JP2009544716A5 - - Google Patents

Download PDF

Info

Publication number
JP2009544716A5
JP2009544716A5 JP2009521852A JP2009521852A JP2009544716A5 JP 2009544716 A5 JP2009544716 A5 JP 2009544716A5 JP 2009521852 A JP2009521852 A JP 2009521852A JP 2009521852 A JP2009521852 A JP 2009521852A JP 2009544716 A5 JP2009544716 A5 JP 2009544716A5
Authority
JP
Japan
Prior art keywords
insulin
composition
formulation
agents
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009521852A
Other languages
English (en)
Other versions
JP2009544716A (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2007/016903 external-priority patent/WO2008013938A2/en
Publication of JP2009544716A publication Critical patent/JP2009544716A/ja
Publication of JP2009544716A5 publication Critical patent/JP2009544716A5/ja
Pending legal-status Critical Current

Links

Description

いくつかの態様において、本発明は哺乳類の血糖値を減少させる方法であって:等電点約6〜約8を有するインスリン誘導体の粒子、および少なくとも1種の薬学的に許容される賦形剤を含んで成る医薬製剤を哺乳類に肺投与することを含み、インスリン誘導体が哺乳類の肺の中で沈着した後に沈殿し、該投与によって少なくとも約6時間血糖値が減少する方法を提供する。
図5はSprague-Dawleyラット(n=2)にインスリングラルギン960μgを気管内注入した後の個体の血糖濃度を示すグラフである。エラーバーは標準偏差である。動物5-1および5-2は投与180分後に低血糖のために安楽死させた。
そうでないと断らない限り、本明細書および特許請求の範囲において用いれている成分の量、反応条件などを表現する全ての数は、「約」なる用語によって全ての具体例において修正されると理解される。したがって、そうでないと断らない限り、下記明細書および添付の特許請求の範囲に記載の数値的パラメーターは、本発明によって得られると考えられる所望の特性に依存して変化し得る概略値である。少なくとも、特許請求の範囲の均等論の適用を制限しようとするものではないが、各数値パラメーターは有効桁数および通常の四捨五入を考慮して解釈されるべきである。
「界面活性」物質は、それが溶解している液体の表面張力を減少させる能力によって特徴付けられる界面活性(例えば表面張力測定によって測定する)を有するものである。液体と他の相の界面に関する表面張力は、表面分子が内側への引力を示す原因となる液体の特性である。
「徐放組成物」は「速放」組成物よりも比較的長い時間にわたってゆっくりと活性成分を放出する組成物である。一般に、活性成分が少なくとも約3時間、または少なくとも約4時間、または少なくとも約5時間、または少なくとも約6時間、または少なくとも約8時間にわたって放出される。
特定の時間についてのタンパク質の「持続血漿レベル」は、特定された期間の間血漿中でタンパク質が検出可能であることを意味する。タンパク質を検出するためのあらゆる方法、例えば免疫学的、生化学的または機能的方法によってタンパク質を検出することができる。例えば、グラルギンインスリンを酵素免疫測定法(ELISA)、マススペクトロメトリー、または血糖値の測定によって検出することができる。
「肺投与に適している」組成物は、エアロゾル化することができ、そして対象に吸引されてエアロゾル化粒子の一部が肺に到達して肺胞に浸透することができる組成物を意味する。かかる組成物は「呼吸用」または「吸入用」であり得る。
「エアロゾル化」組成物は、典型的には吸入デバイス、例えば乾燥粉末吸入器、噴霧器、定量吸入器またはネブライザーの作動(または発射)の結果として、ガス(典型提起には空気)中に懸濁した液体または固体粒子を含む。
「ジェットネブライザー」は、薬剤溶液を通じて圧縮空気を押し出して、微細スプレーを顔面に送達し、吸入することができる系、例えばデバイスである。ネブライザーはしばしば、定量吸入器または呼吸作動性吸入器を用いることができない者に薬剤を投与するために使用される。
「乾燥粉末吸入器」は、粉末形態の薬剤の単位用量を収容するデバイスである。一般に、該吸入器は呼吸をすることにより作動する。例えば、カプセルまたはブリスターを穿刺し、粉末を分散させてこれを例えば“Spinhaler”または“Rotahaler”で吸入することができる。“Turbohalers”は粉末形態の薬剤の測定用量を送達するキャニスターを装着している。
「定量吸入器」または「MDI」は、加圧下プロペラントによって吸入器から分散される極端に小さい液体または固体粒子の懸濁形態で薬剤の一定用量を送達するデバイスである。かかる吸入器は口に当て、個体が呼吸する時に押圧して(作動させて)薬剤を放出させる。
本明細書において用いるとき、「放出量」または「ED」なる用語は、粉末ユニットまたはリザーバーから作動もしくは分散事象の後、吸入デバイスからの乾燥粉末の送達の指標を意味する。EDは予定量(すなわち、射出前の好適な吸入デバイスに存在する単位用量あたりの粉末質量)に対する吸入デバイスによって送達された用量の比と定義される。EDは実験的に測定される量であり、患者投与を模したインビトロデバイス設定を用いて測定することができる。ED値を測定するために、本明細書において用いるとき、乾燥粉末を米国特許第6,257,233号(出典明示によりその全体を本明細書の一部とする)に記載のPulmonary Delivery System(PDS)デバイス(Nektar Therapeutics)に入れる。PDSデバイスを作動させると、粉末が分散する。得られたエアロゾル雲をデバイスからバキューム(30L/分)で、作動後2.5秒間吸引し、デバイスマウスピースに取り付けた風袋を測定したガラスファイバーフィルター(Gelman、直径47 mm)で捕集する。フィルターに到達した粉末の量が送達量を構成する。例えば乾燥粉末5mgを含むカプセルについて、これを吸入デバイスにセットし、粉末の分散により上記の風袋を測定したフィルターで粉末4mg回収されたとき、乾燥粉末製剤のEDは80%(=4mg(送達量)/5mg(予定量))である。
本明細書において使用するとき、「質量中央径」または「MMD」は、典型的には多分散粒子群、すなわちある範囲の粒度からなる複数粒子の中央径を意味する。本明細書に記載のMMD値は、文脈がそうでないと断らない限り、レーザー回折(Sympatec Helos, Clausthal-Zellerfeld, Germany)で測定する。典型的には、粉末サンプルをSympatec RODOS乾燥粉末分散ユニットのフィーダー筒に直接加える。これをVIBRI振動フィーダー部の先端から手動でまたは機械的撹拌によって遂行され得る。真空減圧(吸引)で所定の分散圧を最大化して、加圧空気(2〜3bar)を適用してサンプルを1次粒子に分散させる。分散した粒子を、分散粒子の軌道と直角に交差する632.8nmレーザービームで探査する。粒子集団によるレーザー光散乱をフォトマルチプライヤー検出素子の同心配列上に、逆フーリエレンズアセンブリを用いて現像する。散乱光を5msの時間スライスで取得する。粒度分布を散乱光の空間的/強度的分布から、アルゴリズムを用いて逆算する。
「空気動力学的質量中央粒子径」または「MMAD」は、分散粒子の空気動力学的径の尺度である。空気動力学的径、エアロゾル化粉末をその沈降挙動について説明するために用いられ、そしてこれは空気中で粒子と同沈降速度を有する単位密度球体の直径である。空気動力学的径は粒子の形状、密度、および粒子の物理的サイズを含む。本明細書において使用するとき、そうでないと断らない限り、MMADは、米国特許第6,257,233(出典明示によりその全体を本明細書の一部とする)に記載のPulmonary Delivery System(PDS)デバイス(Nektar Therapeutics)を用いて標準状態でカスケードインパクションによって測定したエアロゾル化粉末の空気動力学的粒度分布の中間点または中央値を意味する。
「ガラス」または「ガラス状態」なる用語は、本明細書において使用するとき、流動能を喪失した液体を意味し、これはすなわち、粘度が1010〜1014パスカル秒の範囲である極めて高い粘度を有する液体である。これは、分子が振動運度および減少した回転運度を有するが、液体状態と比較したとき極めて遅い(ほぼ測定不能)並進運動を有する準安定なアモルファス系として見ることができる。準安定系として、これはガラス転移温度をはるかに下回る温度で保存したとき長期間安定である。ガラスは熱力学的平衡状態ではないため、ガラス転移温度またはその付近で保存されたガラスは貯蔵中に平衡まで緩み、それらの高粘度を失う。得られたゴム状またはシロップ状流動性液体は物質の物理的不安定さを導き得る。溶媒蒸発技術(米国特許第6,309,671号)ならびに許容されるTgを有するガラス状態とすることができる他の方法、例えば凍結乾燥とそれに続く微粉化摩砕を用いて、ガラス状態を得ることができる。
医薬組成物の「薬理学的有効量」または「生理学的有効量」は、医薬組成物の意図した目的に十分な量である。例えば、糖尿を処置または改善するための医薬組成物の有効量は、糖尿病の症状を軽減または排除するのに十分な量、例えば血糖を減少させる血流中のインスリン誘導体の所望のレベルを提供するのに必要な量である。ある医薬組成物の薬理学的有効量は、組成物中の活性成分の性質、投与経路、組成物を投与される動物のサイズおよび種、および投与の目的のような要因によって変化する。好適な量は当業者によって、利用可能な文献および本明細書によって提供される情報によって容易に決定することができる。
本発明の製剤
いくつかの態様において、ペプチドまたはタンパク質のような薬学的活性分子の製剤を、肺組織を通して吸収されるように製造する。ペプチドまたはタンパク質の等電点は、この分子が正味の電荷を担持しないときのpHである。この特性に伴う現象は、ペプチドおよびタンパク質が一般的に、それらのpIに等しいpHで最も低い溶解度を有するということである。それらのpIよりも低いかまたは高いpHでは、ペプチドまたはタンパク質が担持する電荷が増えるにつれ溶解度が増加し、これによって溶解が促進される。結果として、溶解したペプチドまたはタンパク質、その環境pHをpIに変化させると、沈殿させることができる。したがって、生理学的pHにほぼ等しいpIを有するタンパク質は一般的に、例えば酸性溶液から投与されると、組織内または上で沈殿し、それによって持続的溶解および吸収のためのデポ形成する
一般に、多くのタンパク質が生理的pHで可溶性である。しかし修飾すると、タンパク質のpIを生理的pHの範囲内となるように操作することができ、その結果、持続溶解にとって好ましい沈殿を引き起こすことができる。1個以上の態様において、かかる操作は1個、2個または数個以上のタンパク質配列のアミノ酸を所望の範囲にpIを誘導する残基を担持するように交換する、タンパク質の点変異によって行い得る。1個以上の態様において、インスリンまたはインスリン誘導体を完全巨大分子のpIを所望のpH範囲に変化させるのに十分な残基を担持する他のペプチドでタグ化することができる。1個以上の態様において、インスリンまたはインスリン誘導体の残基を化学的に修飾してpIを変化させることができる。例えば、負に荷電した酸性残基、例えばグルタミン酸またはアスパラギン酸を中性エステルに修飾することができる。同様に、残基、例えばリシンの正に荷電したアミノ基を有機酸で処理して中性アミドを形成することができる。また、目的のタンパク質を含む溶液を、沈殿を促進する薬剤で処理することができる。かかる沈殿剤は溶液中のタンパク質の正味の電荷以外の要素を操作することができる。例えば、沈殿剤は溶液の極性まはタンパク質の3次もしくは構造を変化させて沈殿を加速させることができる。したがって、生理的pHと類似のpIを得るためのタンパク質の操作を用いて、生理的pHでこのタンパク質の沈殿を生じ得て、これは長い時間にわたって効果を発揮するために用い得ることができる。
本発明のいくつかの態様は、最初は可溶性であるか、または溶液であるグラルギンインスリンの肺製剤に関する。深部肺に到達すると、pH変化のために、グラルギンインスリンが沈殿して徐放性複合体を形成する。本製剤における成分の選択を、初期溶解度、続く微粒子形成のいずれもを最大化するように行う。操作の具体的な理論に縛られることを意図するものではないが、本発明の製剤は、遠くの肺に到達すると、ある程度は初期溶解し、続いて沈殿および/または複合体が形成されると考えられる。したがっていくつかの態様において、製剤はグラルギンインスリンの溶液を含み得る液体製剤、例えば低pH製剤であり、そしていくつかの態様において、製剤はグラルギンインスリンの可溶製剤を含み得る乾燥粉末である。
本明細書を通じて、グラルギンインスリンについて言及されているが、当該教示は約6−8の等電点を有するあらゆるインスリン誘導体に等しく適用可能であることに注意するべきである。かかるインスリン誘導体を、例えば酸性残基21の非酸性残基による置換によって、および/または末端に塩基性残基、例えばリシンを加えることによってそれらのpIを修飾して、製造することができる。生物学的活性に有害な影響なくpIを修飾する方法によるインスリンの修飾は常套であり、当業者の技術レベル内である。したがって、かかるインスリン誘導体または均等物は、意図され、そして本発明の範囲内であると見なされる。
肺におけるタンパク質の沈殿
結晶構造分析は、インスリンが好適な薬剤、例えば亜鉛のような沈殿剤と、各インスリン6量体に対して2または4個の亜鉛分子の比で、錯体を形成することが示される。しかし本発明のいくつかの態様において、グラルギンインスリン−亜鉛錯体は、より多くの亜鉛を含むことができて、晶錯体よりもむしろアモルファス錯体を形成することができる。理論によって限定されることを意図しないが、本発明の組成物中の高含量の亜鉛(または他の沈殿剤)が上記インスリン−亜鉛結晶よりもより遙かに緩徐に解離する「動力学的に不可逆性の沈殿」を形成させると思われる。「動力学的に不可逆性」なる用語は、沈殿プロセスが可逆性ではないという意味ではない。むしろこれは、解離、そして続く溶解が動力学的に制御された緩徐なプロセスであることを意味する。
「動力学的に不可逆性の」タンパク質沈殿の形成は、様々な方法で誘導され得る。例えば、限定されないが:(a)錯体形成および適当なカチオン、例えば2価カチオン(例えば亜鉛、マグネシウム、カルシウム、コバルト、銅、鉄それらの有機および無機塩を含む)との特定の相互作用によるアフィニティー沈殿;(b) Hofmeisterシリーズ塩による塩析;(c) 適当量の大型ポリマー例えばポリエチレングリコール(異なる分子量)、デキストラン等の添加によって誘導される体積排除;および(d) pH調整剤(酸または塩基)による等電沈殿が含まれる。
本発明のいくつかの態様は、少なくとも1種の沈殿剤を含む。沈殿剤は当該技術分野において既知である。沈殿剤の例には、限定されないが、2価カチオン、例えば亜鉛、銅、コバルト、鉄、マンガン、バナジウム、カドミウム、マグネシウム、カルシウムおよびバリウムが含まれる。他の沈殿剤には、ポリエチレングリコール(PEG)、デキストラン、ポリリシン、ポリビニルピロリドン、およびシクロデキストリンが含まれる。さらに他の沈殿剤には、2 メチル−2,4−ペンタンジオール(MPD)、ジメチルスルホキシド(DMSO)、およびエタノールのような有機溶媒が含まれる。2価金属カチオン、とりわけ亜鉛が本発明の特定の態様の沈殿剤として使用される。
2価金属イオンには、限定されないが、遷移金属およびアルカリ土類金属イオンが含まれる。遷移金属イオン、例えば亜鉛、銅、コバルトおよび鉄がとりわけ好ましい。亜鉛が本発明において最も好ましい沈殿剤である。いくつかの態様において、1価金属イオン、例えばアルカリ金属を加えることができる。
理論に縛られることを望まないが、2価金属:グラルギンインスリンが比較的高い本発明のいくつかの態様において、本発明の錯体は結晶よりもむしろアモルファスであり得ると考えられる。しかし、2または4:1(2価金属:グラルギン6量体)の比では、この比は、結晶である可能性が高い。いくつかの態様において、アモルファス錯体(より高い比)を結晶錯体(より低い比)と混合して組み合わせた放出特性を有する組成物を作成することができる。したがって、本発明の組成物は少なくともおよそ下記乾燥重量百分率のアモルファス錯体を有し得る:0%、1%、2%、4%、6%、8%、10%、15%、20%、30%、40%、50%、60%、70%、80%および90%。
本発明の組成物は典型的には、固体重量百分率約0.1%〜約95%、より好ましくは約10%〜約85%、さらにより好ましくは約30%〜約75%、最も好ましくは約50%〜約70%の沈殿剤を含む。薬学的に有用なタンパク質を塩析、体積排除または等電沈殿によって沈殿させるとき、沈殿剤は不溶性複合体の一部を形成するよりもむしろ、沈殿を促進させるのみであるため、当該組成物は沈殿剤を含まなくともよい。一旦沈殿が形成されると、沈殿剤は所望により懸濁液から除去して最終組成物中の沈殿剤をなくすかまたは微量のみにすることができる。賦形剤の添加によっても沈殿剤の割合が変化し得る。したがって、賦形剤の量に基づいて、本発明の組成物はおよそ下記百分率より低い固体重量百分率の沈殿剤を含む:0.1%、0.2%、0.4%、0.5%、0.7%、1.0%、5%、10%、15%または20%。
インスリン誘導体に加えて、該組成は治療剤として有用な任意のタンパク質を含んでいてもよい。該タンパク質はまた、炭水化物または脂質のような非ペプチド部分を含んでいてもよい。したがって本発明のこれら薬学的に有用なタンパク質(「医薬タンパク質」)は、末梢神経、アドレナリン受容体、コリン作動性受容体、骨格筋、心臓血管系、平滑筋、血液循環系、シナプス部位、神経効果器接合部位、内分泌系およびホルモン系、免疫系、生殖器系、骨格系、オータコイド系、消化器系および排泄系、ヒスタミン系、ならびに中枢神経系に作用する薬剤を含み得る。好適なタンパク質は、例えば睡眠薬および鎮静剤、精神賦活剤、精神安定剤、呼吸系剤、抗けいれん剤、筋弛緩剤、パーキンソン病治療剤(ドーパミンアンタゴニスト)、鎮痛剤、抗炎症剤、抗不安剤(抗不安薬)、食欲抑制剤、抗偏頭痛薬、筋収縮剤(muscle contractants)、抗感染剤(抗生物質、抗ウイルス剤、抗真菌剤、ワクチン)、抗関節炎剤、抗マラリア薬、制吐剤、抗癲癇薬、気管支拡張剤、サイトカイン、増殖因子、抗がん剤、抗血栓剤、抗高血圧剤、循環器系薬、抗不整脈剤、抗酸化剤、抗喘息剤、避妊薬を含むホルモン剤、交感神経刺激剤、利尿剤、脂質調節剤、抗アンドロゲン剤、抗寄生虫剤、抗凝血剤、新生物剤、抗新生物薬、血糖降下剤、栄養剤およびサプリメント、成長サプリメント、抗腸炎剤、ワクチン、抗体、診断薬および造影剤(contrasting agent)を含み得る。医薬タンパク質は局所的または全身的に作用し得る。
インスリン誘導体と組合せて用いるのに適した医薬タンパク質の例には、限定されないが、カルシトニン、エリスロポエチン(EPO)、Factor VIII、Factor IX、セレダーゼ、セレザイム、シクロスポリン、顆粒球コロニー刺激因子(GCSF)、トロンボポエチン(TPO)、アルファ−1プロテイナーゼ阻害剤、エルカトニン、顆粒球マクロファージコロニー刺激因子(GMCSF)、成長ホルモン、ヒト成長ホルモン(HGH)、成長ホルモン放出ホルモン(GHRH)、インターフェロンアルファ、インターフェロンベータ、インターフェロンガンマ、インターロイキン−1受容体、インターロイキン−2、インターロイキン−1受容体アンタゴニスト、インターロイキン−3、インターロイキン−4、インターロイキン−6、黄体化ホルモン放出ホルモン(LHRH)、因子IXインスリン、プロ−インスリン、インスリンアナログ(例えば米国特許第5,922,675号に記載のモノアクリル化インスリン)、C−ペプチド、ソマトスタチン、ソマトスタチンアナログ、例えばオクトレオチド、バソプレシン、卵胞刺激ホルモン(FSH)、インスリン様増殖因子(IGF)、インスリントロピン(insulintropin)、マクロファージコロニー刺激因子(M−CSF)、神経成長因子(NGF)、組織成長因子、ケラチノサイト成長因子(KGF)、グリア成長因子(GGF)、腫瘍壊死因子(TNF)、内皮成長因子、副甲状腺ホルモン(PTH)、Ilb/IIIa阻害剤、アルファ−1アンチトリプシン、ホスホジエステラーゼ(PDE)化合物、呼吸器合胞体ウイルス抗体、デオキシリボヌクレアーゼ(DNase)、殺菌性/透過性増強タンパク質(BPI)、抗CMV抗体、および適用可能であるとき、上記のもののアナログ、アゴニスト、アンタゴニストおよび阻害剤、例えば合成、天然、糖化、非糖化、ペグ化形態、および生物学的に活性なそのフラグメントおよびアナログが含まれる。
医薬タンパク質の組成物および対応する用量は、使用するインスリン誘導体の生物活性によって変化する。特定の投与経路のために使用される正確なインスリン誘導体組成物の薬力学と薬物動態を組み合わせたとき、正確な投与量を当業者が決定することができ、そして定期的なグルコースモニタリングに応じて容易に調節することができる。
本発明を用いてグラルギンインスリンを吸入により肺に送達するとき、組成物中のグラルギンインスリンの量は、天然インスリンの治療効果の少なくとも1つ、すなわち血糖レベルを正常血糖近くに制御する能力を達成するための単位用量あたり治療上有効量のグラルギンインスリンを送達するのに必要な量である。とりわけ、これは処置する糖尿病状態の重篤度、患者集団、組成物の安定性などに依存して広く変化する。
組成物は一般的に、固体重量として、約1%〜約99%、例えば約2%〜約95%、約5%〜約85%、または約70%〜約95%の医薬タンパク質を含む。組成物中の医薬タンパク質の百分率はまた、組成物中に含まれる賦形剤/添加剤の相対的量に依存する。より具体的には、組成物は典型的には、少なくともおよそ下記固体重量百分率の医薬タンパク質を含む:10%、20%、30%、40%、50%、60%、70%、80%、90%またはそれ以上。いくつかの態様において、粉末組成物は少なくとも約60重量%、例えば約60〜100重量%の医薬タンパク質を含む。種以上の医薬タンパク質が本明細書に記載の組成物に含まれ得ることが理解される。さらにまた、組成物は種以上の医薬タンパク質の形態、例えばグラルギンインスリンおよび他のタイプのインスリンを含んでいてもよい。
リポソームの使用も薬剤効果の期間を延長するために一般的に使用されるが、本発明はリポソームの使用を必要としない。したがって、本発明の他の態様は、医薬タンパク質に加えて、脂質を含まない組成物、ならびにポリマーを含まない組成物を提供する。しかし、本発明の組成物は脂質またはリポソームの使用を排除する可能性が存在するべきであるが、後に詳述するとおり、本発明の1次粒子は脂質を含んでいてもよいか、またはリポソーム製剤に含まれていてもよいことにも注意する。
液体製剤はインスリン誘導体と、深部肺組織に到達する前にインスリン誘導体の溶解度を向上させる賦形剤の溶液であってよい。深部肺組織に到達すると、pHは一般的に約6〜8であり、インスリン誘導体の沈殿が生じる。
固体製剤はインスリン誘導体と、深部肺組織に到達したときインスリン誘導体の初期溶解度を向上させる賦形剤の粉末であってよい。しかし、いくらかの溶解期間の後、肺組織の生理的pHはインスリン誘導体の沈殿を惹起する。
本明細書に記載の固体および液体製剤のいずれにおいても、沈殿が生じ、そして肺中に残留するように注意深く賦形剤を選択する。したがって、賦形剤の選択は、沈殿反応との干渉を最小限にするように行う。したがって例えば、製剤中の沈殿剤、例えば金属カチオンをキレートする賦形剤は望ましくない。同様に、深部肺組織に到達したとき、インスリン誘導体の周囲の浸透圧を増加させる賦形剤も望ましくない;かかる賦形剤は局所水体積を過度に増加させ、それによって沈殿速度を低下させ得る。さらに、製剤中の賦形剤の量も、あらゆる干渉効果を最小とするために注意深く選択すべきである。
これらの剤は、存在するとき一般的に、組成物の約0.01重量%〜約10重量%の量で存在する。いくつかの態様において、量は組成物の約0.02重量%〜約9重量%、または約0.03重量%〜約8重量%、または約0.04重量%〜約7重量%、または約0.05重量%〜約6重量%の範囲である。量の選択は、組成物に対する所望の効果に依存し、そして必要に応じて変更することができる。
乾燥製剤改善賦形剤
本発明のいくつかの態様は、肺送達のために設計された乾燥製剤である。本発明のいくつかの態様は、所望の物理的特性を最終生成物に与え、さらに処置される対象に望ましいまたは改善された作用を与えるために設計される賦形剤を含む。したがって、本発明の組成物は、患者に、とりわけ患者の肺に対して顕著に有害な毒性効果を及ぼさずに肺に取り込まれ得る薬学的に許容される賦形剤または担体を含んでいてもよい。
一般的に、かかる賦形剤は、存在するとき、少なくとも一部は、例えば活性剤のさら効果的なおよび/または再現性のよい送達を提供すること、粉末の取り扱い特性、例えば流動性および稠度を改善すること、および/または単位投与形態の製造および/または充填を促進することによって、活性剤組成物の特徴をさらに改善するために用いる。とりわけ、賦形剤物質はしばしば、活性剤の物理的および化学的安定性をさらに改善し、残留水分を最小にし、水分吸収を妨げるため、そして粒度、凝集度、粒子表面特性、例えばしわ特性、吸入しやすさおよび肺への粒子標的化のために機能する。1種以上の賦形剤はまた、製剤中の活性剤の濃度を低下させることが望まれるとき、増量剤として使用するために提供され得る。遠位肺で沈殿が生じることが望まれ、このプロセスは過剰の液体の存在によって遅延し得るため、賦形剤は製剤に対するその浸透効果を最小にするように選択するべきであることにも注意する。
該製剤中に含まれ得る乾燥製剤改善賦形剤のある具体的なタイプは、分散性改善賦形剤である。この賦形剤は一般的に、乾燥製剤の物理的特徴を改善することによってグラルギンインスリンのより効果的なおよび/または再現性のよい送達を提供する。分散性改善剤には、限定されないが、分散剤として機能するアミノ酸およびポリペプチドが含まれる。このカテゴリーに含まれるアミノ酸は、限定されないが、疎水性アミノ酸、例えばロイシン、ノルロイシン、バリン、イソロイシン、トリプトファン、アラニン、メチオニン、フェニルアラニン、チロシン、ヒスチジンおよびプロリンを含む。分散性改善ペプチド賦形剤には、上記のもののような疎水性アミノ酸成分を1個以上含む二量体、三量体、四量体および五量体が含まれる。例えば、限定されないが、ジロイシンおよびトリロイシンが含まれる。
これらの賦形剤は、存在するとき、組成物中約0.01重量%〜約95重量%、例えば約0.5重量%〜約80重量%、または約1重量%〜約60重量%で存在する。該量は組成物の約10重量%〜約60重量%、または約20重量%〜約50重量%、または約30重量%〜約40重量%、または約35重量%であり得る。量の選択は、組成物に対する所望の効果に依存し、そして必要に応じて変更することができる。乾燥製剤改善賦形剤の理想的な量およびタイプは、グラルギンインスリンの分散性および送達性を改善するが、沈殿平衡を顕著に妨げない量およびタイプである。
ガラス転移安定化賦形剤
本発明のいくつかの態様は乾燥製剤であり、組成物のガラス転移温度を安定化する成分の添加が有利であり得ることがある。いくつかの態様において、この成分はグラルギンインスリンよりも高いガラス転移温度を有する。いくつかの態様において、賦形剤は示差走査熱量測定(DSC)で測定したとき、約35℃以上、例えば約40℃以上、約45℃以上、約55℃以上、約60℃以上、約65℃以上、約70℃以上、75℃以上、約80℃以上、約85℃以上、または約90℃以上のガラス転移温度(Tg)を有し得る。
ガラス転移安定化賦形剤は、存在するとき、一般的に、組成物の約1重量%〜約50重量%の量で存在する。いくつかの態様において、それらは組成物の約2重量%〜約25重量%、または約4重量%〜約12重量%、または約5重量%〜約10重量%、または約7重量%の量で存在する。該量は組成物の10、20、30、40、または50重量%であり得る。量の選択は、組成物に対する所望の効果に依存し、そして必要に応じて変更することができる。ガラス転移安定化賦形剤の理想的な量およびタイプは、グラルギンインスリンの分散性および送達性を改善するが、沈殿平衡を顕著に妨げない量およびタイプである。
本発明の組成物はさらに、風味剤、味覚マスキング剤、無機塩(例えば塩化ナトリウム)、抗微生物剤(例えば、塩化ベンザルコニウム)、甘味剤、抗酸化剤、帯電防止剤、界面活性剤(例えばポリソルベート、例えばTWEEN 20およびTWEEN 80)、ソルビタンエステル、脂質(例えばリン脂質、例えばレシチンおよび他のホスファチジルコリン、ホスファチジルエタノールアミン)、脂肪酸および脂肪エステル、ステロイド(例えばコレステロール)、およびキレート剤(例えばEDTA、亜鉛および他の好適なカチオン)を含んでいてもよい。本発明の組成物に用いるのに適した他の医薬賦形剤および/または添加剤は、“Remington: The Science & Practice of Pharmacy”, 21st ed., Lippincott, Williams & Wilkins, (2005)および“Physician’s Desk Reference”, 60th ed., Medical Economics, Montvale, NJ (2006)に列記されている(いずれも、それらの全体について参照により本明細書の一部とする)。
定量吸入器(MDI)適用のために、該組成物はまた、より高い安定性を有するように処理することができる。HFA(ヒドロフルオロアルカン)プロペラントにおける界面活性剤の溶解度を上昇させることによって懸濁液の安定性を改善しようとする試みもある。この目的を達成するため、米国特許第5,118,494号、ならびにWO 91/11173およびWO 92/00107は、懸濁液安定性を改善するためのHFA溶解性フッ素化界面活性剤の使用を開示している。HFAプロペラントと他の過フッ素化共溶媒の組合せは、WO 91/04011にも開示されている。安定化のための他の試みには、非フッ素化界面活性剤の添加が含まれる。これに関して、米国特許第5,492,688号は、いくつかの親水性界面活性剤(親水性/親油性バランスが9.6以上)はHFAに十分な溶解性を有しており、医薬懸濁液を安定化することが開示されている。常套の非フッ素化MDI界面活性剤(例えばオレイン酸、レシチン)の溶解度の増加はまた、米国特許第5,683,677号および第5,605,674号、ならびにWO 95/17195に記載のとおり、アルコールのような共溶媒の使用によって報告のとおりに得ることができる。上記全ての文献を、それらの全体について、参照により本明細書の一部とする。
本発明の組成物のいくつかの態様は、刺激を引き起こし、しばしば吸収の実質的向上を得るために必要であり得る高レベルで毒性である浸透促進剤を除外することができる。典型的には本発明の組成物には存在しない具体的な促進剤は、洗剤様促進剤、例えばデオキシコール酸塩、ラウレス-9、DDPC、グリココール酸塩およびフシジン酸塩である。しかし、医薬タンパク質を酵素分解から保護するもの、例えばプロテアーゼおよびペプチダーゼ阻害剤、例えばアルファ−1抗プロテアーゼ、カプトロプリル、チオルファンおよびHIVプロテアーゼ阻害剤のようなある促進剤は、本発明のある態様において、本発明の組成物に含まれてもよい。
製剤
本明細書に記載の組成物は、(例えば本発明の粒子を含む)粉末形態であってよいか、あるいは流動性の液体であり得る。液体製剤は好ましくは、活性薬剤が溶媒(例えば水、エタノール、エタノール−水、食塩水)に溶解している溶液であり、コロイド状懸濁液はあまり好ましくない。液体製剤はまた、グラルギンインスリンの低沸点プロペラント溶液または懸濁液であり得る。
本発明の粉末はまた、約10、9、8、7、6もしくは5μm未満、または4.0μm未満、さらにより好ましくは3.3μm未満、および最も好ましくは、3μm未満のMMADを有するエアロゾル粒子サイズ分布 −空気動力学的質量中央粒子径(MMAD)− によって特徴付けられる。粉末の空気動力学的質量中央粒子径は、特徴的には、約0.1〜5.0μm、または約0.2〜5.0μmMMAD、または約1.0〜4.0μmMMAD、または約1.5〜3.0μmの範囲である。小さな空気動力学的径は最適なスプレー乾燥条件賦形剤の選択および濃度との組み合わせによって得ることができる。一般的に、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19および20のMMADを有する粒子は、これらの個々の値のいずれか未満の値であるか、これらの個々の値のいずれかからこれらの個々の値のいずれかの範囲、例えば1〜20μm、または7〜16μm、または11〜19μm等であると理解される。
本発明の粒子は、組成物が粒子の全体にわたって均一に分散しているような形態である場合もある。すなわち、グラルギンインスリン、ならびに沈殿剤、バッファー、分散性改善剤および/またはガラス安定化剤を含み得る組成物の他の要素が、粒子の全体にわたって均一に分散している。
改善された分散性および取り扱い特性に通常関連する粒子の特徴は、製品のしわの程度である。しわの程度は、非孔質球体粒子と推定したときの、特定領域(例えばBET、分子表面吸着または他の常套の技術で測定したとき)と、粒度分布(例えば、遠心沈降粒度分析機、Horiba Capa 700で測定したとき)および粒子密度(例えば、ピクノメトリー(pycnometry)で測定したとき)から計算した表面積の比である。しわの程度はまた、空気透過法(air permeametry)によって測定することができる。粒子が一般的に結節性の形状であると知られているとき、スプレー乾燥の場合、しわの程度は表面の畳み込みおよび折り畳みの程度の測定である。これによって、本発明によって製造した粉末をSEMで確認することができる。しわの程度1とは粒子表面が球体であり孔が無いことを意味する。しわの程度値1以上とは粒子表面が均一ではなく、少なくともある程度屈曲していることを示しており、高い数値は非均一性がより高いことを示している。本発明の粉末について、粒子は少なくとも約2,例えば少なくとも約3、少なくとも約4、または少なくとも約5のしわの程度を有しており、そして2〜10、例えば4〜8、または4〜6の範囲であり得ることを見出した。
乾燥操作は、上記のとおり2以上のしわの程度のような粒子特性を有する乾燥粒子を得るように制御することができる。2以上のしわの程度は、物質の粘稠層が滴の外側に急速に形成されるように乾燥速度を制御することによって得ることができる。その後、乾燥速度は水分が物質の外層を通じて除去されて、外層の崩壊および畳み込みが生じて極めて不規則な外側表面が得られるように十分速やかであるべきである。しかし、乾燥は物質の外層が裂けるほど速くするべきでない。乾燥速度は、粒度分布、気流の吸気口温度、気流の外部温度、液滴の内部温度、および微粉化スプレーと熱乾燥ガスを混合する方法を含む様々な可変部分に基づいて制御され得る。
窒素吸着によって測定した粉末表面積は典型的には、約6m/g〜約13m/g、例えば約7m/g〜約10m/gの範囲である。粒子はしばしば、滑らかな球体表面よりもむしろ、折りたたまれた「レーズン」構造を有する。
本発明のグラルギンインスリン組成物を水溶液からスプレー乾燥することができる。このアプローチを用いる場合、グラルギンインスリン最初に、一般的に上記生理学的に許容されるバッファーまたは他の賦形剤を含む水に溶解する。活性剤含有溶液のpH範囲は一般的に、4〜6である。水性製剤は所望により、さらなる水混和性溶媒、例えばアセトン、アルコール等を含んでいてもよい。代表的なアルコールは低級アルコール、例えばメタノール、エタノール、プロパノール、イソプロパノール等である。スプレー乾燥前の溶液は一般に、0.01%(重量/体積)〜約20%(重量/体積)、通常0.1%〜3%(重量/体積)の濃度で溶解している固体を含む。分散性改善剤、ガラス安定化剤および/または沈殿剤が溶液に含まれ得る。
次に、溶液をスプレー乾燥機、例えば商業的サプライヤーから入手可能なもの、例えばNiro A/S (Denmark)、Buchi (Switzerland)等でスプレー乾燥して、分散性乾燥粉末を得る。溶液をスプレー乾燥するための最適な条件は製剤の成分に基づいて変化し、そして一般的に実験的に決定される。物質をスプレー乾燥するために用いるガスは典型的には空気であるが、窒素またはアルゴンのような不活性ガスも好適である。さらに、スプレー物質を乾燥するために用いるガスの入り口および出口の温度はスプレー物質中の活性剤の分解が起こらないものである。かかる温度は典型的には実験的に決定されるが、一般的に、入り口温度は約50℃〜約200℃、出口温度は約30℃〜約150℃の範囲である。
上記の変更を行うことができる。1つのかかるプロセスは米国特許第5,985,248号(Nektar Therapeuticsに譲渡された、出典明示によりその全体について本明細書の一部とする)に記載されている。この方法において、疎水性薬剤を有機溶媒または共溶媒系に溶解させ、水性成分(例えばロイシル含有ペプチドおよび所望により他の賦形剤)を少なくとも部分的に同じ有機溶媒または共溶媒系に溶解させる。得られた溶液をスプレー乾燥させて粒子を形成させる。典型的には、活性剤および水性成分の溶解度は有機溶媒系の選択によって決定される。有機溶媒を、水性成分の溶解度が少なくとも1mg/ml、好ましくは少なくとも5mg/ml、および疎水性薬剤の溶解度が少なくとも0.01mg/ml、好ましくは少なくとも0.05mg/mlとなるように選択する。
本発明の乾燥粉末はまた、米国特許第6,001,336号(Nektar Therapeuticsに譲渡、出典明示によりその全体について本明細書の一部とする)に記載のとおり、製剤成分の水溶液または懸濁液を合わせ、そしてそれらをスプレー乾燥機中で同時にスプレー乾燥することによって製造することができる。あるいは、WO 98/29096(出典明示によりその全体について本明細書の一部とする)に記載のとおり、親水性賦形剤または添加剤の水溶液を製造し、疎水性薬剤の有機溶液を製造し、そして該水溶液と該有機溶液を同時に、ノズル、例えば同軸ノズル(coaxial nozzle)を通して乾燥させて、乾燥粉末を形成させることによって、乾燥粉末を製造することができる。
あるいは、粉末を凍結乾燥、真空乾燥、スプレー凍結乾燥、超臨界流体処理、空気乾燥または他の形態の蒸発乾燥によって製造することができる。いくつかの例において、米国特許第5,654,007号(出典明示によりその全体について本明細書の一部とする)に記載のとおり、乾燥粉末製剤を改善された取り扱い/処理特性、例えば低減された静電気、より良い流動性、低い粘結性等を有する形態で、粒子凝集物から成る組成物、すなわち上記乾燥粉末粒子の凝集体または塊(ここで、該凝集体は肺送達のために容易に崩壊して微粉体成分に戻る)を製造することによって入手することが望ましい。
他のアプローチにおいて、WO 95/09616(出典明示によりその全体について本明細書の一部とする)に記載のとおり、粉末成分を凝集し、該物質を篩過して凝集体を得て、これを球形化して、より球形の凝集体を得、サイジング処理して均一なサイズの生成物を得ることによって、乾燥粉末を製造することができる。
容器をエアロゾル化デバイスに挿入することができる。容器は医薬組成物を含み、使用可能な条件で医薬組成物を提供するために好適な形状、サイズおよび材料のものであってよい。例えば、カプセルまたはブリスターは医薬組成物と有害な反応を起こさない材料を含む障壁を含んでいてよい。さらに、該障壁はカプセルが開くと医薬組成物がエアロゾル化する物質を含んでいてもよい。1つの態様において、障壁はゼラチン、ヒドロキシプロピルメチルセルロース(HPMC)、ポリエチレングリコール含有HPMC、ヒドロキシプロピルセルロース、寒天、アルミニウム箔等の1種以上を含む。1つの態様において、カプセルは例えば米国特許第4,247,066号(出典明示によりその全体について本明細書の一部とする)に記載のとおり、伸縮可能に接合した部分を含んでいてもよい。カプセルのサイズは、医薬組成物の用量を適切に含むように選択することができる。サイズは一般的にそれぞれ、サイズ5〜サイズ000、外径約4.91mm〜9.97mm、高さ約11.10mm〜約26.14mm、容積約0.13mL〜約1.37mLの範囲である。好適なカプセルは例えば、Shionogi Qualicaps Co. (Nara, Japan)およびCapsugcl (Greenwood, South Carolina)から商業的に入手可能である。米国特許第4,846,876号および第6,357,490号、ならびにWO 00/07572(出典明示によりそれらの全体について本明細書の一部とする)に記載のとおり、充填後、下部の上に上部を置いてカプセル形状を形成させ、そして該カプセル中に粉末を含めることができる。下部の上に上部を置いた後、該カプセルを所望により固結させることができる。
また本明細書に記載の粉末を送達するのに好適なものは、例えば米国特許第3,906,950号および第4,013,075号(出典明示により、それらの全体について本明細書の一部とする)に記載のタイプの乾燥粉末吸入器であり、これは対象に送達するための予め測定した用量の乾燥粉末を硬ゼラチンカプセル中に含む。
乾燥粉末を肺投与するための他の乾燥粉末分散デバイスには、例えばEP 129985;EP 472598;EP 467172;および米国特許第5,522,385号(出典明示により、それらの全体について本明細書の一部とする)に記載のものが含まれる。また、本発明の乾燥粉末を送達するのに好適なものは、Astra-Draco “TURBUHALER”のような吸入デバイスである。このタイプのデバイスは米国特許第4,668,281号;第4,667,668号;および第4,805,811号(出典明示により、それら全ての全体について本明細書の一部とする)に詳細に記載されている。他の好適なデバイスには、ROTAHALER(TM) (Glaxo)、Discus(TM) (Glaxo)、Spiros(TM) 吸入器 (Dura Pharmaceuticals)、およびSpinhaler(TM) (Fisons)のような乾燥粉末吸入器が含まれる。例えば米国特許第5,388,572号(出典明示により、その全体について本明細書の一部とする)に記載のとおり、粉末医薬に空気混入するための空気、キャリアスクリーン(carrier screen)に空気を通過させて該キャリアスクリーンから医薬を浮かせるための空気、または混合チェンバー内で粉末医薬と空気を混合するための空気を提供するためにピストンを使用し、デバイスのマウスピースを通じて患者に粉末を導入するデバイスも好適である。
乾燥粉末はまた、米国特許第5,320,094号および第5,672,581号(出典明示により、それらの全体について本明細書の一部とする)に記載のとおり、薬学的に不活性な液体プロペラント、例えばクロロフルオロカーボンまたはフルオロカーボン薬剤の溶液または懸濁液を含む、加圧定量吸入器(MDI)、例えばVentolin(TM)定量吸入器を用いて送達することができる。
振動多孔質プレートネブライザーは、多孔質プレートを通じて溶媒滴を押し出すための素早く振動する多孔質プレートによって作成される超音波真空を用いることによって作動する。例えば、米国特許第5,758,637号;第5,938,1 17号;第6,014,970号;第6,085,740号;および第6,205,999号(出典明示により、それらの全体について本明細書の一部とする)参照。
例えば、1つ以上の態様において、エアロゾル生成装置は、振動要素およびテーパー状孔を有するドーム形状の開口プレートを含む、商業的に入手可能なAerogen(Nektar Therapeutics, San Carlos, CAから入手可能)エアロゾル生成装置である。プレートが数千回/秒、例えば約100k/s〜150k/Sで振動するとき、マイクロポンピング作用により液体がテーパー状孔に吸引され、正確に定義された範囲の滴サイズを有する低速度エアロゾルを生じる。Aerogenエアロゾル生成装置はプロペラントを必要としない。
Aerogen AeronebおよびPari eFlow(Pan Respiratory Equipment, Germany)において、圧電発振器は振動メッシュの周辺に配置されており、そして振動は膜を通じてネブライザー内部の液滴を正確なサイズにシェイクして、呼吸用医薬のミストを反対側で形成する。他の振動メッシュネブライザー、Omron Micro-air(Omron、Japan)において、圧電発振器は振動メッシュの周辺ではなく振動メッシュに隣接して位置し、膜の孔を通じてネブライザー内部の液滴をシェイクするよりもむしろ押し出して同じ結果を生じる。
1つ以上の電子スプレーを用いて液体製剤を噴霧化することができる。静電スプレー(電気流体力学スプレーまたはエレクトロスプレーとしても知られている)なる用語は、液体の分散がその電荷に依存しており、噴霧化およびガス流動プロセスが比較的分離しているシステムを意味する。電子スプレーデバイスの例は、米国特許第6,302,331号;第6,583,408号;および第6,803,565号(出典明示により、それらの全体について本明細書の一部とする)に記載されている。
活性剤を同時に、好ましい順序で、および/または肺のある領域を標的とするあるサイズのエアロゾル中の1種の薬剤を提供しながら他の領域を標的とする他のサイズ中の他のものを提供することによって送達することができる。したがって、目的をもってエアロゾルサイズを変化させて、気管内管のより近くにある種のエアロゾルを沈着させてその領域を処置するができ、微小エアロゾルを送り込んでより深部に浸透させることができる
簡潔には、80〜960μg/動物の5種の用量を並行して比較した。グループ1〜5に選択した用量のグラルギンインスリン製剤を同日に投与した。化合物投与後に最低血糖濃度約40〜60mg/dLを達成する用量を評価した。
該試験系には、予めカニューレ挿入した(内頸静脈カテーテル[JVC])成体オス絶食(〜17時間)Sprague-Dawleyラット(Hilltop Lab Animals, Inc., Scottdale, PA)10匹を含めた。体重0.313〜0.367kgの動物10匹を用いた。投与前に、イソフルラン(Abbott Laboratories, Chicago, IL)吸入によってラットを軽く麻酔した。各動物に目的用量のグラルギンインスリン製剤を、IT注入によって肺に投与した。静脈血サンプル約0.4mLをJVCから、下記時点で採取した:投与前(投与の〜1時間前)、投与後20分、60分、120分、180分、240分、480分および720分。各時点の全血グルコース濃度(mg/dL)を、Glucometer Eliteグルコースモニター(Bayer Corp., Elkart, IN)を用いて2回読み込んだ。血液サンプルの残部を血漿に処理し、後の試験(データは示さず)のために−80℃で保存した。Microsoft Office Excel 2003を用いて薬力学的解析を行った。
表1は試験デザインを示す。
Figure 2009544716
該試験系には、予めカニューレ挿入した(内頸静脈カテーテル[JVC])成体オス絶食(〜17.5時間)Sprague-Dawleyラット(Hilltop Lab Animals, Inc., Scottdale, PA)6匹を含めた。動物は体重0.336〜0.362kgであった。投与前に、イソフルラン(Abbott Laboratories, Chicago, IL)吸入によってラットを軽く麻酔した。各動物に目的用量のグラルギンインスリン製剤を、IT注入によって肺に投与した。静脈血サンプル約0.4mLをJVCから、下記時点で採取した:投与前(投与の〜0.33時間前)、投与後0.33時間、1時間、2時間、3時間、4時間、6時間、8時間、10時間および12時間。各時点の全血グルコース濃度(mg/dL)を、Glucometer Eliteグルコースモニター(Bayer Corp., Elkart, IN)を用いて2回読み込んだ。血液サンプルの残部を血漿に処理し、後の試験(データは示さず)のために−80℃で保存した。Microsoft Office Excel 2003を用いて薬力学的解析を行った。
表5は試験デザインを要約する。
Figure 2009544716
両製剤をBuchi Mini Spray Dryer B-191を用いてスプレー乾燥させた。両製剤について、供給溶液の固体含量は10mg/mlであり、そして溶液供給速度は4ml/分であった。20%製剤について、入り口および出口温度はそれぞれ85℃および55℃であった。90%製剤について、入り口および出口温度はそれぞれ90℃および60℃であった。粉末収率は20%製剤について60.9%、90%製剤について50.6%であった。
実施例5: 20%および90%グラルギンインスリン製剤のエアロゾルパフォーマンス
エアロゾルパフォーマンスを米国特許第6,257,233号(出典明示によりその全体について本明細書の一部とする)に記載のとおり、Andersen Cascade Impactorと接続して下記表11に示す条件下でPulmonary Delivery System (PDS)を用いて測定した。表11は4時間保存後の20%製剤のエアロゾル試験結果、および1.5ヶ月保存後の90%製剤の結果も示す。両製剤とも良好なエアロゾルパフォーマンスを有することが示されている。
Figure 2009544716

Claims (6)

  1. 等電点(pI)約6.0〜8.0を有するインスリン誘導体;
    液体担体;および
    沈殿剤
    を含エアロゾル化可能製剤であって、
    沈殿剤がカチオンであり、沈殿剤のインスリン誘導体に対するモル比が約5:1であり、インスリン誘導体が約20重量%〜約99重量%の量で存在する、エアロゾル化可能製剤
  2. インスリン誘導体がグラルギンインスリンである、請求項1のエアロゾル化可能製剤。
  3. カチオンが2価カチオンである、請求項のエアロゾル化可能製剤。
  4. 2価カチオンが亜鉛、銅、コバルト、鉄、マグネシウム、バナジウム、カドミウム、マグネシウム、カルシウムおよびバリウムの少なくとも1種である、請求項のエアロゾル化可能製剤。
  5. pIが約6.5〜約7.5である、請求項1のエアロゾル化可能製剤。
  6. インスリンをさらに含む、請求項1のエアロゾル化可能製剤。
JP2009521852A 2006-07-27 2007-07-27 肺送達のためのインスリン含有エアロゾル化可能製剤 Pending JP2009544716A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US83373106P 2006-07-27 2006-07-27
PCT/US2007/016903 WO2008013938A2 (en) 2006-07-27 2007-07-27 Aerosolizable formulation comprising insulin for pulmonary delivery

Publications (2)

Publication Number Publication Date
JP2009544716A JP2009544716A (ja) 2009-12-17
JP2009544716A5 true JP2009544716A5 (ja) 2013-05-02

Family

ID=38982101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009521852A Pending JP2009544716A (ja) 2006-07-27 2007-07-27 肺送達のためのインスリン含有エアロゾル化可能製剤

Country Status (4)

Country Link
US (1) US8900555B2 (ja)
EP (1) EP2076242B8 (ja)
JP (1) JP2009544716A (ja)
WO (1) WO2008013938A2 (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1697035B1 (en) * 2003-12-22 2017-11-15 Warren H. Finlay Powder formation by atmospheric spray-freeze drying
BR122019022692B1 (pt) 2004-08-23 2023-01-10 Mannkind Corporation Composição terapêutica em pó seco contendo dicetopiperazina, pelo menos um tipo de cátion e um agente biologicamente ativo
DK1937219T3 (en) 2005-09-14 2016-02-15 Mannkind Corp A method for drug formulation based on increasing the affinity of the crystalline surfaces of the microparticle of active principles
GB0801876D0 (en) * 2008-02-01 2008-03-12 Vectura Group Plc Suspension formulations
KR101933816B1 (ko) 2008-06-13 2019-03-29 맨카인드 코포레이션 건조 분말 흡입기 및 약물 투여 시스템
US8485180B2 (en) * 2008-06-13 2013-07-16 Mannkind Corporation Dry powder drug delivery system
US20190262557A1 (en) * 2010-03-04 2019-08-29 Mannkind Corporation Dry powder drug delivery system
EP2609954B1 (en) 2008-06-20 2021-12-29 MannKind Corporation An interactive apparatus for real-time profiling of inhalation efforts
TWI532497B (zh) 2008-08-11 2016-05-11 曼凱公司 超快起作用胰島素之用途
EP3228320B1 (de) 2008-10-17 2019-12-18 Sanofi-Aventis Deutschland GmbH Kombination von einem insulin und einem glp-1-agonisten
US8314106B2 (en) 2008-12-29 2012-11-20 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
CN105362256A (zh) * 2009-02-18 2016-03-02 阿拉迪姆公司 pH调节的肺部给药制剂
US8865647B2 (en) 2009-11-02 2014-10-21 Novo Nordisk A/S Pharmaceutical solution of non covalently bound albumin and acylated insulin
AR080669A1 (es) 2009-11-13 2012-05-02 Sanofi Aventis Deutschland Composicion farmaceutica que comprende un agonista de glp-1, una insulina y metionina
UY33025A (es) 2009-11-13 2011-06-30 Sanofi Aventis Deustschland Gmbh Composicion farmaceutica que comprende un agonista de glp-1 metionina
AU2012216648C1 (en) * 2010-05-19 2017-03-16 Sanofi Long-acting formulations of insulins
AU2011202239C1 (en) * 2010-05-19 2017-03-16 Sanofi Long-acting formulations of insulins
AU2014203421B2 (en) * 2010-05-19 2016-07-07 Sanofi Long-acting formulations of insulins
WO2011144674A2 (en) * 2010-05-20 2011-11-24 Sanofi-Aventis Deutschland Gmbh PHARMACEUTICAL FORMULATION COMPRISING INSULIN GLARGINE AND SBE4-ß-CYD
MX339614B (es) 2010-08-30 2016-06-02 Sanofi - Aventis Deutschland GmbH Uso de ave0010 para la fabricacion de un medicamento para el tratamiento de la diabetes mellitus tipo 2.
WO2012065996A1 (en) * 2010-11-15 2012-05-24 Sanofi-Aventis Deutschland Gmbh PHARMACEUTICAL FORMULATION COMPRISING INSULIN GLARGINE AND MALTOSYL-ß-CYCLODEXTRIN
WO2012066086A1 (en) * 2010-11-17 2012-05-24 Sanofi-Aventis Deutschland Gmbh PHARMACEUTICAL FORMULATION COMPRISING INSULIN GLARGINE AND SULFOBUTYL ETHER 7-ß-CYCLODEXTRIN
US9821032B2 (en) 2011-05-13 2017-11-21 Sanofi-Aventis Deutschland Gmbh Pharmaceutical combination for improving glycemic control as add-on therapy to basal insulin
UA113626C2 (xx) * 2011-06-02 2017-02-27 Композиція для лікування діабету, що містить кон'югат інсуліну тривалої дії та кон'югат інсулінотропного пептиду тривалої дії
US9260503B2 (en) 2011-06-15 2016-02-16 Novo Nordisk A/S Multi-substituted insulins
WO2012174472A1 (en) 2011-06-17 2012-12-20 Mannkind Corporation High capacity diketopiperazine microparticles
RU2650616C2 (ru) 2011-08-29 2018-04-16 Санофи-Авентис Дойчланд Гмбх Фармацевтическая комбинация для применения при гликемическом контроле у пациентов с сахарным диабетом 2 типа
TWI559929B (en) 2011-09-01 2016-12-01 Sanofi Aventis Deutschland Pharmaceutical composition for use in the treatment of a neurodegenerative disease
CA2852536A1 (en) 2011-10-24 2013-05-02 Mannkind Corporation Methods and compositions for treating pain
NZ722952A (en) 2012-02-28 2018-12-21 Iceutica Holdings Inc Inhalable pharmaceutical compositions
CN104870469A (zh) * 2012-12-26 2015-08-26 沃克哈特有限公司 药物组合物
CN110354255B (zh) 2013-04-03 2024-05-14 赛诺菲 通过长效胰岛素制剂治疗糖尿病
BR112016000937A8 (pt) 2013-07-18 2021-06-22 Mannkind Corp formulações farmacêuticas de pó seco, método para a fabricação de uma formulação de pó seco e uso de uma formulação farmacêutica de pó seco
AR099569A1 (es) 2014-02-28 2016-08-03 Novo Nordisk As Derivados de insulina y los usos médicos de estos
WO2015148905A1 (en) 2014-03-28 2015-10-01 Mannkind Corporation Use of ultrarapid acting insulin
EP2990033A1 (fr) * 2014-08-26 2016-03-02 Carlina Technologies Procédé de préparation de nanoprécipites de peptide ou protéine de faible poids moléculaire
CN107206058A (zh) 2014-12-12 2017-09-26 赛诺菲-安万特德国有限公司 甘精胰岛素/利西拉来固定比率配制剂
TWI748945B (zh) 2015-03-13 2021-12-11 德商賽諾菲阿凡提斯德意志有限公司 第2型糖尿病病患治療
TW201705975A (zh) 2015-03-18 2017-02-16 賽諾菲阿凡提斯德意志有限公司 第2型糖尿病病患之治療
MX2020007745A (es) * 2018-01-26 2020-09-25 Novartis Ag Administracion de dosis elevadas de terapias inhaladas.
WO2023178158A1 (en) * 2022-03-18 2023-09-21 Mannkind Corporation Optimization of dosing and prescribing of medication

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7871641B2 (en) * 1998-05-19 2011-01-18 Sdg, Inc. Hepatocyte-targeting vehicle for delivery of glargine insulin to a mammal
JP2002543092A (ja) * 1999-04-27 2002-12-17 イーライ・リリー・アンド・カンパニー 肺投与用インスリン結晶
US7678364B2 (en) 1999-08-25 2010-03-16 Alkermes, Inc. Particles for inhalation having sustained release properties
WO2004064752A2 (en) * 2003-01-22 2004-08-05 Alkermes Controlled Therapeutics, Inc. Method of preparing sustained release microparticles
EP1701714A2 (en) 2004-01-07 2006-09-20 Nektar Therapeutics Improved sustained release compositions for pulmonary administration of insulin
US7625865B2 (en) * 2004-03-26 2009-12-01 Universita Degli Studi Di Parma Insulin highly respirable microparticles
WO2008013955A2 (en) 2006-07-27 2008-01-31 Nektar Therapeutics Sustained release formulations for pulmonary delivery

Similar Documents

Publication Publication Date Title
JP2009544716A5 (ja)
US8900555B2 (en) Insulin derivative formulations for pulmonary delivery
US11872265B2 (en) Diketopiperazine salts for drug delivery and related methods
US7192919B2 (en) Sustained release compositions for delivery of pharmaceutical proteins
KR100702878B1 (ko) 개선된 분산성을 갖는 건조 분말 조성물
US7625865B2 (en) Insulin highly respirable microparticles
US20050123509A1 (en) Modulating charge density to produce improvements in the characteristics of spray-dried proteins
JP2003513031A5 (ja)
WO2007095288A2 (en) Methionine-containing protein or peptide compositions and methods of making and using
WO2001093837A2 (en) Protein powder for pulmonary delivery
JP2005520847A (ja) 肺投与用hGH(ヒト成長ホルモン)製剤
WO2008013955A2 (en) Sustained release formulations for pulmonary delivery
US20080206342A1 (en) Compositions and Methods For Increasing the Bioavailability of Pulmonarily Administered Insulin
AU2012203627B2 (en) Diketopiperazine salts, diketomorpholine salts or diketodioxane salts for drug delivery
MXPA01002649A (en) Dry powder active agent pulmonary delivery