JP2009272406A - 太陽電池素子 - Google Patents

太陽電池素子 Download PDF

Info

Publication number
JP2009272406A
JP2009272406A JP2008120464A JP2008120464A JP2009272406A JP 2009272406 A JP2009272406 A JP 2009272406A JP 2008120464 A JP2008120464 A JP 2008120464A JP 2008120464 A JP2008120464 A JP 2008120464A JP 2009272406 A JP2009272406 A JP 2009272406A
Authority
JP
Japan
Prior art keywords
solar cell
flux
electrode
cell element
soldering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008120464A
Other languages
English (en)
Inventor
Mitsunori Ishizaki
光範 石崎
Takuji Oda
拓嗣 小田
Hidenori Hakage
秀徳 葉影
Teruaki Egawa
輝明 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008120464A priority Critical patent/JP2009272406A/ja
Publication of JP2009272406A publication Critical patent/JP2009272406A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】太陽電池素子の電極とタブをはんだ付けする際に使用するフラックスによる製造設備の汚染を防止してフラックスに起因した破損を防止することができ、生産性および電極のはんだ付けの信頼性に優れた太陽電池素子およびその製造方法を得ること。
【解決手段】受光面およびその裏面に、導電性の接続タブをはんだにより電気的に接続するための電極を有する太陽電池素子であって、前記電極が、前記接続タブを接続する面に前記電極の長手方向と略平行な方向に延在する突出部を備えること、を特徴とする。
【選択図】 図2

Description

本発明は、太陽電池素子に関するものであり、特に、太陽電池素子の受光面とその裏面に形成する電極の構造により生産性および電極のはんだ付けの信頼性を向上させた太陽電池素子に関するものである。
従来の太陽電池素子の構造は、例えば特許文献1に開示されており、P型シリコンからなる半導体基板の受光側にn型の不純物拡散層とシリコン窒化膜からなる反射防止膜とが形成され、さらに印刷によって銀の細線電極と前記細線電極に接続された銀の集電電極とが形成されている。また、受光面の裏面側には集電電極と対になる銀の裏面電極が形成されている。そして、1枚の太陽電池素子では十分な出力が得られないため、通常は複数枚の太陽電池素子を電気的に接続してモジュール化することで所望の出力を得る。
また、従来の太陽電池モジュールの構造も特許文献1に開示されており、銅箔等の薄い導電性のタブを、前記集電電極と、隣接する太陽電池素子の裏面電極とにはんだ付けすることで、太陽電池素子間を電気的に接続した太陽電池モジュールが構成される。
また、太陽電池モジュールの製造方法は例えば特許文献2に開示されている。すなわち、まずコンベアの上において、該コンベアの進行方向における前半部が第1の太陽電池素子の電極(たとえば集電電極)に接続された第1のタブの後半部に、電極(たとえば裏面電極)を位置合わせして第2の太陽電池素子を設置する。そして、コンベアによって第1のタブの後半部と第2の太陽電池素子とをホットプレート上の位置に移動させる。第1のタブの表面には、はんだが塗布されている。
つぎに、第2の太陽電池素子におけるコンベアと反対側の面に形成された電極(たとえば集電電極)の上に新たな第2のタブを前半部のみを位置合わせして設置する。第2のタブの表面には、はんだが塗布されている。そして、この第2のタブの前半部の上方から押さえ装置により第2のタブの前半部を第2の太陽電池素子の表面に押さえつける。
さらに、この状態で第2のタブの前半部の斜め上方に配置した赤外線ランプから放射された赤外線と前記のホットプレートとからの加熱によって第1および第2のタブの表面にあらかじめ塗布されていたはんだを溶融させる。そして、赤外線の放射およびホットプレートによる加熱を停止して、溶融したはんだを凝固させた後、押さえ装置による押さえつけが除去される。
以上の工程を繰返して所定の数の太陽電池素子をタブにより電気的に接続したストリングスを製造する。形成されたストリングスは別のステージに搬出され、所定の数のストリングスを並列させて互いに電気的に接続することで太陽電池モジュールが製造される。また、タブと電極との電気的な接続方法としては、例えば特許文献3に開示されているように、タブを電極上の突出部の凸部の間に形成される凹部に入り込ませる、すなわち凸状構造の電極部分間にタブを噛み込む構造とすることにより、はんだ付けをすることなく機械的接触によって太陽電池素子をタブにより電気的に接続する方法もある。
特開平11−312820号公報、[0006]−[0009](図4)、[0010]−[0012](図5) 特開2006−196749号公報、[0021]−[0028](図1、図2) 特開2006−278710号公報、[0015]−[0016]
ところで、上記従来の技術においては、太陽電池素子の集電電極および裏面電極と、はんだが塗布されたタブと、をはんだ付けする際には前記の各電極およびはんだの表面の酸化物等の汚れを除去するために、はんだ付け部にフラックスを塗布しておく必要がある。
しかしながら、フラックスは太陽電池素子の表面において電極以外の箇所にも濡れ広がり、コンベアに設置した際にコンベアの表面にも付着する。太陽電池モジュールの生産中にコンベアの表面にフラックスが繰り返し付着すると、ロジン等のフラックス中の固形成分がコンベアの表面に凸状に堆積する。この場合には、押さえ装置によってタブを太陽電池素子に押さえつけた際に、太陽電池素子と凸状の堆積部との接触部近傍に過大な圧力が生じて太陽電池素子が破損し、歩留まりが低下するという問題があった。
また、コンベアの表面に付着したフラックスによって太陽電池素子がコンベアの表面に貼り付く場合がある。この場合には、ストリングス形成後に別のステージに搬出する際、貼り付いた太陽電子素子をコンベアの表面から引き剥がすときに太陽電子素子に過剰な応力が掛かるために太陽電子素子が破損し、歩留まりが低下する、という問題があった。特に、近年の太陽電池素子は原材料費を低減するために厚みが200μm以下にまで薄くなっており、機械強度が低いために上記の割れの発生頻度が増している。
また、上記のようなフラックスによる張り付きに起因した太陽電池素子の破損を防止するために、太陽電池モジュールの製造設備においてはフラックスで汚染された箇所を頻繁に清掃しなければならず、生産性が著しく低下する、という問題があった。
また、フラックスの塗布量やフラックス中の固形成分の含有量を減らすことで上記のような割れや清掃の頻度を低減することができるが、この場合にははんだ付け部の酸化物等の汚染が除去しきれなくなり、使用中にタブが剥離して断線故障が生じる等、はんだ付け部の信頼性が低下する、という問題があった。
本発明は、上記に鑑みてなされたものであって、太陽電池素子の電極とタブをはんだ付けする際に使用するフラックスによる製造設備の汚染を防止してフラックスに起因した破損を防止することができ、生産性および電極のはんだ付けの信頼性に優れた太陽電池素子を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池素子は、受光面およびその裏面に、導電性の接続タブをはんだにより電気的に接続するための電極を有する太陽電池素子であって、前記電極が、前記接続タブを接続する面に前記電極の長手方向と略平行な方向に延在する突出部を備えること、を特徴とする。
この発明によれば、太陽電池素子の割れを防止するためにフラックスの塗布量を低減させても、電極に形成した凸部の周囲にフラックス溜りが形成されて、はんだ付け部の汚染を十分除去できるフラックスの量が確保でき、はんだ付け部の信頼性が低下しない。これにより、太陽電池素子の電極とタブとをはんだ付けする際に使用するフラックスによる製造設備の汚染を防止してフラックスに起因した破損を防止することができ、生産性および電極のはんだ付けの信頼性に優れた太陽電池素子が得られる、という効果を奏する。
以下に、本発明にかかる太陽電池素子の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態1.
図1−1および図1−2は、本発明の実施の形態1にかかる太陽電池素子1の構成を説明するための図であり、図1−1は、受光面側から見た太陽電池素子1の上面図、図1−2は、受光面と反対側から見た太陽電池素子1の下面図である。図2は、実施の形態1にかかる太陽電池素子1の構成を説明するための図であり、図1−1において点線で囲まれた領域Aを拡大して示す斜視図である。
実施の形態1にかかる太陽電池素子1においては、半導体基板2の受光面側にリン拡散によって不純物拡散層3が形成されているとともにシリコン窒化膜よりなる反射防止膜4が形成されている。また、半導体基板2の受光面側には、長尺細長の細線電極5が複数並べて設けられ、この細線電極5と導通する集電電極6aが該細線電極5と直交するように設けられており、それぞれ底面部において不純物拡散層3に電気的に接続している。そして、集電電極6aの上面には、集電電極6aの長手方向に略平行な方向に延在するように集電電極の凸部6bが設けられている。一方、半導体基板2の裏面(受光面と反対側の面)には、全体にわたって裏面電極7が設けられ、また集電電極6aと略同一方向に裏面集電電極8が設けられている。
このように構成された実施の形態1にかかる太陽電池素子1は以下のようにして作製される。まず、半導体基板2として、たとえば基板の一面側の表面にリン拡散によって不純物拡散層3が形成されたp型多結晶シリコン基板を用意する。この半導体基板2上に、たとえばプラズマ支援化学蒸気堆積(PECVD:Plasma Enhanced Chemical Vapor Deposition)法などにより、反射防止膜4としてシリコン窒素化膜を形成する。
つぎに、半導体基板2の受光面にスクリーン印刷によって細線電極5と集電電極6aの形状に銀ペーストを塗布した後、銀ペーストを仮乾燥させる。その後、同じくスクリーン印刷によって集電電極6aの銀ペーストの上面に凸部6bの形状に銀ペーストを塗布し、仮乾燥させる。これにより、略平坦な集電電極6aの形状が形成される。つぎに、半導体基板2の裏面側に、裏面電極7の形状にアルミニウムペーストを塗布し、裏面集電電極8の形状に銀ペーストを塗布し、乾燥後、約800℃の高温でペーストを焼成することで、細線電極5、集電電極6a、集電電極の凸部6b、裏面電極7、裏面集電電極8を形成する。以上により実施の形態1にかかる太陽電池素子1が得られる。
以上のような実施の形態1にかかる太陽電池素子1の集電電極6aの上にフラックスを塗布した後の状態を、従来の太陽電池素子の集電電極の上にフラックスを塗布した場合と比較して説明する。図3は、従来の太陽電池素子101の構成を説明するための図であり、太陽電池素子101を受光面側から見た上面図である。図4は、従来の太陽電池素子101の構成を説明するための図であり、図3において点線で囲まれた領域Cを拡大して示す斜視図である。従来の太陽電池素子101において実施の形態1にかかる太陽電池素子1と同じ構成については、図1−1〜図2と同じ符号を付してある。なお、従来の太陽電池素子101は、集電電極106の上面に凸部が設けられていないこと以外は、実施の形態1にかかる太陽電池素子1と同じ構成を有する。
図5は、実施の形態1にかかる太陽電池素子1の集電電極6a、6bの上にフラックス11を塗布した後の状態を示す図であり、図2の線分B−B’における断面図である。図6は、従来の太陽電池素子101の集電電極106の上にフラックス11を塗布した後の状態を示す図であり、図4の線分D−D’における断面図である。
図6に示す従来の太陽電池素子101では、集電電極106の上にフラックス11を塗布してもその大半が受光面表面(反射防止膜4表面)に流れ出してしまい、フラックス11ははんだ付け面である集電電極106上には僅かしか残留できない。
これに対して、図5に示す実施の形態1にかかる太陽電池素子1では、集電電極6a、6bの上にフラックス11を塗布すると、集電電極6aの上面に凸部6bを形成しているため表面張力の働きによって集電電極6aと凸部6bとの角部近傍領域にフラックス溜り12が形成され、はんだ付け面である集電電極6a、6b上に残留するフラックス量が増大し、はんだ付け面にフラックス11が確実に保持される。また、凸部6bが集電電極6aの長手方向に形成されることで、フラックス溜り12の形成領域を広く確保できるため、はんだ付け部のフラックス11の量を多く確保することができる。
これにより、隣接する太陽電池素子1間を銅箔等の薄い導電性のタブにより電気的に接続して太陽電池モジュール(ストリングス)を製造する際に、はんだ付け面に塗布するフラックス11の塗布量やフラックス中の固形成分の含有量が少ない場合でも、はんだ付け部の酸化物等の汚染を確実に除去して、はんだ付け部の高い信頼性を得ることができる。
したがって、実施の形態1にかかる太陽電池素子1によれば、太陽電池モジュールを製造する際にはんだ付け面に塗布するフラックス11の塗布量やフラックス中の固形成分の含有量を減らすことが可能となり、太陽電池モジュールを製造する際の製造設備(コンベア)の表面に流れて凸状に付着したフラックス11の堆積部に起因した太陽電池素子の破損を防止して、歩留まりの低下を防止することができる。
また、太陽電池モジュールを製造する際の製造設備(コンベア)の表面に付着したフラックス11による太陽電池素子の製造設備(コンベア)の表面への貼り付きに起因した太陽電子素子の破損を防止して、歩留まりの低下を防止することができる。さらに、太陽電池モジュールの製造設備においてフラックスで汚染された箇所の清掃の頻度を大幅に低減することができ、フラックスの清掃に起因した生産効率の低下を防止して、高い生産性を実現することができる。
つぎに、実施の形態1にかかる太陽電池素子1の効果を図7〜図9に従って具体的に説明する。図7は、太陽電池素子1の集電電極6a、6b(図示せず)にフラックス11を塗布する工程を示した図である。集電電極6a、6bへのフラックス11の塗布は、まず無端ベルトから構成されたコンベア21に太陽電池素子1を載置し、該太陽電池素子1を所定の搬送方向(図7においては、図中の矢印Xの方向)に搬送する。ここで、太陽電池素子1は集電電極6a、6b(図示せず)が上面となるように配置され、集電電極6a、6bの長手方向は、コンベア21の搬送方向(矢印Xの方向)と略平行とされている。
また、コンベア21の上方にはフラックス11を吐出するノズル22が配置されている。ノズル22は、太陽電池素子1がコンベア21により搬送されてノズル22の下部を通過する際に、集電電極6a、6bの直上の位置となるように配置されている。ノズル22からは、容器(図示せず)に蓄えたフラックス11に所定の圧力を所定の時間加えることで、容器から押し出されたフラックス11が噴出される。
そして、太陽電池素子1がノズル22の直下を通過する時にノズル22よりフラックス11を吐出することで、集電電極6a、6bにフラックス11を塗布する。フラックス11の塗布量はフラックス11に加える圧力とコンベア21の搬送速度によって可変できる。なお、図示は省略するが、集電電極6a、6bにフラックスを塗布した後、太陽電池素子1を裏返して、受光面の反対の面に形成した裏面集電電極8にも同様の工程でフラックス11を塗布する。
図8は、フラックス11を塗布した太陽電池素子1の集電電極6a、6b(図示せず)と集電電極6a、6bと対をなす裏面の裏面集電電極8(図示せず)にタブ26a、26bをはんだ付けする工程を説明するための模式図である。
タブ26a、26bのはんだ付けは、まず集電電極6a、6bの長手方向における太陽電池素子1の長さよりも長く切断したタブ26aをホットプレート23の上に設置する。つぎに、受光面をホットプレート23側に向けて集電電極6a、6bとタブ26aとを位置合わせして太陽電池素子1をホットプレート23上に設置する。さらに、集電電極6a、6bの長手方向における太陽電池素子1の長さと同じ長さに切断したタブ26bを裏面の裏面集電電極8の上に位置合わせして設置する。なお、タブ26a、26bは銅からなり、さらにあらかじめSn−Ag−Cuはんだを表面にコーティングしたものである。
つぎに、集電電極6a、6bの長手方向に複数配列したタブ押さえピン24でタブ26bを上方から押えつけた状態で、タブ26bの上方より赤外線ランプヒータ25によって赤外線を放射し、赤外線による加熱とホットプレート23からの熱とによってタブ26a、26bにコーティングしたはんだを溶融させる。その後、赤外線の照射を停止させ、はんだを凝固させることによって集電電極6a、6bとタブ26a、および裏面集電電極8とタブ26bとをそれぞれはんだ付けする。
以上のような方法で、フラックス塗布量(g)を0.01g、0.02g、0.04gと変化させて実施例のサンプルを作製した。また、従来の太陽電池素子101を用いて、フラックス塗布量(g)を0.01g、0.02g、0.04gと変化させ、上記と同様の方法により比較例として従来技術のサンプルを作製した。
図9は、上述した工程ではんだ付けした実施例のサンプルおよび従来技術のサンプルのタブ26aを集電電極6a、6bから引き剥がすのに必要となる引き剥がし荷重をピール試験によって測定した結果を示す特性図である。図9においては、集電電極に塗布したフラックス塗布量(g)と、ピール試験で測定したタブ26aの引き剥し荷重(N)と、の関係を示している。なお、タブ26aの引き剥し荷重は、はんだ付けの終了した太陽電池素子1または太陽電池素子101を、受光面を上側にして設置し、タブ26aが太陽電池素子1または太陽電池素子101より突出した部分を上側に90度に折り曲げてピール試験機にて上方に引っ張ることで測定した。
図9からわかるように、実施例のサンプルでは、全てのフラックス塗布量の条件において従来技術のサンプルよりも高い引き剥がし荷重が得られている。さらに、実施例のサンプルでは、集電電極へのフラックスの塗布量を低減させても高い引き剥がし荷重が得られている。これは、図5に示して説明したように、集電電極の凸部6bが設けられていることによって集電電極6aと凸部6bとの角部近傍領域にフラックス溜まり8が形成されるため、フラックスの塗布量を低減させてもはんだ付け面に多量のフラックス11が残留し、はんだ付け時にはんだ付け部の汚染が十分に除去できたためである。
このように実施の形態1にかかる太陽電池素子1では、少ないフラックス塗布量で高い引き剥がし荷重が得られるため、隣接する太陽電池素子1間をタブにより電気的に接続して太陽電池モジュール(ストリングス)を製造する際の集電電極6a、6bへのフラックス塗布量を低減させることが可能である、といえる。そして、集電電極6a、6bへのフラックス塗布量を低減させることで、太陽電池モジュールを製造する際の製造設備(コンベア)の表面への濡れ広がりを抑制し、フラックスの汚染に起因する太陽電池素子の割れを防止することが可能となる、といえる。
上述したように実施の形態1にかかる太陽電池素子1によれば、集電電極6aの上面に凸部6bが設けられていることにより、集電電極6aと凸部6bとの角部近傍領域にフラックス溜り12が形成されるため、太陽電池モジュール(ストリングス)を製造する際のはんだ付け面である集電電極6a、6b上に残留するフラックス量が増大し、はんだ付け面である集電電極6a、6b上にフラックス11が確実に保持される。
これにより、太陽電池モジュール(ストリングス)を製造する際にはんだ付け面に塗布するフラックス11の塗布量やフラックス中の固形成分の含有量が少ない場合でも、はんだ付け部の酸化物等の汚染を確実に除去して、はんだ付け部の高い信頼性を得ることができ、はんだ付け部の耐久性を向上させて太陽電池モジュール(ストリングス)の長期使用が可能となる。
したがって、実施の形態1にかかる太陽電池素子1によれば、太陽電池モジュール(ストリングス)を製造する際にはんだ付け面に塗布するフラックス11の塗布量やフラックス11中の固形成分の含有量を減らすことが可能となり、フラックス11による製造設備(コンベア)の汚染を防止して製造設備(コンベア)の表面へのフラックス11の付着に起因した太陽電子素子の破損を防止して、歩留まりの低下を防止することができる。また、太陽電池モジュール(ストリングス)の製造設備においてフラックスで汚染された箇所の清掃の頻度を大幅に低減することができ、フラックスの清掃に起因した生産効率の低下を防止して、高い生産性を実現することができる。また、フラックス11の塗布量を減らすことにより、フラックス11の塗布量に要するエネルギー消費量を削減し、フラックス11として使用する有機系溶剤の減量化を図ることができ、環境保全にも貢献する。
なお、本実施の形態では太陽電池素子1の受光面側の集電電極6aの上面に凸部6bを設けた場合について述べてきたが、受光面の裏面側に形成される裏面集電電極8の上面に凸部を設けた場合においても上記と同様の効果が得られる。
実施の形態2.
図10〜図12を用いて本発明の実施の形態2にかかる太陽電池素子1とその製造方法を説明する。なお、図中の実施の形態1と同じ記号の説明は省略する。図10は、実施の形態2にかかる太陽電池素子1の構成を説明するための図であり、受光面側から見た太陽電池素子1の上面図である。また、受光面と反対側から見た太陽電池素子1の下面図は実施の形態1の場合と同じであるため、図1−2を参照することとして図示を省略する。図11は、実施の形態2にかかる太陽電池素子1の構成を説明するための図であり、図10において点線で囲まれた領域Aを拡大して示す斜視図である。
図10および図11に示すように、実施の形態2にかかる太陽電池素子1においては、集電電極6aの上面に集電電極の凸部6bが集電電極6aの長手方向に略平行な方向に延在するように2本設けられている。
このような実施の形態2にかかる太陽電池素子1は、スクリーン印刷によって集電電極6aの銀ペーストの上面に集電電極の凸部6bの形状に銀ペーストを塗布する際に、図10および図11に示すように集電電極6aの長手方向に略平行な2本の凸部6bの形状に塗布すること以外は、実施の形態1の場合と同様にして作製することができる。
図12は、実施の形態2にかかる太陽電池素子1の集電電極6a、6bの上にフラックス11を塗布した後の状態を示す図であり、図11の線分B−B’における断面図である。集電電極6a、6bの上にフラックス11を塗布すると、集電電極6aの上面に凸部6bを形成しているため表面張力の働きによって集電電極6aと凸部6bとの角部近傍領域にフラックス溜り12が形成され、はんだ付け面である集電電極6a、6b上に残留するフラックス量が増大し、はんだ付け面である集電電極6a、6b上にフラックス11が確実に保持される。
さらに、実施の形態2にかかる太陽電池素子1では、凸部6bを2本形成したことで図12に示すように2本の凸部6bに挟まれた領域にもフラックス溜り12が形成され、図5に示した実施の形態1の場合よりもはんだ付け面上に残留するフラックス11の量が増し、より多くのフラックス11がはんだ付け面である集電電極6a、6b上に保持される。
このため、隣接する太陽電池素子1間を銅箔等の薄い導電性のタブにより電気的に接続して太陽電池モジュール(ストリングス)を製造する際に、はんだ付け面に塗布するフラックス11の塗布量やフラックス中の固形成分の含有量がさらに少ない場合でも、はんだ付け部の酸化物等の汚染を確実に除去して、はんだ付け部の高い信頼性を得ることができる。これにより、太陽電池モジュールを製造する際にはんだ付け面に塗布するフラックス11の塗布量やフラックス中の固形成分の含有量をさらに低減することが可能となる。
図13は、実施の形態2にかかる太陽電池素子1における電極の他の構造を示す斜視図であり、図11に示す太陽電池素子1の集電電極の凸部6bの一方を集電電極6aの長手方向において複数に分割した例を示す斜視図である。この例では、はんだ付け時にフラックス11から生じるガスが集電電極6aの長手方向における凸部6bの分割箇所から外部に容易に排出されるため、ガスが閉じこめられることで生じるはんだのボイド不良を防止することができ、さらに信頼性の高いはんだ付け部を得ることが可能となる。
上述したように実施の形態2にかかる太陽電池素子1によれば、集電電極6aの上面に集電電極の凸部6bが集電電極6aの長手方向に略平行に2本設けられている領域を有することにより、集電電極6aと凸部6bとの角部近傍領域および2本の凸部6bに挟まれた領域にフラックス溜り12が形成されるため、太陽電池モジュール(ストリングス)を製造する際のはんだ付け面である集電電極6a、6b上に残留するフラックス量がより増大し、はんだ付け面である集電電極6a、6b上にフラックス11がより確実に保持される。
これにより、太陽電池モジュール(ストリングス)を製造する際にはんだ付け面に塗布するフラックス11の塗布量やフラックス中の固形成分の含有量が少ない場合でも、はんだ付け部の酸化物等の汚染を確実に除去して、はんだ付け部の高い信頼性を得ることができ、はんだ付け部の耐久性を向上させて太陽電池モジュールの長期使用が可能となる。
したがって、実施の形態2にかかる太陽電池素子1によれば、太陽電池モジュールを製造する際にはんだ付け面に塗布するフラックス11の塗布量やフラックス11中の固形成分の含有量を実施の形態1にかかる太陽電池素子1よりもさらに減らすことが可能となり、フラックス11による製造設備(コンベア)の汚染を防止して製造設備(コンベア)の表面へのフラックス11の付着に起因した太陽電子素子の破損を防止して、歩留まりの低下を防止することができる。また、太陽電池モジュール(ストリングス)の製造設備においてフラックスで汚染された箇所の清掃の頻度を大幅に低減することができ、フラックスの清掃に起因した生産効率の低下を防止して、高い生産性を実現することができる。また、フラックス11の塗布量を減らすことにより、フラックス11の塗布量に要するエネルギー消費量を削減し、フラックス11として使用する有機系溶剤の減量化を図ることができ、環境保全にも貢献する。
なお、本実施の形態では太陽電池素子1の受光面側の集電電極6aの上面に凸部6bを設けた場合について述べてきたが、受光面の裏面側に形成される裏面集電電極8の上面に凸部を設けた場合おいても上記と同様の効果が得られる。また、本実施の形態では集電電極の凸部6bを2本形成した例について述べたが、3本以上でも同様の効果が得られることは自明である。
実施の形態3.
図14〜図18を用いて本発明の実施の形態3にかかる太陽電池素子1とその製造方法を説明する。なお、図中の実施の形態1と同じ記号の説明は省略する。図14は、実施の形態3にかかる太陽電池素子1の構成を説明するための図であり、受光面側から見た太陽電池素子1の上面図である。また、受光面と反対側から見た太陽電池素子1の下面図は実施の形態1の場合と同じであるため、図1−2を参照することとして図示を省略する。図15は、実施の形態3にかかる太陽電池素子1の構成を説明するための図であり、図14において点線で囲まれた領域Aを拡大して示す斜視図である。
図14および図15に示すように、本実施の形態においても実施の形態2と同様に集電電極の凸部6bを集電電極6aの長手方向に略平行な方向に延在するように2本形成し、さらに凸部6bには集電電極6aの短手方向(幅方向)において幅の広い部分(幅広部)6b−1と幅の狭い部分(幅狭部)6b−2とを設けている。
このような実施の形態3にかかる太陽電池素子1は、スクリーン印刷によって集電電極6aの銀ペーストの上面に集電電極の凸部6bの形状に銀ペーストを塗布する際に、図14および図15に示すように幅広部6b−1と幅狭部6b−2とを有する2本の凸部6bの形状に塗布すること以外は、実施の形態1の場合と同様にして作製することができる。
図16−1および図16−2は、実施の形態3にかかる太陽電池素子1の集電電極6a、6bの上にフラックス11を塗布した後の状態を示す図であり、図16−1は、図15の線分F−F’における断面図、図16−2は、図15の線分G−G’における断面図である。集電電極6a、6bの上にフラックス11を塗布すると、2本の凸部6bに挟まれた領域にフラックス溜り12が形成され、はんだ付け面である集電電極6a、6b上に残留するフラックス量が増大し、はんだ付け面である集電電極6a、6b上に多くのフラックス11が保持される。
このため、隣接する太陽電池素子1間を銅箔等の薄い導電性のタブにより電気的に接続して太陽電池モジュール(ストリングス)を製造する際に、はんだ付け面に塗布するフラックス11の塗布量やフラックス中の固形成分の含有量が少ない場合でも、はんだ付け部の酸化物等の汚染を確実に除去して、はんだ付け部の高い信頼性を得ることができる。これにより、太陽電池モジュールを製造する際にはんだ付け面に塗布するフラックス11の塗布量やフラックス中の固形成分の含有量を低減することが可能となる。
図17は実施の形態3にかかる太陽電池素子1の集電電極6a、6bに、はんだ27によりタブ26aがはんだ付けされた状態を、図15の線分H−H’において示した断面図である。図17中、J−J’は集電電極の凸部6bの幅広部6b−1に対応しており、K−K’は集電電極の凸部6bの幅狭部6b−2に対応している。ここで、集電電極6a、6bを形成する銀の電気抵抗率よりも、タブ26aを接続するためのはんだ27の電気抵抗率の方が大きい。したがって、F−F’の経路はG−G’の経路よりも電気抵抗が低くなる。
一方、集電電極の凸部6bの幅広部6b−1の幅を広くしすぎるとフラックス溜り12の形成される領域が減少し、フラックス11塗布後のはんだ付け面におけるフラックス11の残留量が少なくなり、はんだ付けの信頼性の低下原因となる。しかしながら、本実施の形態のように凸部6bに、幅の広くはんだ付け後の電気抵抗が小さくなる箇所と幅が狭くフラックス11が溜まる箇所とを設けることで、はんだ付け部の信頼性を低下させることなく、集電電極6a、6bと該集電電極6a、6b上にはんだ付けされるタブとの接続抵抗を低減して太陽電池モジュールの発電効率を向上することが可能となる。
図18は、実施の形態3にかかる太陽電池素子1における電極の他の構造を示す斜視図であり、凸部6bに集電電極6aの短手方向(幅方向)において幅の広い部分(幅広部)6b−3と幅の狭い部分(幅狭部)6b−2とを設け、幅広部6b−3と一方の幅狭部6b−2とを集電電極6aの長手方向において分割した例である。図17の例と同様に、凸部6bに、幅の広くはんだ付け後の電気抵抗が小さくなる箇所と幅が狭くフラックス11が溜まる箇所とが形成されるため、はんだ付け部の信頼性を低下させることなく、集電電極6a、6bと該集電電極6a、6b上にはんだ付けされるタブとの接続抵抗を低減して太陽電池モジュールの発電効率を向上することが可能となる。
さらに、この例では、図13の例と同様にはんだ付け時にフラックス11から生じるガスが幅広部6b−3と幅狭部6b−2との分割箇所から外部に容易に排出されるため、ガスが閉じこめられることで生じるはんだのボイド不良を防止することができ、さらに信頼性の高いはんだ付け部を得ることも可能となる。
上述したように実施の形態3にかかる太陽電池素子1によれば、集電電極6aの上面に集電電極の凸部6bが集電電極6aの長手方向に略平行に2本設けられている領域を有することにより、集電電極6aと凸部6bとの角部近傍領域および2本の凸部6bに挟まれた領域にフラックス溜り12が形成されるため、太陽電池モジュール(ストリングス)を製造する際のはんだ付け面である集電電極6a、6b上に残留するフラックス量がより増大し、はんだ付け面である集電電極6a、6b上にフラックス11がより確実に保持される。
これにより、太陽電池モジュール(ストリングス)を製造する際にはんだ付け面に塗布するフラックス11の塗布量やフラックス中の固形成分の含有量が少ない場合でも、はんだ付け部の酸化物等の汚染を確実に除去して、はんだ付け部の高い信頼性を得ることができ、はんだ付け部の耐久性を向上させて太陽電池モジュールの長期使用が可能となる。
したがって、実施の形態3にかかる太陽電池素子1によれば、太陽電池モジュールを製造する際にはんだ付け面に塗布するフラックス11の塗布量やフラックス11中の固形成分の含有量を減らすことが可能となり、フラックス11による製造設備(コンベア)の汚染を防止して製造設備(コンベア)の表面へのフラックス11の付着に起因した太陽電子素子の破損を防止して、歩留まりの低下を防止することができる。
また、太陽電池モジュール(ストリングス)の製造設備においてフラックスで汚染された箇所の清掃の頻度を大幅に低減することができ、フラックスの清掃に起因した生産効率の低下を防止して、高い生産性を実現することができる。また、フラックス11の塗布量を減らすことにより、フラックス11の塗布量に要するエネルギー消費量を削減し、フラックス11として使用する有機系溶剤の減量化を図ることができ、環境保全にも貢献する。
さらに、実施の形態3にかかる太陽電池素子1によれば、凸部6bに、幅の広くはんだ付け後の電気抵抗が小さくなる箇所と、幅が狭くフラックス11が溜まる箇所と、を設けることで、はんだ付け部の信頼性を低下させることなく、集電電極6a、6bとタブとの接続抵抗を低減して太陽電池モジュールの発電効率を向上することが可能となる。
なお、本実施の形態では太陽電池素子1の受光面側の集電電極6aの上面に凸部6bを設けた場合について述べてきたが、受光面の裏面側に形成される裏面集電電極8の上面に凸部を設けた場合においても上記と同様の効果が得られる。
実施の形態4.
図19および図20を用いて本発明の実施の形態4にかかる太陽電池素子1とその製造方法を説明する。なお、図中の実施の形態1と同じ記号の説明は省略する。図19は、実施の形態4にかかる太陽電池素子1の構成を説明するための図であり、受光面側から見た太陽電池素子1の上面図である。また、受光面と反対側から見た太陽電池素子1の下面図は実施の形態1の場合と同じであるため、図1−2を参照することとして図示を省略する。図20は、実施の形態4にかかる太陽電池素子1の構成を説明するための図であり、図19において点線で囲まれた領域Aを拡大して示す斜視図である。
図19および図20に示すように、実施の形態4にかかる太陽電池素子1は、実施の形態3と同様に集電電極6aの短手方向(幅方向)において幅の広い部分(幅広部)6b−1と幅の狭い部分(幅狭部)6b−2とを有する集電電極の凸部6bを集電電極6aの長手方向に略平行な方向に延在するように2本形成し、さらに2本の幅広部6b−1により挟まれた溝部を銀の凸部6cによって塞いだ構造となっている。
このような実施の形態4にかかる太陽電池素子1は、スクリーン印刷によって集電電極6aの銀ペーストの上面に集電電極の凸部6bの形状に銀ペーストを塗布する際に、図19および図20に示すように幅広部6b−1と幅狭部6b−2とを有する2本の凸部6bの形状に塗布して仮乾燥させた後、スクリーン印刷によって凸部6cの形状に銀ペーストを塗布し、乾燥後、約800℃の高温でペーストを焼成して、細線電極5、集電電極6a、集電電極の凸部6b、6c裏面電極7、裏面集電電極8を形成すること以外は、実施の形態1の場合と同様にして作製することができる。
以上のような実施の形態4にかかる太陽電池素子1では、実施の形態3にかかる太陽電池素子1が有する効果に加えて、2本の幅広部6b−1により挟まれた溝部が凸部6cによって塞がっている。このため、2本の幅狭部6b−2の間に溜まったフラックス11の集電電極の外部への流出が無く、フラックス11がはんだ付け面である集電電極6a、6b上により確実に保持され、フラックス11の塗布量をさらに低減することが可能となる。
これにより、太陽電池モジュール(ストリングス)を製造する際にはんだ付け面に塗布するフラックス11の塗布量やフラックス中の固形成分の含有量がより少ない場合でも、はんだ付け部の酸化物等の汚染を確実に除去して、はんだ付け部の高い信頼性を得ることができる。
したがって、実施の形態4にかかる太陽電池素子1によれば、太陽電池モジュールを製造する際にはんだ付け面に塗布するフラックス11の塗布量やフラックス中11の固形成分の含有量をさらに減らすことが可能となり、フラックス11による製造設備(コンベア)の汚染を防止して製造設備(コンベア)の表面へのフラックス11の付着に起因した太陽電子素子の破損を防止して、歩留まりの低下を防止することができる。
また、太陽電池モジュールの製造設備においてフラックスで汚染された箇所の清掃の頻度を大幅に低減することができ、フラックスの清掃に起因した生産効率の低下を防止して、高い生産性を実現することができる。また、フラックス11の塗布量を減らすことにより、フラックス11の塗布量に要するエネルギー消費量を削減し、フラックス11として使用する有機系溶剤の減量化を図ることができ、環境保全にも貢献する。
なお、本実施の形態では太陽電池素子1の受光面側の集電電極6aの上面に凸部6bを設けた場合について述べてきたが、受光面の裏面側に形成される裏面集電電極8の上面に凸部を設けた場合においても上記と同様の効果が得られる。
以上のように、本発明にかかる太陽電池素子1は、太陽電池素子をタブにより電気的に接続して太陽電池モジュールを製造する際のはんだ付け時のフラックスに起因した破損の防止に有用である。
本発明の実施の形態1にかかる太陽電池素子を受光面側から見た上面図である。 本発明の実施の形態1にかかる太陽電池素子を受光面と反対側から見た下面図である。 図1−1において点線で囲まれた領域Aを拡大して示す斜視図である。 従来の太陽電池素子を受光面側から見た上面図である。 図3において点線で囲まれた領域Cを拡大して示す斜視図である。 本発明の実施の形態1にかかる太陽電池素子の集電電極の上にフラックスを塗布した後の状態を示す図であり、図2の線分B−B’における断面図である。 従来の太陽電池素子の集電電極の上にフラックスを塗布した後の状態を示す図であり、図4の線分D−D’における断面図である。 本発明の実施の形態1にかかる太陽電池素子の集電電極にフラックスを塗布する工程を示した図である。 本発明の実施の形態1にかかる太陽電池素子の電極にタブをはんだ付けする工程を説明するための模式図である。 太陽電池素子にはんだ付けしたタブを剥すのに必要となる引き剥がし荷重をピール試験によって測定した結果を示す特性図である。 本発明の実施の形態2にかかる太陽電池素子を受光面側から見た上面図である。 図10において点線で囲まれた領域Aを拡大して示す斜視図である。 本発明の実施の形態2にかかる太陽電池素子の集電電極の上にフラックスを塗布した後の状態を示す図であり、図11の線分B−B’における断面図である。 本発明の実施の形態2にかかる太陽電池素子の別の電極の構造を示す斜視図である。 本発明の実施の形態3にかかる太陽電池素子を受光面側から見た上面図である。 図14において点線で囲まれた領域Aを拡大して示す斜視図である。 本発明の実施の形態3にかかる太陽電池素子の集電電極の上にフラックスを塗布した後の状態を示す図であり、図15の線分F−F’における断面図である。 本発明の実施の形態3にかかる太陽電池素子の集電電極の上にフラックスを塗布した後の状態を示す図であり、図15の線分G−G’における断面図である。 本発明の実施の形態3にかかる太陽電池素子の集電電極に、はんだによりタブがはんだ付けされた状態を、図15の線分H−H’において示した断面図である。 本発明の実施の形態3にかかる太陽電池素子における電極の他の構造を示す斜視図である。 本発明の実施の形態4にかかる太陽電池素子を受光面側から見た上面図である。 図19において点線で囲まれた領域Aを拡大して示す斜視図である。
符号の説明
1 太陽電池素子
2 半導体基板
3 不純物層
4 反射防止膜
5 細線電極
6a 集電電極
6b 集電電極の凸部
6c 集電電極の凸部
7 裏面電極
8 裏面集電電極
11 フラックス
12 フラックス溜り
21 コンベア
22 ノズル
23 ホットプレート
24 タブ押さえピン
25 赤外線ランプヒータ
26a タブ
26b タブ
27 はんだ
101 従来の太陽電池素子
106 集電電極

Claims (5)

  1. 受光面およびその裏面に、導電性の接続タブをはんだにより電気的に接続するための電極を有する太陽電池素子であって、
    前記電極が、前記接続タブを接続する面に前記電極の長手方向と略平行な方向に延在する突出部を備えること、
    を特徴とする請求項1に記載の太陽電池素子。
  2. 前記突出部が、前記突出部が形成される前記電極の長手方向と略平行な方向に延在するように、該電極の短手方向において複数設けられていること、
    を特徴とする請求項1に記載の太陽電池素子。
  3. 前記突出部が、前記突出部が形成される前記電極の長手方向と略平行な方向に延在する突出部と、前記電極の長手方向と略平行な方向に延在するように、該電極の長手方向において複数設けられている突出部とが、該電極の短手方向において複数設けられていること、
    を特徴とする請求項2に記載の太陽電池素子。
  4. 前記突出部が、前記突出部が形成される前記電極の短手方向において幅の広い部分と幅の狭い部分とを有すること、
    を特徴とする請求項1〜3のいずれか1つに記載の太陽電池素子。
  5. 前記電極が、前記突出部によって周囲が囲まれた領域を前記接続タブを接続する面に有すること、
    を特徴とする請求項1に記載の太陽電池素子。
JP2008120464A 2008-05-02 2008-05-02 太陽電池素子 Pending JP2009272406A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008120464A JP2009272406A (ja) 2008-05-02 2008-05-02 太陽電池素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008120464A JP2009272406A (ja) 2008-05-02 2008-05-02 太陽電池素子

Publications (1)

Publication Number Publication Date
JP2009272406A true JP2009272406A (ja) 2009-11-19

Family

ID=41438716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008120464A Pending JP2009272406A (ja) 2008-05-02 2008-05-02 太陽電池素子

Country Status (1)

Country Link
JP (1) JP2009272406A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073938A (ja) * 2008-09-19 2010-04-02 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
WO2011148839A1 (ja) * 2010-05-28 2011-12-01 三洋電機株式会社 太陽電池モジュール及び太陽電池
JP2012138545A (ja) * 2010-12-28 2012-07-19 Sanyo Electric Co Ltd 太陽電池セル及び太陽電池モジュール
JP2014007194A (ja) * 2012-06-21 2014-01-16 Mitsubishi Electric Corp 太陽電池素子およびその製造方法
US9484479B2 (en) 2011-11-09 2016-11-01 Mitsubishi Electric Corporation Solar cell module and manufacturing method thereof
US20170012144A1 (en) * 2014-03-27 2017-01-12 Kyocera Corporation Solar cell and solar cell module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101426A (ja) * 2003-09-26 2005-04-14 Sanyo Electric Co Ltd 太陽電池装置および太陽電池モジュール
JP2006278710A (ja) * 2005-03-29 2006-10-12 Kyocera Corp 太陽電池モジュール及びその製造方法
JP2006339342A (ja) * 2005-06-01 2006-12-14 Shin Etsu Handotai Co Ltd 太陽電池および太陽電池の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101426A (ja) * 2003-09-26 2005-04-14 Sanyo Electric Co Ltd 太陽電池装置および太陽電池モジュール
JP2006278710A (ja) * 2005-03-29 2006-10-12 Kyocera Corp 太陽電池モジュール及びその製造方法
JP2006339342A (ja) * 2005-06-01 2006-12-14 Shin Etsu Handotai Co Ltd 太陽電池および太陽電池の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073938A (ja) * 2008-09-19 2010-04-02 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
WO2011148839A1 (ja) * 2010-05-28 2011-12-01 三洋電機株式会社 太陽電池モジュール及び太陽電池
JP2011249662A (ja) * 2010-05-28 2011-12-08 Sanyo Electric Co Ltd 太陽電池モジュール
JP2012138545A (ja) * 2010-12-28 2012-07-19 Sanyo Electric Co Ltd 太陽電池セル及び太陽電池モジュール
US9484479B2 (en) 2011-11-09 2016-11-01 Mitsubishi Electric Corporation Solar cell module and manufacturing method thereof
DE112012004671B4 (de) 2011-11-09 2022-07-21 Mitsubishi Electric Corp. Solarzellenmodul und Herstellungsverfahren für dieses
JP2014007194A (ja) * 2012-06-21 2014-01-16 Mitsubishi Electric Corp 太陽電池素子およびその製造方法
US20170012144A1 (en) * 2014-03-27 2017-01-12 Kyocera Corporation Solar cell and solar cell module

Similar Documents

Publication Publication Date Title
US11538952B2 (en) Solar cell module and method for manufacturing the same
EP1267419A2 (en) Solar cell and method of producing the same
JP5053380B2 (ja) 太陽電池パネル
JP6276333B2 (ja) 太陽電池モジュール及びその製造方法
JP5380810B2 (ja) 太陽電池モジュール
US8691694B2 (en) Solderless back contact solar cell module assembly process
TWI474496B (zh) 用於安裝複數個接觸導線至一光伏電池之一表面之方法及裝置,光伏電池及光伏模組
JP2009272406A (ja) 太陽電池素子
US20170288081A1 (en) Photovoltaic module
US20140261659A1 (en) Free-Standing Metallic Article for Semiconductors
US20170179320A1 (en) System and method for fabricating solar panels using busbarless photovoltaic structures
JP5335140B2 (ja) 印刷版および該印刷版を用いた太陽電池素子の製造方法
US20180198008A1 (en) Photovoltaic structures with segmented busbars for increased thermal cycling reliability
US10672942B2 (en) Solar cell module and method for producing same
JP2009016713A (ja) 太陽電池の製造方法および太陽電池ならびに印刷用スクリーン
JP2021010299A (ja) 太陽電池および太陽電池の製造方法
JP4780953B2 (ja) 太陽電池素子及び、これを用いた太陽電池モジュール
JP6559244B2 (ja) 太陽電池の製造方法および太陽電池
US20110011437A1 (en) Solar cell and method for manufacturing solar cell
JP4903444B2 (ja) 光電変換素子
JP2008288278A (ja) 太陽電池モジュールの製造方法
JP7127042B2 (ja) 光電変換モジュール及び光電変換モジュールを製造する方法
JP2010182935A (ja) 薄膜太陽電池の製造方法
CN113611757A (zh) 光伏电池和光伏链及相关的制造方法
JP2002353475A (ja) 太陽電池素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313