JP2009281706A - 膨張弁 - Google Patents

膨張弁 Download PDF

Info

Publication number
JP2009281706A
JP2009281706A JP2008137154A JP2008137154A JP2009281706A JP 2009281706 A JP2009281706 A JP 2009281706A JP 2008137154 A JP2008137154 A JP 2008137154A JP 2008137154 A JP2008137154 A JP 2008137154A JP 2009281706 A JP2009281706 A JP 2009281706A
Authority
JP
Japan
Prior art keywords
valve
pressure
expansion valve
refrigerant
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008137154A
Other languages
English (en)
Inventor
Takanao Kumakura
孝尚 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP2008137154A priority Critical patent/JP2009281706A/ja
Publication of JP2009281706A publication Critical patent/JP2009281706A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】荷重調整用の付勢部材による付勢力の方向にずれがあったとしても、弁体を適正に作動させて弁開度特性を安定に保持できる膨張弁を提供する。
【解決手段】ある態様の膨張弁1は、弁体14のパワーエレメント4とは反対側にスプリング40が配置され、そのスプリング40の設定荷重により弁開度特性が設定される。弁体14とスプリング40との間にホルダ34が介装されているため、スプリング40の付勢力は、ホルダ34を介して間接的に弁体14に付与される。その際、スプリング40の形状や変形によりその付勢力の方向が軸線方向、つまり弁部の開閉方向からずれたとしても、ホルダ34がそのずれを吸収する。ホルダ34はボディ2に沿って軸線方向に摺動するため、その付勢力を弁体14に対して常に軸線方向、つまり弁部の開閉方向に伝達することができる。
【選択図】図1

Description

本発明は膨張弁に関し、特に自動車用空調装置の冷凍サイクルに設けられ、上流側から導入された高温・高圧の冷媒を膨張させて低温・低圧の冷媒にしてエバポレータへ送出する膨張弁に関する。
自動車用空調装置の冷凍サイクルには一般に、循環する冷媒を圧縮するコンプレッサ、圧縮された冷媒を凝縮するコンデンサ、凝縮された冷媒を気液に分離するレシーバ、分離された液冷媒を絞り膨張させて霧状にして送出する膨張弁、その霧状の冷媒を蒸発させてその蒸発潜熱により車室内の空気を冷却するエバポレータが設けられている。膨張弁としては、エバポレータから導出された冷媒が所定の過熱度をもつように、例えばエバポレータ出口における冷媒の温度および圧力を感知して弁部を開閉し、エバポレータへ送出する冷媒の流量を制御する温度式膨張弁が用いられる(例えば特許文献1参照)。
この膨張弁のボディには、レシーバからエバポレータへ向かう冷媒を通過させる第1の通路と、エバポレータから戻ってきた冷媒を通過させてコンプレッサへ導出する第2の通路とが形成されている。第1の通路の中間部には弁孔が設けられ、その開口端縁により弁座が形成されている。一方、その弁座に対向配置されるように弁体が設けられ、その弁体が弁座に着脱して弁孔を開閉することにより、エバポレータへ向かう冷媒の流量が調整される。ボディの端部には、第2の通路を流れる冷媒の温度および圧力を感知して弁部の開度を制御するパワーエレメントが設けられている。パワーエレメントによる開弁方向の駆動力は、ボディの軸線方向に沿って延びる長尺状の作動ロッドにより弁体に伝達される。弁体のパワーエレメントとは反対側には、その弁体を閉弁方向に付勢するスプリングが配置されており、このスプリングの荷重を調整することにより弁部が開く開弁圧力のセット値が設定されている。ボディにおける第1の通路の入口ポートにはレシーバから延びる高圧配管が接続され、出口ポートにはエバポレータへ向かう低圧配管が接続される。また、第2の通路の入口ポートにはエバポレータから延びる戻り配管が接続され、出口ポートにはコンプレッサへ向かう低圧配管が接続される。
ところで、このような冷凍サイクルを循環させる冷媒には一般にフロン(HFC−134a)が使用されているが、地球温暖化係数が大きいことから、その大気への漏洩対策が必要となる。上述した膨張弁の構造においては、ボディと各配管との接続部、ボディとパワーエレメントとの連結部等の各部位において冷媒の外部漏れが発生する可能があるためである。特に、膨張弁の入口ポートにおける高圧配管の継手部分においては通過する冷媒圧力が高くなるため、出口ポートにおける低圧配管の継手部分よりもフロンがシール部材を浸透して外部に漏れる可能性がある。
そこで、本出願人は、エバポレータからコンプレッサへ向かう戻り低圧配管内に膨張弁をそっくり収容し、その低圧配管内で膨張弁と高圧配管およびエバポレータ入口配管との接続を行うようにした膨張弁の装着構造を提案している(例えば特許文献2参照)。この膨張弁のボディには、レシーバからエバポレータへ向かう冷媒を通過させる第1の通路は形成されているが、エバポレータから戻ってきた冷媒を通過させてコンプレッサへ導出する第2の通路は設けられていない。つまり、そのボディを収容する戻り低圧配管内が第2の通路になっている。ただし、第2の通路を流れる冷媒の温度および圧力を感知できるよう、パワーエレメントには内外を連通する複数の連通孔が形成されている。この構造によれば、仮に高圧配管の接続部においてフロンが外部に漏洩したとしても、その接続部が低圧配管内に収容されているため、そのフロンが大気に漏れるのを防止することができる。また、第2の通路をボディに設けない構成とすることで、膨張弁として非常にコンパクトな構成を実現している。なお、この膨張弁においても、パワーエレメントによる開弁方向の駆動力は作動ロッドにより弁体に伝達される。弁体のパワーエレメントとは反対側にはスプリングが配置されており、このスプリングの荷重を調整することにより弁部が開く開弁圧力のセット値が設定される。
特開2002−115938号公報 特開2008−57949号公報
しかしながら、いずれの膨張弁の構成においても、荷重調整用のスプリングが弁体を直接支持する構成であることから、そのスプリングの形状や変形の影響が弁体に直接的におよび、弁部の開弁性能を低下させる可能性があった。例えば、スプリングそのものの端面が傾斜している場合、弁体にはスプリングの荷重が軸線方向からずれた方向に偏って作用することになる。また、弁体がその弁部の前後差圧によって開弁方向に変位した際の押圧力によってスプリングが座屈したような場合、その座屈によりスプリングの荷重方向が軸線方向からずれることも想定される。
このように何らかの要因でスプリングが傾いた場合、弁体にもその横荷重が作用する。このため、弁体が弁座に対して垂直に着座できず、その着座時に引っ掛かりが生じる可能性がある。その結果、弁部の開閉により弁体や弁座が偏摩耗しやすく、その耐久性を悪化させるおそれがある。また、閉弁時にそのような引っ掛かりが発生すると、弁体が弁座に確実に着座するまでに時間を要し、弁部のシール性を低下させてしまうおそれがある。さらに、スプリングが傾くと弁体との嵌合位置がずれやすく、スプリングの荷重が変動してそのセット値が安定しなくなる可能性がある。その結果、弁開度特性が設計値からずれてしまうおそれがある。特に、特許文献2に記載の膨張弁においては、ボディに第2の通路を設けなくなった結果、作動ロッドを比較的短くすることができるが、その反面、作動ロッドを支持する軸支点間距離が短くなる。その結果、特に弁体が作動ロッドの端部に一体に設けられた構成において、スプリングの傾きの影響を受けやすくなる可能性がある。また、特許文献2の膨張弁においては、形状がコンパクトであるために弁体のストロークそのものも比較的小さくなるが、その反面、スプリングの傾きの影響を相対的に受けやすくなる可能性がある。
本発明はこのような問題に鑑みてなされたものであり、荷重調整用の付勢部材による付勢力の方向にずれがあったとしても、弁体を適正に作動させて弁開度特性を安定に保持できる膨張弁を提供することにある。
上記課題を解決するために、本発明のある態様の膨張弁は、冷凍サイクルにおける上流側から導入された冷媒をボディ内の弁部を通過させることにより膨張させてエバポレータへ供給し、エバポレータから戻ってきた冷媒の圧力と温度を感知して弁部の開度を制御する膨張弁であって、ボディを貫通する冷媒通路の中間部に設けられた弁孔に接離して弁部を開閉する弁体と、ボディに取り付けられたハウジングと、そのハウジングを基準圧力が満たされる密閉空間とエバポレータから戻ってきた冷媒の被感知圧力が導入される開放空間とに仕切り、その被感知圧力が低下したときに弁体の開弁方向に変位し、その被感知圧力が上昇したときに弁体の閉弁方向に変位する感圧部材とを有する感圧部と、感圧部材の変位を弁体に伝達して弁部を開閉させる作動ロッドと、弁体の感圧部とは反対側に配置され、弁体に閉弁方向の付勢力を付与する付勢部材と、弁体と付勢部材との間に介装され、少なくとも弁体に対しては相対変位を許容するように当接配置される一方、ボディ内において軸線方向に沿って摺動可能に支持されるガイド部材と、を備える。
この態様によれば、弁体の感圧部とは反対側に付勢部材が配置され、その付勢部材の設定荷重により弁開度特性が設定される。弁体と付勢部材との間にガイド部材が介装されているため、付勢部材の付勢力は、ガイド部材を介して間接的に弁体に付与される。その際、付勢部材の形状や変形によりその付勢力の方向が軸線方向、つまり弁部の開閉方向からずれたとしても、ガイド部材がそのずれを吸収する。すなわち、ガイド部材はボディに沿って軸線方向に摺動するため、その付勢力を弁体に対して常に軸線方向、つまり弁部の開閉方向に伝達することができる。また、ガイド部材が弁体に対して相対変位可能に当接配置されているため、仮にガイド部材に軸線と直角方向の振れが生じたとしても、弁体への影響を抑制することができる。その結果、付勢部材による付勢力の方向にずれがあったとしても、弁体を適正に作動させることができ、その弁開度特性を安定に保持することができる。また、膨張弁の組み付け当初において仮に弁体の軸線が弁孔の軸線とずれていたとしても、このようにガイド部材と相対変位可能であるため、弁体が開閉作動を繰り返すうちにその自動調心がなされ、弁孔と軸線を一致させることができるようになる。
本発明の膨張弁によれば、荷重調整用の付勢部材による付勢力の方向にずれがあったとしても、弁体を適正に作動させてその弁開度特性を安定に保持できるようになる。
以下、本発明の実施の形態を、図面を参照して詳細に説明する。なお、以下の説明においては便宜上、図示の状態を基準に各構造の位置関係を表現することがある。
[第1の実施の形態]
まず、本発明の第1の実施の形態について説明する。本実施の形態は、本発明の膨張弁を自動車用空調装置の冷凍サイクルに適用される温度式膨張弁として具体化している。
本実施の形態の冷凍サイクルは、図示しないコンプレッサ、コンデンサ、レシーバ、膨張弁およびエバポレータを含む冷媒循環回路に、冷媒としての代替フロン(HFC−134a)を循環させて車室内の空調を行うシステムとして構成されている。コンプレッサにて圧縮された高温・高圧の冷媒は、コンデンサにて凝縮され、レシーバにて気液に分離される。このとき分離された液冷媒は、膨張弁により絞り膨張されて霧状となり、エバポレータへ送られる。その霧状の冷媒はエバポレータにて蒸発され、その蒸発潜熱により車室内の空気が冷却される。エバポレータとの熱交換により冷却と除湿が行われた空気は、その一部がヒータを通過するよう制御されるなどして温度調整が行われる。
図1は、第1の実施の形態に係る膨張弁の断面図である。
膨張弁1は、エバポレータからコンプレッサへ向かう戻り低圧配管内にそっくり収容される態様の温度式膨張弁として構成され、ボディ2の内部に弁部が設けられている。ボディ2の端部には、弁部を開閉駆動するパワーエレメント4(「感圧部」に該当する)が装着されている。
ボディ2の側部には高圧の冷媒を導入する入口ポート6が設けられ、下部には低圧の冷媒を導出する出口ポート8が設けられている。これらのポートは、ボディ2の内部で直交する冷媒通路を介して連通している。その冷媒通路の中間部には区画壁10が設けられ、その区画壁10を貫通するように弁孔12が形成されている。そして、弁孔12に下流側から対向するように弁体14が配置されている。区画壁10は、弁体14との対向部において凹状に形成された段部を有し、その段部の中央を貫通するようにガイド孔16が形成されている。弁孔12は、その段部においてガイド孔16の周りに所定の間隔で設けられた複数の貫通孔により形成される。冷媒通路において区画壁10の上流側が高圧冷媒通路18となり、下流側が低圧冷媒通路20となる。
ボディ2の上部には内外を連通させる連通孔22が形成されており、細径部24を介して高圧冷媒通路18に連通している。弁体14には長尺状の作動ロッド26が一体に設けられている。作動ロッド26は、ガイド孔16に摺動可能に挿通され、細径部24を貫通して連通孔22に到るように延設されている。作動ロッド26の上端部には円筒状の端部材28が圧入されている。端部材28は、連通孔22の内壁に沿って摺動可能に支持されている。すなわち、弁体14は、作動ロッド26がガイド孔16および連通孔22に沿ってガイドされつつ軸線方向に駆動されることにより、弁部の開閉方向に動作する。本実施の形態においては、連通孔22の径と弁孔12の径とが実質的に等しく構成されており、その結果、弁体14に直接または間接的に作用する高圧の冷媒による圧力がキャンセルされている。
弁孔12の下流側開口端縁によって弁座30が形成されており、弁体14の上端部近傍のテーパ面が弁座30に着脱することにより弁部が開閉される。細径部24と端部材28との間に形成される空間にはOリング32が配置されており、内外の気密性を保持している。
低圧冷媒通路20における弁体14の下流側には、有底円筒状のホルダ34(「ガイド部材」に該当する)が配置されている。ホルダ34は、その底部を上にして弁体14に下方から当接してこれを支持しつつ、その外周面がボディ2の内周面に摺動可能に配設されている。ボディ2の下端開口部にはリング状のアジャスト部材38が圧入され、アジャスト部材38とホルダ34との間には、ホルダ34を介して弁体14を閉弁方向に付勢するスプリング40(「付勢部材」に該当する)が介装されている。スプリング40のばね荷重は、アジャスト部材38のボディ2への圧入量により調整することができる。その圧入量により弁部の開弁圧力、つまり膨張弁1のセット値が調整される。
図2は、ホルダ単体の構成を詳細に示す図である。(A)はその平面図を表し、(B)は(A)のA−A矢視断面図を表している。
ホルダ34は、筒状の本体の外周面に、半径方向外向きに突設された複数のガイド部42を有する。ガイド部42は、半円断面をなして本体の上下に延び、本体の周方向に45度おきに設けられている。ホルダ34の底部の下面中央には、円柱状のボス部36が下方に突設されている。
図1に戻り、ホルダ34は、そのガイド部42を介してボディ2の内周面に摺動する。このとき、ホルダ34の隣接するガイド部42とボディ2の内周面との間には、冷媒の通過を許容する連通路が形成される。スプリング40は、その上半部がホルダ34に所定のクリアランスをもって内挿され、その上端部がボス部36に所定のクリアランスをもって外挿されている。すなわち、スプリング40とホルダ34との連結部には、所定の遊びが設けられている。
ホルダ34と弁体14とは当接するが、互いに固定されてはいない。したがって、両者はその当接面において摺動し、相対変位可能となっている。これにより、仮にホルダ34に軸線と直角方向の振れが生じたとしても、弁体14への影響を抑制できるようになっている。また、ホルダ34とスプリング40との間には、上述のように半径方向に所定のクリアランスが設けられているため、仮に両者の軸線がずれていたとしても、ある程度緩和されるようになっている。その結果、そのように軸線がずれていても、スプリング40による横力がホルダ34に作用するのを抑制でき、そのホルダ34の軸線方向への円滑な摺動が可能となっている。
パワーエレメント4は、中空のハウジング50と、ハウジング50内を密閉空間S1と開放空間S2とに仕切るように配設されたダイアフラム52(「感圧部材」に該当する)とを含んで構成されている。ハウジング50は、ともにステンレスからなる有蓋状のアッパーハウジング54および段付円筒状のロアハウジング56からなり、これらの開口部を突き合わせてその外縁部にステンレス等の金属薄板からなるダイアフラム52の外縁部を挟むようにして組み付けられる。ハウジング50は、アッパーハウジング54とロアハウジング56との間にダイアフラム52を挟んだ状態でその接合部の外周に沿ってTIG溶接等が施されることにより、容器状に形成されている。密閉空間S1は感温室を構成し、アッパーハウジング54内に基準圧力を保持するための冷媒ガスなどが充填された後、その上面中央に設けられた孔をボール状の封体58にて封止することにより密閉されている。封体58は、例えばステンレス等から構成される。
ロアハウジング56の内周面には、ボディ2の先端部に形成された雄ネジ部に螺合する雌ネジ部が形成されている。そして、ロアハウジング56の下半部がボディ2の上端部に螺合されることにより、パワーエレメント4がボディ2に固定されるように構成されている。ロアハウジング56の側面には、内外を連通させる複数の通気孔60が周方向に所定の間隔で設けられている。開放空間S2は感圧室を構成し、後述するように通気孔60を介してエバポレータの下流側を流れる冷媒が導入される。その冷媒の導入量は、通気孔60の大きさや数を変更することによって調整可能となっている。
ダイアフラム52の下面中央には有底円筒状のディスク62が当接配置されている。ディスク62は、ロアハウジング56の内壁部に摺動可能に外挿されている。端部材28の先端面はロアハウジング56内に露出し、ディスク62は、ダイアフラム52と端部材28との間に挟まれるようにして支持されている。ディスク62の開口端がロアハウジング56の底部に係止されるとにより、ダイアフラム52の下死点位置(開弁方向への変位量)が規制される。
ボディ2の長手方向中央部の外周面には、複数の柱状のアーム64が半径方向外向きに延びるように設けられている。本実施の形態では、アーム64がボディ2の周方向に90度おきに設けられている。ボディ2の出口ポート8近傍の外周面には、所定深さの溝66が周設されており、その溝66にシール用のOリング68が嵌着されている。
図3は、冷凍サイクルにおける膨張弁の配管取り付け構造を表す平面図である。図4は、図3のB−B矢視断面図である。
本実施の形態において、エバポレータ100と膨張弁1とは、同図に示される複数の配管を介して接続されている。上述のように、膨張弁1は、エバポレータ100の出口とコンプレッサの入口との間の戻り低圧配管内にそっくり収容され、エバポレータ100の出口側温度を直接感知して動作するように構成されている。
エバポレータ100は、アルミニウムからなる図示しない複数のプレートを積層して構成され、そのヘッダ部分に冷媒を導入する冷媒入口および冷媒を導出する冷媒出口を有する。ヘッダ部にはその冷媒入口につながる入口配管70、冷媒出口につながる出口開口部72が設けられており、それぞれ低圧配管74、戻り配管76につながっている。低圧配管74は、膨張弁1の出口ポート8に接続されており、戻り配管76は、膨張弁1を収容する筒状のケース78に接続されている。戻り配管76とケース78との接続部にはOリング79が設けられており、気密性が保持されている。
本実施の形態においては、戻り配管76およびケース78が「戻り低圧配管」を構成する。ケース78の戻り配管76とは離間した位置には、コンプレッサの入口につながる低圧配管80が接続されている。また、レシーバにつながる高圧配管82の端部がケース78を貫通するように挿入され、膨張弁1の入口ポート6に接続されている。膨張弁1と高圧配管82との接続部、および高圧配管82とケース78との接続部には、Oリング84,86がそれぞれ設けられ、気密性が保持されている。膨張弁1の出口ポート8側の端部は、Oリング68を介して低圧配管74に気密に内挿されている。膨張弁1は、各アーム64をケース78の内壁に突き当てるようにしてケース78内に安定に保持されている。
このように、戻り配管76およびケース78からなる戻り低圧配管内に膨張弁1の全体、入口ポート6と高圧配管82との接続部、出口ポート8と低圧配管74との接続部が配置される。その結果、例えばOリング84や68を介して高圧の冷媒が微少漏れしたとしても漏れるのは戻り低圧配管の中となり、大気に漏れることはない。
図5は、実施の形態に係る膨張弁の特性を表す図である。図6は、比較例として弁体とスプリングとの間にホルダを設けない膨張弁の特性を表す図である。各図において、(A)は、パワーエレメント4が感圧する被感知圧力と弁開度との関係を表している。その横軸が被感知圧力(感圧圧力)を表し、縦軸が弁開度を表している。(B)は、弁洩れ特性を表している。その横軸は時間の経過を表し、縦軸は弁部の下流側の圧力を表している。
図5(A)に示すように、本実施の形態においては、パワーエレメント4が感圧する被感知圧力、つまりエバポレータ出口側の圧力が大きくなるほど、ダイアフラム52が密閉空間S1を縮小する方向に変位するため、膨張弁1の弁開度は小さくなる。そして、閉弁状態から被感知圧力が低下すると、再び開弁状態へ移行する。なお、このエバポレータの出口側圧力は、その出口側温度に比例する。図中の矢印は弁開度の変化の方向を表しており、被感知圧力が上昇するときと下降するときとで所定のヒステリシスが生じているが、これは、パワーエレメント4の温度感知によるダイアフラム52の変位等によるものである(以下、同様)。本実施の形態によれば、このようなヒステリシスがあるものの、被感知圧力と弁開度とが比例的に安定した特性が得られている。また、同図(B)に示す例では、時刻t1においてコンプレッサが停止されたため、弁部の下流側の圧力が上昇しているが、弁体14が速やかに着座するために、その圧力上昇が抑えられている。
これに対し、図6(A)に示す比較例では、膨張弁1が閉弁状態へ移行する過程でスプリング40が座屈して弁体14に横力が作用し、弁体14と弁孔12との軸線がずれたために、弁体14が弁座30に引っ掛かり、閉弁動作が一時的に阻害されている。その結果、閉弁動作の応答性が低下し、同図(B)にも示すように、閉弁状態に到るまでの圧力上昇が大きくなっている。また、閉弁状態から開弁動作に移行する際のヒステリシスも大きくなっている。
すなわち、比較例ではスプリング40の座屈によりその付勢力に横力が発生し、その横力が弁体14に作用した状態で弁部が開閉動作を行ったため弁開度特性が悪化しているが、本実施の形態によれば、その弁開度特性が良好に保持されている。すなわち、本実施の形態によれば、スプリング40の付勢力が、ホルダ34を介して間接的に弁体14に付与されるため、スプリング40の変形等によりその付勢力の方向が弁部の開閉方向からずれたとしても、ホルダ34がそのずれを吸収する。ホルダ34はボディ2に沿って軸線方向に摺動するため、その付勢力を弁体14に対して常に軸線方向、つまり弁部の開閉方向に伝達することができるのである。その結果、スプリング40による付勢力の方向にずれがあったとしても、弁体14を適正に作動させることができ、その弁開度特性を安定に保持することができる。特に、本実施の形態のようにパワーエレメント4が小型化された構成においては、弁体14のストロークそのものが比較的小さくなるため、スプリング40の傾きの影響を受けやすくなるところ、このようにホルダ34によりこれを吸収できるため、その効果が大きくなる。
次に、膨張弁の動作について説明する。
車両用空調装置が停止しているとき、パワーエレメント4の密閉空間S1(感温室)に封入されたガスは凝縮されて圧力が低くなっているので、図1に示したように、ダイアフラム52は閉弁方向(同図の上方)へ変位する。その変位がディスク62および作動ロッド26を介して弁体14に伝達され、膨張弁1は全閉状態となる。
ここで、車両用空調装置が起動すると、コンプレッサによって冷媒が吸引されるので、ケース78内の圧力が低下する(図3および図4参照)。その結果、パワーエレメント4がこれを感知してダイアフラム52が開弁方向へ変位する。その変位が弁体14に伝達され、膨張弁1は開弁状態へ移行する。一方、コンプレッサによって圧縮された冷媒はコンデンサにて凝縮され、レシーバにて気液分離された液冷媒が高圧配管82を通じて膨張弁1の入口ポート6に供給されるようになる。高温・高圧の液冷媒は、膨張弁1を通過するときに絞り膨張され、低温・低圧の気液混合冷媒となって出口ポート8を出る。その冷媒は、低圧配管74および入口配管70を介してエバポレータに供給され、その内部で蒸発されることにより車室内温度との熱交換を行う。エバポレータを通過した冷媒は、出口開口部72、戻り配管76、ケース78および低圧配管80を介してコンプレッサに戻る。
パワーエレメント4の開放空間S2は通気孔60を介してケース78の内部と連通しているので、エバポレータから戻ってきた冷媒がケース78を通過するとき、その冷媒が導入されてその温度および圧力がパワーエレメント4によって検出される。すなわち、車両用空調装置の起動当初においては、エバポレータから戻ってくる冷媒は、車室内の高温の空気との熱交換によってその温度が高くなっており、パワーエレメント4はその温度を感知し、密閉空間S1の圧力が高くなる。これにより、ダイアフラム52は、ディスク62がロアハウジング56の底面に当接するまで開弁方向に変位し、膨張弁1は全開状態になる。
そして、エバポレータから戻ってくる冷媒の温度が低下してくると、密閉空間S1の圧力が低くなるため、それに応じてダイアフラム52が閉弁方向へ変位する。その結果、膨張弁1は、閉弁方向に動作してこれを通過する冷媒の流量を制御するようになる。通常の環境下においては、膨張弁1は、エバポレータの出口側の冷媒温度を感知して、その冷媒が所定の過熱度を保持するようにエバポレータに供給する冷媒の流量を制御する。これにより、コンプレッサには常に過熱状態の冷媒が戻るため、安定した運転が行われる。
[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。本実施の形態に係る膨張弁は、ガイド部材の形状が異なる以外は第1の実施の形態とほぼ同様の構成を有する。このため、第1の実施の形態と同様の構成部分については同一の符号を付す等して適宜その説明を省略する。図7は、第2の実施の形態に係る膨張弁の断面図である。図8は、ホルダ単体の構成を詳細に示す図である。(A)はその平面図を表し、(B)は(A)のC−C矢視断面図を表している。
膨張弁201のホルダ234は、下面にボス部36が突設された三角板状の本体235を有し、その本体235の各頂点部から下方に向けて脚部242(「ガイド部」に該当する)が延設されている。脚部242は、ボディ2の内周面に沿った外周面を有し、本体の周方向に120度おきに設けられている。ホルダ234は、その脚部242を介してボディ2の内周面に摺動する。このとき、ホルダ234の隣接する脚部242とボディ2の内周面との間には、冷媒の通過を許容する連通路が形成される。スプリング40とホルダ234との連結部には、所定の遊びが設けられている。このような形状のホルダ234によっても、第1の実施の形態と同様の作用効果を得ることができる。すなわち、仮にスプリング40の軸線が弁体14の軸線とずれたとしても、そのずれを吸収することができ、膨張弁201の弁開度特性を良好に保持することができる。
[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。本実施の形態に係る膨張弁は、弁部の構成が若干異なる以外は第2の実施の形態とほぼ同様の構成を有する。このため、第2の実施の形態と同様の構成部分については同一の符号を付す等して適宜その説明を省略する。図9は、第3の実施の形態に係る膨張弁の断面図である。
膨張弁301においては、ボディ302の区画壁310に図1に示したようなガイド孔16は設けられておらず、弁孔312として弁孔12よりも大きな円孔が設けられている。作動ロッド326の下端に設けられた弁体314は、弁座30に着脱するための比較的大きなテーパ面を有し、その構成が簡素化されている。
すなわち、ホルダ234と弁体314とは当接するが、互いに固定されてはいない。したがって、両者はその当接面において摺動し、相対変位可能となっている。また、膨張弁1の組み付け当初において仮に弁体314の軸線が弁孔312の軸線とずれていたとしても、このようにホルダ234と弁体314とが相対変位可能であるため、弁体314が開閉作動を繰り返すうちにその自動調心がなされるようになる。このため、その自動調心を前提として作動ロッド326の弁体側のガイド構造を省略している。これにより、第1の実施の形態と比較してその弁孔近傍の構成を簡素化することができ、膨張弁301の製造コストを低減することができる。
[第4の実施の形態]
次に、本発明の第4の実施の形態について説明する。本実施の形態に係る膨張弁は、弁座を可動にした点等が異なる以外は第3の実施の形態とほぼ同様の構成を有する。このため、第3の実施の形態と同様の構成部分については同一の符号を付す等して適宜その説明を省略する。図10は、第4の実施の形態に係る膨張弁の断面図である。
膨張弁401においては、ボディ402とホルダ434との間に可動弁座形成部材420が介装されている。可動弁座形成部材420は、ボディ402内に摺動可能に配置された有底円筒状の本体を有し、その本体の底部中央を貫通するように弁孔12が形成されている。区画壁310における弁孔12との対向位置には、弁孔12と同じ断面形状の円孔412が形成されている。可動弁座形成部材420の弁孔12の下流側開口端縁には弁座30が形成されている。
可動弁座形成部材420は、その外周面を介してボディ402に摺動するが、その外周面には環状溝422が形成されており、そこにシール用のOリング424が嵌着されている。このOリング424によって、可動弁座形成部材420の外周面とボディ402の内周面との間隙を介した冷媒の流れが遮断されている。
低圧冷媒通路20における可動弁座形成部材420のやや下流側には、段付円筒状のストッパ430が圧入されている。ストッパ430は、上方に向かって縮管しており、その先端部にて可動弁座形成部材420を下方から係止できるように配置されている。可動弁座形成部材420とストッパ430との間には、可動弁座形成部材420を上方に付勢するスプリング432(「第2の付勢部材」に該当する)が介装されている。一方、区画壁310の円孔412の下流側開口部には、下方にやや隆起したストッパ部414が形成されており、可動弁座形成部材420を上方から係止できるように配置されている。すなわち、ストッパ部414によって可動弁座形成部材420の上死点が規定され、ストッパ430により可動弁座形成部材420の下死点が規定されている。したがって、可動弁座形成部材420は、その前後差圧によって軸線方向に動作するが、ストッパ部414およびストッパ430によってその摺動変位が規制される。
ホルダ434は、その半径方向および軸線方向の大きさが第3の実施の形態のホルダ234よりも小さく構成されている。ホルダ434は、その外周面の外径が可動弁座形成部材420の内径とほぼ等しくなっており、可動弁座形成部材420に内挿されている。ホルダ434は、その3つの脚部442が可動弁座形成部材420の内周面に摺動可能にガイドされる。すなわち、ホルダ434は、可動弁座形成部材420を介してボディ402により間接的にガイドされることになる。ホルダ434とアジャスト部材38との間には、上方に向けて縮径する円錐状のスプリング440が介装されている。なお、上述したスプリング432の荷重は、スプリング440の荷重よりも相当小さく設定されている。
以上のような構成により、車両が低温環境下におかれても車両空調装置の性能を良好に保つことができる。すなわち、車両空調装置が定常状態にて制御されているときには、膨張弁401に入口ポート6を介して十分に高い圧力が導入されるため、可動弁座形成部材420は下死点に変位する。弁体314は、この下死点に変位された弁座30に着脱して弁部を開閉することになる。一方、低温環境下においてエバポレータの出口側温度が低下した結果、膨張弁401の弁部の前後差圧が低下すると、可動弁座形成部材420がスプリング432の付勢力によって上方に変位する。その結果、膨張弁401の弁開度が相対的に大きくなり、エバポレータ側に十分な冷媒を流すことができる。その結果、エバポレータを流れる冷媒の圧力低下、つまりエバポレータの温度低下を抑制することができ、エバポレータを凍結させることなく、除湿等を含む車両空調装置の性能を良好に保つことができる。
以上、本発明の好適な実施の形態について説明したが、本発明はその特定の実施の形態に限定されるものではなく、本発明の技術思想の範囲内で種々の変形が可能であることはいうまでもない。
各実施の形態では特に述べなかったが、弁体とホルダとの相対変位の許容を促進するために、両者の少なくとも当接面に摩擦抵抗を低減可能なコーティング等の処理を行うようにしてもよい。これにより、弁体および作動ロッドによる調心作用をより有効に発揮させることができる。
上記実施の形態の膨張弁は、冷媒として代替フロン(HFC−134a)など使用する冷凍サイクルに好適に適用されるが、本発明の膨張弁は、二酸化炭素のように作動圧力が高い冷媒を用いる冷凍サイクルに適用することも可能である。その場合には、冷凍サイクルにコンデンサに代わってガスクーラなどの外部熱交換器が配置される。その際、パワーエレメント4を構成するダイヤフラム等の強度を補うために、金属製の皿ばね等を重ねて配置してもよい。あるいは、ダイヤフラムに置き換えて皿ばね等を配置してもよい。
上記実施の形態の膨張弁においては、エバポレータから戻ってきた冷媒の圧力と温度を感知する感圧部材としてダイアフラムを用いる例を示した。感圧部材としてはこのほか、ベローズ等のように圧力を感知して伸縮するものを採用することもできる。しかし、膨張弁全体のコンパクト化を実現するうえでは薄膜状の感圧部材であるダイアフラムを採用するほうが好ましい。
第1の実施の形態に係る膨張弁の断面図である。 ホルダ単体の構成を詳細に示す図である。 冷凍サイクルにおける膨張弁の配管取り付け構造を表す平面図である。 図3のB−B矢視断面図である。 実施の形態に係る膨張弁の特性を表す図である。 比較例として弁体とスプリングとの間にホルダを設けない膨張弁の特性を表す図である。 第2の実施の形態に係る膨張弁の断面図である。 ホルダ単体の構成を詳細に示す図である。 第3の実施の形態に係る膨張弁の断面図である。 第4の実施の形態に係る膨張弁の断面図である。
符号の説明
1 膨張弁、 2 ボディ、 4 パワーエレメント、 6 入口ポート、 8 出口ポート、 12 弁孔、 14 弁体、 16 ガイド孔、 18 高圧冷媒通路、 20 低圧冷媒通路、 26 作動ロッド、 30 弁座、 34 ホルダ、 36 ボス部、 38 アジャスト部材、 40 スプリング、 42 ガイド部、 50 ハウジング、 52 ダイアフラム、 60 通気孔、 70 入口配管、 72 出口開口部、 74 低圧配管、 76 戻り配管、 78 ケース、 80 低圧配管、 82 高圧配管、 100 エバポレータ、 201 膨張弁、 234 ホルダ、 242 脚部、 301 膨張弁、 302 ボディ、 312 弁孔、 314 弁体、 326 作動ロッド、 401 膨張弁、 402 ボディ、 414 ストッパ部、 420 可動弁座形成部材、 430 ストッパ、 432 スプリング、 434 ホルダ、 440 スプリング、 442 脚部、 S1 密閉空間、 S2 開放空間。

Claims (7)

  1. 冷凍サイクルにおける上流側から導入された冷媒をボディ内の弁部を通過させることにより膨張させてエバポレータへ供給し、前記エバポレータから戻ってきた冷媒の圧力と温度を感知して前記弁部の開度を制御する膨張弁であって、
    前記ボディを貫通する冷媒通路の中間部に設けられた弁孔に接離して前記弁部を開閉する弁体と、
    前記ボディに取り付けられたハウジングと、そのハウジングを基準圧力が満たされる密閉空間と前記エバポレータから戻ってきた冷媒の被感知圧力が導入される開放空間とに仕切り、その被感知圧力が低下したときに前記弁体の開弁方向に変位し、その被感知圧力が上昇したときに前記弁体の閉弁方向に変位する感圧部材とを有する感圧部と、
    前記感圧部材の変位を前記弁体に伝達して前記弁部を開閉させる作動ロッドと、
    前記弁体の前記感圧部とは反対側に配置され、前記弁体に閉弁方向の付勢力を付与する付勢部材と、
    前記弁体と前記付勢部材との間に介装され、少なくとも前記弁体に対しては相対変位を許容するように当接配置される一方、前記ボディ内において軸線方向に沿って摺動可能に支持されるガイド部材と、
    を備えることを特徴とする膨張弁。
  2. 前記ガイド部材が、前記ボディに摺動可能にガイドされるように前記冷媒通路に挿通されていることを特徴とする請求項1に記載の膨張弁。
  3. 前記ガイド部材は、その外周部に複数のガイド部を有し、そのガイド部において前記ボディに摺動し、隣接するガイド部と前記ボディとの間に冷媒の通過を許容する連通路が形成されるように構成されていることを特徴とする請求項1または2に記載の膨張弁。
  4. 前記付勢部材が、前記ガイド部材に対して相対変位を許容するように当接配置されていることを特徴とする請求項1〜3のいずれかに記載の膨張弁。
  5. 前記ボディが、前記冷媒通路の一端部に設けられた入口ポートを介して上流側の高圧配管に接続されるとともに、前記冷媒通路の他端部に設けられた出口ポートを介して前記エバポレータの入口へつながる低圧配管に接続されるものであり、
    前記エバポレータの出口とコンプレッサの入口との間の戻り低圧配管内に、前記ボディと前記感圧部を含む当該膨張弁全体、前記入口ポートと前記高圧配管との接続部、および前記出口ポートと前記低圧配管との接続部が配置されるものであることを特徴とする請求項1〜4のいずれかに記載の膨張弁。
  6. 前記ボディ内に摺動可能に配置された本体と、前記本体に貫通形成され前記作動ロッドを貫通させる前記弁孔と、前記弁孔の下流側開口端縁に形成された弁座とを有する可動弁座形成部材と、
    前記可動弁座形成部材を開弁方向に付勢する第2の付勢部材と、
    前記可動弁座形成部材の摺動変位を規制するストッパと、
    をさらに備えていることを特徴とする請求項5に記載の膨張弁。
  7. 前記可動弁座形成部材の本体が筒状をなし、その外周面を介して前記ボディに摺動し、
    前記ガイド部材が、前記可動弁座形成部材に摺動可能に内挿されていることを特徴とする請求項6に記載の膨張弁。
JP2008137154A 2008-05-26 2008-05-26 膨張弁 Pending JP2009281706A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008137154A JP2009281706A (ja) 2008-05-26 2008-05-26 膨張弁

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008137154A JP2009281706A (ja) 2008-05-26 2008-05-26 膨張弁

Publications (1)

Publication Number Publication Date
JP2009281706A true JP2009281706A (ja) 2009-12-03

Family

ID=41452333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008137154A Pending JP2009281706A (ja) 2008-05-26 2008-05-26 膨張弁

Country Status (1)

Country Link
JP (1) JP2009281706A (ja)

Similar Documents

Publication Publication Date Title
JP5786225B2 (ja) 膨張弁
JP7026979B2 (ja) 膨張弁
JP2009264685A (ja) 膨張弁
JP6447906B2 (ja) 膨張弁
JP2012225561A (ja) 膨張弁
JP6007369B2 (ja) 制御弁
JP6040374B2 (ja) 複合弁
JP2007024486A (ja) 膨張装置
JP2008215797A (ja) 膨張弁
JP2007240138A (ja) 膨張装置
JP5369262B2 (ja) 可変容量圧縮機用制御弁
JP2009281706A (ja) 膨張弁
JP5369259B2 (ja) 膨張弁
JP2006292185A (ja) 膨張装置及び冷凍サイクル
JP2009008369A (ja) 冷凍サイクル
JP2007046808A (ja) 膨張装置
JP2006322689A (ja) 温度式膨張弁
JP6811479B2 (ja) 膨張弁
JP2011235722A (ja) 制御弁および車両用冷暖房装置
JP2003090648A (ja) 膨張弁
JP2009103018A (ja) 可変容量圧縮機用制御弁
JP2017044357A (ja) 膨張弁
JP2018004234A (ja) 膨張弁
JP2006105474A (ja) 温度式膨張弁
JP2010048509A (ja) 膨張弁