JP2009529953A - 高周波振動人工呼吸装置のための閉ループ制御システム - Google Patents

高周波振動人工呼吸装置のための閉ループ制御システム Download PDF

Info

Publication number
JP2009529953A
JP2009529953A JP2009500350A JP2009500350A JP2009529953A JP 2009529953 A JP2009529953 A JP 2009529953A JP 2009500350 A JP2009500350 A JP 2009500350A JP 2009500350 A JP2009500350 A JP 2009500350A JP 2009529953 A JP2009529953 A JP 2009529953A
Authority
JP
Japan
Prior art keywords
pressure
signal
loop
piston
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009500350A
Other languages
English (en)
Other versions
JP5185248B2 (ja
Inventor
ボレロ、マイケル・エー.
Original Assignee
カーディナル・ヘルス 207,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カーディナル・ヘルス 207,インコーポレイテッド filed Critical カーディナル・ヘルス 207,インコーポレイテッド
Publication of JP2009529953A publication Critical patent/JP2009529953A/ja
Application granted granted Critical
Publication of JP5185248B2 publication Critical patent/JP5185248B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/208Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M16/0009Accessories therefor, e.g. sensors, vibrators, negative pressure with sub-atmospheric pressure, e.g. during expiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0096High frequency jet ventilation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • A61M16/205Proportional used for exhalation control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/006Tidal volume membrane pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3317Electromagnetic, inductive or dielectric measuring means

Abstract

高周波振動人工呼吸装置(HFOV)のための制御システムは、発振器コントローラと平均気道圧力(MAP)コントローラとを含む。HFOVは、患者気道への送達のための正と負の圧力波を生成することに適応する往復運動するピストンを含む。発振器コントローラは、ピストン往復運動の周波数および振幅とピストンの中心合わせとを調整することにまとめて適応する発振器圧力ループと中心合わせループとを含む1対の閉ループ制御回路を備える。MAPコントローラは、患者回路圧力の形のフィードバックを利用して患者におけるMAPを調整するために適応する閉ループ制御回路を備える。同様に発振器コントローラは、ピストンの運動を調整するために患者回路圧力ならびにピストン変位フィードバックを利用する。

Description

本発明は、一般的には医療装置に関し、より特定的には患者に供給される呼吸空気に正および負の圧力波を生成するための高周波振動人工呼吸装置(HFOV)のための閉ループ制御システムに関する。好都合にも、本制御システムは、特に、平均気道圧力(MAP)の正確な制御のための手段を提供しながら、HFOVによって生成される圧力振動の正確な制御を可能にすることに適応している。
吸気期間中だけ換気して、呼気期間中の換気に関しては人間の生理的反応に頼る従来の人工呼吸装置(ベンチレータ)とは反対に、HFOVは、ある種の肺疾患を患っている新生児および/または他の小児または成人患者といったあるタイプの患者の呼吸において極めて重要である活性呼気を生成する。場合によっては、患者の肺は、特に呼気期間中に適切な換気またはガス交換を与えることができない可能性がある。これに関してHFOVは特に、呼気期間における呼吸能力が損なわれている患者の十分なガス交換と十分な酸素供給とを与えるために開発されている。
HFOV患者換気システムの単純化された説明では、HFOVは典型的には、比較的一定の気道圧力で肺と肺胞とを開いておきながら同時に患者に比較的小さな1回換気量を送達する。この小さな1回換気量は、典型的には毎秒呼吸回数で測定される、または1Hzが毎秒1呼吸に等しいヘルツ(Hz)で測定される比較的速い呼吸数で肺に送達される。HFOVは典型的には、人間の正常な呼吸数を大幅に超える呼吸数で動作する。例えばHFOVは、5Hz(すなわち毎秒5呼吸)という呼吸数で動作し得るが、成人の安静時呼吸数は典型的には1Hz未満である。
患者に送達される正および負の圧力波または圧力振動は典型的には、HFOV内に配置されたピストンによって生成される。このピストンは、所望の周波数で弾性ダイアフラム(隔膜)を迅速に動かすことに適応している。ピストンは正の値と負の値との間で方形波駆動装置の極性を切り替えることによって引き起こされる迅速な往復運動を誘発する方形波駆動装置によって電力供給されるリニアモータによって駆動され得る。方形波駆動装置における極性電圧または電流の変化は、ピストン振幅の比例的増加または減少を引き起こす。
ピストン変位が圧力振動を引き起こすので、ピストン振幅が大きいほど、患者に送達される1回換気量は大きくなる。ある患者は気道内に高い抵抗を持つことがあり、これが今度はピストンがその往復運動中に対抗して作動しなくてはならない大きな抵抗を生成する。したがって、ピストン運動(例えば振幅)の正確な制御は、患者に最適換気量を供給するために望ましい。
更に、HFOVはまた概ね一定の気道圧力で肺と肺胞とを開いておかなくてはならないので、また異なる患者は異なるレベルの気道抵抗を有するので、MAPは調整可能であることが更に望ましい。患者人工呼吸システムにおけるMAPの調整は典型的には、患者Y字部に隣接して配置された呼気バルブによって容易にされる。理想的にはMAPは、時間と共に肺胞に損傷を与える恐れがあり、また更に面倒な事態につながる可能性のある肺の膨張/収縮サイクルを抑制するために、肺と肺胞が開放状態に維持されるように調整される。
従来技術は、患者回路または肺システムに圧力パルスを発生させることに向けられた幅広い種々のHFOVを含む。例えばBisera等に発行された、高周波人工呼吸装置(High Frequency Ventilator)と題する米国特許第4,409,977号は、圧搾空気によって活性化されるカテーテルに高周波空気パルス送達することに適応した高周波呼吸装置を開示している。Bisera装置は、密閉チャンバを形成する柔軟な袋と、1パルスごとにこの袋を圧縮し、それによって患者の肺に至るカテーテルに空気を送達するためにチャンバに圧力パルスを与える圧力源とを含む。
Jensenに発行された、高周波人工呼吸装置および方法(Oscillating Ventilator and Method)と題する米国特許第4,719,910号は、ハウジングに取り付けられたピストンであってモータに流れる電流の極性を交互に反転させるように動作可能である回路を介してハウジング内で往復運動するダイアフラム的に密閉されたピストンを有するHFOVを開示している。Jensen装置は、患者に送達されるガス流内に分極した圧力波を送達するためにチューブを介して患者の気道に接続される。
Phueに発行された、高周波人工呼吸装置(High Frequency Artificial Respirator)と題する米国特許第4,788,974号は、人工呼吸装置の患者回路が呼吸ガスを供給され、また振動発生器が呼吸ガスに高周波振動を与える高周波人工呼吸装置を開示している。これによって作り出された圧力波は、気道内でのガスの拡散を助け、患者に人工呼吸を与える患者回路内のガス流に送達される。
Inoueに発行された、高周波振動人工呼吸装置(High Frequency Oscillatory Ventilator)と題する米国特許第5,704,346号は、ピストンの往復運動を介して患者に高周波圧力を伝達するための装置を開示している。Inoue装置は、ピストンによって生成される圧力を吸収するための袋であって、ピストンを駆動するために回転モータが使用され得るようにピストンストロークを変えずに患者におけるガス交換量を調整することを可能にする柔らかい袋を利用する。
Bennarstenに発行された、高周波振動人工呼吸装置(High Frequency Oscillation Ventilator)と題する米国特許第6,640,807号は、あるガス量を交互に患者に供給し患者から除去するためのHFOVを開示している。Bennarsten HFOVは、発振器ボリュームとは独立に患者への送達のために所望の吸気1回換気量を確立するために装置によって供給されるガス量を配分するための流れコントローラを含む。
Chu等に発行された、往復運動ピストン人工呼吸装置のためのサーボ制御システム(Servo Control System for a Reciprocating Piston Ventilator)と題する米国特許第4,617,637号は、ピストンの往復運動を制御するための予測サーボ制御システムにおいて非線形時間領域解析を利用してHFOVのピストンを動かすための制御システムを開示している。この予測サーボ制御システムは、ピストンの動きを調整するための制御信号を生成するために、ルックアップ(参照)テーブルに記憶されている流れプロファイルと圧力および位置情報とを利用する。
上記のHFOVを制御する際に利用される技法の多くは、HFOVの種々の動作パラメータを表す入力信号がMAPおよび1回換気量といった所望の換気特性を達成するためにコントローラに供給される開ループ制御システムを使用する。不都合なことに、患者の換気中のHFOVの動作パラメータの変化によって、また患者の生理的応答の変化によって、患者人工呼吸システムにおいて、MAPにおける誤差とピストン運動(振幅および/または周波数)における誤差とを含む不正確さが発展する可能性がある。このような不正確さは、患者内に発展する面倒な事象という危険を伴う患者人工呼吸の最適でない効果に至る恐れがある。
従来技術は、HFOVのための開ループ制御システムの上記の問題を克服するための幾つかの試みを含む。例えばChu引例は、より高い精度でMAPを制御する試みにおいて流量および圧力測定値の形のシステムフィードバックを使用するサーボ制御システムを開示しているように見える。しかしながらこのようなフィードバックは、ピストン運動を制御するために単に間接的に利用されるだけである。これに関してChu引例に開示された制御システムは、患者換気(すなわち患者回路圧力)とHFOV動作(すなわちピストン運動)の重要なパラメータに対するフィードバックを直接利用する系統的な制御システム手法よりむしろ人為的経験的手法を使用する予測制御システムであると理解される。
これに関して理解されるように従来技術の制御システムは、HFOVの相反する制御目標に取り組むことができない。より具体的には従来技術のHFOVの多くは、HFOVによって生成された圧力振動の正確な制御を可能にせず、ピストン振幅が周波数に関係なく最大にされ得るように往復運動機構(すなわちピストン)の正確な中心合わせ(センタリング)も可能にしない制御システムを使用している。ピストンに関する中心合わせ制御の恩恵なしの閉ループ圧力制御だけでは、ピストンのストロークの相反する端部のうちの一方に向かってピストンをドリフトさせ、最終的に振動を維持する能力を妨げるであろう。更に従来技術のHFOVの多くは、MAP制御から圧力振動を減衰または減結合するための手段を与えるとは理解されない。最後に従来技術のHFOVの制御システムは、MAPの変化に対する応答速度を改善するための効果的で正確な手段を提供するとは理解されない。
(関連出願への相互参照)
本出願は、その全内容が引例によって本明細書に明確に組み込まれている2005年11月8日に出願された「高周波振動人工呼吸装置(HIGH FREQUENCY OSCILLATING VENTILATOR)」と題する米国出願第11/269,488号に関連する。
報告書RE:連邦政府支援研究/開発は、適用なし。
発明の概要
HFOVに適用されるような従来技術の制御システムに関連する前述の欠陥は、具体的には、ピストン運動とMAPとを制御するために別々のフィードバックコントローラが利用される本発明の制御システムによって取り組まれて軽減されている。これらのコントローラは、ピストンの運動を調整し、また正確なピストン中心合わせを可能にする際に患者回路圧力フィードバックとピストン位置フィードバックとを結合する。更にこのコントローラは、MAPの正確な制御を与えるように患者人工呼吸装置システムに含まれる呼気バルブを調整するために患者圧力フィードバックを利用する。
その最も広い意味で、制御システムは、発振器コントローラとMAPコントローラとを含む。発振器コントローラは、ピストン往復運動の周波数と振幅とをまとめて調整して、ピストンの正確な中心合わせを可能にする発振器圧力ループと中心合わせループとを含む1対の閉ループ制御回路を備える。MAPコントローラは、患者におけるMAPを調整するための閉ループ制御回路を備える。
患者人工呼吸装置回路は、HFOVにおけるピストン位置を測定して中心合わせループへのフィードバックのためのピストン変位信号を生成するように動作するピストン位置センサーを含み得る。圧力センサーは、患者人工呼吸装置回路における患者Y字部に隣接して配置されることが可能であり、好適にはMAP調整ループへのフィードバックのための測定圧力信号を生成するために患者回路圧力を測定するように構成される。
測定圧力信号は、また好適には、発振器圧力ループに供給される。発振器圧力ループは、測定圧力信号(患者Y字部において圧力センサーによって生成された)を所望発振器圧力信号と比較し、これに応じて発振器圧力誤差信号を生成する。中心合わせループはピストン位置センサーによって生成されたピストン変位信号を所望のピストン位置としての空値またはゼロと比較し、これに応じて変位誤差信号を生成する。
好適には、ピストン変位信号と測定圧力信号は各々、これらの信号の周波数帯域がオーバーラップせず、また衝突しないような仕方で濾波(フィルタリング)される。更にピストン変位信号と測定圧力信号の各々は、ピストン中心と所望圧力とにそれぞれ比較され、この差分は、ゼロに向かって差分を減少させるように、またそれぞれの比例積分(PI)コントローラの積分成分におけるワインドアップ(windup)を限定するように動作する比例積分(PI)コントローラを介して濾波される。
それから発振器圧力ループと中心合わせループのPIコントローラからの出力は、HFOVに電力供給するための電流増幅器を駆動するために電流または電圧信号の形であり得る発振器コマンド信号を生成するために結合される。電流増幅器は、ピストンが往復運動して、患者に正および負の圧力波を発生させ得るように、HFOVの極性を反転するための方形波信号を生成するように適応し得る。
MAP調整ループは、呼気ポートを介して周囲に対して換気し得る呼気バルブを操作することによって患者におけるMAPを調整する。より具体的には患者回路圧力の形のフィードバックは、MAP調整ループによって利用され、また発振器圧力ループによって誘発された振動を隔離してMAP調整ループにおける応答を最大にするための濾波の後に、所望のMAP信号と比較される。
それから結果として得られたMAPループ誤差信号は、バルブアクチュエータを駆動するための呼気バルブコマンド信号を生成するために積分コントローラを介して濾波される。理想的にはこのバルブアクチュエータは、より高い周波数圧力振動に直面して患者におけるMAPの安定で正確な制御を与えるように呼気バルブ上で力の量または流量範囲の変化量を調整するために呼気バルブコマンド信号に応答する。
本明細書に開示される種々の実施形態のこれらおよび他の特徴と利点は、全体を通じて同様の番号が同様の部分を指す上記の説明と図面とに関して、よりよく理解されるであろう。
詳細な説明
さて、本発明を例示する目的で図示し、本発明を限定する目的ではない図面を参照すると、図1には高周波振動人工呼吸装置(HFOV)26のための閉ループ制御システム10が示されている。本発明の制御システム10は、具体的にはHFOV26内でピストン70往復運動によって誘発される圧力振動の正確な制御を与えるように適応している。更に、本発明の制御システム10は、圧力振動を発生させるピストン70の正確な中心合わせのための手段を提供する。
更に、本発明の制御システム10は、手段の応答性を最大にしながら平均気道圧力(MAP)の制御から圧力振動を減結合するための手段を提供する。重要なことに、制御システム10は、MAPを正確に調整しながらピストン70の運動を調整するために、患者回路圧力Pcとピストン70位置またはピストン70変位のフィードバックを使用することによって上記の目標を達成する。
図1には、HFOV26のための閉ループ制御システム10のブロック図が示されている。例示的HFOVは、出願の全内容が本明細書に引例によって明確に組み込まれており、本出願に関して共通の譲受人を有する、2005年11月8日に出願された高周波振動人工呼吸装置(HIGH FREQUENCY OSCILLATING VENTILATOR)と題する米国特許出願第11/269,488号に開示されているHFOVと同様に構成され得る。このようなタイプのHFOV26は、患者に気道圧力を与えるための、患者12に接続可能であるHFOV26と一緒の往復運動機構24(すなわちピストン70)を含む。
図2は、閉ループ制御システム10が使用に適応し得る例示的HFOV26の概略図である。見られるようにHFOV26は、固定的に取り付けられた線状アクチュエータ66を有するハウジングアセンブリ64を含む。線状コイル68は線状アクチュエータ66内に同軸的に配置されることが可能であり、線状コイル68の往復運動を可能にするような仕方で線状アクチュエータ66を貫通して軸方向にそれ自身延びるプッシュロッド74によってアクチュエータに懸架される。ピストン70は、プッシュロッド74の反対の端部に取り付けられた線状コイル68を有するプッシュロッド74の一方の端部に取り付けられ得る。
ピストン70にはハウジングアセンブリ64を第1のサイド(側)80と第2のサイドとに密閉的に分割するダイアフラム76が取り付けられ得る。ダイアフラム76は、ピストン70に動作可能に係合することが可能であり、好適にはHFOV26が複数の患者間で移転できるように取り外し可能および/または交換可能であるように構成される。ダイアフラム76は、ピストン70の往復運動中の静かな横揺れ運動を可能にするための深い半径溝78を含み得る。
ダイアフラム76の交換可能性は、ハウジングアセンブリに取り外し可能に固定された円錐形カバー86の使用によって容易にされ得る。円錐形カバー86の取り外しは、患者移転時に交換され得るダイアフラム76へのアクセスを可能にする。円錐形カバー86に形成された開口部84は、図2に示された患者Y字部20に延びる患者チューブ16によって患者12に接続される。ガス源18は患者チューブ16に接続され、これを通して酸素および/または圧縮空気または調整空気がバイアス流れQbiasに送達され得る。患者チューブ16は、患者気道における呼吸機能を与えるために気管内チューブを介して患者気道に接続され得る。
前述のように、HFOV26によって作り出された正および負の気道圧力の形のバイアス流れQbiasに加えられる振動エネルギーは、患者気道内に正の圧力を与えることによって呼吸の仕事を容易にする。このような圧力は二酸化炭素が呼気期間中に患者の肺から直ちに除去される吸気および呼気期間の両方を改善することが分かっている。この仕方でHFOV26は、ガス交換を改善するために酸素と二酸化炭素の拡散を促進する。理想的には、HFOV26は、最少量の圧力で患者回路14における最大容積置換を達成することが分かっている方形圧力波プロファイルを使用する電流増幅器28によって駆動され得る。
図2にも見られるように、HFOV26の制御は、患者気道で取られ、外側制御ループ56に送られ得る圧力測定値を使用して内側および外側制御ループ58、56によって容易にされる。内側制御ループ58は、外側制御ループ56に接続されており、以下更に詳細に説明されるような仕方でピストン70の往復運動を調整するためにピストン位置センサー72からのフィードバックを受信する。
患者換気回路は、患者チューブ16に流体的に接続された呼気バルブ52を含み得る。呼気バルブ52は、肺がほぼ膨張状態に維持されるように、患者回路/肺システム内のMAPを調整するように動作する。ガスは患者12によって呼気バルブ52を介して呼気ポート54に呼気される。図1に見られるように、バルブアクチュエータ50は、呼気バルブ52を駆動するように動作する。
前述のように、本発明の制御システム10は、HFOV26内のピストン70運動を調整するために患者回路圧力Pcおよびピストン70位置フィードバックを利用する。更に、患者回路圧力Pcフィードバックは、所望のMAPを達成するために内部の圧力または流量範囲を調整することによって呼気バルブ52を調整するために別の制御ループで利用される。この仕方で制御システム10は、ピストン70の制御を介して圧力振動の周波数と振幅とを正確に制御するための手段を与える。
更に、制御システム10は、ピストンのストローク限界の境界内でHFOV26に関するピストン70の中心合わせのための手段を提供する。制御システム10は、ピストン70往復運動によって引き起こされる圧力振動からの入力を減衰させながらMAPを調整するための安定で正確な手段を提供する。制御システム10は、また、任意の周波数における圧力振動の振幅の最大化を可能にするピストン70の正確な中心合わせのための手段を提供する。
さて、図1を詳細に参照すると、本発明の制御システム10は、発振器コントローラ30と平均気道圧力(MAP)コントローラ42とからなる。発振器コントローラ30は、発振器圧力ループ32と中心合わせループ36とを含む1対の閉ループ制御回路からなる。まとめて言えば、発振器圧力ループ32と中心合わせループ36は、ピストン70の制御を達成するために患者回路圧力Pcとピストン70位置とのフィードバックを使用することによってピストン70往復運動の周波数および振幅とピストン70の中心合わせとを調整するように適応している。MAPコントローラ42は、患者12におけるMAPを効果的に調整するために呼気バルブ52の通気中の圧力または流量範囲を調整するために患者回路圧力Pcを利用する閉ループ制御回路を備える。
ピストン位置センサー72は、ピストン70位置を測定するための、光センサー、ホールセンサー、抵抗センサー、容量センサー、LVDT、または任意の他の適当な変位または位置測定装置として構成され得る。ピストン位置センサー72は、また、中心合わせループ36への送達のためのピストン変位信号x(k)measを生成し得る。圧力トランスデューサといった圧力センサー22は、患者Y字部20に隣接して配置されることが可能であり、発振器コントローラ30とMAPコントローラ42へのフィードバックのために、患者回路14において圧力を測定するように動作する。
圧力センサー22によって患者回路14において生成された測定圧力信号P(k)measは、発振器圧力ループ32に送られ、それからこの発振器圧力ループ32は測定圧力信号P(k)filterと所望発振器圧力P(k)ref信号または発振器圧力ループ32に与えられるコマンドとの間の差分を決定する。それによって発振器圧力ループ32は、測定圧力信号P(k)measと所望発振器圧力信号P(k)refとの間の差分に応じて発振器圧力誤差信号P(k)errorを生成する。
中心合わせループ36は、ピストン位置センサー72によって生成されたピスト変位信号x(k)measと所望ピストン70位置としてストローク中心を表すゼロとの間の差を決定するように、またこれに応じて変位誤差信号x(k)errorを生成するように動作する。それから発振器圧力誤差信号P(k)errorとピストン変位誤差信号x(k)errorは、ピストン70の振幅および/または周波数が調整され得るピストン70の往復運動を調整するための発振器コマンド信号V(k)oを生成するために結合される。
重要なことは、発振器圧力ループ32と中心合わせループ36の各々は、周波数帯域がオーバーラップし、それによって衝突するのを防止するためにピストン変位信号x(k)measと測定圧力信号P(k)measとが濾波されるように、帯域フィルタ34と低域フィルタ38とをそれぞれ含む。図1に示されるように、中心合わせループ36は、中心合わせループ36が低域フィルタ38の通過帯域内のピストン70変位の限定された周波数範囲に応答するような中心合わせループフィルタ36遮断周波数を有する1次低域フィルタを含み得る。立ち代って、発振器圧力ループ32は、中心合わせループ低域フィルタ38遮断周波数に概ね等しい低い遮断周波数と発振器圧力ループ32における雑音伝播が制限されるような高い遮断周波数とを有する2次帯域フィルタ34を含み得る。したがって、発振器圧力ループ32は、帯域フィルタ34の通過帯域内の回路圧力変化の限定された周波数範囲に応答する。
帯域フィルタ34は、単極低域フィルタに直列に接続された単極高域フィルタを備え得る。単極高域フィルタは、低域フィルタ38の−3dB遮断周波数において−3dBカットオフを有するが、単極低域フィルタは高い遮断周波数において−3dBカットオフを持ち得る。測定圧力信号P(k)measは、濾波された圧力信号P(k)filterを生成するために帯域フィルタ34によって濾波され、それからこの濾波圧力信号P(k)filterは発振器圧力誤差信号P(k)errorを生成するために所望発振器圧力P(k)ref信号と比較される。ピストン変位信号x(k)measは濾波変位信号x(k)filterを生成するために低域フィルタ38によって濾波される。
中心合わせループ36と発振器圧力ループ32の各々は更に、理想的には発振器圧力誤差信号P(k)errorと変位誤差信号x(k)errorとをゼロの方に追いやるためにこれらの誤差信号のそれぞれを濾波するように、また更に発振器圧力ループ比例積分PIコントローラ40と中心合わせループPIコントローラ60のそれぞれの積分成分におけるワインドアップ(windup)を限定するように、構成された発振器圧力ループ比例積分PIコントローラ40と中心合わせループPIコントローラ60とを含み得る。積分成分におけるワインドアップは、出力電圧の既知の飽和限界と中心合わせループ36の比例成分と電圧出力の圧力成分とを使用することによって管理される。このような成分は、段階的に積分限界を確立するために互いに加算および/または減算される。この仕方でPIおよびPIコントローラ40、60の各々からの出力の合計は、電圧飽和限界を超えることを避けるために、また電流増幅器28がいつ飽和するかに関して発振器コントローラ30を注意状態にしておくために限定される。
前述のように、濾波圧力信号P(k)filterは、発振器圧力ループ32に関する誤差を決定するために所望発振器圧力P(k)ref信号から差し引かれる。所望発振器圧力P(k)ref信号は、患者人工呼吸装置システムの所望動作パラメータと患者12による応答とに依存して周波数、振幅および/またはデューティサイクルが変化し得る合成周期信号である。発振器圧力誤差信号P(k)errorは、積分成分のワインドアップが出力電圧制御の既知の飽和限界電圧と発振器圧力ループ32の比例成分とを使用することによって限定される発振器圧力ループ32のPIコントローラ40によって濾波される。中心合わせループ36の変位出力信号V(k)と発振器圧力ループ32の圧力出力信号V(k)は、HFOV26のピストン70を調整するための電圧または電流制御信号として発振器コマンド信号V(k)oを与えるために合計される。
前述の装置を使用して、発振器コントローラ30は、圧力振動のサイズが如何なる設定周波数に関しても最大にされ得るように、ピストンのストローク限界内でピストン70の正確な中心合わせを与えながら、圧力振動の周波数および/または振幅の安定で正確な制御を可能にする。更に、発振器コントローラ30は、PI補償器における飽和を防止して制御システム10の安定性を維持するために、動作開始時にピストンの中心位置に向かうピストン70の自動帰還であって、これに続いて所望または指定された振幅への振動の徐々の増加を伴うピストンの自動帰還を与えるように構成される。この目的で、フィルタは、前の設定値から新しい設定値にゆっくり遷移するために制御設定値の変化を緩和し得る。このような設定値の変化は、周波数、圧力振幅および/またはデューティサイクルならびにMAPの変化に適合し得る。
なお、図1を参照すると、MAPコントローラ42は、MAPを正確に制御するために、濾波された患者回路圧力Pcを利用するMAP調整ループ44を備える。更に、MAP調整ループ44は、正確なMAP制御のために発振器圧力ループによって誘発された圧力振動を隔離または減衰するための手段を与える。MAP調整ループ44は、患者回路14とHFOV26とに流体的に連通している呼気バルブ52を調整する。ガス源18によって与えられるバイアス流れQbiasと連通しているHFOV26によって送達される1回換気量Qpは、呼気バルブ52によって制御される呼気流れQventによって相殺される。
MAP調整ループ44は、好適には、MAP調整ループ42の応答を最大にしながら、発振器圧力ループ32によって誘発された振動の減衰を最大にするような仕方で圧力センサー22によって生成された測定圧力信号P(k)measを濾波するように構成された低域フィルタ46を含む。低域フィルタ46は、所望MAP信号に関して−3dBカットオフを有する6極フィルタといった何らかの適当な高次急勾配カットオフフィルタとして構成され得る。代替として、8次楕円フィルタまたは何らかの他の適当な高次急峻カットオフ低域フィルタが使用可能である。濾波圧力信号P(k)filterは、予めプログラムされた信号またはユーザ入力信号であり得る所望MAP信号P(k)refと比較される。濾波圧力信号P(k)filterと所望MAP信号P(k)refとの間の差分に応じてMAPループ誤差信号P(k)errorが生成される。
それからMAPループ誤差信号P(k)errorは、誤差をゼロの方に追いやって、呼気バルブアクチュエータ50またはドライバの電圧飽和限界間のMAPループ誤差信号P(k)errorの積分動作を制限するように特に構成された積分コントローラ48によって濾波される。積分コントローラ48は、振動に対して、また患者Y字部20に導入されたバイアス流れQbiasに対して、呼気バルブ52上の力または流量範囲を調整するための電圧または電流制御信号であり得る呼気バルブコマンド信号V(k)を生成する。この仕方でMAP調整ループ44は、患者におけるMAPを制御するための安定で正確な手段を提供する。
またここでは、ピストンの全ストロークの前方位置に向かって開ループ制御の下でピストンがゆっくり動くにつれて、増分(すなわち相対値)タイプのピストン位置センサーが最初にピストン70の位置を感知する中心合わせループ36を初期設定するための方法が開示される。この動きを完了した後にピストン位置センサー72は、ピストン70の変位量を測定して記録する。このような測定値は、ピストン70の既知の全ストロークと比較され、ピストン70が中心にあるときにこれがゼロ(0)を読み取るようにピストン変位信号x(k)measを計算して修正するために使用される。代替として位置センサー72は、絶対値タイプであることもあり、それによってストローク中心を決定するための初期較正工作は必要とされない可能性がある。測定されたピストン変位と実際のピストン変位との間の差を修正するための能力を与えることによって、ピストン70はより正確に中心合わせされ、それによって如何なる設定周波数に関してもピストン70振幅の最大化を可能にする。
次に、本発明の制御システム10の動作を説明する。圧力は、測定圧力信号P(k)measを生成するために適当な圧力センサー22を使用して患者回路14において測定される。測定圧力信号P(k)measは帯域フィルタ34によって濾波され、これに応じて圧力出力信号V(k)を生成するために所望発振器圧力P(k)ref信号と比較される。同様にピストン70変位36はピストン位置センサー72を利用して測定され、これに応じてピストン変位信号x(k)measが生成される。ピストン変位信号x(k)measは、濾波変位信号x(k)filterを生成するために低域フィルタ38によって濾波され、それから変位出力信号V(k)を生成するために所望ピストン70位置としてのゼロ(0)から差し引かれる。
測定圧力信号P(k)measとピストン変位信号x(k)measは、好適には、これらの周波数帯域がオーバーラップせず、また衝突しないように濾波され、それから発振器圧力ループPIコントローラ40と中心合わせループPIコントローラ60とを通り抜けて、ピストンの中心合わせと圧力変調との制御目標が両方とも満たされるようにピストン70運動を調整するための発振器コマンド信号V(k)を生成するように結合される。好適には、測定圧力信号P(k)measは、中心合わせループ36との干渉を減らしてループ高周波雑音伝播を制限するために予め決められた遷移周波数と限定周波数との間からこの信号の帯域幅を制限するために濾波される。同様に、ピストン変位信号x(k)measは、空電(static)と予め決められた遷移周波数との間にこの信号の帯域幅を限定するために、また発振器圧力ループ32との干渉を減らすために濾波される。この仕方で高周波圧力振動の周波数と振幅は、圧力振動の最大化を可能にするためにピストンの端から端までの最大ストロークを与えながら正確に変調され得る。
前述のように、患者12におけるMAPの調整は、閉回路MAP調整ループ42において測定患者回路圧力Pcフィードバックを使用することによって容易にされる。測定圧力信号P(k)measは濾波され、この濾波された圧力信号P(k)filterはMAP圧力誤差信号P(k)errorを生成するために所望MAP信号P(k)refから差し引かれる。それからMAP圧力誤差信号P(k)errorは、バルブアクチュエータ50を駆動するための電流または電圧信号の形の呼気バルブコマンド信号V(k)を生成するために積分コントローラ48を介して濾波される。呼気バルブコマンド信号V(k)は、圧力振動が重畳される所望のMAPを維持する際にバイアス流れQbiasと組み合わせて呼気バルブによって必要とされる力の大きさまたは流量範囲の大きさに比例する。更に低域フィルタ46における遮断周波数の選択は、発振器圧力ループ32によって制御される圧力振動からのMAP調整ループ42の隔離を可能にし、それによってループ間の相反する応答を防止する。
また、本発明の更なる変形と改善は、当分野に通常のスキルを有する人々に明らかであり得る。したがって、ここで説明され図示された部分の特定の組合せは、単に本発明のある幾つかの実施形態を表すように意図されており、本発明の思想と範囲の中における代替の装置または方法の限定として働くようには意図されていない。
高周波振動人工呼吸装置(HFOV)のための閉ループ制御システムの図である。 本発明の閉ループ制御システムが組み込まれ得るHFOVと患者換気回路の概略図である。

Claims (21)

  1. 往復運動するピストンを有し、患者に気道圧力を与えるために患者に接続可能である高周波振動人工呼吸装置(HFOV)のための制御システムであって、
    ピストン往復運動の周波数および振幅とピストンの中心合わせとを調整することにまとめて適応する発振器圧力ループと中心合わせループとを含む1対の閉ループ制御回路を備える発振器コントローラと、
    前記患者における平均気道圧力(MAP)を調整することに適応した閉ループ制御回路を備える平均気道圧力(MAP)コントローラと、
    を具備する制御システム。
  2. 前記制御システムは、
    前記ピストン位置を測定し、これに応じて前記中心合わせループへの送達のためのピストン変位信号を生成するように構成されたピストン位置センサーと、
    前記患者における圧力を測定し、これに応じて前記発振器コントローラへの送達のための測定圧力信号を生成するように構成された圧力センサーと、
    をさらに具備し、
    前記発振器圧力ループは前記測定圧力信号と所望発振器圧力信号との間の差を決定し、これに応じて発振器圧力誤差信号を生成するように構成されており、
    前記中心合わせループは前記ピストン変位信号と前記所望ピストン位置としてのゼロとの間の差を決定し、これに応じて変位誤差信号を生成するように構成されており、
    前記発振器圧力信号と前記ピストン変位信号は前記ピストンの往復運動を調整するための発振器コマンド信号を生成するために結合される、請求項1に記載の制御システム。
  3. 前記ピストン変位信号と前記測定圧力信号は各々、これら信号の周波数帯域がオーバーラップしないような仕方で濾波される、請求項2に記載の制御システム。
  4. 前記中心合わせループは中心合わせループフィルタ遮断周波数を有する1次低域フィルタを含み、
    前記発振器圧力ループは前記中心合わせループフィルタ遮断周波数に概ね等しい低い遮断周波数と前記発振器圧力ループにおける雑音伝播が制限されるような高い遮断周波数とを有する2次帯域フィルタを含む、請求項3に記載の制御システム。
  5. 前記帯域フィルタは単極低域フィルタに直列に接続された単極高域フィルタを備え、
    前記単極高域フィルタは前記中心合わせループフィルタ遮断周波数において−3dBカットオフを有し、
    前記単極低域フィルタは前記高い遮断周波数において−3dBカットオフを有する、請求項4に記載の制御システム。
  6. 前記中心合わせループと前記発振器圧力ループの各ループは、これらに含まれる誤差をゼロの方に追いやって、それぞれの比例積分(PI)コントローラの積分成分におけるワインドアップを限定するために前記発振器圧力誤差信号と変位誤差信号のそれぞれ信号を濾波するように構成された比例積分(PI)コントローラを含む、請求項4に記載の制御システム。
  7. 前記ピストン位置センサーは変位トランスデューサとして構成されている、請求項2に記載の制御システム。
  8. 前記圧力センサーは圧力トランスデューサとして構成されている、請求項2に記載の制御システム。
  9. 前記制御システムは、
    前記患者における圧力を測定し、これに応じて前記MAPコントローラへの送達のための測定圧力信号を生成するように構成された圧力センサーをさらに具備し、
    前記MAPコントローラは前記患者および前記HFOVと流体的に連通する呼気バルブを有するMAP調整ループを備えており、
    前記MAP調整ループは前記測定圧力信号と所望MAP信号との間の差を決定し、これに応じて前記呼気バルブを駆動するためのMAPループ誤差信号を生成するように構成されている、請求項1に記載の制御システム。
  10. 前記MAP調整ループは、前記発振器圧力ループによって誘発される振動の減衰を最大にして前記MAP調整ループの応答と精度とを最大にするような仕方で前記測定圧力信号を濾波するように構成されている低域フィルタを含む、請求項9に記載の制御システム。
  11. 前記MAP調整ループ低域フィルタは前記所望MAP信号に関して急勾配のカットオフを有する高次フィルタとして構成されている、請求項10に記載の制御システム。
  12. 前記MAP調整ループは、前記MAPループ誤差信号を受信し、これにおける誤差をゼロの方に追いやり、前記呼気バルブのこれの積分動作を電圧飽和限界間に限定するように構成されている積分コントローラをさらに含む、請求項1に記載の制御システム。
  13. 前記HFOVは、
    ハウジングアセンブリと、
    前記ハウジングアセンブリ内に固定的に取り付けられている線状アクチュエータと、
    前記線状アクチュエータ内に同軸的に配置されている線状コイルであって、前記線状アクチュエータを貫通して軸方向に延びる、前記線状アクチュエータ上に線状コイルを滑動可能に支持するためのプッシュロッドを有する線状コイルと、
    前記プッシュロッドに取り付けられているピストンと、
    前記ピストンに動作可能に係合可能な、前記ハウジングアセンブリを第1、第2のサイドに密閉的に分割するダイアフラムであって、前記線状コイルと前記アクチュエータは前記第1のサイドに配置され、前記ダイアフラムはこれらの周囲に形成された深い半径溝を有し、ピストン往復運動中に反転しないように構成されているダイアフラムと、
    前記第2のサイドに形成され、患者にガスを送達するために前記患者に流体的に接続されている開口部と、
    を具備し、
    前記線状コイルと線状アクチュエータは前記患者における前記ガス内に正と負の圧力波を交互に発生させる仕方で前記ダイアフラムの往復運動を引き起こすように協同動作する、請求項1に記載の制御システム。
  14. 呼気バルブを有する患者人工呼吸装置システムにおいてピストン運動と平均気道圧力(MAP)とを調整する閉ループ方法であって、
    前記患者における圧力を測定し、これに応じて測定圧力信号を生成することと、
    所望発振器圧力信号を前記測定圧力信号と比較し、これに応じて圧力出力信号を生成することと、
    ピストン変位を測定し、これに応じてピストン変位信号を生成することと、
    前記ピストン変位信号を所望ピストン位置としてのゼロから差し引き、これに応じて変位出力信号を生成することと、
    前記圧力出力信号を前記変位出力信号に結合し、これに応じて前記ピストン運動を調整するための発振器コマンド信号を生成することと、
    所望MAP信号を前記測定圧力と比較し、これに応じて前記患者におけるMAPを調整するための呼気バルブコマンド信号を生成することと、
    を具備する閉ループ方法。
  15. 前記測定圧力信号と前記変位出力信号との周波数帯域がオーバーラップしないように前記測定圧力信号と前記変位出力信号とを濾波するステップを更に具備する、請求項14に記載の方法。
  16. 発振器圧力ループと中心合わせループとを備える発振器コントローラを使用して患者人工呼吸装置の発振器ピストンの運動を調整する方法であって、
    前記発振器圧力ループにおいて、
    前記患者における圧力を測定し、これを表す測定圧力信号を生成することと、
    これの帯域幅を予め決められた遷移周波数と雑音制限周波数との間に限定するために前記測定圧力信号を濾波し、これに応じて濾波圧力信号を生成することと、
    所望発振器圧力信号を受信することと、
    前記濾波圧力信号と前記所望発振器圧力信号とを合計し、これに応じて発振器圧力誤差信号を生成することと、
    発振器圧力ループ比例積分(PI)コントローラを介して前記発振器圧力誤差信号を濾波し、これに応じて圧力出力信号を生成することと、
    前記中心合わせループにおいて、
    ピストン位置を測定し、これを表すピストン変位信号を生成することと、
    前記ピストン変位信号の帯域幅を空電と前記予め決められた遷移周波数との間に限定するために前記ピストン変位信号を濾波し、これに応じて濾波変位信号を生成することと、
    前記濾波変位信号を所望ピストン位置としてのゼロから差し引き、これに応じて変位誤差信号を生成することと、
    中心合わせループ比例積分(PI)コントローラを介して前記変位誤差信号を濾波し、これに応じて変位出力信号を生成することと、
    前記圧力および変位出力信号を合計し、これに応じて前記ピストン運動を駆動するための前記発振器コマンド信号を生成することと、
    を具備する方法。
  17. 前記測定ピストン変位信号は前記遷移周波数において−3dBロールオフを有する1次低域フィルタを使用して濾波される、請求項16に記載の方法。
  18. 前記測定圧力信号は前記中心合わせループ低域フィルタ遮断周波数に概ね等しい低い遮断周波数と前記発振器圧力ループにおける雑音伝播が制限されるような高い遮断周波数とを有する2次帯域フィルタを使用して濾波される、請求項16に記載の方法。
  19. 前記所望発振器圧力信号の周波数、振幅、およびデューティサイクル設定値のうちの少なくとも1つにおける変化を誘発することと、
    前の設定から変化の速度を遅くするような仕方で前記所望発振器圧力信号の設定値における変化を濾波することと、
    をさらに具備する、請求項16に記載の方法。
  20. 前記患者人工呼吸装置はMAP調整ループを使用して前記患者におけるMAPを調整するための呼気バルブを含み、
    前記方法は、
    前記MAP調整ループにおいて前記測定圧力信号を受信することと、
    前記発振器圧力ループによって誘発された振動の減衰を最大にして、前記MAP調整ループの応答を最大にするような仕方で前記測定圧力信号を濾波し、これに応じて濾波圧力信号を生成することと、
    前記MAP調整ループにおいて所望MAP信号を受信することと、
    前記所望MAP信号から前記濾波圧力信号を差し引き、これに応じてMAP圧力誤差信号を生成することと、
    積分コントローラを介して前記MAP圧力誤差信号を濾波し、これに応じて前記呼気バルブを駆動するための呼気バルブコマンド信号を精製することと、
    をさらに具備する、請求項16に記載の方法。
  21. 前記測定圧力信号は急勾配の遮断周波数を有する高次低域フィルタを使用して濾波される、請求項20に記載の方法。
JP2009500350A 2006-03-15 2006-12-27 高周波振動人工呼吸装置のための閉ループ制御システム Active JP5185248B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/376,648 2006-03-15
US11/376,648 US7861716B2 (en) 2006-03-15 2006-03-15 Closed loop control system for a high frequency oscillation ventilator
PCT/US2006/049323 WO2008030261A2 (en) 2006-03-15 2006-12-27 Closed loop control system for a high frequency oscillation ventilator

Publications (2)

Publication Number Publication Date
JP2009529953A true JP2009529953A (ja) 2009-08-27
JP5185248B2 JP5185248B2 (ja) 2013-04-17

Family

ID=38516487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009500350A Active JP5185248B2 (ja) 2006-03-15 2006-12-27 高周波振動人工呼吸装置のための閉ループ制御システム

Country Status (7)

Country Link
US (3) US7861716B2 (ja)
EP (2) EP1993647B1 (ja)
JP (1) JP5185248B2 (ja)
CN (1) CN101534886B (ja)
AU (1) AU2006347959B2 (ja)
CA (1) CA2647097C (ja)
WO (1) WO2008030261A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513449A (ja) * 2009-12-15 2013-04-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 高頻度換気の間、自発呼吸又は非自発呼吸における、副生理的及び生理的一回換気量を支持するシステム及び方法
JP2014524306A (ja) * 2011-08-17 2014-09-22 ケアフュージョン・207、インコーポレイテッド 高頻度振動人工呼吸器制御システム

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2858236B1 (fr) * 2003-07-29 2006-04-28 Airox Dispositif et procede de fourniture de gaz respiratoire en pression ou en volume
US7861716B2 (en) * 2006-03-15 2011-01-04 Carefusion 207, Inc. Closed loop control system for a high frequency oscillation ventilator
DE102006048680B3 (de) * 2006-10-14 2007-09-27 Dräger Medical AG & Co. KG Vorrichtung und Verfahren zum Beatmen eines Patienten mittels Hochfrequenzventilation
US9078984B2 (en) * 2008-01-31 2015-07-14 Massachusetts Institute Of Technology Mechanical ventilator
US8402970B2 (en) * 2008-03-14 2013-03-26 General Electric Company System and method for integrated high frequency oscillatory ventilation
US8272380B2 (en) 2008-03-31 2012-09-25 Nellcor Puritan Bennett, Llc Leak-compensated pressure triggering in medical ventilators
US8746248B2 (en) 2008-03-31 2014-06-10 Covidien Lp Determination of patient circuit disconnect in leak-compensated ventilatory support
US8267085B2 (en) 2009-03-20 2012-09-18 Nellcor Puritan Bennett Llc Leak-compensated proportional assist ventilation
WO2009123980A1 (en) 2008-03-31 2009-10-08 Nellcor Puritan Bennett Llc System and method for determining ventilator leakage during stable periods within a breath
US8457706B2 (en) 2008-05-16 2013-06-04 Covidien Lp Estimation of a physiological parameter using a neural network
US8551006B2 (en) * 2008-09-17 2013-10-08 Covidien Lp Method for determining hemodynamic effects
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
US8082312B2 (en) 2008-12-12 2011-12-20 Event Medical, Inc. System and method for communicating over a network with a medical device
US8434479B2 (en) * 2009-02-27 2013-05-07 Covidien Lp Flow rate compensation for transient thermal response of hot-wire anemometers
US8424521B2 (en) 2009-02-27 2013-04-23 Covidien Lp Leak-compensated respiratory mechanics estimation in medical ventilators
US8418691B2 (en) 2009-03-20 2013-04-16 Covidien Lp Leak-compensated pressure regulated volume control ventilation
US8789529B2 (en) 2009-08-20 2014-07-29 Covidien Lp Method for ventilation
US8439037B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integrated filter and flow sensor
US20110126832A1 (en) * 2009-12-01 2011-06-02 Nellcor Puritan Bennett Llc Exhalation Valve Assembly
US8439036B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integral flow sensor
US8469030B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with selectable contagious/non-contagious latch
US8469031B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with integrated filter
US8171094B2 (en) 2010-01-19 2012-05-01 Event Medical, Inc. System and method for communicating over a network with a medical device
USD655405S1 (en) 2010-04-27 2012-03-06 Nellcor Puritan Bennett Llc Filter and valve body for an exhalation module
USD653749S1 (en) 2010-04-27 2012-02-07 Nellcor Puritan Bennett Llc Exhalation module filter body
USD655809S1 (en) 2010-04-27 2012-03-13 Nellcor Puritan Bennett Llc Valve body with integral flow meter for an exhalation module
US9022946B2 (en) * 2010-05-20 2015-05-05 Carefusion 207, Inc. Contamination removal from sensors placed in an airway
US8676285B2 (en) 2010-07-28 2014-03-18 Covidien Lp Methods for validating patient identity
US8554298B2 (en) 2010-09-21 2013-10-08 Cividien LP Medical ventilator with integrated oximeter data
US9629971B2 (en) 2011-04-29 2017-04-25 Covidien Lp Methods and systems for exhalation control and trajectory optimization
US9089657B2 (en) 2011-10-31 2015-07-28 Covidien Lp Methods and systems for gating user initiated increases in oxygen concentration during ventilation
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
US9498589B2 (en) 2011-12-31 2016-11-22 Covidien Lp Methods and systems for adaptive base flow and leak compensation
US8985107B2 (en) 2012-02-28 2015-03-24 General Electric Company Method, arrangement and computer program product for respiratory gas monitoring of ventilated patients
US20130220324A1 (en) * 2012-02-29 2013-08-29 Nellcor Puritan Bennett Llc Systems and methods for providing oscillatory pressure control ventilation
US9993604B2 (en) 2012-04-27 2018-06-12 Covidien Lp Methods and systems for an optimized proportional assist ventilation
US9144658B2 (en) 2012-04-30 2015-09-29 Covidien Lp Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control
CN103893864B (zh) * 2012-12-26 2017-05-24 北京谊安医疗系统股份有限公司 一种涡轮呼吸机压力控制通气方法
CN103893865B (zh) * 2012-12-26 2017-05-31 北京谊安医疗系统股份有限公司 一种呼吸机涡轮容量控制通气的方法
USD731049S1 (en) 2013-03-05 2015-06-02 Covidien Lp EVQ housing of an exhalation module
USD701601S1 (en) 2013-03-08 2014-03-25 Covidien Lp Condensate vial of an exhalation module
USD731048S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ diaphragm of an exhalation module
USD744095S1 (en) 2013-03-08 2015-11-24 Covidien Lp Exhalation module EVQ internal flow sensor
USD693001S1 (en) 2013-03-08 2013-11-05 Covidien Lp Neonate expiratory filter assembly of an exhalation module
USD736905S1 (en) 2013-03-08 2015-08-18 Covidien Lp Exhalation module EVQ housing
USD692556S1 (en) 2013-03-08 2013-10-29 Covidien Lp Expiratory filter body of an exhalation module
USD731065S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ pressure sensor filter of an exhalation module
US9950135B2 (en) 2013-03-15 2018-04-24 Covidien Lp Maintaining an exhalation valve sensor assembly
US9833584B2 (en) 2013-03-22 2017-12-05 Breathe Technologies, Inc. Portable ventilator secretion management system
EP3010603B1 (en) * 2013-06-19 2018-05-23 Koninklijke Philips N.V. Device for assisting a cough
AU2014316671B2 (en) * 2013-09-04 2019-12-19 Fisher & Paykel Healthcare Limited Improvements to flow therapy
US9675771B2 (en) 2013-10-18 2017-06-13 Covidien Lp Methods and systems for leak estimation
US10363383B2 (en) * 2014-02-07 2019-07-30 Trudell Medical International Pressure indicator for an oscillating positive expiratory pressure device
US11247015B2 (en) 2015-03-24 2022-02-15 Ventec Life Systems, Inc. Ventilator with integrated oxygen production
US10245406B2 (en) 2015-03-24 2019-04-02 Ventec Life Systems, Inc. Ventilator with integrated oxygen production
CA2980849A1 (en) 2015-03-31 2016-10-06 Fisher & Paykel Healthcare Limited Methods and apparatus for oxygenation and/or co2 removal
EP3277351B1 (en) 2015-04-02 2019-06-05 Hill-Rom Services PTE. LTD. Manifold for respiratory device
USD775345S1 (en) 2015-04-10 2016-12-27 Covidien Lp Ventilator console
US10754358B2 (en) * 2015-09-28 2020-08-25 Koninklijke Philips N.V. Methods and systems for controlling gas flow using a proportional flow valve
US10773049B2 (en) 2016-06-21 2020-09-15 Ventec Life Systems, Inc. Cough-assist systems with humidifier bypass
JP2021524795A (ja) 2018-05-13 2021-09-16 サミール・サレハ・アフマド ポータブル酸素濃縮器を使用するポータブル医療用人工呼吸器システム
CN114126698A (zh) * 2019-07-19 2022-03-01 深圳迈瑞生物医疗电子股份有限公司 医用通气方法及装置、呼吸机、计算机可读存储介质
CN110464948B (zh) * 2019-08-29 2022-01-11 宁波戴维医疗器械股份有限公司 一种高频振荡模块的控制方法、装置及高频呼吸机
CN111135411B (zh) * 2020-01-20 2021-12-10 深圳市科曼医疗设备有限公司 呼气阀的控制方法、装置、计算机设备和存储介质
WO2021163946A1 (zh) * 2020-02-20 2021-08-26 深圳迈瑞生物医疗电子股份有限公司 医用通气设备、控制方法与计算机可读存储介质
US11896767B2 (en) 2020-03-20 2024-02-13 Covidien Lp Model-driven system integration in medical ventilators

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115554A (ja) * 1991-10-18 1993-05-14 Univ Manitoba 比例支援式人工呼吸方法および装置
JPH07246240A (ja) * 1994-03-08 1995-09-26 Boc Group Inc:The 医療用換気装置
JPH10295099A (ja) * 1997-02-07 1998-11-04 Sgs Thomson Microelettronica Spa 特に自動車発電機用の非線形電圧調整器
JPH11513600A (ja) * 1995-10-23 1999-11-24 レスメッド・リミテッド Cpap又は補助された呼吸処置における吸気の持続期間
JP2001505467A (ja) * 1996-12-12 2001-04-24 レスメッド・リミテッド 可呼吸ガス供給システムにおける物質送出
JP2004500905A (ja) * 1999-10-04 2004-01-15 アドバンスド レスパイアラトリー,インコーポレイテッド 気流処置装置
JP2004508105A (ja) * 2000-09-05 2004-03-18 マーリンクロウト インコーポレイテッド 圧力に基づく換気の適応逆制御

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3201529A (en) 1962-11-16 1965-08-17 Philip C Surh Dynamic speaker
US4409977A (en) * 1981-07-06 1983-10-18 Institute Of Critical Care Medicine High frequency ventillator
US4495947A (en) * 1982-09-23 1985-01-29 Imasco-Cdc Research Foundation High speed medical ventilator
US4821709A (en) * 1983-08-01 1989-04-18 Sensormedics Corporation High frequency ventilator and method
US4788974A (en) * 1984-11-22 1988-12-06 Senko Medical Instrument Mfg. Co., Ltd. High-frequency artificial respirator
US4719910A (en) * 1985-04-29 1988-01-19 Jensen Robert L Oscillating ventilator and method
US4617637A (en) * 1985-07-09 1986-10-14 Lifecare Services, Inc. Servo control system for a reciprocating piston respirator
US4805612A (en) * 1985-09-13 1989-02-21 Sensormedics Corporation High frequency ventilation
US4838259A (en) * 1986-01-27 1989-06-13 Advanced Pulmonary Technologies, Inc. Multi-frequency jet ventilation technique and apparatus
GB8704104D0 (en) 1987-02-21 1987-03-25 Manitoba University Of Respiratory system load apparatus
US5632269A (en) * 1989-09-22 1997-05-27 Respironics Inc. Breathing gas delivery method and apparatus
US5237987A (en) * 1990-06-07 1993-08-24 Infrasonics, Inc. Human lung ventilator system
US5542415A (en) * 1991-05-07 1996-08-06 Infrasonics, Inc. Apparatus and process for controlling the ventilation of the lungs of a patient
US5239994A (en) 1991-05-10 1993-08-31 Bunnell Incorporated Jet ventilator system
US5307794A (en) * 1992-04-01 1994-05-03 Sensormedics Corporation Oscillating ventilator apparatus and method and patient isolation apparatus
CN2144513Y (zh) * 1993-05-04 1993-10-27 陈全生 负压高频通气装置
US5555880A (en) * 1994-01-31 1996-09-17 Southwest Research Institute High frequency oscillatory ventilator and respiratory measurement system
JPH0824337A (ja) * 1994-07-11 1996-01-30 Masaaki Inoue 高頻度人工呼吸器
DE19614225C1 (de) 1996-04-10 1997-04-17 Draegerwerk Ag Fördervorrichtung zur Versorgung eines Beatmungsgerätes
US5692497A (en) * 1996-05-16 1997-12-02 Children's Medical Center Corporation Microprocessor-controlled ventilator system and methods
US6371113B1 (en) * 1996-10-10 2002-04-16 Datex-Ohmeda, Inc. Zero flow pause during volume ventilation
US6085746A (en) * 1998-03-17 2000-07-11 Sensormedics Corporation Oscillating ventilator apparatus and method
SE9801427D0 (sv) 1998-04-23 1998-04-23 Siemens Elema Ab Förfarande för bestämning av minst en parameter samt en andningsapparat
US6158433A (en) * 1998-11-06 2000-12-12 Sechrist Industries, Inc. Software for finite state machine driven positive pressure ventilator control system
JP2003505214A (ja) * 1999-08-03 2003-02-12 ブラッドリー ピー.ファーマン 振動換気装置内のバイアスフローを低減する装置および方法
US6557554B1 (en) * 1999-10-29 2003-05-06 Suzuki Motor Corporation High-frequency oscillation artificial respiration apparatus
SE9904382D0 (sv) 1999-12-02 1999-12-02 Siemens Elema Ab High Frequency Oscillation Patient Ventilator System
JP3721912B2 (ja) * 2000-01-11 2005-11-30 スズキ株式会社 高頻度人工呼吸器
SE0000206D0 (sv) * 2000-01-25 2000-01-25 Siemens Elema Ab High frequency oscillator ventilator
SE0000777D0 (sv) * 2000-03-09 2000-03-09 Siemens Elema Ab High frequency oscillation ventilator
US6430765B1 (en) * 2000-07-12 2002-08-13 Hill-Rom Services, Inc. Apparatus and method for sensing and controlling a fluidization level
US6390092B1 (en) * 2000-08-07 2002-05-21 Sensormedics Corporation Device and method for using oscillatory pressure ratio as an indicator for lung opening during high frequency oscillatory ventilation
US6975195B2 (en) 2000-11-14 2005-12-13 Parker Hannifin Gmbh Actuator for a fluid valve
US6810881B2 (en) * 2001-10-22 2004-11-02 O.R. Solutions, Inc. Medical solution thermal treatment system and method of controlling system operation in accordance with detection of solution and leaks in surgical drape containers
KR101084554B1 (ko) * 2003-09-12 2011-11-17 보디미디어 인코퍼레이티드 심장 관련 파라미터를 측정하기 위한 방법 및 장치
US7861716B2 (en) * 2006-03-15 2011-01-04 Carefusion 207, Inc. Closed loop control system for a high frequency oscillation ventilator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115554A (ja) * 1991-10-18 1993-05-14 Univ Manitoba 比例支援式人工呼吸方法および装置
JPH07246240A (ja) * 1994-03-08 1995-09-26 Boc Group Inc:The 医療用換気装置
JPH11513600A (ja) * 1995-10-23 1999-11-24 レスメッド・リミテッド Cpap又は補助された呼吸処置における吸気の持続期間
JP2001505467A (ja) * 1996-12-12 2001-04-24 レスメッド・リミテッド 可呼吸ガス供給システムにおける物質送出
JPH10295099A (ja) * 1997-02-07 1998-11-04 Sgs Thomson Microelettronica Spa 特に自動車発電機用の非線形電圧調整器
JP2004500905A (ja) * 1999-10-04 2004-01-15 アドバンスド レスパイアラトリー,インコーポレイテッド 気流処置装置
JP2004508105A (ja) * 2000-09-05 2004-03-18 マーリンクロウト インコーポレイテッド 圧力に基づく換気の適応逆制御

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513449A (ja) * 2009-12-15 2013-04-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 高頻度換気の間、自発呼吸又は非自発呼吸における、副生理的及び生理的一回換気量を支持するシステム及び方法
JP2014524306A (ja) * 2011-08-17 2014-09-22 ケアフュージョン・207、インコーポレイテッド 高頻度振動人工呼吸器制御システム

Also Published As

Publication number Publication date
EP2954917B1 (en) 2018-02-07
CA2647097A1 (en) 2008-03-13
EP1993647A4 (en) 2012-01-18
US20110126833A1 (en) 2011-06-02
JP5185248B2 (ja) 2013-04-17
EP1993647B1 (en) 2015-06-03
CA2647097C (en) 2015-04-07
AU2006347959A1 (en) 2008-03-13
US7861716B2 (en) 2011-01-04
CN101534886A (zh) 2009-09-16
WO2008030261A2 (en) 2008-03-13
EP1993647A2 (en) 2008-11-26
EP2954917A1 (en) 2015-12-16
US20070215154A1 (en) 2007-09-20
US20130239969A1 (en) 2013-09-19
US8905025B2 (en) 2014-12-09
CN101534886B (zh) 2014-01-01
AU2006347959B2 (en) 2012-07-05
WO2008030261A3 (en) 2009-05-22
US8434482B2 (en) 2013-05-07

Similar Documents

Publication Publication Date Title
JP5185248B2 (ja) 高周波振動人工呼吸装置のための閉ループ制御システム
US8567398B2 (en) Pressure support system and method
EP0217573B1 (en) A high frequency oscillating ventilator
CA1319175C (en) Lung ventilator device
EP1945289B1 (en) High frequency oscillator ventilator
CN102971036B (zh) 用于执行呼吸诊断的系统
US4805612A (en) High frequency ventilation
JP5130048B2 (ja) 呼気圧力調整式人工呼吸器
JP2023153858A5 (ja)
FI92286B (fi) Laitteisto potilaalle hengitysjakson aikana toimitetun kaasutilavuuden säätämiseksi
JP2008514287A (ja) ブロワーを基礎にした人工呼吸システムにおけるガス流れ制御方法
EP0691135A1 (en) Piston-based ventilator design and operation
CA2592695A1 (en) Respiratory device for treating obstructive sleep apnea and method for controlling said device
EP1409054B1 (en) Device for isolating bias flow
RU2357762C1 (ru) Аппарат искусственной вентиляции легких
WO2006130369A2 (en) Method and system for non-invasive ventilatory support
JP2005027848A (ja) 人工呼吸器を制御する制御方法および制御装置
CA1284605C (en) High frequency ventilation method
JP3802099B2 (ja) 人工呼吸器
JPH03136665A (ja) 人工呼吸器における呼気弁装置
US20090020122A1 (en) Respiratory device for treating obstructive sleep apnea and method for controlling said device
JP2001346880A (ja) 高頻度人工呼吸器及びその動作制御プログラムを記録したコンピュータ読み取り可能な記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

R150 Certificate of patent or registration of utility model

Ref document number: 5185248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250