JP2009302836A - 撮像素子の位置調整方法、カメラモジュール製造方法及び装置 - Google Patents

撮像素子の位置調整方法、カメラモジュール製造方法及び装置 Download PDF

Info

Publication number
JP2009302836A
JP2009302836A JP2008154225A JP2008154225A JP2009302836A JP 2009302836 A JP2009302836 A JP 2009302836A JP 2008154225 A JP2008154225 A JP 2008154225A JP 2008154225 A JP2008154225 A JP 2008154225A JP 2009302836 A JP2009302836 A JP 2009302836A
Authority
JP
Japan
Prior art keywords
measurement
adjustment
imaging
focus
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008154225A
Other languages
English (en)
Other versions
JP4960307B2 (ja
Inventor
Shinichi Kikuchi
慎市 菊池
Yoshio Nojima
良夫 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008154225A priority Critical patent/JP4960307B2/ja
Publication of JP2009302836A publication Critical patent/JP2009302836A/ja
Application granted granted Critical
Publication of JP4960307B2 publication Critical patent/JP4960307B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)

Abstract

【課題】カメラモジュールの撮影レンズと撮像素子の位置調整を短時間、かつ高精度に行なう。
【解決手段】レンズ保持機構44、素子移動機構45にレンズユニット15、素子ユニット16をそれぞれ保持させる。第1スライドステージ54でチャートユニット41を光軸S方向に移動させながら、撮影レンズ6が結像した測定チャート52を撮像素子12で撮像し、撮像面12a上に設定された少なくとも5つの測定点の合焦位置を測定する。各測定点の合焦位置の座標から、平面近似により各測定点の調整位置を算出する。各測定点が各調整位置に一致するように、第3スライドステージ76及び2軸回転ステージ74で素子ユニット16の位置及び傾きを調整する。
【選択図】図5

Description

本発明は、撮影レンズに対する撮像素子の位置を調整する方法と、レンズユニット及び素子ユニットを有するカメラモジュールの製造方法及び装置とに関する。
携帯電話機等の小型電子機器に組み込まれて撮影機能を付与するカメラモジュールが知られている。カメラモジュールは、撮影レンズが組み込まれたレンズユニットと、CCDやCMOS等の撮像素子が組み込まれた素子ユニットとを一体化したもので、携帯電話機等の小さな筐体内に組み込めるように小型化されている。
従来、カメラモジュールには、100〜200万画素程度の撮像素子が用いられていた。この撮像素子は、開口率が高いので、撮影レンズと撮像素子との厳密な位置調整を行わなくても画素数に見合った解像度の画像を得ることができる。
現在のカメラモジュールは、一般のデジタルカメラと同様に撮像素子の高画素化が進んでおり、例えば300〜500万画素の撮像素子を使用したカメラモジュールが増えている。この撮像素子は、開口率が低くなるので、画素数に見合った解像度の画像を得るには、撮影レンズと撮像素子との厳密な位置調整が必要となる。
従来、カメラモジュールの組立装置として、レンズユニットの撮影レンズが結像した測定チャートの像を撮像素子で撮像させ、撮像素子が生成した画像の解像度の値が予め決められた範囲に収まるように、レンズユニットの姿勢を調整する発明がなされている(例えば、特許文献1参照)。
また、ズームレンズの調整方法として、ズームレンズ中の固定レンズの解像度を表すMTF値(Modulation Transfer Function)がピークとなるデフォーカス位置を4点以上求め、その中の任意の3点から4つ以上の平面を規定し、各平面の法線ベクトルの平均ベクトルにより求められる平面から、固定レンズの傾き量を算出し、この傾き量を得るように固定レンズを移動させる発明がなされている(例えば、特許文献2参照)。
特開2005−198103号公報 特開2003−043328号公報
特許文献1には、レンズユニットの具体的な調整方法が記載されていないので、解像度の値が所定範囲内に収まるように、手動で試行錯誤的にレンズユニットの姿勢を調整していると考えられる。この場合、調整精度は作業者の習熟度に大きな影響を受けてしまい、調整に時間がかかる。
特許文献2記載の発明は、固定レンズの傾きを手動で調整する調整機構をズームレンズに設けているが、その調整精度を保証する仕組みがない。また、手動では分単位の微妙な調整は困難であり、固定レンズの傾きを高精度に調整することはできない。更に、カメラモジュールに用いるレンズユニットは、一般的なデジタルカメラに用いられるズームレンズよりも小さいため、組立済みのレンズユニット内で撮影レンズを移動させることは難しく、カメラモジュールの製造に適用することはできない。
本発明は、上記問題を解決するため、レンズユニット、またはレンズユニット内の撮影レンズを移動させずに、撮影レンズと撮像素子の位置調整を短時間、かつ高精度に行なうことを目的とする。
上記目的を達成するため、本発明は、撮影レンズの光軸に撮像面が直交するように配置した撮像素子の位置調整方法において、前記撮影レンズの光軸方向に沿って設定された複数の測定位置に測定チャートを移動させながら前記撮像素子で撮像を行うことにより前記測定位置毎の撮像信号を取得し、前記撮像面上に設定された少なくとも5つの測定点の合焦度合を表す合焦評価値を前記各撮像信号のそれぞれから算出する評価値算出工程と、算出した前記各合焦評価値を基に前記測定点毎の合焦位置を決定する合焦位置決定工程と、前記測定点毎に得られた前記各合焦位置と前記撮像面上における前記各測定点の位置とに基づいて平面近似された近似結像面を算出し、この近似結像面に前記撮像面を一致させるために必要な前記各測定点の調整位置を算出する調整位置算出工程と、前記各測定点が前記調整位置に一致するように、前記撮像素子の光軸方向の位置と、前記光軸に直交する2つの軸の傾きとを自動調整する位置調整工程とを含むことを特徴とする。
前記合焦位置決定工程は、前記各測定点の前記合焦評価値が最大となる前記測定位置を求め、その測定位置を前記合焦位置として決定することが好ましい。
前記各合焦位置の座標を算出する工程と、算出された前記各座標に対し、前記測定チャートの移動量に応じた座標値を前記撮像素子の移動量に応じた座標値に変換する座標変換処理を行う工程とを有し、前記調整位置算出工程は、変換後の前記各座標を基に、前記近似結像面の算出及び前記各調整位置の算出を行うことが好ましい。
前記合焦評価値は、コントラスト伝達関数値であることが好ましい。また、前記コントラスト伝達関数値は、前記各測定点で前記光軸に直交する面上に設定された複数の方向のそれぞれに対して算出され、前記測定点ごとに前記各コントラスト伝達関数値に基づく複数の前記合焦位置が決定されることが好ましい。
前記測定点は、前記撮像面の中心と、前記撮像面の4象限上とに1つずつ設定されていることが好ましい。また、前記位置調整工程の後に前記合焦位置測定工程を行って、調整後の前記各測定点の位置を確認する位置確認工程を含むことが好ましい。さらに、前記合焦位置測定工程と、前記調整位置算出工程と、前記位置調整工程とを複数回繰り返して、前記各測定点を前記調整位置に一致させることが好ましい。
撮影レンズが組み込まれたレンズユニットに、撮像素子が組み込まれた素子ユニットを位置調整して固定する本発明のカメラモジュールの製造方法は、前記素子ユニットの位置を調整する際に、上述した撮像素子の位置調整方法を用いている。
撮影レンズが組み込まれたレンズユニットに、撮像素子が組み込まれた素子ユニットを位置調整して固定する本発明のカメラモジュールの製造装置は、前記撮影レンズの光軸方向に沿って設定された複数の測定位置のそれぞれに測定チャートを移動させる測定チャート移動手段と、前記測定チャートを移動させながら前記撮像素子で撮像を行うことにより取得された前記測定位置毎の撮像信号を基に、前記撮像面上に設定された少なくとも5つの測定点の合焦度合を表す合焦評価値を前記各撮像信号のそれぞれから算出する評価値算出手段と、算出した前記各合焦評価値を基に前記測定点毎の合焦位置を決定する合焦位置決定手段と、前記測定点毎に得られた前記各合焦位置と前記撮像面上における前記各測定点の位置とに基づいて平面近似された近似結像面を算出し、この近似結像面に前記撮像面を一致させるために必要な前記各測定点の調整位置を算出する調整位置算出手段と、前記素子ユニットを保持して前記撮影レンズの光軸方向に移動させ、前記光軸に直交する2つの軸の回りで前記素子ユニットの傾きを変化させる素子移動手段と、前記各測定点が前記調整位置に一致するように、前記素子移動手段を制御して前記素子ユニットの光軸方向の位置と傾きとを自動調整させる制御手段とを備えたことを特徴とするカメラモジュール製造装置。
前記合焦位置決定手段は、前記各測定点の前記合焦評価値が最大となる前記測定位置を求め、その測定位置を前記合焦位置として決定することが好ましい。
前記各合焦位置の座標を算出する座標算出手段と、算出された前記各座標に対し、前記測定チャートの移動量に応じた座標値を前記撮像素子の移動量に応じた座標値に変換する座標変換処理を行う座標変換手段とを有し、前記調整位置算出手段は、変換後の前記各座標を基に、前記近似結像面の算出及び前記各調整位置の算出を行うことが好ましい。
前記素子移動手段は、前記素子ユニットを保持する保持機構と、前記保持機構を前記光軸に直交する2つの軸の回りで傾ける2軸回転ステージと、前記2軸回転ステージを前記光軸方向に沿って移動させるスライドステージと、前記撮像素子の接点に接触して前記撮像素子と前記制御手段とを電気的に接続させる接続部とを有することが好ましい。
本発明によれば、撮像素子の各測定点が、各測定点の最適な合焦位置に近づくように撮像素子、または素子ユニットが位置調整されるので、高解像度で高画質な画像を得ることができる。
各測定点の合焦評価値の測定、合焦位置の決定、調整位置の算出、位置調整の全てが自動で行われるので、短時間で高精度な位置調整を行うことができ、作業者の習熟度による影響を受けない。
合焦評価値としてコントラスト伝達関数値を用いたので、合焦位置を高精度に測定することができる。更に、各測定点で複数のコントラスト伝達関数値を算出し、各コントラスト伝達関数値に基づく複数の合焦位置を決定するので、解像度が高い画像を得ることができる。
図1、2に示すカメラモジュール2は、例えば、1辺が10mm角程度のサイズを有する矩形状である。カメラモジュール2の前面中央には、撮影開口5が形成されている。撮影開口5の奥には、撮影レンズ6が配置されている。撮影開口5の周囲の対角線上には、カメラモジュール2の製造時の位置決めに用いられる3つないしは4つの位置決め面7〜9が設けられている。この位置決め面7〜9のうち、同じ対角線上に位置する2つの位置決め面7、9の略中央には、位置決め面よりも小径の位置決め穴7a,9aが形成されている。これにより、空間上の絶対位置及び傾きを高精度に規制する。
カメラモジュール2の背面には、矩形の開口11が形成されている。この開口11は、内蔵されている撮像素子12の背面に設けられた複数の接点13を露出させている。
図3に示すように、カメラモジュール2は、撮影レンズ6が組み込まれたレンズユニット15と、撮像素子12が組み込まれた素子ユニット16から構成されている。素子ユニット16は、レンズユニット15の背面側に取り付けられている。
図4に示すように、レンズユニット15は、略筒状に形成されたユニット本体19と、このユニット本体19内に組み込まれたレンズ鏡筒20と、ユニット本体19の前面側に固着される前カバー21から構成されている。前カバー21には、上述した撮影開口5、位置決め面7〜9等が設けられている。ユニット本体19、レンズ鏡筒20、前カバー21は、例えばプラスチックで形成されている。
レンズ鏡筒20は、円筒状に形成されており、例えば3群構成の撮影レンズ6が組み込まれている。レンズ鏡筒20は、ユニット本体19の前面に取り付けられた金属製の板バネ24に保持されており、板バネ24の弾性によって光軸S方向に移動される。
レンズ鏡筒20の外周とユニット本体19の内周には、互いに対峙するように永久磁石25と電磁石26とが取り付けられ、オートフォーカス機能を実現している。電磁石26は、供給される電流の向きが切り換えられることにより極性が変化する。レンズ鏡筒20は、永久磁石25が電磁石26の極性変化に応じて反発または吸引されることにより、光軸S方向に移動してフォーカスを調整している。電磁石26に電流を供給する接点26aは、例えば、ユニット本体19の下面から露出するように設けられている。なお、オートフォーカス機能に用いる機構としては、パルスモータ+送りネジ、ピエゾ振動子による送り機構等も考えられる。
素子ユニット16は、矩形の枠状に形成された素子枠29と、撮像面12aがレンズユニット15側を向くように素子枠29内に取り付けられた撮像素子12から構成されている。素子枠29は、例えばプラスチックで形成されている。
素子枠29の前面側方と、ユニット本体19の側面及び背面の間の角部には、4つの嵌合片32と、これらの嵌合片32が嵌合される凹状の嵌合部33がそれぞれ設けられている。これらの嵌合片32及び嵌合部33の勘合後に、嵌合部33内に接着剤が充填されることで、レンズユニット15と素子ユニット16とが固着される。
ユニット本体19の両側面の背面側角部には、高さ位置の異なる一対の切欠36が設けられている。また、素子枠29の両側面には、一対の平面部37が設けられている。切欠36及び平面部37は、レンズユニット15と素子ユニット16との組立時に、両者を位置決めして保持するために用いられる。なお、切欠36及び平面部37を設けているのは、ユニット本体19及び素子枠29が射出成形により形成され、側面が型抜きのための緩やかなテーパー形状とされるためであり、テーパーのない面を保持する場合には、設けなくてもよい。
次に、上記レンズユニット15に対する素子ユニット16の位置を調整し、調整後に素子ユニット16をレンズユニット15に固定するカメラモジュール製造装置について説明する。図5に示すカメラモジュール製造装置40は、例えば、チャートユニット41と、集光ユニット42と、レンズ位置決めプレート43と、レンズ保持機構44と、素子移動機構45と、接着剤供給器46と、紫外線ランプ47と、これらを制御する制御部48から構成されている。これらは、共通の作業台49上に設置されている。
チャートユニット41は、箱状の筐体41aと、筐体41a内に嵌合される測定チャート52と、筐体41a内に組み込まれて測定チャート52を背面から平行光で照明する光源53とから構成されている。測定チャート52は、例えば、光拡散性を有するプラスチックによって略矩形の薄板状に形成されている。また、測定チャート52と光源53とは、別々の筐体に組み込んでも良い。
チャートユニット41は、測定チャート52の表面が光軸Sと略直交するように、第1スライドステージ54のステージ部54aに取り付けられている。第1スライドステージ54は、いわゆる自動精密ステージと呼ばれるもので、図示しないモータの回転によってボールネジを回転させることにより、このボールネジに噛合したステージ部54a、及びこれに取り付けられたチャートユニット41を光軸S方向に水平に移動させる。また、第1スライドステージ54は、制御部48と電気的に接続されている。ステージ部54aの移動は、制御部48によって制御される。
なお、測定チャート52と光源53とが別々の筐体に組み込まれている場合には、光源53を固定したまま、測定チャート52のみを移動させても良い。このように、光源53を移動させないようにすれば、第1スライドステージ54の移動負荷が減るので、装置の簡素化を図ることができる。
図6に示すように、測定チャート52の前面には、中央と、4象限上の左上、左下、右上、右下とに第1〜第5チャート画像56〜60が印刷されている。第1〜第5チャート画像56〜60は、黒色の線を所定間隔で配列させたもので、それぞれ水平方向に配列させた水平チャート画像56a〜60aと、垂直方向に配列させた垂直チャート画像56b〜60bから構成されている。
集光ユニット42は、チャートユニット41に対面するように配置されている。集光ユニット42は、作業台49に固定されたブラケット42aと、集光レンズ42bから構成されている。集光レンズ42bは、チャートユニット41から放射された光を集光し、ブラケット42aに形成された開口42cを通してレンズユニット15に入射させる。
レンズ位置決めプレート43は、例えば金属によって剛性を有するように形成されており、集光ユニット42により集光された光を通過させる開口43aが設けられている。
図7に示すように、レンズ位置決めプレート43のレンズ保持機構44に対する面には、開口43aの周囲に3個の当接ピン63〜65が設けられている。3個の当接ピン63〜65のうち、対角線上に配置された2個の当接ピン63、65の先端には、当接ピンよりも小径の挿入ピン63a,65aが設けられている。当接ピン63〜65は、レンズユニット15の位置決め面7〜9を受け、挿入ピン63a,65aは、位置決め穴7a,9aに挿入されてレンズユニット15を位置決めする。
レンズ保持機構44は、チャートユニット41に前面が向くようにレンズユニット15を保持する保持プレート68と、この保持プレート68を光軸S方向に移動させる第2スライドステージ69とから構成されている。図7に示すように、保持プレート68は、第2スライドステージ69のステージ部69aに保持される水平基部68aと、この水平基部68aから上方及び水平方向に突設されてレンズユニット15の一対の切欠36に嵌合される一対の保持アーム68bとを備えている。
保持プレート68には、電磁石26の接点26aに接触する複数のプローブピン70aを備えた第1プローブユニット70が取り付けられている。この第1プローブユニット70は、制御部48に接続されており、電磁石26と制御部48とを電気的に接続する。なお、第2スライドステージ69は、第1スライドステージ54とサイズ等が異なる以外はほぼ同様のものなので、詳しい説明は省略する。
素子移動機構45は、チャートユニット41に撮像面12aが向くように素子ユニット16を保持するチャックハンド72と、チャックハンド72が取り付けられた略クランク状のブラケット73を保持して光軸Sに直交する2軸の回りで傾きを調整する2軸回転ステージ74と、2軸回転ステージ74が取り付けられたブラケット75を保持して光軸S方向に移動させる第3スライドステージ76とから構成されている。
チャックハンド72は、図7に示すように、略クランク状に屈曲された一対の挟持部材72aと、これらの挟持部材72aを光軸Sに直交するX軸方向で移動させるアクチュエータ72bとから構成されている。挟持部材72aは、素子枠29の平面部37を挟み込んで素子ユニット16を保持する。また、チャックハンド72は、レンズ位置決めプレート43に位置決めされたレンズユニット15の撮影レンズ6の光軸Sと撮像面12aの中心とが略一致するように、挟持部材72aに挟持された素子ユニット16を位置決めする。
2軸回転ステージ74は、いわゆる自動2軸ゴニオステージと呼ばれるもので、図示しない2つのモータの回転により、素子ユニット16をX軸の回りのθX方向と、光軸S及びX軸に直交するY軸の回りのθY方向で傾ける。また、2軸回転ステージ74は、撮像面12aの中心を通る軸を回転中心としてθX方向、θY方向に傾けることにより、各方向に傾けた際にも光軸Sと撮像面12aの中心との位置関係がずれないようにする。
ブラケット75は、第3スライドステージ76のステージ部76aに取り付けられる。第3スライドステージ76は、ステージ部76aを光軸S方向に移動させることにより、2軸回転ステージ74、及びこれに保持される素子ユニット16をX軸及びY軸に直交するZ軸方向に移動させる。なお、第3スライドステージ76は、第2スライドステージ69と同様、第1スライドステージ54や第2スライドステージ69とサイズ等が異なる以外はほぼ同様のものなので、詳しい説明は省略する。
第3スライドステージ76は、制御部48と電気的に接続されている。ステージ部76aの移動は、制御部48によって制御される。制御部48は、素子ユニット16の位置調整を開始すると、第3スライドステージ76を制御してステージ部76aをZ軸方向に移動させ、Z軸上に予め決められた基準位置に素子ユニット16を配置する。
2軸回転ステージ74には、素子ユニット16の開口11を通して撮像素子12の各接点13に接触する複数のプローブピン79aを備えた第2プローブユニット79が取り付けられている。この第2プローブユニット79は、制御部48に接続されており、撮像素子12と制御部48とを電気的に接続する。
接着剤供給器46は、素子ユニット16の位置調整が終了してレンズユニット15の嵌合部33に素子ユニット16の嵌合片32が嵌合されたときに、嵌合部33内に紫外線硬化接着剤を供給する。紫外線ランプ47は、嵌合部33に紫外線を照射して紫外線硬化接着剤を硬化させる。なお、接着剤としては、瞬間接着剤、熱硬化接着剤、自然硬化接着剤等も利用可能である。
図8に示すように、上で説明した各部は制御部48に接続されている。制御部48は、例えば、CPUやROM、RAM等を備えたマイクロコンピュータであり、ROMに記憶されている制御プログラムに基づいて各部を制御している。また、制御部48には、各種設定を行うキーボードやマウス等の入力装置81と、設定内容や作業内容、作業結果等が表示されるモニタ82とが接続されている。
AFドライバ84は、電磁石26を駆動する駆動回路であり、第1プローブユニット70を介して電磁石26に電流を流している。撮像素子ドライバ85は、撮像素子12を駆動する駆動回路であり、第2プローブユニット79を介して撮像素子12に制御信号を入力している。
合焦位置測定回路87は、図9に示す撮像素子12の撮像面12a上に設定された第1〜第5測定点89a〜89eの合焦位置を測定する合焦位置測定手段を構成している。第1〜第5測定点89a〜89eは、撮像面12aの中央と、4象限上の左上、左下、右上、右下とに設定されており、測定チャート52の第1〜第5チャート画像56〜60に対応している。なお、測定チャート52は、撮影レンズ6により上下左右が反転して結像されるので、第2〜第5測定点89b〜89eは、それぞれ対角線上の反対側に配置された第2〜第5チャート画像57〜60を撮像する。
制御部48は、第1〜第5測定点89a〜89eの合焦位置を測定する際に、光軸S方向に沿って設定された複数の測定位置にチャートユニット41を移動させ、各測定位置で撮影レンズ6が結像した第1〜第5チャート画像56〜60を撮像素子12に撮像させる。合焦位置測定回路87は、第2プローブユニット79から入力された撮像信号から第1〜第5測定点89a〜89eに対応する画素の信号を抽出し、その画素信号から第1〜第5測定点89a〜89eの合焦度合を表す合焦評価値を算出する。
本実施形態では、合焦評価値として、コントラスト伝達関数値(Contrast Transfer Function:以下、CTF値と呼ぶ)を用いている。CTF値は、空間周波数に対する像のコントラストを表す値であり、CTF値が高いときに合焦しているとみなすことができる。よって、第1〜第5測定点89a〜89eごとにCTF値が最も高い測定位置を求めることで、合焦位置を得ることができる。
合焦位置測定回路87は、各測定点89a〜89eで光軸に直交する面上に設定された複数の任意の方向のそれぞれに対してCTF値を算出し、測定点ごとに各CTF値に基づく複数の合焦位置を決定することができる。CTF値が算出される方向としては、例えば任意の第1方向と、この第1方向に直交する第2方向が好ましい。本実施形態では、撮像面12aの横方向である水平方向(X軸方向)と、これに直交する垂直方向(Y軸方向)のCTF値であるH−CTF値及びV−CTF値をそれぞれ算出し、これらの値が最大となる水平合焦位置及び垂直合焦位置を求めている。
CTF値は、撮像素子12から出力された撮像信号の出力値の最大値と最小値との差を、出力値の最大値と最小値との和で除して求められる。例えば撮像信号の出力値の最大値をPとし、最小値をQとしたとき、CTF値は、以下の式(1)によって算出される。
CTF値=(P−Q)/(P+Q)・・・(1)
図10、11は、第1〜第5測定点89a〜89eの各測定位置におけるH−CTF値とV−CTF値の算出結果の一例である。符号A〜Eは、第1〜第5測定点89a〜89eのCTF値を示している。また、測定位置「0」は、素子ユニット16を基準位置に配置した際に、測定チャート52が撮像面12a上に合焦する撮影レンズ6の設計上のチャートユニット41の位置を表している。すなわち、レンズユニット15が理想的に製造されている場合には、この「0」の位置が第1〜第5測定点89a〜89eの水平合焦位置及び垂直合焦位置となる。
図10の例では、測定位置a1〜e1のときに第1〜第5測定点89a〜89eのH−CTF値が最も高い値となる。また、図11の例では、測定位置a2〜e2のときに第1〜第5測定点89a〜89eのV−CTF値が最も高い値となる。この場合、合焦位置測定回路87は、測定位置a1〜e1を水平合焦位置として決定し、測定位置a2〜e2を垂直合焦位置として決定する。
合焦位置測定回路87は、各合焦位置を決定すると、各合焦位置と撮像面12a上の第1〜第5測定点89a〜89eの位置とに基づいて、Z軸上の測定位置「0」に位置するX−Y平面と撮影レンズ6の光軸Sとの交点を原点とするXYZの三次元空間上の座標を合焦位置毎に算出する。
合焦位置測定回路87には、座標変換部90が設けられている。合焦位置測定回路87が算出した各合焦位置の座標のうち、Z軸の座標値は、チャートユニット41の移動量に応じた値になっている。座標変換部90は、合焦位置測定回路87が算出した各座標に対して座標変換処理を施すことにより、チャートユニット41の移動量に応じた座標値を素子ユニット16の移動量に応じた座標値に変換する。このように座標変換を行うことにより、素子ユニット16を基準にし、チャートユニット41を移動させて取得した各合焦位置の座標から、チャートユニット41を基準にし、素子ユニット16を移動させて取得した各合焦位置の座標を仮想的に求めることができる。
座標変換部90は、各座標のZ軸の座標値をm、撮影レンズ6の倍率をnとしたとき、以下の式(2)によって、チャートユニット41の移動量に応じた座標値を素子ユニット16の移動量に応じた座標値に変換する。合焦位置測定回路87は、各合焦位置の座標を座標変換部90に変換させた後、変換後の各座標を調整位置算出回路92に入力する。
変換後の座標値=m/n・・・(2)
図12、13は、図10、11の例で取得した各合焦位置の変換後の座標をXYZの3軸上でプロットしたグラフである。このように、水平合焦位置a1〜e1及び垂直合焦位置a2〜e2の座標により表される実際の結像面は、各部品の製造誤差、組立誤差により、Z軸の「0」上に形成される設計上の結像面に対してずれてしまう。
調整位置算出回路92は、合焦位置測定回路87及び制御部48と電気的に接続されている。調整位置算出回路92は、合焦位置測定回路87から入力された各座標に基づいて、平面近似された近似結像面F(図14、15参照)を算出する。そして、調整位置算出回路92は、この近似結像面Fに撮像面12aを一致させるために必要な第1〜第5測定点89a〜89eの調整位置を算出する。
近似結像面Fは、例えば、aX+bY+cZ+d=0の式(a〜dは任意の定数)で表される。調整位置算出回路92は、撮像面12aをX−Y平面に一致させた際の第1〜第5測定点89a〜89eのX、Yの座標を、算出した近似結像面Fの式に代入することにより、各調整位置を算出する。例えば、調整位置算出回路92は、第1測定点89aの調整位置を算出する場合、光軸Sとの交点に位置する第1測定点89aのX、Yの座標(0,0)を上式に代入し、Z=−d/cを求める。そして、調整位置算出回路92は、(0,0,−d/c)を第1測定点89aの調整位置の座標として算出する。
調整位置算出回路92は、各調整位置を算出すると、それらを制御部48に入力する。図14、15は、図12、13の各座標から近似結像面Fを算出したグラフである。この場合、調整位置算出回路92は、上記の手順に基づいてa3〜e3を調整位置として算出する。
制御部48は、調整位置算出回路92から各調整位置が入力されると、2軸回転ステージ74及び第3スライドステージ76を制御して、第1〜第5測定点89a〜89eが各調整位置a3〜e3に一致するように、素子ユニット16のZ方向位置とθX方向及びθY方向の位置を調整する。この際、θX及びθYの角度は、調整位置算出回路92が算出した各調整位置の座標から計算すればよい。
図16、17は、図14、15で算出された各調整位置a3〜e3を基に素子ユニット16の位置調整を行った際の、調整後のH−CTF値とV−CTF値との算出結果を示している。図10、11と同様に、符号A〜Eは、第1〜第5測定点89a〜89eのCTF値を示している。また、図18、19は、第1〜第5測定点89a〜89eの水平合焦位置a4〜e4及び垂直合焦位置a5〜e5の座標をXYZの3軸上でプロットしたグラフである。これらのグラフから分るように、上記のように素子ユニット16の位置調整を行うことによって、第1〜第5測定点89a〜89eのそれぞれが、対応する水平合焦位置及び垂直合焦位置に近づけられる。
次に、上記実施形態の作用について、図20のフローチャートを参照しながら説明する。
レンズ保持機構44によるレンズユニット15の保持(S1)について説明する。制御部48は、第2スライドステージ69を制御して保持プレート68を移動させることにより、レンズ位置決めプレート43と保持プレート68との間にレンズユニット15が挿入可能なスペースを形成している。レンズユニット15は、図示しないロボットにより保持されて、レンズ位置決めプレート43と保持プレート68との間に移動される。
制御部48は、光学センサ等でレンズユニット15の移動を検知し、第2スライドステージ69のステージ部69aをレンズ位置決めプレート43に近付ける方向に移動させる。保持プレート68は、一対の保持アーム68bを一対の切欠36に嵌合させてレンズユニット15を保持する。
図示しないロボットによるレンズユニット15の保持解除後、保持プレート68は更にレンズ位置決めプレート43に向けて移動され、位置決め面7〜9が当接ピン63〜65に当接し、位置決め穴7a,9aに挿入ピン63a,65aが挿入される。これにより、レンズユニット15は、Z軸方向と、X軸方向及びY軸方向とで位置決めされる。
なお、位置決め面7〜9及び当接ピン63〜65は3個ずつしか設けられておらず、位置決め穴7a,9a及び挿入ピン63a,65aは対角線上に2個しか設けられていないので、レンズユニット15が誤ってセットされることはない。
次に、素子移動機構45による素子ユニット16の保持(S2)について説明する。制御部48は、第3スライドステージ76を制御して2軸回転ステージ74を移動させることにより、保持プレート68と2軸回転ステージ74との間に素子ユニット16が挿入可能なスペースを形成している。素子ユニット16は、図示しないロボットにより保持されて、保持プレート68と2軸回転ステージ74との間に移動される。
制御部48は、光学センサ等で素子ユニット16の移動を検知し、第3スライドステージ76のステージ部76aを保持プレート68に近付ける方向に移動させる。そして、チャックハンド72の挟持部材72aにより、平面部37を挟み込ませて素子ユニット16を保持させる。また、第2プローブユニット79の各プローブ79aが撮像素子12の各接点13に接触され、撮像素子12と制御部48とが電気的に接続される。この後、図示しないロボットによる素子ユニット16の保持が解除される。
制御部48は、ロボットによる素子ユニット16の保持が解除された後、第3スライドステージ76を制御して2軸回転ステージ74をレンズ保持機構44に近づく方向に移動させ、予め決められた基準位置に素子ユニット16を配置する。
制御部48は、素子ユニット16を基準位置に配置した後、第1スライドステージ54を制御してチャートユニット41を最初の測定位置に移動させる(S3)。制御部48は、チャートユニット41を移動させると、光源53を発光させる。そして、AFドライバ84で撮影レンズ6を所定の焦点位置に移動させ、撮影レンズ6が結像した第1〜第5チャート画像56〜60を撮像素子12に撮像させる(S4)。撮像素子12から出力された撮像信号は、第2プローブユニット79を介して合焦位置測定回路87に入力される。
合焦位置測定回路87は、入力された撮像信号の出力値の最大値と最小値から、撮像面12a上に設定された第1〜第5測定点89a〜89eのH−CTF値及びV−CTF値を算出する(S5)。H−CTF値及びV−CTF値は、例えば、制御部48内のRAMに記憶される。
チャートユニット41は、光軸S方向に沿って設定された複数の測定位置に順次移動され、合焦位置測定回路87は、全ての測定位置で第1〜第5測定点89a〜89eのH−CTF値及びV−CTF値を算出する(S6、S7)。
合焦位置測定回路87は、各測定点89a〜89eのH−CTF値及びV−CTF値が最も高くなる測定位置を、水平合焦位置及び垂直合焦位置として決定する(S8)。合焦位置測定回路87は、各合焦位置を決定すると、各合焦位置と撮像面12a上の第1〜第5測定点89a〜89eの位置とに基づいて、各合焦位置の座標を算出する(S9)。
合焦位置測定回路87は、各座標を算出すると、それらの各座標を座標変換部90に入力する。座標変換部90は、入力された各座標に対して座標変換処理を施し、各座標のZ軸の座標値をチャートユニット41の移動量に応じた座標値から素子ユニット16の移動量に応じた座標値に変換する(S10)。
合焦位置測定回路87は、座標変換部90に各座標を変換させた後、変換後の各座標を調整位置算出回路92に入力する。調整位置算出回路92は、合焦位置測定回路87から入力された各座標に基づいて、平面近似された近似結像面Fを算出する(S11)。そして、調整位置算出回路92は、前述のように、第1〜第5測定点89a〜89eの各座標を近似結像面Fの式に代入することにより、近似結像面Fに撮像面12aを一致させるために必要な第1〜第5測定点89a〜89eの調整位置を算出する(S12)。調整位置算出回路92は、各調整位置を算出すると、それらを制御部48に入力する。
制御部48は、調整位置算出回路92から各調整位置が入力されると、2軸回転ステージ74及び第3スライドステージ76を制御して、第1〜第5測定点89a〜89eが各調整位置に一致するように、素子ユニット16のZ方向位置とθX方向及びθY方向の位置を調整する(S13)。この後、第1〜第5測定点89a〜89eの合焦位置を確認する確認工程が実施される。この確認工程では、上述したS3〜S8の工程が再び実行される(S14)。
制御部48は、確認工程を行った後、素子ユニット16を光軸S方向に移動させてレンズユニット15に組み合わせる(S15)。制御部48は、各ユニット15、16を組み合わせると、接着剤供給部46を制御して嵌合部33内に紫外線硬化接着剤を供給し(S16)、紫外線ランプ47を点灯させて紫外線硬化接着剤を硬化させる(S17)。これにより、各ユニット15、16が一体化され、カメラモジュール2が完成する。完成したカメラモジュール2は、図示しないロボットにより、カメラモジュール製造装置40から取り出される(S18)。
以上説明したように、撮像素子12は、撮像面12a上に設定された第1〜第5測定点89a〜89eが、各測定点の最適な合焦位置に近づくように位置調整されるので、高解像度の画像を得ることができる。また、第1〜第5測定点89a〜89eの合焦位置の測定、調整位置の算出、位置調整の全てが自動で行われるので、短時間で高精度な位置調整を行うことができ、作業者の習熟度による影響も受けない。
ところで、上記実施形態では、チャートユニット41を各測定位置に移動させることによって各合焦位置を測定するようにしたが、各合焦位置の測定方法としては、この他に、レンズユニット15や素子ユニット16を移動させることも考えられる。しかしながら、レンズユニット15や素子ユニット16を移動させる場合には、数μm〜十数μm程度と各測定位置間のストロークを非常に短くしなければならないため、位置制御に係るコストが嵩んでしまうという問題がある。
これに対し、チャートユニット41を移動させるようにすれば、(2)式に示されるように、素子ユニット16を移動させる場合に比べて移動量をn倍にすることができるので、各測定位置間のストロークが長くなり、位置制御に係るコストを抑えることができる。
また、素子ユニット16を移動させるようにすると、重量のある2軸回転ステージ74も一緒に移動させなければならないため、移動に時間が掛かり、これにともなって素子ユニット16の位置調整が長引いてしまうという問題もある。また、素子ユニット16を素早く移動させようとすると、大容量のモータが必要になり、カメラモジュール製造装置40のコストアップや消費電力アップの要因になってしまう。
これに対し、測定チャート52や光源53で構成されるチャートユニット41は、2軸回転ステージ74に比べて軽量であるため、低容量のモータでも素早く移動させることができ、コストアップや消費電力アップを招くことなく、位置調整の時間短縮を図ることができる。
さらには、チャートユニット41を移動させて各合焦位置を測定するようにすれば、レンズユニット15や素子ユニット16の品種によらず位置調整を行うことができるため、カメラモジュール製造装置40の汎用性を高めることもできる。
次に、本発明の第2の実施形態について説明する。なお、上記第1の実施形態と機能・構成上同一のものについては、同符号を付し、詳細な説明を省略する。図21に示すように、本実施形態の合焦位置測定回路100には、ROM102が設けられている。ROM102には、水平合焦位置及び垂直合焦位置を決定する際に用いられる指定値104が記憶されている。
合焦位置測定回路100は、全ての測定位置で第1〜第5測定点89a〜89eのH−CTF値及びV−CTF値を算出した後、ROM102から指定値104を読み出す。合焦位置測定回路100は、指定値104を読み出すと、指定値104から各測定位置のH−CTF値及びV−CTF値を減算し、両者の差分SBを算出する(図22参照)。そして、合焦位置測定回路100は、差分SBが最小となる測定位置(図22におけるa6の測定位置)を、その測定点の水平合焦位置及び垂直合焦位置として決定する。合焦位置測定回路100は、第1〜第5測定点89a〜89eの水平合焦位置及び垂直合焦位置を決定すると、上記第1の実施形態と同様に、各合焦位置の座標を算出し、座標変換部90に座標変換処理を行わせて、変換後の各座標を調整位置算出回路92に入力する。
次に、図23に示すフローチャートを参照しながら、上記第2の実施形態の作用について説明する。図23のフローチャートのうち、S1〜S7までは、図20のフローチャートの処理と同様であるので、説明を省略する。
合焦位置測定回路100は、全ての測定位置で第1〜第5測定点89a〜89eのH−CTF値及びV−CTF値が算出されたと判定(S6)されると、ROM102にアクセスし、ROM102から指定値104を読み出す(S8)。合焦位置測定回路100は、指定値104を読み出すと、指定値104と各測定位置のH−CTF値及びV−CTF値との差分SBを算出する(S9)。この後、合焦位置測定回路100は、差分SBが最小となる測定位置を、その測定点の水平合焦位置及び垂直合焦位置として決定する(S10)。合焦位置測定回路100は、第1〜第5測定点89a〜89eの水平合焦位置及び垂直合焦位置を決定すると、各合焦位置の座標を算出し、座標変換部90に座標変換処理を行わせて、変換後の各座標を調整位置算出回路92に入力する(S11、S12)。
各位置の座標が調整位置算出回路92に入力されると、以下上記第1の実施形態と同様に、調整位置算出回路92による調整位置の算出、2軸回転ステージ74及び第3スライドステージ76による素子ユニット16の位置調整、合焦位置の確認工程、レンズユニット15と素子ユニット16との組み込みと接着、及び完成したカメラモジュール2の取出しが行われ(S13〜S20)、処理が終了する。
一般的に、写真では、局所的に解像度の高い部位があるよりも、全体的に均一な解像度である方が、人間の眼で見たときに画質が良いと捉えられる。上記第1の実施形態では、各測定点89a〜89eのH−CTF値及びV−CTF値が最も高くなる測定位置を水平合焦位置及び垂直合焦位置として決定した。このため、上記第1の実施形態では、四隅の測定点89b〜89eのH−CTF値もしくはV−CTF値にバラツキがある場合、素子ユニット16の位置調整後にもバラツキが残ってしまい、画質が悪いと判断されてしまうことが懸念される。
一方、本実施形態では、指定値104との差分SBを算出し、差分SBが最小となる測定位置を水平合焦位置及び垂直合焦位置として決定するようにした。これにより、各合焦位置は、指定値104に近くなるように合わせられるので、これらの各合焦位置を基に素子ユニット16の位置調整を行うことで、各測定点89a〜89eのH−CTF値及びV−CTF値のバラツキを抑えることができる。従って、本実施形態のカメラモジュール2によれば、画像全体にわたって解像度のバラツキがなく、人間の眼で見たい際に画質が良いと判断される画像を取得することができる。
なお、指定値104は、撮影レンズ6の設計値などに応じて適宜設定すればよい。また、上記実施形態では、指定値104をROM102に記憶させたが、これに限ることなく、例えば、HDDやフラッシュメモリなどの不揮発性の半導体メモリやコンパクトフラッシュ(登録商標)などの記憶媒体といった周知の記憶手段でよい。
また、上記実施形態では、合焦位置測定回路100内のROM102に指定値104を記憶させ、ROM102から指定値104を読み出すようにしたが、これに限ることなく、例えば、カメラモジュール製造装置40内に設けられた任意の記憶手段から指定値104を読み出してもよいし、第2プローブユニット79などを介してカメラモジュール2内に設けられた記憶手段から指定値104を読み出してもよいし、ネットワークなどを介して他の装置から指定値104を読み出してもよい。また、フラッシュメモリなどの読み書き可能な記憶手段に指定値104を記憶させることにより、入力装置81などを介して指定値104を書き換えできるようにしてもよい。さらには、調整を開始する前に入力装置81から指定値104を入力させるようにしてもよい。
次に、本発明の第3の実施形態について説明する。図24に示すように、本実施形態の合焦位置測定回路110には、近似曲線生成部112が設けられている。合焦位置測定回路110は、上記第1、2の実施形態と同様、図25(a)に示すように、複数の測定位置に配置された測定チャート52を撮像することにより、第1〜第5測定点89a〜89eのH−CTF値及びV−CTF値を離散的に取得する。
近似曲線生成部112は、全ての測定位置で第1〜第5測定点89a〜89eのH−CTF値及びV−CTF値が算出された後、離散的に取得された各H−CTF値又は各V−CTF値を基にスプライン曲線補間処理を行うことにより、図25(b)に示すように、各CTF値に応じた近似曲線ACを生成する。
合焦位置測定回路110は、近似曲線生成部112が近似曲線ACを生成すると、その近似曲線ACの最大値MPを求める。そして、合焦位置測定回路110は、その最大値MPに対応する測定位置を、その測定点の水平合焦位置及び垂直合焦位置として決定する。合焦位置測定回路110は、第1〜第5測定点89a〜89eの水平合焦位置及び垂直合焦位置を決定すると、上記第1の実施形態と同様に、各合焦位置の座標を算出し、座標変換部90に座標変換処理を行わせて、変換後の各座標を調整位置算出回路92に入力する。
次に、図26に示すフローチャートを参照しながら、上記第3の実施形態の作用について説明する。図26のフローチャートのうち、S1〜S7までは、図20及び図23のフローチャートの処理と同様であるので、説明を省略する。
全ての測定位置で第1〜第5測定点89a〜89eのH−CTF値及びV−CTF値が算出されると(S6)、近似曲線生成部112によって近似曲線ACの生成が行われる(S8)。近似曲線生成部112は、離散的に取得された各CTF値を基にスプライン曲線補間処理を行うことにより、第1〜第5測定点89a〜89eのH−CTF値及びV−CTF値のそれぞれに応じた近似曲線ACを生成する。
近似曲線生成部112によって各近似曲線ACが生成されると、合焦位置測定回路110によって各近似曲線ACの最大値MPが求められる(S9)。そして、合焦位置測定回路110は、その最大値MPに対応する測定位置を、その測定点の水平合焦位置及び垂直合焦位置として決定する(S10)。合焦位置測定回路110は、第1〜第5測定点89a〜89eの水平合焦位置及び垂直合焦位置を決定すると、各合焦位置の座標を算出し、座標変換部90に座標変換処理を行わせて、変換後の各座標を調整位置算出回路92に入力する(S11、S12)。
各位置の座標が調整位置算出回路92に入力されると、以下上記第1、第2の実施形態と同様に、調整位置算出回路92による調整位置の算出、2軸回転ステージ74及び第3スライドステージ76による素子ユニット16の位置調整、合焦位置の確認工程、レンズユニット15と素子ユニット16との組み込みと接着、及び完成したカメラモジュール2の取出しが行われ(S13〜S20)、処理が終了する。
上記第1の実施形態では、各測定点89a〜89eのH−CTF値及びV−CTF値が最も高くなる測定位置を水平合焦位置及び垂直合焦位置として決定した。ところが、各CTF値は、離散的に取得されるため、上記第1の実施形態の構成では、取得された各CTF値の間に最大値があることが懸念される。こうした最大値の誤差は、水平合焦位置及び垂直合焦位置の誤差として表れてしまう。
これに対し、本実施形態では、各CTF値を基に近似曲線ACを生成し、その近似曲線ACの最大値MPに対応する測定位置を、その測定点の水平合焦位置及び垂直合焦位置として決定するようにした。従って、本実施形態によれば、上記第1の実施形態と比べてより高精度に水平合焦位置及び垂直合焦位置を求めることができる。また、本実施形態によれば、各合焦位置の測定精度の向上にともなって、測定位置の数を間引く(測定位置の間隔を広げる)ことが可能になるので、上記第1の実施形態と比べて、さらに素子ユニット16の位置調整の速度アップを図ることができる。
なお、上記実施形態では、スプライン曲線補間処理を行うことによって近似曲線ACを生成したが、これに限ることなく、例えば、ベジエ曲線補間処理やN次多項式補間処理によって近似曲線ACを生成しても良い。また、上記実施形態では、合焦位置測定回路110内に近似曲線生成部112を設けたが、これに限ることなく、合焦位置測定回路110の外部に近似曲線生成部112を設けてもよい。
さらには、上記第2の実施形態と上記第3の実施形態とを組み合わせ、近似曲線ACを生成した後、近似曲線ACと指定値104との差分SBを算出し、その差分SBが最小となる測定位置を第1〜第5測定点89a〜89eの水平合焦位置及び垂直合焦位置として決定するようにしてもよい。
なお、上記各実施形態では、合焦評価値としてCTF値を用いたが、本発明は、CTF値に限定されるものではなく、解像度やMTF値等、合焦度合を評価することができる様々な評価方法、評価値を合焦位置の測定に用いることができる。
また、CTF値として、水平方向及び垂直方向のH−CTF値及びV−CTF値を用いたが、撮像面の中央に対する円周方向及び放射方向のS−CTF値及びT−CTF値を用いてもよい。更に、H−CTF値及びV−CTF値と、S−CTF値及びT−CTF値との全てを各測定点で算出してもよいし、測定点ごとに算出されるCTF値を変えてもよい。また、H−CTF値、V−CTF値、S−CTF値、T−CTF値のいずれか1つ、あるいは任意の組み合わせで算出して合焦位置を測定してもよい。
また、素子ユニット16の位置調整を1回だけ行うようにしたが、複数回繰り返してもよい。更に、カメラモジュールの素子ユニット16の位置調整を例に説明したが、一般的なデジタルカメラの撮像素子の位置調整にも用いることができる。
本発明のカメラモジュールの正面側外観斜視図である。 カメラモジュールの背面側外観斜視図である。 レンズユニットと素子ユニットの外観斜視図である。 カメラモジュールの断面図である。 カメラモジュール製造装置の構成を示す概略図である。 測定チャートのチャート面を示す正面図である。 カメラモジュール製造装置によるレンズユニットと素子ユニットの保持状態を示す説明図である。 カメラモジュール製造装置の構成を示すブロック図である。 撮像面上に設定された測定点の位置を示す説明図である。 素子ユニット調整前の各測定点のH−CTF値を示すグラフである。 素子ユニット調整前の各測定点のV−CTF値を示すグラフである。 素子ユニット調整前の各測定点の合焦位置をX軸側から見た3次元グラフである。 素子ユニット調整前の各測定点の合焦位置をY軸側から見た3次元グラフである。 各測定点の合焦位置から得た近似平面と各調整位置とをX軸側から見た3次元グラフである。 近似平面の面方向から見た各調整点の3次元グラフである。 素子ユニット調整後の各測定点のH−CTF値を示すグラフである。 素子ユニット調整後の各測定点のV−CTF値を示すグラフである。 素子ユニット調整後の各測定点の合焦位置をX軸側から見た3次元グラフである。 素子ユニット調整後の各測定点の合焦位置をY軸側から見た3次元グラフである。 カメラモジュールの製造手順を示すフローチャートである。 合焦位置測定回路に指定値を記憶したROMを設けた例を示すブロック図である。 差分の算出例を示す説明図である。 指定値との差分が最小となる測定位置を合焦位置として決定する場合の製造手順を示すフローチャートである。 合焦位置測定回路に近似曲線生成部を設けた例を示すブロック図である。 近似曲線の生成例を示す説明図である。 近似曲線の最大値の測定位置を測定点の合焦位置として決定する場合の製造手順を示すフローチャートである。
符号の説明
2 カメラモジュール
6 撮影レンズ
12 撮像素子
12a 撮像面
15 レンズユニット
16 素子ユニット
40 カメラモジュール製造装置
41 チャートユニット
44 レンズ保持機構
45 素子移動機構
46 接着剤供給器
48 制御部
52 測定チャート
54 第1スライドステージ
56〜60 第1〜第5チャート画像
72 チャックハンド
74 2軸回転ステージ
76 第2スライドステージ
79 第2プローブユニット
87、100、110 合焦位置測定回路
89a〜89e 第1〜第5測定点
90 座標変換部
92 調整位置算出回路
112 近似曲線生成部

Claims (13)

  1. 撮影レンズの光軸に撮像面が直交するように配置した撮像素子の位置調整方法において、
    前記撮影レンズの光軸方向に沿って設定された複数の測定位置に測定チャートを移動させながら前記撮像素子で撮像を行うことにより前記測定位置毎の撮像信号を取得し、前記撮像面上に設定された少なくとも5つの測定点の合焦度合を表す合焦評価値を前記各撮像信号のそれぞれから算出する評価値算出工程と、
    算出した前記各合焦評価値を基に前記測定点毎の合焦位置を決定する合焦位置決定工程と、
    前記測定点毎に得られた前記各合焦位置と前記撮像面上における前記各測定点の位置とに基づいて平面近似された近似結像面を算出し、この近似結像面に前記撮像面を一致させるために必要な前記各測定点の調整位置を算出する調整位置算出工程と、
    前記各測定点が前記調整位置に一致するように、前記撮像素子の光軸方向の位置と、前記光軸に直交する2つの軸の傾きとを自動調整する位置調整工程とを含むことを特徴とする撮像素子の位置調整方法。
  2. 前記合焦位置決定工程は、前記各測定点の前記合焦評価値が最大となる前記測定位置を求め、その測定位置を前記合焦位置として決定することを特徴とする請求項1記載の撮像素子の位置調整方法。
  3. 前記各合焦位置の座標を算出する工程と、
    算出された前記各座標に対し、前記測定チャートの移動量に応じた座標値を前記撮像素子の移動量に応じた座標値に変換する座標変換処理を行う工程とを有し、
    前記調整位置算出工程は、変換後の前記各座標を基に、前記近似結像面の算出及び前記各調整位置の算出を行うことを特徴とする請求項1又は2記載の撮像素子の位置調整方法。
  4. 前記合焦評価値は、コントラスト伝達関数値であり、
    前記コントラスト伝達関数値は、前記各測定点で前記光軸に直交する面上に設定された複数の方向のそれぞれに対して算出され、前記測定点ごとに前記各コントラスト伝達関数値に基づく複数の前記合焦位置が決定されることを特徴とする請求項1〜3のいずれか1項に記載の撮像素子の位置調整方法。
  5. 前記測定点は、前記撮像面の中心と、前記撮像面の4象限上とに1つずつ設定されていることを特徴とする請求項1〜4のいずれか1項に記載の撮像素子の位置調整方法。
  6. 前記位置調整工程の後に前記合焦位置測定工程を行って、調整後の前記各測定点の位置を確認する位置確認工程を含み、
    前記合焦位置測定工程と、前記調整位置算出工程と、前記位置調整工程とを複数回繰り返して、前記各測定点を前記調整位置に一致させることを特徴とする請求項1〜5のいずれか1項に記載の撮像素子の位置調整方法。
  7. 撮影レンズが組み込まれたレンズユニットに、撮像素子が組み込まれた素子ユニットを位置調整して固定するカメラモジュールの製造方法において、
    前記素子ユニットの位置調整は、請求項1〜6のいずれかに記載の撮像素子の位置調整方法により行われることを特徴とするカメラモジュール製造方法。
  8. 撮影レンズが組み込まれたレンズユニットに、撮像素子が組み込まれた素子ユニットを位置調整して固定するカメラモジュールの製造装置において、
    前記撮影レンズの光軸方向に沿って設定された複数の測定位置のそれぞれに測定チャートを移動させる測定チャート移動手段と、
    前記測定チャートを移動させながら前記撮像素子で撮像を行うことにより取得された前記測定位置毎の撮像信号を基に、前記撮像面上に設定された少なくとも5つの測定点の合焦度合を表す合焦評価値を前記各撮像信号のそれぞれから算出する評価値算出手段と、
    算出した前記各合焦評価値を基に前記測定点毎の合焦位置を決定する合焦位置決定手段と、
    前記測定点毎に得られた前記各合焦位置と前記撮像面上における前記各測定点の位置とに基づいて平面近似された近似結像面を算出し、この近似結像面に前記撮像面を一致させるために必要な前記各測定点の調整位置を算出する調整位置算出手段と、
    前記素子ユニットを保持して前記撮影レンズの光軸方向に移動させ、前記光軸に直交する2つの軸の回りで前記素子ユニットの傾きを変化させる素子移動手段と、
    前記各測定点が前記調整位置に一致するように、前記素子移動手段を制御して前記素子ユニットの光軸方向の位置と傾きとを自動調整させる制御手段とを備えたことを特徴とするカメラモジュール製造装置。
  9. 前記合焦位置決定手段は、前記各測定点の前記合焦評価値が最大となる前記測定位置を求め、その測定位置を前記合焦位置として決定することを特徴とする請求項8記載のカメラモジュール製造装置。
  10. 前記各合焦位置の座標を算出する座標算出手段と、
    算出された前記各座標に対し、前記測定チャートの移動量に応じた座標値を前記撮像素子の移動量に応じた座標値に変換する座標変換処理を行う座標変換手段とを有し、
    前記調整位置算出手段は、変換後の前記各座標を基に、前記近似結像面の算出及び前記各調整位置の算出を行うことを特徴とする請求項8又は9記載のカメラモジュール製造装置。
  11. 前記合焦評価値は、コントラスト伝達関数値であり、
    前記合焦位置測定手段は、前記各測定点で前記光軸に直交する面上に設定された複数の方向のそれぞれに対して前記コントラスト伝達関数値を算出し、前記測定点ごとに前記各コントラスト伝達関数値に基づく複数の前記合焦位置を決定することを特徴とする請求項8〜10のいずれか1項に記載のカメラモジュール製造装置。
  12. 前記測定点は、前記撮像面の中心と、前記撮像面の4象限上とに1つずつ設定されていることを特徴とする請求項8〜11のいずれか1項に記載のカメラモジュール製造装置。
  13. 前記素子移動手段は、前記素子ユニットを保持する保持機構と、前記保持機構を前記光軸に直交する2つの軸の回りで傾ける2軸回転ステージと、前記2軸回転ステージを前記光軸方向に沿って移動させるスライドステージと、前記撮像素子の接点に接触して前記撮像素子と前記制御手段とを電気的に接続させる接続部とを有していることを特徴とする請求項8〜12のいずれか1項に記載のカメラモジュール製造装置。
JP2008154225A 2008-06-12 2008-06-12 撮像素子の位置調整方法、カメラモジュール製造方法及び装置 Active JP4960307B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008154225A JP4960307B2 (ja) 2008-06-12 2008-06-12 撮像素子の位置調整方法、カメラモジュール製造方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008154225A JP4960307B2 (ja) 2008-06-12 2008-06-12 撮像素子の位置調整方法、カメラモジュール製造方法及び装置

Publications (2)

Publication Number Publication Date
JP2009302836A true JP2009302836A (ja) 2009-12-24
JP4960307B2 JP4960307B2 (ja) 2012-06-27

Family

ID=41549287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008154225A Active JP4960307B2 (ja) 2008-06-12 2008-06-12 撮像素子の位置調整方法、カメラモジュール製造方法及び装置

Country Status (1)

Country Link
JP (1) JP4960307B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035514A1 (ja) * 2011-09-05 2013-03-14 コニカミノルタアドバンストレイヤー株式会社 カメラモジュールの製造方法及びカメラモジュール
JP2013200459A (ja) * 2012-03-26 2013-10-03 Konica Minolta Inc カメラモジュールの製造方法及びカメラモジュール
WO2015194396A1 (ja) * 2014-06-19 2015-12-23 アキム株式会社 レンズ素子搬送機構、レンズ駆動装置、光軸調整装置並びに、光学モジュール製造設備及びその製造方法
CN114731370A (zh) * 2020-02-26 2022-07-08 株式会社Pfa 相机模块制造装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208932A (ja) * 2005-01-31 2006-08-10 Tamron Co Ltd 撮像レンズの製造方法及び製造装置
JP2006293187A (ja) * 2005-04-14 2006-10-26 Nikon Corp 光学機器及び光学機器の調整方法
WO2006118142A1 (ja) * 2005-04-28 2006-11-09 Matsushita Electric Industrial Co., Ltd. 撮像素子駆動装置およびそれを用いた撮影装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208932A (ja) * 2005-01-31 2006-08-10 Tamron Co Ltd 撮像レンズの製造方法及び製造装置
JP2006293187A (ja) * 2005-04-14 2006-10-26 Nikon Corp 光学機器及び光学機器の調整方法
WO2006118142A1 (ja) * 2005-04-28 2006-11-09 Matsushita Electric Industrial Co., Ltd. 撮像素子駆動装置およびそれを用いた撮影装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035514A1 (ja) * 2011-09-05 2013-03-14 コニカミノルタアドバンストレイヤー株式会社 カメラモジュールの製造方法及びカメラモジュール
JP2013200459A (ja) * 2012-03-26 2013-10-03 Konica Minolta Inc カメラモジュールの製造方法及びカメラモジュール
WO2015194396A1 (ja) * 2014-06-19 2015-12-23 アキム株式会社 レンズ素子搬送機構、レンズ駆動装置、光軸調整装置並びに、光学モジュール製造設備及びその製造方法
JP5927711B1 (ja) * 2014-06-19 2016-06-01 アキム株式会社 レンズ素子搬送機構、コントローラ、光軸調整装置並びに、光学モジュール製造設備及びその製造方法
KR20170020475A (ko) * 2014-06-19 2017-02-22 아키무 가부시키가이샤 렌즈 소자 반송 기구, 렌즈 구동 장치, 광축 조정 장치와 광학 모듈 제조 설비 및 그 제조 방법
CN106461903A (zh) * 2014-06-19 2017-02-22 亚企睦自动设备有限公司 透镜元件搬送机构、透镜驱动装置、光轴调整装置、光学模组制造设备及其制造方法
KR101958962B1 (ko) * 2014-06-19 2019-03-15 아키무 가부시키가이샤 렌즈 소자 반송 기구, 컨트롤러, 광축 조정 장치와 광학 모듈 제조 설비 및 그 제조 방법
TWI661240B (zh) * 2014-06-19 2019-06-01 日商亞企睦自動設備有限公司 透鏡元件搬送機構、控制器、光軸調整裝置、光學模組製造設備及其製造方法
CN114731370A (zh) * 2020-02-26 2022-07-08 株式会社Pfa 相机模块制造装置
CN114731370B (zh) * 2020-02-26 2023-08-29 株式会社Pfa 相机模块制造装置

Also Published As

Publication number Publication date
JP4960307B2 (ja) 2012-06-27

Similar Documents

Publication Publication Date Title
JP5198295B2 (ja) 撮像素子の位置調整方法、カメラモジュール製造方法及び装置、カメラモジュール
JP4960308B2 (ja) 撮像素子の位置調整方法、カメラモジュール製造方法及び装置
JP5460406B2 (ja) 撮像素子の位置調整方法、カメラモジュール製造方法及び装置、カメラモジュール
US9927594B2 (en) Image pickup module manufacturing method and image pickup module manufacturing device
JP6408275B2 (ja) デジタル光学機器の校正方法およびデジタル光学機器
JP2017122791A (ja) 光学制御装置、光学機器および光学制御プログラム
JP2015033138A (ja) ズーム系を有するデジタル光学撮像システムを較正するための方法、ズーム系を有するデジタル光学撮像システムにおける収差を補正するための方法、及びデジタル光学撮像システム
US9906695B2 (en) Manufacturing method of imaging module and imaging module manufacturing apparatus
JP4960307B2 (ja) 撮像素子の位置調整方法、カメラモジュール製造方法及び装置
JP2011130061A (ja) 撮影レンズと撮像素子の位置関係調整方法及び装置、並びにカメラモジュール製造方法及び装置
US9979868B2 (en) Image pickup module manufacturing method, and image pickup module manufacturing device
JP5855842B2 (ja) 画像評価用のチャート、カメラモジュールのピントずれ方向・量測定装置、カメラモジュールのレンズ位置調整装置、カメラモジュールのピント調整装置、カメラモジュール搭載用のパレット、カメラモジュール用接着剤塗付装置
JP5990655B2 (ja) 撮像モジュール、撮像モジュールの製造方法、電子機器
WO2015016042A1 (ja) 撮像モジュール及び電子機器
US11320725B2 (en) Projection type display apparatus, projection type display system, control method of projection type display apparatus, and storage medium
US9609196B2 (en) Imaging module and electronic device
JP5961770B2 (ja) 撮像モジュール、撮像モジュールの製造方法、電子機器
US10020342B2 (en) Image pickup module manufacturing method, and image pickup module manufacturing device
WO2014141497A1 (ja) 撮像素子の位置調整装置
JP2007093934A (ja) レンズの自動調芯装置
JP2014092634A (ja) 位置調整装置、および位置調整方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4960307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250