気泡をるつぼの底近くで発生させた。圧縮窒素配管の吹込フラスコにより、それぞれの気泡が発生した瞬間の近似表示が可能になった。炉温は約1570℃であった。
気泡発生チューブがない場合、超音波路は清澄であり、オシロスコープで表示されるような時間ドメイン応答は極めて安定であった。続いて気泡発生チューブを融液に挿入した。ほぼレコード250において最小の気泡が発生し、その後の発生速度は1〜2秒毎にほぼ1つの気泡で、かなり一定であった。実験中、時間応答変動の表示にオシロスコープスクリーンを用いた。そのような変動は気泡発生速度でおこった。
上記例と同様に、レコードを200kHz 4次バターワースフィルタに通してフィルタリングし、エンベロープを計算して、初期無擾乱期間(本例では初めの150レコード)にわたる平均エンベロープを差し引いた。レコード250とレコード550の間に、13個の気泡通過が応答図に見られた。
図6は、上記実験について、時間の経過にともなうサンプル(レコード)の関数としての検知変換器出力電圧を示す単純な出力を示す。検出された気泡の存在を、放出された13個の気泡に対応する、ほぼレコード(サンプル)250に始まる一連の13個の電圧スパイクとして、明瞭に見ることができる。気泡の指標には電圧の低下を予想していたが、不思議なことに、逆であった。電圧上昇は集成送出変換器と集成受取変換器の不完全な位置合せまたは気泡による集束効果の結果であると考えられる。
本発明を本発明の特定の例示実施例とともに説明したが、上述の説明に照らして見れば、多くの別形、改変及び変形が当業者には明らかであろうことが明白である。したがって、本発明は添付される特許請求項の精神及び広い範囲内に入るような全ての別形、改変及び変形を包含するとされる。
8 ガラス融液特性決定装置
10 容器
12,14 音響導波路
15 ガラス融液
16 コントローラ
18 熱絶縁耐熱ジャケット
20 導波路
21 コアロッド
22 クラッドチューブ
23 電気パルス発生器
24 超音波変換器
25 増幅器
34 容器外表面
42 ガラス製造システム

Claims (10)

  1. 容器(10)内のガラス融液の特性決定方法であって、
    前記容器(10)の外表面(34)を介して前記ガラス融液内に音波を結合する工程、
    前記ガラス融液内の反射音波を検出する工程、及び
    前記検出された反射音波に対応する前記ガラス融液内の不均一性の存在を決定する工程、
    を有してなる方法。
  2. 前記ガラス融液内の不均一性の存在を決定する前記工程が、前記反射音波の、走行時間を測定する工程、振幅を測定する工程及び周波数を測定する工程の内の少なくとも1つに相当することを特徴とする請求項1に記載の方法。
  3. 前記不均一性が気体に基づくことを特徴とする請求項1に記載の方法。
  4. 音波を結合する前記工程が、第1の導波路(20a)を介して前記容器(10)の前記外表面(34)に第1の超音波変換器(24a)を結合する工程を含むことを特徴とする請求項1に記載の方法。
  5. 前記反射音波が、前記容器(10)の前記外表面(34)に結合された第2の導波路(20b)を介して第2の超音波変換器(24b)に音響結合されることを特徴とする請求項4に記載の方法。
  6. 前記第1及び第2の導波路(20a,20b)のそれぞれがコア(21a,21b)及びクラッド(22a,22b)を有することを特徴とする請求項5に記載の方法。
  7. 不均一性の存在を決定する前記工程が、前記ガラス融液の温度を決定する工程をさらに含むことを特徴とする請求項1に記載の方法。
  8. ガラス融液の特性決定を行うための装置において、
    前記ガラス融液(15)を収容するための容器(10)、
    第1の変換器(24a)から前記ガラス融液(15)に音波を音響結合するために前記容器(10)の外表面(34)に結合された第1の導波路(20a)、及び
    前記ガラス融液(15)から第2の変換器(24a)に反射音波を音響結合するために前記容器(10)の前記外表面(34)に結合された第2の導波路(20b)、
    を備え、
    前記反射音波が前記ガラス融液内の不均一性に符号することを特徴とする装置。
  9. 前記第1及び第2の導波路(20a,20b)が共通の軸線に沿って位置合せされることを特徴とする請求項8に記載の装置。
  10. ガラス製造システム(42)において、請求項8に記載の装置を備えることを特徴とするガラス製造システム。
JP2009523769A 2006-08-04 2007-07-26 超音波照射によるガラス融液の特性決定のための方法及び装置 Pending JP2009545757A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US83579506P 2006-08-04 2006-08-04
PCT/US2007/016836 WO2008018997A2 (en) 2006-08-04 2007-07-26 Method and apparatus for characterizing a glass melt by ultrasonic illumination

Publications (1)

Publication Number Publication Date
JP2009545757A true JP2009545757A (ja) 2009-12-24

Family

ID=39033467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009523769A Pending JP2009545757A (ja) 2006-08-04 2007-07-26 超音波照射によるガラス融液の特性決定のための方法及び装置

Country Status (5)

Country Link
JP (1) JP2009545757A (ja)
KR (2) KR101500920B1 (ja)
CN (1) CN101500955B (ja)
TW (1) TWI359119B (ja)
WO (1) WO2008018997A2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8800373B2 (en) * 2011-02-14 2014-08-12 Rosemount Inc. Acoustic transducer assembly for a pressure vessel
TWI668442B (zh) * 2014-10-17 2019-08-11 美商瓦里安半導體設備公司 薄片形成設備、用於測量熔體表面的薄片的厚度的系統及用於在薄片形成設備中測定材料界面的位置的方法
US10081125B2 (en) 2015-07-20 2018-09-25 International Business Machines Corporation Method to detect and remove gas bubbles from molten substrate to prevent hollow fiber formation
US9863875B1 (en) 2016-10-19 2018-01-09 International Business Machines Corporation In-situ detection of hollow glass fiber formation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219843A (ja) * 1985-03-19 1986-09-30 フラマトーム 超音波を用いて包囲体内の流体の温度を測定する方法及び装置
JPH0641942B2 (ja) * 1986-01-13 1994-06-01 アルミニウム カンパニ− オブ アメリカ 溶融体中の介在物の超音波検出装置および方法
JPH06221842A (ja) * 1993-01-28 1994-08-12 Toppan Printing Co Ltd 音響ファイバを備えた超音波トランスデューサ
JP2002211694A (ja) * 2001-01-17 2002-07-31 Fuji Electric Co Ltd 発泡液吐出装置
JP2002236111A (ja) * 2001-02-09 2002-08-23 Masahiro Nishikawa 液体ポンプの気泡検出方法及びその装置
JP2007322139A (ja) * 2006-05-30 2007-12-13 Sumitomo Chemical Co Ltd 導管内を流れる液体中の気泡流量の定量方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316734A (en) * 1980-03-03 1982-02-23 Battelle Memorial Institute Removing inclusions
US4398925A (en) * 1982-01-21 1983-08-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Acoustic bubble removal method
US4549896A (en) * 1984-08-27 1985-10-29 Owens-Corning Fiberglas Corporation Apparatus and method for removing gaseous inclusions from molten material
US6795484B1 (en) * 2003-05-19 2004-09-21 Johns Manville International, Inc. Method and system for reducing a foam in a glass melting furnace
CN1869680B (zh) * 2006-06-27 2011-03-30 上海大学 测量超声波在金属熔体中有效传播距离的方法及其专用装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219843A (ja) * 1985-03-19 1986-09-30 フラマトーム 超音波を用いて包囲体内の流体の温度を測定する方法及び装置
JPH0641942B2 (ja) * 1986-01-13 1994-06-01 アルミニウム カンパニ− オブ アメリカ 溶融体中の介在物の超音波検出装置および方法
JPH06221842A (ja) * 1993-01-28 1994-08-12 Toppan Printing Co Ltd 音響ファイバを備えた超音波トランスデューサ
JP2002211694A (ja) * 2001-01-17 2002-07-31 Fuji Electric Co Ltd 発泡液吐出装置
JP2002236111A (ja) * 2001-02-09 2002-08-23 Masahiro Nishikawa 液体ポンプの気泡検出方法及びその装置
JP2007322139A (ja) * 2006-05-30 2007-12-13 Sumitomo Chemical Co Ltd 導管内を流れる液体中の気泡流量の定量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013002274; Faber A J. et al.: 'Application of ultrasonic measuring techniques in industrial glass melting' Glastech Ber. Vol.64 No.5, 1991, pp.117-122 *

Also Published As

Publication number Publication date
KR20090048616A (ko) 2009-05-14
TWI359119B (en) 2012-03-01
KR20140130477A (ko) 2014-11-10
CN101500955B (zh) 2011-09-07
WO2008018997A3 (en) 2008-10-16
WO2008018997A2 (en) 2008-02-14
CN101500955A (zh) 2009-08-05
KR101500920B1 (ko) 2015-03-10
TW200825031A (en) 2008-06-16

Similar Documents

Publication Publication Date Title
US20160153938A1 (en) Waveguide technique for the simultaneous measurement of temperature dependent properties of materials
KR101244642B1 (ko) 액상 용융물의 국부 유량을 측정하는 초음파 센서
JP2009545757A (ja) 超音波照射によるガラス融液の特性決定のための方法及び装置
CA1267211A (en) Apparatus and method for ultrasonic detection of inclusions in a molten body
Prasad et al. Viscosity measurements of melts at high temperatures using ultrasonic guided waves
Periyannan et al. Ultrasonic bent waveguides approach for distributed temperature measurement
Lynnworth et al. Extensional bundle waveguide techniques for measuring flow of hot fluids
JP2006322749A (ja) 液体金属用超音波トランスジューサ
Raja et al. Ultrasonic waveguide-based multi-level temperature sensor for confined space measurements
US6296385B1 (en) Apparatus and method for high temperature viscosity and temperature measurements
KR101196407B1 (ko) 액상 용융물의 국부 유량 측정 방법
JP2001147143A (ja) 超音波信号を案内する超音波導波体
CN104395704B (zh) 用于高温的超声波传感器及其制造方法
KR101546640B1 (ko) 유리 용해물에 음향 에너지를 제공하기 위한 도파관 어셈블리 및 방법
Ihara et al. Development of the ultrasonic buffer rod for the molten glass measurement
Rabani et al. The torsional waveguide viscosity probe: design and anomalous behavior
Balasubramaniam et al. Ultrasonic waveguide sensors for measurements in process industries
JP5524378B1 (ja) 高温用超音波センサ
Viumdal et al. Enhancing signal to noise ratio by fine-tuning tapers of cladded/uncladded buffer rods in ultrasonic time domain reflectometry in smelters
CN109489797A (zh) 一种耐高温耐腐蚀声传感器、声场测定系统及方法
Balasubramaniam et al. Temperature and viscosity in-situ sensor for hostile processes
JP3100247B2 (ja) アルコール濃度測定方法
Shah et al. Sensor development for high temperature viscosity measurement
Fleischmann et al. Development of an ultrasonic method to determine the residual thickness of refractory blocks
Costley et al. Integrated waveguide/thermocouple sensor for liquid properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625