JP2009298233A - 動力伝達装置 - Google Patents

動力伝達装置 Download PDF

Info

Publication number
JP2009298233A
JP2009298233A JP2008153245A JP2008153245A JP2009298233A JP 2009298233 A JP2009298233 A JP 2009298233A JP 2008153245 A JP2008153245 A JP 2008153245A JP 2008153245 A JP2008153245 A JP 2008153245A JP 2009298233 A JP2009298233 A JP 2009298233A
Authority
JP
Japan
Prior art keywords
rotor
power
stator
conductor
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008153245A
Other languages
English (en)
Other versions
JP5211874B2 (ja
Inventor
Kazunari Moriya
一成 守屋
Koji Umeno
孝治 梅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008153245A priority Critical patent/JP5211874B2/ja
Publication of JP2009298233A publication Critical patent/JP2009298233A/ja
Application granted granted Critical
Publication of JP5211874B2 publication Critical patent/JP5211874B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/52Clutch motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】原動機からの動力を回転子同士の電磁気結合を利用して負荷へ伝達する動力伝達装置において、回転子間の回転速度差が大きい場合に負荷への伝達トルクの低下を防ぐ。
【解決手段】誘導機12の極対数pi、同期機14の極対数pp、ロータ18,26の回転速度ωw、ロータ28の回転速度ωeに関して、ωw<pp/(pi+pp)×ωeが成立するときは、誘導機12のステータ巻線20の回生電力をインバータ40,41で電力変換してから回転電機11のステータ巻線70に供給して回転電機11を力行運転することで、同期機14のロータ26のトルクと同方向のトルクを回転電機11のロータ68に作用させることができる。そのため、誘導機12の回生運転時に同期機14のロータ26のトルクと逆方向のトルクが誘導機12のロータ18に作用することで出力軸24のトルクが低下するのを、回転電機11のロータ68のトルクにより補償することができる。
【選択図】図2

Description

本発明は、動力伝達装置に関し、特に、原動機からの動力を回転子同士の電磁気結合を利用して負荷へ伝達することが可能な動力伝達装置に関する。
この種の動力伝達装置の関連技術が下記特許文献1に開示されている。以下、特許文献1による動力伝達装置の構成について、図9,10を用いて説明する。
図9,10に示す構成において、エンジン36と車輪38との間に設けられた回転電機10は、誘導機12と同期機14とを有する。誘導機12は、外枠44に固定されたステータ(第1の固定子)16と、ステータ16の内側に配置されステータ16に対し回転可能なロータ(第1の回転子)18と、を含む。ステータ16には、第1の固定子導体として複数相(例えば3相)のステータ巻線20がその周方向に沿って配設されている。複数相のステータ巻線20に複数相(例えば3相)の交流電流が流れることで、ステータ巻線20は、ステータ周方向に回転する回転磁界を発生することができる。
ロータ18は出力軸24と機械的に連結され、出力軸24は車輪38と機械的に連結されている。ロータ18には、第1の回転子導体として複数相(例えば3相)のロータ巻線22がその周方向に沿って配設されている。複数相のロータ巻線22に交流電流が流れることで、ロータ巻線22は、ロータ周方向に回転する回転磁界を発生することができる。ロータ巻線22はステータ巻線20と対向しており、ステータ巻線20及びロータ巻線22の一方で発生した回転磁界により、ステータ巻線20及びロータ巻線22の他方に誘導電流が発生する。この回転磁界及び誘導電流によって、ステータ16とロータ18との間でトルクが作用する。
同期機14は、ロータ(第2の回転子)26と、ロータ26の外側に配置され且つロータ26に対し独立して回転可能なロータ(第3の回転子)28と、を含む。ロータ(インナーロータ)26は、回転軸48を介して誘導機12のロータ18に機械的に連結されている。ロータ26には、第2の回転子導体として複数相(例えば3相)のロータ巻線30がその周方向に沿って配設されている。複数相のロータ巻線30に交流電流が流れることで、ロータ巻線30は、ロータ周方向に回転する回転磁界を発生することができる。
ロータ巻線30は、ロータ巻線22と電気的に接続(直結)されている。ここでは、ロータ巻線22及びロータ巻線30に交流電流が流れる場合に発生する回転磁界の回転方向がロータ巻線22とロータ巻線30とで互いに逆方向になるように、ロータ巻線22とロータ巻線30とが逆相接続されている。例えばロータ巻線22及びロータ巻線30がともにa相、b相、c相の3相巻線により構成されている場合は、ロータ巻線22のa相とロータ巻線30のa相とを接続し、ロータ巻線22のb相とロータ巻線30のc相とを接続し、ロータ巻線22のc相とロータ巻線30のb相とを接続する(3相のうち1つの相について同じ相の巻線同士を接続し、3相のうち2つの相について異なる相の巻線同士を接続する)ことで、ロータ巻線22とロータ巻線30とで発生する磁界の回転方向が互いに逆方向となる。また、ロータ巻線22とロータ巻線30とは、磁気的には絶縁されるように配置されている。
ロータ(アウターロータ)28は入力軸34と機械的に連結され、入力軸34はエンジン36と機械的に連結されている。ロータ28には、界磁束を発生する磁極として複数の永久磁石32がその周方向に沿って配設されている。永久磁石32はロータ巻線30と対向しており、ロータ巻線30で発生した回転磁界と永久磁石32で発生した界磁束との相互作用(吸引及び反発作用)により、ロータ26とロータ28との間でトルクが作用する。このように、同期機14は、互いに独立に回転可能な2つのロータ26,28を備えたPM(永久磁石)型同期機として構成される。そして、回転電機10は、互いに独立して回転可能な2つの回転軸を有する2軸型の回転電機である。
直流電源として設けられた充放電可能な蓄電装置42は、例えば二次電池により構成することができ、電気エネルギーを蓄える。インバータ40は、スイッチング素子(図示せず)を備えており、スイッチング素子のスイッチング動作により蓄電装置42からの直流電力を交流(例えば120度ずつ位相が異なる3相交流)に変換して、誘導機12のステータ巻線20の各相に供給することが可能である。さらに、インバータ40は、ステータ巻線20の交流電力を直流に変換して、電気エネルギーを蓄電装置42に回生する方向の変換も可能である。このように、インバータ40は双方向の電力変換が可能であり、誘導機12のステータ巻線20と蓄電装置42との間で電力の送受が可能である。電子制御ユニット50は、インバータ40のスイッチング素子のスイッチング動作を制御することで、誘導機12のステータ巻線20の各相に流れる交流電流を制御する。
図9,10に示す構成において、エンジン36の動力を用いて車輪38を回転駆動する場合は、電子制御ユニット50は、インバータ40のスイッチング動作を制御する。エンジン36の回転駆動に伴ってロータ28の永久磁石32が回転することで、ロータ26に配設されたロータ巻線30に誘導電流が発生する。この誘導電流及び永久磁石32の界磁束により、ロータ26にトルクが作用してロータ26が回転駆動する。ロータ26の動力は車輪38へ伝達されることで、車両の駆動等、負荷の駆動に用いられる。
同期機14のロータ巻線30は、誘導機12のロータ巻線22と電気的に接続されているため、ロータ巻線30に発生した誘導電流はロータ巻線22にも流れ、このロータ巻線22に流れる誘導電流により回転磁界が誘導機12のロータ18に形成される。そして、ロータ巻線22で発生した回転磁界によりステータ巻線20に誘導電流が発生し、この回転磁界及び誘導電流によってロータ18にトルクが作用する。したがって、誘導機12のロータ18から車輪38へ伝達される動力によっても、車輪38を回転駆動することができる。
このように、図9,10に示す構成では、エンジン36(入力軸34)と車輪38(出力軸24)との間の動力伝達経路として、ロータ26及び回転軸48を介した伝達経路(機械パスによる伝達経路)と、ロータ巻線30及びロータ巻線22を介した伝達経路(電気パスによる伝達経路)と、が設けられる。車輪38に伝達される動力は、機械パスによる伝達動力と電気パスによる伝達動力との合計となる。エンジン36から車輪38へ動力を伝達する際には、エンジン36の回転速度(入力軸34の回転速度)と車輪38の回転速度(出力軸24の回転速度)との比を連続的に変化させることが可能となり、無段変速機能を実現することが可能となる。この場合、一般に減速機として用いられているので、エンジン36の回転速度(入力軸34の回転速度)が車輪38の回転速度(出力軸24の回転速度)よりも高いことが前提である。
特開2007−116837号公報 特開2000−197324号公報
図9,10に示す構成において、入力軸34(ロータ28)の回転速度と出力軸24(ロータ18,26)の回転速度との差が小さい場合は、誘導機12が力行運転状態となり、誘導機12のロータ18に作用するトルクの方向が同期機14のロータ26に作用するトルクの方向と同方向になる。そのため、出力軸24に伝達されるトルクは、同期機14のロータ26のトルクと誘導機12のロータ18のトルクとの和となり、無段変速機能を実現することが可能となる。しかし、入力軸34の回転速度と出力軸24の回転速度との差が大きい場合は、誘導機12が回生運転状態となり、誘導機12のロータ18に作用するトルクの方向が同期機14のロータ26に作用するトルクの方向と逆方向になる。そのため、出力軸24に伝達されるトルクは、同期機14のロータ26のトルクと誘導機12のロータ18のトルクとの差となり、出力軸24のトルクが減少して無段変速機能を実現できなくなる。より具体的には、誘導機12の極対数をpi、同期機14の極対数をpp、ロータ18,26の回転速度をωw、ロータ28の回転速度をωeとすると、ロータ28の回転速度とロータ18,26の回転速度との差がpi/pp×ωwより小さい場合は、誘導機12のロータ18に作用するトルクの方向が同期機14のロータ26に作用するトルクの方向と同方向になる(誘導機12が力行運転状態になる)が、ロータ28の回転速度とロータ18,26の回転速度との差がpi/pp×ωwより大きい場合は、誘導機12のロータ18に作用するトルクの方向が同期機14のロータ26に作用するトルクの方向と逆方向になる(誘導機12が回生運転状態になる)。このように、図9,10に示す構成では、無段変速機能が実現可能となる、ロータ28とロータ18,26との回転速度差の範囲が制限される。
本発明は、原動機からの動力を回転子同士の電磁気結合を利用して負荷へ伝達することが可能な動力伝達装置において、回転子間の回転速度差が大きい場合でも負荷に伝達されるトルクが低下するのを防ぐことを目的とする。
本発明に係る動力伝達装置は、上述した目的を達成するために以下の手段を採った。
本発明に係る動力伝達装置は、回転磁界を発生可能な第1固定子導体が配設された第1固定子と、回転磁界を発生可能な第1回転子導体が配設された第1回転子と、を含み、第1固定子導体及び第1回転子導体の一方で発生した回転磁界により第1固定子導体及び第1回転子導体の他方に誘導電流が発生する誘導機と、回転磁界を発生可能な第2回転子導体が配設され且つ第1回転子と連結された第2回転子と、界磁束を発生する磁極が配設され且つ第2回転子に対し独立して回転可能な第3回転子と、を含み、第2回転子導体で発生した回転磁界と磁極で発生した界磁束との相互作用により第2回転子と第3回転子との間でトルクが作用する同期機と、回転磁界を発生可能な第2固定子導体が配設された第2固定子と、第2固定子導体で発生した回転磁界が作用するのに応じて第2固定子との間にトルクが作用する第4回転子と、を含む回転電機と、第1固定子導体と第2固定子導体との間で電力変換を行う電力変換部と、を備え、第1回転子導体及び第2回転子導体に電流が流れる場合に発生する回転磁界の方向が第1回転子導体と第2回転子導体とで互いに逆方向になるように、第1回転子導体と第2回転子導体とが接続されており、第3回転子に原動機からの動力が伝達され、第2及び第4回転子から負荷へ動力が伝達され、誘導機の極対数をpi、同期機の極対数をpp、第1及び第2回転子の回転速度をωw、第3回転子の回転速度をωeとすると、電力変換部は、
ωw<pp/(pi+pp)×ωe
が成立するときは、第1固定子導体の電力を電力変換して第2固定子導体へ供給することを要旨とする。
本発明の一態様では、電力変換部は、
p/(pi+pp)×ωe<ωw<ωe
が成立するときは、第2固定子導体への電力供給を停止することが好適である。
本発明の一態様では、原動機からの動力を第3回転子と第1及び第2回転子とに分配する動力分配機構をさらに備えることが好適である。
本発明の一態様では、電力変換部は、
ωw<pp/(pi+pp)×ωe
が成立するときは、第1固定子導体の交流電力を直流に変換し、この直流電力を交流に変換して第2固定子導体へ供給することが好適である。
本発明の一態様では、第4回転子は第1及び第2回転子と連結されていることが好適である。
本発明の一態様では、第2回転子から車両の前輪及び後輪の一方へ動力が伝達され、第4回転子から車両の前輪及び後輪の他方へ動力が伝達されることが好適である。
本発明によれば、第3回転子と第1及び第2回転子との回転速度差が大きく、誘導機が回生運転状態にあるときは、誘導機の第1固定子導体の回生電力を電力変換部で電力変換してから回転電機の第2固定子導体に供給して回転電機を力行運転することで、同期機の第2回転子のトルクと同方向のトルクを回転電機の第4回転子に作用させることができる。そのため、誘導機の回生運転時に同期機の第2回転子のトルクと逆方向のトルクが誘導機の第1回転子に作用することで負荷に伝達されるトルクが低下するのを、回転電機の第4回転子のトルクにより補償することができる。その結果、第3回転子と第1及び第2回転子との回転速度差が大きい場合でも負荷に伝達されるトルクが低下するのを防ぐことができる。
以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。
図1,2は、本発明の実施形態に係る動力伝達装置を備えるハイブリッド駆動装置の構成の概略を示す図であり、図1は全体構成の概略を示し、図2は回転電機10,11の構成の概略を示す。以下の実施形態の説明では、図9,10に示した関連技術と同様の構成または対応する構成には同一の符号を付し、説明を省略する構成については図9,10に示した関連技術と同様である。
本実施形態に係るハイブリッド駆動装置は、動力(機械的動力)を発生可能な原動機として設けられたエンジン(内燃機関)36と、エンジン36と車輪38との間に設けられた回転電機10,11と、を備える。なお、本実施形態に係るハイブリッド駆動装置については、例えば車両を駆動するための動力出力装置として用いることができる。
回転電機10の構成については図9,10に示した関連技術と同様であり、ステータ(第1の固定子)16及びロータ(第1の回転子)18を含む誘導機12と、ロータ(第2の回転子)26及びロータ(第3の回転子)28を含む同期機14と、を備える。回転電機11は、外枠44に固定されたステータ(第2の固定子)66と、ステータ66の内側に配置されステータ66に対し回転可能なロータ(第4の回転子)68と、を含む。ステータ66には、第2の固定子導体として複数相(例えば3相)のステータ巻線70がその周方向に沿って配設されている。複数相のステータ巻線70に複数相(例えば3相)の交流電流が流れることで、ステータ巻線70は、ステータ周方向に回転する回転磁界を発生することができる。
ロータ68は、回転電機10のロータ18,26及び出力軸24と機械的に連結されている。ロータ68には、界磁束を発生する磁極として複数の永久磁石82がその周方向に沿って配設されている。永久磁石82はステータ巻線70と対向しており、ステータ巻線70で発生した回転磁界がロータ68に作用するのに応じて、この回転磁界と永久磁石32で発生した界磁束との相互作用(吸引及び反発作用)により、ステータ66とロータ68との間でトルクが作用する。このように、図2に示す例では、回転電機11は、PM(永久磁石)型同期機として構成される。ただし、回転電機11をPM型同期機以外の回転電機により構成することも可能である。
インバータ41は、スイッチング素子(図示せず)を備えており、スイッチング素子のスイッチング動作により蓄電装置42からの直流電力を交流(例えば3相交流)に変換して、回転電機11のステータ巻線70の各相に供給することが可能である。さらに、インバータ41は、ステータ巻線70の交流電力を直流に変換して、電気エネルギーを蓄電装置42に回生する方向の変換も可能である。このように、インバータ41は双方向の電力変換が可能であり、回転電機11のステータ巻線70と蓄電装置42との間で電力の送受が可能である。
さらに、誘導機12のステータ巻線20の交流電力をインバータ40で直流に変換し、この直流電力をインバータ41で交流に変換して回転電機11のステータ巻線70に供給することも可能である。また、回転電機11のステータ巻線70の交流電力をインバータ41で直流に変換し、この直流電力をインバータ40で交流に変換して誘導機12のステータ巻線20に供給することも可能である。このように、インバータ40,41は、誘導機12のステータ巻線20と回転電機11のステータ巻線70との間で電力変換を行うことが可能である。
電子制御ユニット50は、インバータ40のスイッチング素子のスイッチング動作を制御することで、誘導機12のステータ巻線20の各相に流れる交流電流を制御し、インバータ41のスイッチング素子のスイッチング動作を制御することで、回転電機11のステータ巻線70の各相に流れる交流電流を制御する。そして、電子制御ユニット50は、エンジン36の運転状態を制御する。
次に、本実施形態に係るハイブリッド駆動装置の動作について説明する。
エンジン36の動力を用いて負荷を駆動する(車輪38を回転駆動する)場合は、電子制御ユニット50は、インバータ40のスイッチング動作を制御する。エンジン36の回転駆動に伴ってロータ28が回転駆動し、ロータ28に配設された永久磁石32の発生する界磁束が回転磁界を形成する。この永久磁石32が回転することで発生した回転磁界によりロータ26に配設されたロータ巻線30に誘導電流が発生し、このロータ巻線30に流れる誘導電流により回転磁界がロータ26に形成される。そして、同期機14においては、ロータ巻線30で発生した回転磁界と永久磁石32で発生した界磁束との吸引及び反発作用により、ロータ26にトルクが作用してロータ26が回転駆動する。ロータ26の動力は車輪38へ伝達されることで、車両の駆動等、負荷の駆動に用いられる。したがって、エンジン36の動力を用いて車輪38を回転駆動することができる。
同期機14のロータ巻線30は、誘導機12のロータ巻線22と電気的に接続されているため、ロータ巻線30に発生した誘導電流はロータ巻線22にも流れ、このロータ巻線22に流れる誘導電流により回転磁界が誘導機12のロータ18にも形成される。そして、ロータ巻線22で発生した回転磁界によりステータ巻線20に誘導電流が発生し、この回転磁界及び誘導電流によってロータ18にトルクが作用する。したがって、誘導機12のロータ18から車輪38へ伝達される動力によっても、車輪38を回転駆動することができる。
図3に示すように、本実施形態では、エンジン36(入力軸34)と車輪38(出力軸24)との間の動力伝達経路として、ロータ26及び回転軸48を介した伝達経路(機械パスによる伝達経路)と、ロータ巻線30及びロータ巻線22を介した伝達経路(内部電気パスによる伝達経路)と、が設けられる。機械パスにおいては、エンジン36の動力が同期機14のロータ26の動力に変換され、ロータ26の動力が回転軸48を介して出力軸24から出力される。一方、内部電気パスにおいては、エンジン36の動力がロータ巻線30及びロータ巻線22の電力に一旦変換され、ロータ巻線22の電力が誘導機12のロータ18の動力に変換されて出力軸24から出力される。そして、車輪38に伝達される動力は、機械パスによる伝達動力と内部電気パスによる伝達動力との合計となる。本実施形態では、内部電気パスによる動力伝達の際には、インバータ等の電力変換器による電力変換を行うことなく動力伝達を行うことができる。そのため、内部電気パスによる動力伝達の際に生じる損失を低減することができる。さらに、エンジン36から車輪38へ動力を伝達する際には、エンジン36の回転速度(入力軸34の回転速度)と車輪38の回転速度(出力軸24の回転速度)との比を連続的に変化させることが可能となり、無段変速機能を実現することが可能となる。
本実施形態では、電子制御ユニット50は、インバータ40のスイッチング素子のスイッチング動作を制御することで、誘導機12のロータ18の動力を制御することができ、負荷の駆動制御を行うことができる。例えば、電子制御ユニット50は、蓄電装置42から誘導機12のステータ巻線20へ電力供給するようにインバータ40のスイッチング動作を制御することで、ステータ16に回転磁界を形成することができる。そして、このステータ巻線20で発生した回転磁界によりロータ巻線22に誘導電流が発生し、この回転磁界及び誘導電流によってロータ18にトルクを作用させることができ、車輪38を回転駆動することができる。このように、本実施形態では、蓄電装置42から誘導機12のステータ巻線20への電力供給により誘導機12を力行運転することで、エンジン36の動力を用いて車輪38を回転駆動するとともに、ステータ巻線20への供給電力を用いて発生させたロータ18の動力により車輪38の回転駆動をアシストすることができる。この場合、車輪38に伝達される動力は、エンジン36の動力より大きくなる。
一方、電子制御ユニット50は、誘導機12のステータ巻線20から蓄電装置42へ電力回収するようにインバータ40のスイッチング動作を制御して誘導機12を回生運転することで、エンジン36の動力を用いて車輪38を回転駆動するとともに、エンジン36の動力の一部を誘導機12のステータ巻線20の電力に変換して蓄電装置42に回収することができる。この場合、車輪38に伝達される動力は、エンジン36の動力より小さくなる。さらに、電子制御ユニット50は、負荷の減速運転時において、誘導機12のステータ巻線20から蓄電装置42へ電力回収するようにインバータ40のスイッチング動作を制御することで、負荷の動力を誘導機12のステータ巻線20の電力に変換して蓄電装置42に回収することができる。
次に、本実施形態に係る回転電機10の特性方程式について、図4A〜図4Dを用いて説明する。特性方程式の導出の際には、誘導機12及び同期機14を同じ座標系で考える必要があるため、以下に説明する座標変換を行う。ただし、図4A〜図4Dは、誘導機12及び同期機14の極対数が1であり、ステータ巻線20及びロータ巻線22,30がいずれもa相、b相、c相の3相巻線により構成される場合を示している。
図4Aに示すように、誘導機12のロータ18と同期機14のロータ26とで互いに逆方向の回転磁界を形成するために、誘導機12のロータ巻線22のa相と同期機14のロータ巻線30のa相とが接続され、ロータ巻線22のb相とロータ巻線30のc相とが接続され、ロータ巻線22のc相とロータ巻線30のb相とが接続されている。そこで、図4Bに示すように、同期機14をロータ巻線30ごとロータ巻線22のa相を対称軸として反転する。なお、図4A、図4Bにおいて、θwはロータ18,26の回転角、θeはロータ28の回転角、Tpはロータ28のトルク(エンジン36の回転方向を正とする)を表す。そして、図4Bに示すように、反転後のロータ28の回転角θe'は2×θw−θeであり、反転後のロータ28のトルクTp'は−Tpである。
次に、図4Cに示すように、三相二相変換を行う。図4Cに示す三相二相変換後のα−β軸は、巻線に固定した座標系である。なお、三相二相変換の変換行列Aは、以下の(1)式で表される。
Figure 2009298233
次に、図4Dに示すように、磁石磁束に同期した座標系に変換する同期座標変換を行う。図4Dに示す同期座標変換後のd−q軸は、磁石磁束に同期した座標系である。なお、同期座標変換の変換行列Bは、以下の(2)式で表される。
Figure 2009298233
同期機(PM型同期機)14の特性方程式については、d−q同期座標に変換したモデルで考えると、既知のd−q座標系の電圧方程式が利用できる。座標変換の際にロータ巻線22のa相を対称軸として反転していることを考慮して、以下の(3)式が得られる。
Figure 2009298233
ロータ26,28の位置関係及び回転方向を考慮して、同期機14の電気角速度ωpeは以下の(4)式で表される。
Figure 2009298233
ただし、(4)式において、ωpは同期機14の機械角速度、ωeは入力軸34の角速度(=dθe/dt)、ωwは出力軸24の角速度(=dθw/dt)、ωe'=2×ωw−ωeである。
一方、誘導機12の特性方程式については、ステータ16及びロータ18とも供給電源周期に同期したγ−δ座標系で表すことができ、以下の(5)式が得られる。ただし、γ軸方向を同期機(PM型同期機)14の磁石磁束方向とする。
Figure 2009298233
誘導機12のステータ巻線20の電気角周波数ωは、以下の(6)式で表される。
Figure 2009298233
前述したように、誘導機12のロータ巻線22と同期機14のロータ巻線30とは電気的に接続(直結)されているため、(3)、(5)式において、vd=vγr、vq=vδr、id=−iγr、iq=−iδrである。(3)、(5)式を合成すると、以下の(7)式が得られる。
Figure 2009298233
そして、同期機14のトルクTp、誘導機12のトルクTiは、以下の(8)、(9)式でそれぞれ表される。
Figure 2009298233
また、誘導機12のすべりは、以下の(10)式で表される。
Figure 2009298233
ここで、ステータ巻線20に流す電流の位相角(ステータ電流位相角)の変化に対する同期機14のトルクTp及び誘導機12のトルクTiの特性を計算した一例を図5に示す。本実施形態では、図5に示すように、ステータ電流位相角の制御により同期機14のトルクTp及び誘導機12のトルクTiを制御することができる。
(10)式から、誘導機12の極対数pi、同期機14の極対数pp、ロータ18,26の回転速度ωw、ロータ28の回転速度ωeに関して以下の(11)式が成立するときは、誘導機12が力行運転状態となり、誘導機12のロータ18に作用するトルクの方向が同期機14のロータ26に作用するトルクの方向と同方向になる。誘導機12の極対数piが同期機14の極対数ppと等しい例において、以下の(12)式が成立するときは、誘導機12のロータ18に作用するトルクの方向が同期機14のロータ26に作用するトルクの方向と同方向になる(誘導機12が力行運転状態になる)。そのため、出力軸24に伝達されるトルクは、同期機14のロータ26のトルクと誘導機12のロータ18のトルクとの和となり、無段変速機能を実現することが可能となる。
p/(pi+pp)×ωe<ωw<ωe (11)
ωe/2<ωw<ωe (12)
しかし、以下の(13)式が成立するときは、誘導機12が回生運転状態となり、誘導機12のロータ18に作用するトルクの方向が同期機14のロータ26に作用するトルクの方向と逆方向になる。誘導機12の極対数piが同期機14の極対数ppと等しい例において、以下の(14)式が成立するときは、誘導機12のロータ18に作用するトルクの方向が同期機14のロータ26に作用するトルクの方向と逆方向になる(誘導機12が回生運転状態になる)。そのため、出力軸24に伝達されるトルクは、同期機14のロータ26のトルクと誘導機12のロータ18のトルクとの差となり、出力軸24のトルクが減少して無段変速機能を実現できなくなる。
ωw<pp/(pi+pp)×ωe (13)
ωw<ωe/2 (14)
そこで、本実施形態では、(13)式(誘導機12の極対数piが同期機14の極対数ppと等しい例では(14)式)が成立するときは、電子制御ユニット50は、誘導機12の回生運転によるステータ巻線20の発電電力(交流電力)をインバータ40で直流に変換するとともに、この直流電力をインバータ41で交流に変換して回転電機11のステータ巻線70に供給するように、各インバータ40,41のスイッチング動作を制御する。つまり、誘導機12のステータ巻線20の回生電力をインバータ40,41で電力変換して回転電機11のステータ巻線70に供給する。回転電機11では、ステータ巻線70の各相に流れる交流電流によりステータ66に回転磁界を形成し、この回転磁界と永久磁石32で発生した界磁束との相互作用(吸引及び反発作用)によりロータ68にトルクが作用する。したがって、誘導機12の回生運転による発電電力を利用して回転電機11を力行運転することで、ロータ68から車輪38へ伝達される動力により車輪38を回転駆動することができる。その際には、同期機14のロータ26のトルクと同方向のトルクを回転電機11のロータ68に作用させることができるので、誘導機12の回生運転により出力軸24のトルクが低下するのを、回転電機11のロータ68のトルクにより補償することができる。なお、ロータ68のトルクの制御については、インバータ41のスイッチング動作により例えばステータ巻線70に流す電流の振幅や位相角を制御することで行うことができる。
図6に示すように、本実施形態では、エンジン36(入力軸34)と車輪38(出力軸24)との間の動力伝達経路として、前述の機械パスによる伝達経路と内部電気パスによる伝達経路との他に、ロータ巻線30、ロータ巻線22、ステータ巻線20、インバータ40、インバータ41、及びステータ巻線70を介した伝達経路(外部電気パスによる伝達経路)が設けられる。外部電気パスにおいては、エンジン36の動力が誘導機12の回生運転によりステータ巻線20の電力に一旦変換され、ステータ巻線20の電力がインバータ40,41で電力変換されてから回転電機11のステータ巻線70に伝達され、ステータ巻線70の電力がロータ68の動力に変換されて出力軸24から出力される。そして、車輪38に伝達される動力は、機械パスによる伝達動力と内部電気パスによる伝達動力と外部電気パスによる伝達動力との合計となる。
以上説明した本実施形態では、(13)式(誘導機12の極対数piが同期機14の極対数ppと等しい例では(14)式)が成立して誘導機12が回生運転状態にあるときは、誘導機12のステータ巻線20の回生電力をインバータ40,41で電力変換してから回転電機11のステータ巻線70に供給して回転電機11を力行運転することで、同期機14のロータ26のトルクと同方向のトルクを回転電機11のロータ68に作用させることができる。そのため、誘導機12の回生運転時に同期機14のロータ26のトルクと逆方向のトルクが誘導機12のロータ18に作用することで出力軸24のトルクが低下するのを、回転電機11のロータ68のトルクにより補償することができ、無段変速機能を維持することができる。その結果、無段変速機能が実現可能となる、ロータ28とロータ18,26との回転速度差の範囲を広げることができる。さらに、回転電機10での発電電力の一部はインバータ40,41(電力変換器)を通らずに誘導機12のロータ18の動力に変換されて出力軸24に伝達されるため、インバータ40,41を通過する電力量が少なくなる。そのため、インバータ40,41での損失を低減することができ、エンジン36と車輪38との間の動力伝達効率を向上させることができる。さらに、インバータ40,41の容量を低減することができる。
電子制御ユニット50は、(13)式が成立して誘導機12が回生運転状態にあるときは、出力軸24(車輪38)の要求トルクTw0及び回転速度ωwと入力軸34(エンジン36)の回転速度ωeとに基づいてエンジン36の目標トルクTe0を演算し、同期機14のロータ26のトルクTpがこの目標トルクTe0に一致するように、誘導機12のステータ巻線20に流す電流(振幅及び位相角)をインバータ40のスイッチング動作により制御する。さらに、電子制御ユニット50は、ステータ巻線20の電流(振幅及び位相角)に基づいて誘導機12のロータ18のトルクTiを演算し、同期機14のロータ26のトルクTpと誘導機12のロータ18のトルクTiと回転電機11のロータ68のトルクTmとの合計が出力軸24の要求トルクTw0に一致するように、回転電機11のロータ68のトルクTm、つまりステータ巻線70に流す電流(振幅及び位相角)をインバータ41のスイッチング動作により制御する。これによって、出力軸24の要求トルクTw0の不足分を回転電機11のロータ68のトルクTmにより賄うことができる。
なお、ωeとωwとの差が十分大きいとすると、(7)式中のωpeは十分大きいと考えられ、逆数の1/ωpeは0に近似できる。(7)式の第3行、第4行を抜き出して両辺をωpeで割って近似を適用すると、以下の(15)、(16)式が得られる。
する。
0=−M・iδs−(Lr+Lq)・iδr (15)
0=M・iγs+(Lr+Ld)・iγr−Φ (16)
(15)、(16)式を(9)式に代入して整理すると(ただしリラクタンストルクを無視してLd=Lqとする)、以下の(17)式が得られる。(8)、(17)式から、誘導機12の極対数piが同期機14の極対数ppと等しい例では、誘導機12のロータ18のトルクTiの大きさが同期機14のロータ26のトルクTpの大きさとほぼ等しくなる。
i=−pi・Φ・iδr (17)
一方、(11)式(誘導機12の極対数piが同期機14の極対数ppと等しい例では(12)式)が成立して誘導機12が力行運転状態にあるときは、誘導機12のロータ18に作用するトルクTiの方向が同期機14のロータ26に作用するトルクTpの方向と同方向であるため、電子制御ユニット50はインバータ41のスイッチング動作を停止することで、インバータ41から回転電機11のステータ巻線70への電力供給を停止する。このときは、回転電機11のステータ66からロータ68にトルクTmが作用していなくても、同期機14のロータ26のトルクTpと誘導機12のロータ18のトルクTiとにより出力軸24の要求トルクTw0を賄うことが可能であり、無段変速機能を維持することが可能である。
次に、本実施形態の他の構成例について説明する。
図7に示す構成例では、図2に示す構成例と比較して、エンジン36からの動力をロータ28とロータ18,26とに分配する動力分配機構52が設けられている。ここでの動力分配機構52は、キャリアCに伝達された動力をサンギアSとリングギアRとに分配する遊星歯車機構により構成することが可能であり、サンギアSがロータ28に連結され、リングギアRがロータ18,26に連結され、キャリアCがエンジン36(入力軸34)に連結されている。図7に示す構成例によれば、動力分配機構52でキャリアCからリングギアRに分配された動力は、出力軸24(車輪38)へ機械的に直接伝達される。一方、動力分配機構52でキャリアCからサンギアSに分配された動力は、前述の機械パスによる伝達経路と内部電気パスによる伝達経路(さらには外部電気パスによる伝達経路)を介して出力軸24(車輪38)へ伝達される。そのため、内部電気パスによる伝達経路(及び外部電気パスによる伝達経路)を介して伝達されるパワーの配分を少なくすることができ、エンジン36と車輪38との間の動力伝達効率をさらに向上させることができる。
また、図8に示す構成例では、図2に示す構成例と比較して、車両の前輪に連結された出力軸(以下、前輪側の出力軸とする)54が回転電機10のロータ18,26に連結され、車両の後輪に連結された出力軸(以下、後輪側の出力軸とする)24が回転電機11のロータ68に連結されていることで、ロータ18,26から前輪へ動力が伝達され、ロータ68から後輪へ動力が伝達される。図8に示す構成例によれば、エンジン36からの動力を前述の機械パスによる伝達経路と内部電気パスによる伝達経路を介して前輪側の出力軸54へ伝達することで前輪を回転駆動することができ、回転電機11のステータ巻線70へ電力供給される(回転電機11を力行運転する)ようにインバータ41のスイッチング動作を制御してロータ68の動力を後輪側の出力軸24へ伝達することで後輪を回転駆動することができる。そして、(11)式(誘導機12の極対数piが同期機14の極対数ppと等しい例では(12)式)が成立するときには、前輪と後輪の駆動力配分の自由度が出てくるため、電子制御ユニット50は、インバータ40のスイッチング動作により同期機14のロータ26のトルクTp及び誘導機12のロータ18のトルクTi(ステータ巻線20の電流)を制御するとともに、インバータ41のスイッチング動作により回転電機11のロータ68のトルクTm(ステータ巻線70の電流)を制御することで、前輪と後輪の駆動力配分を制御することができる。その際には、車両の要求駆動力を同期機14のロータ26のトルクTp及び誘導機12のロータ18のトルクTi(前輪側の出力軸54に伝達されるトルク)のみで賄うこともできるし、車両の要求駆動力を同期機14のロータ26のトルクTp及び誘導機12のロータ18のトルクTi(前輪側の出力軸54に伝達されるトルク)と、回転電機11のロータ68のトルクTm(後輪側の出力軸24に伝達されるトルク)との両方で賄うこともできる。さらに、蓄電装置42からの一時的な電力出力も許容すれば、車両の要求駆動力を回転電機11のロータ68のトルクTm(後輪側の出力軸24に伝達されるトルク)のみで賄うこともできる。なお、前輪と後輪の駆動力配分を制御する際には、車両の通常走行域(例えば平地の定速走行等)において(11)式を満たすようにエンジン36の回転速度と出力特性と車両のギア比を設定することが好ましい。また、前輪側の出力軸54を回転電機11のロータ68に連結し、後輪側の出力軸24を回転電機10のロータ18,26に連結する、つまりロータ68から前輪へ動力を伝達し、ロータ18,26から後輪へ動力を伝達することも可能であり、この構成によっても、前輪と後輪の駆動力配分を制御することができる。
以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明の実施形態に係る動力伝達装置を備えるハイブリッド駆動装置の構成の概略を示す図である。 本発明の実施形態に係る動力伝達装置の構成の概略を示す図である。 本発明の実施形態に係るハイブリッド駆動装置の動作を説明する図である。 回転電機10の特性方程式を導出する際に行う座標変換を説明する図である。 回転電機10の特性方程式を導出する際に行う座標変換を説明する図である。 回転電機10の特性方程式を導出する際に行う座標変換を説明する図である。 回転電機10の特性方程式を導出する際に行う座標変換を説明する図である。 ステータ電流位相角の変化に対する同期機14のトルク及び誘導機12のトルクの特性を計算した一例を示す図である。 本発明の実施形態に係るハイブリッド駆動装置の動作を説明する図である。 本発明の実施形態に係る動力伝達装置の他の構成の概略を示す図である。 本発明の実施形態に係る動力伝達装置の他の構成の概略を示す図である。 関連技術に係る動力伝達装置の構成の概略を示す図である。 関連技術に係る動力伝達装置の構成の概略を示す図である。
符号の説明
10,11 回転電機、12 誘導機、14 同期機、16,66 ステータ、18,26,28,68 ロータ、20,70 ステータ巻線、22,30 ロータ巻線、24,54 出力軸、32,82 永久磁石、34 入力軸、36 エンジン、38 車輪、40,41 インバータ、42 蓄電装置、50 電子制御ユニット、52 動力分配機構。

Claims (6)

  1. 回転磁界を発生可能な第1固定子導体が配設された第1固定子と、回転磁界を発生可能な第1回転子導体が配設された第1回転子と、を含み、第1固定子導体及び第1回転子導体の一方で発生した回転磁界により第1固定子導体及び第1回転子導体の他方に誘導電流が発生する誘導機と、
    回転磁界を発生可能な第2回転子導体が配設され且つ第1回転子と連結された第2回転子と、界磁束を発生する磁極が配設され且つ第2回転子に対し独立して回転可能な第3回転子と、を含み、第2回転子導体で発生した回転磁界と磁極で発生した界磁束との相互作用により第2回転子と第3回転子との間でトルクが作用する同期機と、
    回転磁界を発生可能な第2固定子導体が配設された第2固定子と、第2固定子導体で発生した回転磁界が作用するのに応じて第2固定子との間にトルクが作用する第4回転子と、を含む回転電機と、
    第1固定子導体と第2固定子導体との間で電力変換を行う電力変換部と、
    を備え、
    第1回転子導体及び第2回転子導体に電流が流れる場合に発生する回転磁界の方向が第1回転子導体と第2回転子導体とで互いに逆方向になるように、第1回転子導体と第2回転子導体とが接続されており、
    第3回転子に原動機からの動力が伝達され、第2及び第4回転子から負荷へ動力が伝達され、
    誘導機の極対数をpi、同期機の極対数をpp、第1及び第2回転子の回転速度をωw、第3回転子の回転速度をωeとすると、電力変換部は、
    ωw<pp/(pi+pp)×ωe
    が成立するときは、第1固定子導体の電力を電力変換して第2固定子導体へ供給する、動力伝達装置。
  2. 請求項1に記載の動力伝達装置であって、
    電力変換部は、
    p/(pi+pp)×ωe<ωw<ωe
    が成立するときは、第2固定子導体への電力供給を停止する、動力伝達装置。
  3. 請求項1または2に記載の動力伝達装置であって、
    原動機からの動力を第3回転子と第1及び第2回転子とに分配する動力分配機構をさらに備える、動力伝達装置。
  4. 請求項1〜3のいずれか1に記載の動力伝達装置であって、
    電力変換部は、
    ωw<pp/(pi+pp)×ωe
    が成立するときは、第1固定子導体の交流電力を直流に変換し、この直流電力を交流に変換して第2固定子導体へ供給する、動力伝達装置。
  5. 請求項1〜4のいずれか1に記載の動力伝達装置であって、
    第4回転子は第1及び第2回転子と連結されている、動力伝達装置。
  6. 請求項1〜4のいずれか1に記載の動力伝達装置であって、
    第2回転子から車両の前輪及び後輪の一方へ動力が伝達され、第4回転子から車両の前輪及び後輪の他方へ動力が伝達される、動力伝達装置。
JP2008153245A 2008-06-11 2008-06-11 動力伝達装置 Expired - Fee Related JP5211874B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008153245A JP5211874B2 (ja) 2008-06-11 2008-06-11 動力伝達装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008153245A JP5211874B2 (ja) 2008-06-11 2008-06-11 動力伝達装置

Publications (2)

Publication Number Publication Date
JP2009298233A true JP2009298233A (ja) 2009-12-24
JP5211874B2 JP5211874B2 (ja) 2013-06-12

Family

ID=41545597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008153245A Expired - Fee Related JP5211874B2 (ja) 2008-06-11 2008-06-11 動力伝達装置

Country Status (1)

Country Link
JP (1) JP5211874B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035756A1 (ja) * 2010-09-15 2012-03-22 株式会社 東芝 車両用駆動システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11164535A (ja) * 1997-11-25 1999-06-18 Toshiba Corp 回転電機、これを含むハイブリッド駆動装置及びその運転方法
JP2000197324A (ja) * 1998-12-25 2000-07-14 Denso Corp 動力伝達回転電機およびそれを用いた移動用動力伝達装置
JP2007116837A (ja) * 2005-10-20 2007-05-10 Toyota Central Res & Dev Lab Inc 回転電機及びそれを備えるハイブリッド駆動装置
JP2008254541A (ja) * 2007-04-03 2008-10-23 Toyota Central R&D Labs Inc 車両用駆動力配分装置及びそれを備える車両駆動システム
JP2009033917A (ja) * 2007-07-30 2009-02-12 Toyota Central R&D Labs Inc 動力伝達装置
JP2009073472A (ja) * 2007-08-27 2009-04-09 Toyota Central R&D Labs Inc 動力伝達装置
JP2009106134A (ja) * 2007-10-25 2009-05-14 Toyota Central R&D Labs Inc 動力伝達装置
JP2009274536A (ja) * 2008-05-13 2009-11-26 Toyota Central R&D Labs Inc 動力伝達装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11164535A (ja) * 1997-11-25 1999-06-18 Toshiba Corp 回転電機、これを含むハイブリッド駆動装置及びその運転方法
JP2000197324A (ja) * 1998-12-25 2000-07-14 Denso Corp 動力伝達回転電機およびそれを用いた移動用動力伝達装置
JP2007116837A (ja) * 2005-10-20 2007-05-10 Toyota Central Res & Dev Lab Inc 回転電機及びそれを備えるハイブリッド駆動装置
JP2008254541A (ja) * 2007-04-03 2008-10-23 Toyota Central R&D Labs Inc 車両用駆動力配分装置及びそれを備える車両駆動システム
JP2009033917A (ja) * 2007-07-30 2009-02-12 Toyota Central R&D Labs Inc 動力伝達装置
JP2009073472A (ja) * 2007-08-27 2009-04-09 Toyota Central R&D Labs Inc 動力伝達装置
JP2009106134A (ja) * 2007-10-25 2009-05-14 Toyota Central R&D Labs Inc 動力伝達装置
JP2009274536A (ja) * 2008-05-13 2009-11-26 Toyota Central R&D Labs Inc 動力伝達装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035756A1 (ja) * 2010-09-15 2012-03-22 株式会社 東芝 車両用駆動システム
JP2012061942A (ja) * 2010-09-15 2012-03-29 Toshiba Corp 車両用駆動システム

Also Published As

Publication number Publication date
JP5211874B2 (ja) 2013-06-12

Similar Documents

Publication Publication Date Title
JP4539528B2 (ja) 回転電機及びそれを備えるハイブリッド駆動装置
JP4466882B2 (ja) 電動機の制御装置
US7455133B2 (en) Electric four-wheel drive vehicle and control unit for same
JP5558176B2 (ja) 電動機駆動装置およびそれを搭載する車両
JP4993389B2 (ja) 回生型スイッチドリラクタンスモータ駆動システム
US20060202582A1 (en) Synchronous motor and electric driving system
US9334942B2 (en) Drive torque distribution apparatus
JP6072606B2 (ja) 回転電機
JP4960748B2 (ja) アキシャルギャップ型モータ
JP5381839B2 (ja) 動力伝達装置
JP5760895B2 (ja) 回転電機制御システム
JP6017992B2 (ja) 回転電機システム
JP5211874B2 (ja) 動力伝達装置
CN103475112A (zh) 开关磁阻发电机
JP2009142130A (ja) 回転電機及び回転電機駆動装置
JP4178933B2 (ja) 電動機を用いた電力変換装置
JP4946698B2 (ja) 動力伝達装置
JP4976260B2 (ja) 動力伝達装置
JP6569372B2 (ja) 動力配分装置
JP2006050705A (ja) 電動機制御装置
JP5171782B2 (ja) 動力システム
JP2008236962A (ja) 回転電機及びそれを備えるハイブリッド駆動装置
JP2008254541A (ja) 車両用駆動力配分装置及びそれを備える車両駆動システム
JP5362513B2 (ja) 動力システム
JP2014000871A (ja) 動力伝達装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees