JP2009528971A5 - - Google Patents

Download PDF

Info

Publication number
JP2009528971A5
JP2009528971A5 JP2008557776A JP2008557776A JP2009528971A5 JP 2009528971 A5 JP2009528971 A5 JP 2009528971A5 JP 2008557776 A JP2008557776 A JP 2008557776A JP 2008557776 A JP2008557776 A JP 2008557776A JP 2009528971 A5 JP2009528971 A5 JP 2009528971A5
Authority
JP
Japan
Prior art keywords
harm
force
isolated
bundled
structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008557776A
Other languages
English (en)
Other versions
JP5247476B2 (ja
JP2009528971A (ja
Filing date
Publication date
Priority claimed from FI20060227A external-priority patent/FI121540B/fi
Application filed filed Critical
Publication of JP2009528971A publication Critical patent/JP2009528971A/ja
Publication of JP2009528971A5 publication Critical patent/JP2009528971A5/ja
Application granted granted Critical
Publication of JP5247476B2 publication Critical patent/JP5247476B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

HARM構造の1つの特徴として挙げられることは、HARM構造の束では自発的に荷電するが、単離状のHARM構造では電気的に中性であることである。合成プロセスの間、更なる荷電のない状態において、例えば、束状のCNTsはたいてい荷電されているが、単離状のCNTsはほとんどが荷電していない。同様の挙動が全てのHARM構造で生じるが、その理由としては、それらが実質的に一次元の構造を有し、隣接するHARM構造との直接の接触に利用できる多くの原子を表層に有することが挙げられ、それにより荷電が起こる。この荷電現象を利用して、1つ以上のHARM構造(例えば単離状の及び/又は束状のHARM構造)を移動させ(例えば加速し)、分離させ、及び/又は堆積させることができる。また、異なる他の特性を有するHARM構造を用いることにより、例えば、束上のHARM構造と単離状のHARM構造をそれぞれ分離し、当該構造を堆積させることが可能となる。例えば、単離状のものに対する、束状のHARM構造の質量を増加させることにより、それらの異なる慣性力−抵抗力比率によるそれらの分離が可能となる。この比率は、St=(ρdU)/(18μL)で定義されるストークス数(St)として決定される。式中、ρは単離状若しくは束状のHARM構造の有効密度であり、dは束状若しくは単離状のHARM構造の有効直径であり、Uは担体流体速度であり、μは担体流体粘度であり、Lはチャネル又はジェットの特徴的な寸法である。束状のHARM構造は、単離状のものより高いストークス数を示す。
当該物理的性質及び/又は特性は、例えば、HARM構造の荷電及び/若しくは量、並びに/又は、特定のHARM構造に作用し、それにより移動させる基となる他のいかなる特徴(例えば特性)であってもよい。物理的特徴及び/又は特性とは、例えばHARM構造において自然に生じるあらゆる特徴及び/若しくは特性、並びに/又は、HARM構造に付与されたあらゆる特徴(例えば特性)のことを意味する。例えば、HARM構造を、本発明に係る方法を実施する前及び/又は実施する間において、あらゆる適当な手段によって荷電させてもよい。例えば、束状の構造における固有の荷電、及び単離状の構造における固有の電気的中性状態に加え及び/若しくはその代わりに、当該方法を実施する前に、任意の適切な方法を使用して、1つ以上の所望の特定のHARM構造を荷電させてもよい。この方式では、例えば、固有の荷電を有さない単離状のHARM構造を荷電させ、例えばそれらの堆積を可能にすることができる。また、束状及び単離状のHARM構造は共に、荷電することにより、それらに所望の物理的性質が付与され、印加された力に反応できるようになる。当該力が1つ以上のHARM構造を移動させる際の基本となる、物理学的な性質及び特性は、好ましくは荷電(固有の荷電若しくは付与された荷電)である。
例えば分散物としてのHARM構造を、例えば電界に置くことにより、固有の電を有する束状のHARM構造は電界中を移動若しくは加速するが、一方単離状のHARM構造は実質的に影響を受けない。換言すれば、前記力は、例えば選択的に、束状及び/又は単離状のHARM構造を相互に移動させ、それにより束状及び単離状のHARM構造は分離及び/又は単離される。
例えば束状のHARM構造は、必要に応じて、本発明に係る方法で予め移動させることにより単離させた後で表面に積させてもよい。例えば、このような方法により、前記HARM構造を分散物から取り出し、それらを更なる使用のために回収してもよい。前記HARM構造はまた、必要に応じて分散物のままの状態にし、かかる方法を用いて、束状及び単離状のHARM構造をそれぞれ含んでなる2種類の分散液を調製してもよい。
図3は、本発明の方法の他の実施形態を例示する。束状及び単離状のHARM構造(1)の混合物を液体又はガス中に懸濁し、力(この場合、慣性力若しくは重力加速)を印加し、束状(4)及び単離状(3)のHARM構造に分離させる。ここで、束状のHARM構造は単離状のHARM構造よりも選択的に堆積し、慣性力及び抵抗力のバランスがとられながら、単離状のHARM構造の懸濁物が生成する。当該分散物は、この実施形態では、カーブするチャネル(9)a)に配置されるか、又は表面(4)b)に向けて配置され、高い有効ストークス数を有する束状のHARM構造が当該表面の方向へ加速され、一方当該単離状のHARM構造が懸濁されているままである。更に、束状のHARM構造を基材上に堆積させることができる。あるいは、c)において、単離状及び束状のHARM構造の分散物(1)を、重力(8)とは反対方向に、拡散チャネル(7)中に注入する。懸濁液又はガスの速度は拡散チャネル中で減少する。それにより、束状のHARM構造(4)より低いストークス数を有する単離状のHARM構造(3)は、束状のHARM構造よりチャネルの上方に移動し、それらが分離される。

Claims (10)

  1. 高アスペクト比分子構造(HARMS)を堆積させる方法であって、1つ以上の単離状及び束状のHARM構造を含んでなるエアゾールに力が印加され、当該力の印加により、1つ以上の物理学的な性質及び/又は特性に基づき、1つ以上の予め定められた位置に1つ以上の単離状及び/又は束状のHARM構造が移動し、印加された当該力によ1つ以上の単離状及び/又は束状のHARM構造パターンとして堆積させるものであって、当該力が、電気力、静電力、熱拡散力、慣性力、重力、又は粘性力を含んでなる、前記方法。
  2. 前記力が、束状又は単離状のHARM構造の荷電及び/又は質量に基づいて、選択的に前記HARM構造に作用し、それらを互いに識別し、移動させて、空間的に分離させる、請求項1記載の方法。
  3. 束状及び単離状のHARM構造が、各々分離し、別個に堆積する、請求項1又は2記載の方法。
  4. 前記HARM構造が、ナノチューブ、カーボンナノチューブ、フラーレン官能化カーボンナノチューブ、ホウ素−窒化物ナノチューブ、カーボン、リン、ホウ素、窒素及び/若しくはシリコンを含有するナノロッド、フィラメント並びに他のチューブ、ロッド及び/若しくはリボン又は単離状若しくは束状の他の形態の高アスペクト比分子構造である、請求項1からのいずれか1項記載の方法。
  5. 前記HARM構造が正荷電、負荷電又は中性荷電されている、請求項1からのいずれか1項記載の方法。
  6. 前記力が、固有の荷電を有する束状のHARM構造を移動させる電気力を含んでなる、請求項1からのいずれか1項記載の方法。
  7. 1つ以上のHARM構造の生産、分離、修飾、堆積及び/又は更なる処理のための連続プロセス又はバッチプロセスへの、請求項1からのいずれか1項記載の方法の使用。
  8. 官能化材料の調製への、請求項1からのいずれか1項記載の方法の使用。
  9. 厚い若しくは薄いフィルム、ライン、導線、パターン、層状及び/又は三次元構造の調製における、請求項1からのいずれか1項記載の方法の使用。
  10. 装置の調製への、請求項1からのいずれか1項記載の方法の使用。
JP2008557776A 2006-03-08 2007-03-07 高アスペクト比構造の堆積方法 Active JP5247476B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20060227A FI121540B (fi) 2006-03-08 2006-03-08 Menetelmä, jolla siirretään korkean aspektisuhteen omaavia molekyylirakenteita
FI20060227 2006-03-08
PCT/FI2007/000059 WO2007101906A1 (en) 2006-03-08 2007-03-07 Method for depositing high aspect ratio molecular structures

Publications (3)

Publication Number Publication Date
JP2009528971A JP2009528971A (ja) 2009-08-13
JP2009528971A5 true JP2009528971A5 (ja) 2013-01-10
JP5247476B2 JP5247476B2 (ja) 2013-07-24

Family

ID=36191905

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008557776A Active JP5247476B2 (ja) 2006-03-08 2007-03-07 高アスペクト比構造の堆積方法
JP2008557777A Active JP5554501B2 (ja) 2006-03-08 2007-03-07 高アスペクト比構造の分離方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008557777A Active JP5554501B2 (ja) 2006-03-08 2007-03-07 高アスペクト比構造の分離方法

Country Status (8)

Country Link
US (3) US8871295B2 (ja)
EP (2) EP1991498B1 (ja)
JP (2) JP5247476B2 (ja)
KR (2) KR101424676B1 (ja)
CN (2) CN101400598B (ja)
ES (2) ES2627659T3 (ja)
FI (1) FI121540B (ja)
WO (2) WO2007101906A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718230B2 (en) * 2004-11-11 2010-05-18 Board Of Regents, The University Of Texas System Method and apparatus for transferring an array of oriented carbon nanotubes
FI121540B (fi) * 2006-03-08 2010-12-31 Canatu Oy Menetelmä, jolla siirretään korkean aspektisuhteen omaavia molekyylirakenteita
US7892610B2 (en) * 2007-05-07 2011-02-22 Nanosys, Inc. Method and system for printing aligned nanowires and other electrical devices
SG10201401475UA (en) 2008-07-03 2014-08-28 Ucl Business Plc Method For Dispersing And Separating Nanotubes
SG2014005771A (en) 2008-07-03 2014-03-28 Ucl Business Plc Method for separating nanomaterials
US8004018B2 (en) * 2008-12-29 2011-08-23 Nokia Corporation Fabrication method of electronic devices based on aligned high aspect ratio nanoparticle networks
FI124440B (fi) * 2009-01-28 2014-08-29 Canatu Oy Rakenteita, jotka käsittävät korkean aspektisuhteen omaavia molekyylirakenteita, ja valmistusmenetelmiä
TW201034276A (en) * 2009-02-09 2010-09-16 Applied Materials Inc Mesoporous carbon material for energy storage
US10115972B2 (en) 2009-04-30 2018-10-30 University Of Florida Research Foundation, Incorporated Single wall carbon nanotube based air cathodes
US20110135835A1 (en) * 2009-06-08 2011-06-09 Massachusetts Institute Of Technology Method for depositing a carbon nanotube thin film coating on an arbitrary substrate directly from chemical vapor deposition synthesis
FI127197B (fi) 2009-09-04 2018-01-31 Canatu Oy Kosketusnäyttö ja menetelmä kosketusnäytön valmistamiseksi
FI125151B (fi) * 2010-03-05 2015-06-15 Canatu Oy Menetelmä konformisen elementin valmistamiseksi
TW201203041A (en) 2010-03-05 2012-01-16 Canatu Oy A touch sensitive film and a touch sensing device
KR101862432B1 (ko) 2010-12-17 2018-05-29 유니버시티 오브 플로리다 리서치 파운데이션, 인코포레이티드 탄소 필름상에서의 수소 산화 및 발생
US9775241B2 (en) 2011-04-04 2017-09-26 University Of Florida Research Foundation, Inc. Nanotube dispersants and dispersant free nanotube films therefrom
TWI581135B (zh) 2011-09-30 2017-05-01 加拿都公司 觸感薄膜、觸感裝置及電子裝置
US8611066B2 (en) * 2011-12-09 2013-12-17 Centers For Disease Control And Prevention Non-radioactive bipolar charger for aerosol particles
WO2015077508A1 (en) 2013-11-20 2015-05-28 University Of Florida Research Foundation, Inc. Carbon dioxide reduction over carbon-containing materials
EP3348529A1 (en) 2017-01-17 2018-07-18 Dana Lim A/S Sealer composition for edge sealing of insulation glass
FI20176000A1 (en) * 2017-11-08 2019-05-09 Canatu Oy Equipment comprising films with independent area
US11254571B1 (en) 2019-01-11 2022-02-22 United States Of America As Represented By The Secretary Of The Air Force Purification and enrichment of boron nitride nanotube feedstocks
US20200272047A1 (en) * 2019-02-22 2020-08-27 Applied Materials, Inc. Method of forming cnt-bnnt nanocomposite pellicle

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778493A (en) * 1986-04-28 1988-10-18 Maxwell Laboratories, Inc. Electrostatic precipitator with means for the enhanced charging and collection of fine particles
JP2522469B2 (ja) * 1993-02-01 1996-08-07 日本電気株式会社 カ―ボン・ナノチュ―ブの精製法
US6666905B2 (en) * 1998-10-16 2003-12-23 Midwest Research Institute Thermoelectric particle precipitator and method using same for collecting particles from fluid streams
GB9908099D0 (en) * 1999-04-12 1999-06-02 Gay Geoffrey N W Air cleaning collection device
US6546306B1 (en) * 1999-08-11 2003-04-08 Advanced Micro Devices, Inc. Method for adjusting incoming film thickness uniformity such that variations across the film after polishing minimized
AU2248301A (en) * 1999-10-27 2001-05-08 William Marsh Rice University Macroscopic ordered assembly of carbon nanotubes
US6923946B2 (en) * 1999-11-26 2005-08-02 Ut-Battelle, Llc Condensed phase conversion and growth of nanorods instead of from vapor
WO2001039292A2 (en) * 1999-11-29 2001-05-31 Trustees Of The University Of Pennsylvania Fabrication of nanometer size gaps on an electrode
AU784574B2 (en) * 2000-05-04 2006-05-04 Qunano Ab Nanostructures
CA2308092C (en) * 2000-05-10 2008-10-21 Partho Sarkar Production of hollow ceramic membranes by electrophoretic deposition
WO2002003472A2 (en) * 2000-06-29 2002-01-10 California Institute Of Technology Aerosol silicon nanoparticles for use in semiconductor device fabrication
US20020184969A1 (en) * 2001-03-29 2002-12-12 Kodas Toivo T. Combinatorial synthesis of particulate materials
US20030090190A1 (en) * 2001-06-14 2003-05-15 Hyperion Catalysis International, Inc. Field emission devices using modified carbon nanotubes
US7252749B2 (en) * 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
JP4208722B2 (ja) * 2002-03-04 2009-01-14 ウィリアム・マーシュ・ライス・ユニバーシティ 単層カーボンナノチューブを分離する方法
US20040129447A1 (en) 2002-08-07 2004-07-08 Pieder Beeli Electrical and electro-mechanical applications of superconducting phenomena in carbon nanotubes
WO2004024428A1 (en) * 2002-09-10 2004-03-25 The Trustees Of The University Pennsylvania Carbon nanotubes: high solids dispersions and nematic gels thereof
US20050118338A1 (en) * 2003-05-02 2005-06-02 Johns Hopkins University Control of the spatial distribution and sorting of micro-or nano-meter or molecular scale objects on patterned surfaces
WO2005007565A2 (en) * 2003-06-10 2005-01-27 Nuvotec, Inc. Continuous production of carbon nanomaterials using a high temperature inductively coupled plasma
JP3918178B2 (ja) * 2003-06-23 2007-05-23 大阪瓦斯株式会社 高純度ナノスケールカーボンチューブ含有炭素質材料の製造法
US20050126766A1 (en) * 2003-09-16 2005-06-16 Koila,Inc. Nanostructure augmentation of surfaces for enhanced thermal transfer with improved contact
JP2005104750A (ja) 2003-09-29 2005-04-21 Matsushita Electric Ind Co Ltd ナノチューブの精製方法
US6921684B2 (en) 2003-10-17 2005-07-26 Intel Corporation Method of sorting carbon nanotubes including protecting metallic nanotubes and removing the semiconducting nanotubes
US7754283B2 (en) * 2003-12-24 2010-07-13 Nanometrix Inc. Continuous production of carbon nanotubes
WO2005065425A2 (en) * 2003-12-30 2005-07-21 The Regents Of The University Of California Localized synthesis and self-assembly of nanostructures
GB0404713D0 (en) * 2004-03-02 2004-04-07 Isis Innovation Separation of carbon nanotubes
FI121334B (fi) * 2004-03-09 2010-10-15 Canatu Oy Menetelmä ja laitteisto hiilinanoputkien valmistamiseksi
US7884300B2 (en) * 2004-08-02 2011-02-08 University Of Tsukuba Method of carbon nanotube separation, dispersion liquid and carbon nanotube obtained by the separation method
KR100647303B1 (ko) * 2004-12-18 2006-11-23 삼성에스디아이 주식회사 전기영동법을 이용한 탄소나노튜브의 수직 정렬방법
JP5232637B2 (ja) * 2005-03-25 2013-07-10 インスティトゥーツ ナショナル デ ラ レシェルシェ サイエンティフィック ナノメートル・フィラメント状構造体の堆積方法および装置
WO2006125457A1 (en) * 2005-05-26 2006-11-30 ETH Zürich Manufacturing method for the integration of nanostructures into microchips
WO2006138263A2 (en) 2005-06-13 2006-12-28 Electrox Corporation System and method for the manipulation, classification sorting, purification, placement, and alignment of nano fibers using electrostatic forces and electrographic techniques
US7883927B2 (en) * 2005-08-31 2011-02-08 Micron Technology, Inc. Method and apparatus to sort nanotubes
US7799196B2 (en) * 2005-09-01 2010-09-21 Micron Technology, Inc. Methods and apparatus for sorting and/or depositing nanotubes
FI121540B (fi) * 2006-03-08 2010-12-31 Canatu Oy Menetelmä, jolla siirretään korkean aspektisuhteen omaavia molekyylirakenteita

Similar Documents

Publication Publication Date Title
JP2009528971A5 (ja)
JP5554501B2 (ja) 高アスペクト比構造の分離方法
EP2046972B1 (en) Method of applying an elongated molecule to a surface
US8545790B2 (en) Cross-linked carbon nanotubes
Dao et al. Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology
US20180244518A1 (en) Method of assembling nanoscale and microscale objects into three-dimensional structures
WO2006138263A3 (en) System and method for the manipulation, classification sorting, purification, placement, and alignment of nano fibers using electrostatic forces and electrographic techniques
Ethier et al. Modeling individual and pairs of adsorbed polymer-grafted nanoparticles: structure and entanglements
Tong et al. Sedimentation of colloidal particles through a polymer solution
US10978965B2 (en) Triboelectric generator
Chen et al. Binary hairy nanoparticles: Recent progress in theory and simulations
Huang et al. Fabrication and electromechanical characterization of near-field electrospun composite fibers
Kim et al. Nanoporous bicontinuous structures via addition of thermally-stable amphiphilic nanoparticles within block copolymer templates
Cohen et al. Mechanical behavior of vertically aligned carbon nanotubes under electrostatic tension
Marshall et al. Microgravity studies of aggregation in particulate clouds
Choi et al. Effect of the conformation changes of polyelectrolytes on organic thermoelectric performances
Ünal et al. Carbon nanotube decorated magnetic microspheres as an affinity matrix for biomolecules
US7851028B2 (en) Method of combing an elongated molecule
Balazs et al. Patterned polymer films
US20070009909A1 (en) Sorting of carbon nanotubes through arrays
US7618771B2 (en) Method of combing a nucleic acid
Gooneie et al. Polymeric Solvation Shells around Nanotubes: Mesoscopic Simulation of Interfaces in Nanochannels
Inaba et al. Contact Conductivity of Uncapped Carbon Nanotubes Formed by Silicon Carbide Decomposition
Bui et al. Atomic force microscopy of DNA self-assembled nanostructures for device applications
Sun et al. Fabrication of asymmetric-gradient-concentric ring patterns via evaporation of droplets of PMMA solution at different substrate temperatures