JP2009272405A - Solar battery element and manufacturing method therefor - Google Patents

Solar battery element and manufacturing method therefor Download PDF

Info

Publication number
JP2009272405A
JP2009272405A JP2008120449A JP2008120449A JP2009272405A JP 2009272405 A JP2009272405 A JP 2009272405A JP 2008120449 A JP2008120449 A JP 2008120449A JP 2008120449 A JP2008120449 A JP 2008120449A JP 2009272405 A JP2009272405 A JP 2009272405A
Authority
JP
Japan
Prior art keywords
electrode
bus
width
grid electrode
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008120449A
Other languages
Japanese (ja)
Inventor
Masahiro Fujikawa
正洋 藤川
Satoru Matsuo
哲 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008120449A priority Critical patent/JP2009272405A/en
Publication of JP2009272405A publication Critical patent/JP2009272405A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar battery element which allows grid and bus electrodes widely different in electrode width from each other to be formed without wire breaking by an inexpensive and simple process and provides superior conversion efficiency, and to provide a manufacturing method for the solar battery element. <P>SOLUTION: The solar battery element includes the bus electrode 4 formed by multilayer printing using a screen printing method and the grid electrode 7 having a width narrower than that of the bus electrode 4 on the light-receiving surface of a substrate. The solar battery element also includes an electrode connection portion 9 where the bus electrode 4 is connected to the grid electrode 7 to form an area where the width along the longitudinal direction of the bus electrode 4 is narrower than the width of the bus electrode 4 and is greater than the width of the grid electrode 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、太陽電池素子およびその製造方法に関するものである。   The present invention relates to a solar cell element and a manufacturing method thereof.

従来の太陽電池素子は、たとえば厚さ200μmのp型シリコン基板において、光の集光率を高めるために表側(受光面側)に10μmの凹凸構造を持ち、また表面に反射防止膜であるシリコン窒化膜が成膜されている。シリコン窒化膜上には、光−電子変換された電子を集める表面電極が形成されている。また裏面には、裏面電極および外部電極とコンタクトを取る裏面接続用電極が形成されている。ここで、太陽電池素子の光−電子変換効率を向上させる方法として、受光面側の面積を最大に利用し、表面極面積を小さくする方法がある。   For example, a conventional solar cell element is a p-type silicon substrate having a thickness of 200 μm, and has a concavo-convex structure of 10 μm on the front side (light receiving surface side) in order to increase the light collection rate, and a silicon that is an antireflection film on the surface A nitride film is formed. On the silicon nitride film, a surface electrode that collects the photo-electron converted electrons is formed. Further, on the back surface, a back surface connection electrode is formed in contact with the back surface electrode and the external electrode. Here, as a method for improving the photo-electron conversion efficiency of the solar cell element, there is a method of making the surface area on the light receiving surface maximum and reducing the surface pole area.

一般に表面電極の形成は、所望のパターンの透過部を有する印刷マスク版を用いた印刷法によりペーストをシリコン基板の所定の場所に印刷し、焼成炉で高温処理することにより形成される。表面電極を所望のパターンに形成するための印刷マスク版は、線径10〜100μm程度のステンレスなどの金属細線をピッチ20〜200μm程度で縦横に編みこんだメッシュを金属枠に貼り付け、このメッシュに所望の厚さのフィルム状の感光性樹脂を貼り付け、さらに所望のパターンを写真製版法により露光エッチングすることで形成される。このような印刷マスク版を印刷装置に取り付け、該印刷マスク版に位置合わせしてシリコン基板を配置する。そして印刷マスク版上にペーストを載せて樹脂製のスキイジで押し込み、印刷マスク版の透過部からペーストが押し出されることで、該ペーストがシリコン基板側に密着して所望のパターンが形成される。   In general, the surface electrode is formed by printing a paste on a predetermined location of a silicon substrate by a printing method using a printing mask plate having a transmissive portion having a desired pattern, and performing high-temperature treatment in a baking furnace. A printing mask plate for forming a surface electrode in a desired pattern is obtained by attaching a mesh in which fine metal wires such as stainless steel having a wire diameter of about 10 to 100 μm are braided vertically and horizontally at a pitch of about 20 to 200 μm on a metal frame. A film-like photosensitive resin having a desired thickness is attached to the film, and a desired pattern is exposed and etched by photolithography. Such a printing mask plate is attached to a printing apparatus, and a silicon substrate is arranged in alignment with the printing mask plate. Then, the paste is placed on the printing mask plate and pushed in with a resin squeegee, and the paste is pushed out from the transmission part of the printing mask plate, so that the paste adheres to the silicon substrate side and a desired pattern is formed.

また、細線電極の形成方法にはその他さまざまな方法があり、シリンジに圧力をかけノズルからペーストを塗布する方法やロールコーターによる塗布、インクジェットを用いる塗布、写真製版による方法などの例がある。   There are various other methods for forming the thin wire electrode, such as a method in which a pressure is applied to a syringe and a paste is applied from a nozzle, a method using a roll coater, a method using an ink jet, and a method using a photoengraving method.

これらのなかでも、最も安価に製作できる前記印刷法での形成が主であり、電極の細線化を行った例として、グリッド電極(細い電極)の形成にはメッシュの無い金属薄板に所定のパターンの開口を開けたメタルマスクを用い、直交するバス電極(太い電極)の形成にはメッシュを用いたメッシュマスクを用いて、多層印刷することで電極形成を行う方法がある(たとえば、特許文献1参照)。この方法であればメッシュによる印刷マスク版を用いて形成した電極で起こる断線や印刷のカスレなどを防ぐことが可能である。   Among these, the formation by the printing method that can be manufactured at the lowest cost is the main, and as an example of thinning the electrode, the grid electrode (thin electrode) is formed with a predetermined pattern on a thin metal plate without a mesh. There is a method of forming electrodes by multi-layer printing using a mesh mask using a mesh for forming orthogonal bus electrodes (thick electrodes) using a metal mask having an opening of (see Patent Document 1). reference). If this method is used, it is possible to prevent disconnection, printing blur, and the like that occur in an electrode formed using a printing mask plate made of mesh.

またメッシュマスクを用いた例では、グリッド電極の形状をバス電極側で太く、バス電極から離れるほど細くする形状にすることで、電流の集電率を落とすことなく受光面積を増加させる方法が示されている(たとえば、特許文献2参照)。   An example using a mesh mask shows how to increase the light receiving area without reducing the current collection rate by making the grid electrode shape thicker on the bus electrode side and thinner toward the bus electrode. (For example, see Patent Document 2).

特開平8−335711号公報Japanese Patent Laid-Open No. 8-335711 特開平6−283736号公報JP-A-6-283737

しかしながら、上述したメッシュマスクを用いた印刷法では、太陽電池素子の受光面積を増やして変換効率の向上を得るために表面電極のグリッド電極を80μm以下と極めて細く設定し、バス電極とグリッド電極とを同じパターンで多層印刷した場合、焼成冷却時にバス電極とグリッド電極との間で断線が生じる。この原因は、バス電極とグリッド電極とを同じパターンで多層印刷することで、バス電極とグリッド電極との膜厚の差が大きくなり焼成冷却時の収縮で断線することである。これは、印刷面積に比例した量のペーストがメッシュマスクを透過して印刷され、バス電極と極めて細いグリッド電極とでは印刷面積が大きく異なるためにバス電極とグリッド電極との膜厚の差が大きくなることに起因する。さらに、太陽電池素子の受光面側には、効率良く光を集光するための微小凹凸が形成されており、これがさらにグリッド電極を細線印刷する際の断線の原因となる。したがって、グリッド電極の電極幅を極力細くすることができないために、太陽電池素子の受光面積を拡大することできず変換効率を向上させることに限界があるという問題があった。   However, in the printing method using the mesh mask described above, in order to increase the light receiving area of the solar cell element and to improve the conversion efficiency, the grid electrode of the surface electrode is set to be very thin as 80 μm or less, and the bus electrode and the grid electrode When the multi-layer printing is performed in the same pattern, disconnection occurs between the bus electrode and the grid electrode during firing and cooling. The cause of this is that the bus electrode and the grid electrode are multilayer printed in the same pattern, thereby increasing the difference in film thickness between the bus electrode and the grid electrode, resulting in disconnection due to contraction during firing cooling. This is because the amount of paste proportional to the printing area is printed through the mesh mask, and the difference in film thickness between the bus electrode and the grid electrode is large because the printing area differs greatly between the bus electrode and the extremely thin grid electrode. Due to becoming. Furthermore, minute unevenness for efficiently condensing light is formed on the light receiving surface side of the solar cell element, and this further causes disconnection when the grid electrode is finely printed. Therefore, since the electrode width of the grid electrode cannot be reduced as much as possible, there is a problem that the light receiving area of the solar cell element cannot be increased and there is a limit to improving the conversion efficiency.

このような断線を回避するためには、グリッド電極とバス電極との膜厚を揃えるために印刷マスク版の開口率をバス電極で小さくする方法、バス電極とグリッド電極とを分けて印刷する方法、電極下部を平坦化する方法などの方法が考えられる。しかしながら、このような方法ではプロセスの追加による生産コストの増加や、電極の位置合わせによる歩留まり低下、という問題があった。   In order to avoid such disconnection, in order to make the film thickness of the grid electrode and the bus electrode uniform, a method of reducing the aperture ratio of the printing mask plate by the bus electrode, a method of printing the bus electrode and the grid electrode separately A method such as a method of flattening the lower part of the electrode can be considered. However, such a method has a problem of an increase in production cost due to an additional process and a decrease in yield due to electrode alignment.

本発明は、上記に鑑みてなされたものであって、電極幅の大きく異なるグリッド電極とバス電極とを安価且つ簡単なプロセスにより断線を防止して形成可能になるとともに、グリッド電極の電極幅を極力細くすることができるので、変換効率に優れた太陽電池素子およびその製造方法を得ることを目的とする。   The present invention has been made in view of the above, and it is possible to form a grid electrode and a bus electrode having greatly different electrode widths by preventing disconnection by an inexpensive and simple process, and reducing the electrode width of the grid electrode. Since it can be made as thin as possible, it aims at obtaining the solar cell element excellent in conversion efficiency, and its manufacturing method.

上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池素子は、スクリーン印刷用のマスクを用いた多層印刷により形成されたバス電極とこのバス電極の電極幅より狭い電極幅のグリッド電極とを基板の受光面側に有する太陽電池素子であって、前記バス電極と前記グリッド電極とを接続し、前記バス電極の長手方向における幅が前記バス電極の電極幅より狭く且つ前記グリッド電極の電極幅よりも広い領域を有する電極接続部を備えること、を特徴とする。   In order to solve the above-described problems and achieve the object, the solar cell element according to the present invention includes a bus electrode formed by multilayer printing using a mask for screen printing and an electrode width narrower than the electrode width of the bus electrode. A grid electrode on the light receiving surface side of the substrate, wherein the bus electrode and the grid electrode are connected, and a width in the longitudinal direction of the bus electrode is narrower than an electrode width of the bus electrode, and An electrode connection portion having a region wider than the electrode width of the grid electrode is provided.

この発明によれば、電極幅の大きく異なるグリッド電極とバス電極とを安価且つ簡単なプロセスにより断線を防止して形成し、太陽電池素子のコスト増加や歩留まり低下を生じさせることなく、太陽電池素子の変換効率を向上させることができる、という効果を奏する。   According to the present invention, the grid electrode and the bus electrode having greatly different electrode widths are formed by preventing the disconnection by an inexpensive and simple process, and without increasing the cost of the solar cell element or reducing the yield, the solar cell element It is possible to improve the conversion efficiency.

以下に、本発明にかかる太陽電池素子およびその製造方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。   Embodiments of a solar cell element and a method for manufacturing the solar cell element according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably.

実施の形態1.
図1−1および図1−2は、本発明の実施の形態1にかかる太陽電池素子の概略構成を説明するための図であり、図1−1は太陽電池素子を受光面側から見た上面図、図1−2は、図1−1の線分A−Aにおける断面図である。
Embodiment 1 FIG.
FIGS. 1-1 and 1-2 are diagrams for explaining a schematic configuration of the solar cell element according to the first embodiment of the present invention, and FIG. 1-1 is a solar cell element viewed from the light receiving surface side. FIG. 1-2 is a cross-sectional view taken along line AA in FIG. 1-1.

実施の形態1にかかる太陽電池素子は、基板としてp型の単結晶もしくは多結晶のシリコン基板(以下、シリコン基板1と呼ぶ)を用いている。なお、基板はこれに限定されるものではなく、n型のシリコン基板を用いても良い。太陽電池素子のシリコン基板1の受光面側の表面には、高さ3〜10μmの微小凹凸2が形成されている。微小凹凸2は、受光面において外部からの光を吸収する面積を増加し、受光面における反射率を抑え、光を閉じ込める構造となっている。この微小凹凸2上には、反射防止膜3が設けられ、外部からの光の反射を抑制し、受光面における光の吸収を向上させている。   The solar cell element according to the first embodiment uses a p-type single crystal or polycrystalline silicon substrate (hereinafter referred to as silicon substrate 1) as a substrate. Note that the substrate is not limited to this, and an n-type silicon substrate may be used. On the surface on the light-receiving surface side of the silicon substrate 1 of the solar cell element, fine irregularities 2 having a height of 3 to 10 μm are formed. The minute unevenness 2 has a structure that increases the area for absorbing light from the outside on the light receiving surface, suppresses the reflectance on the light receiving surface, and confines light. An antireflection film 3 is provided on the minute unevenness 2 to suppress reflection of light from the outside and improve light absorption on the light receiving surface.

また、シリコン基板1の受光面側には表面電極として、バス電極4(太い電極)とグリッド電極7(細い電極)とが略直角に交わるように配置され、太陽電池素子において光から変換された電子を収集する。シリコン基板1の裏面(受光面と反対側の面)には、取り出し用の裏面取り出し電極5と裏面電極6とが形成されている。   Further, on the light receiving surface side of the silicon substrate 1, bus electrodes 4 (thick electrodes) and grid electrodes 7 (thin electrodes) are arranged as surface electrodes so as to intersect at substantially right angles, and are converted from light in the solar cell element. Collect electrons. On the back surface (surface opposite to the light receiving surface) of the silicon substrate 1, a back surface extraction electrode 5 and a back surface electrode 6 for extraction are formed.

また、実施の形態1にかかる太陽電池素子は、バス電極4とグリッド電極7とを接続し、バス電極4の長手方向における幅がバス電極4の電極幅より狭く且つグリッド電極7の電極幅よりも広い領域を有する電極接続部を備えている。すなわち、実施の形態1にかかる太陽電池素子は、バス電極4とグリッド電極7との電極接続部として、図2−1および図2−2に示すようにバス電極4の長手方向における電極幅Wがバス電極4の電極幅Wより狭く且つグリッド電極7の電極幅Wよりも広い、略長方形の形状のバス−グリッド電極接続部9を備えている。ここで、図2−1は、バス−グリッド電極接続部9を説明するための図であり、図1におけるバス電極4とグリッド電極7との交点部分である領域Bを拡大して示す図である。また、図2−2は、バス−グリッド電極接続部9を説明するための図であり、図1における領域Bにおけるグリッド電極7の長手方向に沿った断面図である。 In the solar cell element according to the first embodiment, the bus electrode 4 and the grid electrode 7 are connected, the width of the bus electrode 4 in the longitudinal direction is narrower than the electrode width of the bus electrode 4 and the electrode width of the grid electrode 7. The electrode connection portion having a wide area is also provided. That is, the solar cell element according to the first embodiment has an electrode width W in the longitudinal direction of the bus electrode 4 as shown in FIGS. 2-1 and 2-2 as an electrode connection portion between the bus electrode 4 and the grid electrode 7. and a grid electrode connecting portion 9 - C bus electrodes 4 of the electrode width W and narrower than B wider than the electrode width W G of the grid electrode 7, the bus generally rectangular in shape. Here, FIG. 2A is a diagram for explaining the bus-grid electrode connecting portion 9, and is an enlarged view of a region B which is an intersection portion of the bus electrode 4 and the grid electrode 7 in FIG. is there. FIG. 2B is a diagram for explaining the bus-grid electrode connecting portion 9, and is a cross-sectional view along the longitudinal direction of the grid electrode 7 in the region B in FIG.

電極の断面形状は、メッシュを用いた電極印刷用の印刷マスク版による電極印刷時に、印刷面積に比例した量のペーストが印刷マスク版を透過して形成されるので、上記のようなバス−グリッド電極接続部9の電極幅Wを選択することによりバス−グリッド電極接続部9の膜厚Tはバス電極4の膜厚Tとグリッド電極7の膜厚Tとの間の値となる。これにより、バス電極4とグリッド電極7との間における高さ方向における段差量が緩和され、隣り合う異なる膜厚の領域間の膜厚差が小さくなり、焼成冷却時におけるバス電極4とグリッド電極7との間での熱収縮による断線が防止されている。すなわち、バス電極4とグリッド電極7との間における膜厚の変化量をバス−グリッド電極接続部9により緩和することで、バス電極4とグリッド電極7との間での大きな膜厚差に起因した熱収縮による断線が防止されている。 The cross-sectional shape of the electrode is such that the amount of paste that is proportional to the printing area is formed through the printing mask plate during electrode printing with a printing mask plate for electrode printing using a mesh. bus by selecting the electrode width W C of the electrode connecting portions 9 - thickness T C of the grid electrode connecting portion 9 and the values between the thickness T G of the thickness T B and the grid electrode 7 of the bus electrode 4 Become. As a result, the height difference in the height direction between the bus electrode 4 and the grid electrode 7 is relaxed, the difference in film thickness between the regions having different thicknesses adjacent to each other is reduced, and the bus electrode 4 and the grid electrode during firing cooling are reduced. The disconnection due to thermal contraction with 7 is prevented. That is, the amount of change in film thickness between the bus electrode 4 and the grid electrode 7 is reduced by the bus-grid electrode connecting portion 9, thereby causing a large film thickness difference between the bus electrode 4 and the grid electrode 7. Disconnection due to heat shrinkage is prevented.

ここで、バス−グリッド電極接続部9の電極幅Wは、バス電極4の電極幅W:100に対して、30〜80の比率にすることが好ましい。このようなバス−グリッド電極接続部9の電極幅Wを選択することによりバス−グリッド電極接続部9の膜厚Tが確実にバス電極4の膜厚Tとグリッド電極7の膜厚Tとの間の膜厚となり、バス電極4とグリッド電極7との間において断線が生じない断面形状となる。 Here, the electrode width W C of the bus-grid electrode connecting portion 9 is preferably set to a ratio of 30 to 80 with respect to the electrode width W B : 100 of the bus electrode 4. Such bus - thickness of the film thickness T B and the grid electrode 7 having a film thickness T C of the grid electrode connecting portion 9 is reliably bus electrodes 4 - bus by selecting the electrode width W C of the grid electrode connecting portion 9 The film thickness is between TG and the cross-sectional shape is such that no disconnection occurs between the bus electrode 4 and the grid electrode 7.

たとえば図2−1および図2−2に示すような略長方形のバス−グリッド電極接続部9を形成するとき、バス電極4を電極幅2mm、電極膜厚60μm、グリッド電極7を電極幅50μm、電極膜厚40μmとし、バス電極4とグリッド電極7とを接続するバス−グリッド電極接続部9の電極幅Wを800μmにすることによりその膜厚が50μmとなる。 For example, when forming a substantially rectangular bus-grid electrode connecting portion 9 as shown in FIGS. 2-1 and 2-2, the bus electrode 4 has an electrode width of 2 mm, an electrode film thickness of 60 μm, and the grid electrode 7 has an electrode width of 50 μm. and electrode thickness 40 [mu] m, bus connecting the bus electrode 4 and the grid electrode 7 - the film thickness by the electrode width W C of the grid electrode connecting portion 9 to 800μm is 50 [mu] m.

ここで、バス−グリッド電極接続部9が無ければ隣り合う異なる膜厚の領域であるバス電極4とグリッド電極7との間の膜厚差は20μmであるが、バス−グリッド電極接続部9が設けられることにより隣り合う異なる膜厚の領域間の膜厚差は、バス電極4とバス−グリッド電極接続部9間で10μm、バス−グリッド電極接続部9とグリッド電極7間で10μmとなる。これにより、隣り合う異なる膜厚の領域間の膜厚差が小さくなり、焼成冷却時における膜厚の差に起因した断線がなくなる。   Here, if there is no bus-grid electrode connection part 9, the difference in film thickness between the bus electrode 4 and the grid electrode 7 which are adjacent areas having different film thicknesses is 20 μm. The difference in thickness between adjacent regions having different thicknesses is 10 μm between the bus electrode 4 and the bus-grid electrode connecting portion 9 and 10 μm between the bus-grid electrode connecting portion 9 and the grid electrode 7. Thereby, the film thickness difference between adjacent different film thickness regions is reduced, and disconnection due to the film thickness difference during firing cooling is eliminated.

つぎに、実施の形態1にかかる太陽電池素子の製造方法について説明する。シリコン基板1としてp型シリコン基板を用意し、該シリコン基板1をフッ化水素や純水で洗浄する。その後、シリコン基板1の表面に微小凹凸2を形成する微小凹凸2形成工程を実施する。シリコン基板1の表面に微小凹凸2を形成する工程としては、たとえばアルカリ溶液(たとえばNaOH溶液)とイソプロピルアルコールの混合溶液にシリコン基板1を浸し、表面凹凸が10μmになるまでウェットエッチングを行う。また、反応性イオンエッチング(RIE:Reactive Ion Etching)などのドライエッチングプロセスでシリコン基板1の表面を凹凸形状にしても良い。この場合には、ウェットエッチングのようにシリコン結晶の面方位によらず、より小さな1〜3μmの高さの突起形状を均一に作製することができる。   Below, the manufacturing method of the solar cell element concerning Embodiment 1 is demonstrated. A p-type silicon substrate is prepared as the silicon substrate 1, and the silicon substrate 1 is washed with hydrogen fluoride or pure water. Then, the micro unevenness | corrugation 2 formation process which forms the micro unevenness | corrugation 2 in the surface of the silicon substrate 1 is implemented. As the step of forming the minute irregularities 2 on the surface of the silicon substrate 1, for example, the silicon substrate 1 is immersed in a mixed solution of an alkaline solution (for example, NaOH solution) and isopropyl alcohol, and wet etching is performed until the surface irregularities become 10 μm. Further, the surface of the silicon substrate 1 may be formed into an uneven shape by a dry etching process such as reactive ion etching (RIE). In this case, a smaller protrusion shape with a height of 1 to 3 μm can be uniformly formed regardless of the plane orientation of the silicon crystal as in wet etching.

つぎに、表面に微小凹凸2を形成したシリコン基板1をオキシ塩化リン(POCl)ガス中で気相拡散法により高温で熱拡散させてシリコン基板1の表面層にn型層を形成する拡散工程を実施する。このときに拡散させるリン濃度は、オキシ塩化リンガスの濃度および温度雰囲気、加熱時間により制御することが可能である。拡散後のシリコン基板1のシート抵抗は50〜65Ω/□になる。 Next, diffusion is performed in which a silicon substrate 1 having minute irregularities 2 formed on the surface is thermally diffused at a high temperature in a phosphorus oxychloride (POCl 3 ) gas by a vapor phase diffusion method to form an n-type layer on the surface layer of the silicon substrate 1 Perform the process. The concentration of phosphorus diffused at this time can be controlled by the concentration of phosphorus oxychloride gas, the temperature atmosphere, and the heating time. The sheet resistance of the silicon substrate 1 after diffusion is 50 to 65Ω / □.

拡散工程後、シリコン基板1の受光面側の一面に反射防止膜3を形成する。反射防止膜3の形成にはたとえばプラズマCVDを使用し、シランとアンモニアの混合ガスを用いて反射防止膜3として窒化シリコン膜を80nmの厚みで形成する。   After the diffusion step, an antireflection film 3 is formed on one surface of the silicon substrate 1 on the light receiving surface side. For example, plasma CVD is used to form the antireflection film 3, and a silicon nitride film is formed as an antireflection film 3 with a thickness of 80 nm using a mixed gas of silane and ammonia.

つぎにシリコン基板1の裏面に裏面電極を形成する。裏面電極はシリコン基板1の裏面のほぼ全体に形成する。裏面電極の形成方法としては、印刷法、インクジェット法、スパッタリング法、蒸着法などの手法を用いることができるが、電極形成の容易さと工程時間との観点から印刷法が好ましい。印刷法による裏面電極の形成は、最初に銀材料のペーストを裏面取り出し電極5の形状に印刷し、150℃の温度で乾燥した後に、アルミ材料のペーストを裏面電極6の形状に印刷する。   Next, a back electrode is formed on the back surface of the silicon substrate 1. The back electrode is formed on almost the entire back surface of the silicon substrate 1. As a method for forming the back electrode, a printing method, an ink jet method, a sputtering method, a vapor deposition method, or the like can be used, but a printing method is preferable from the viewpoint of ease of electrode formation and process time. In forming the back electrode by the printing method, first, a silver material paste is printed in the shape of the back surface extraction electrode 5, dried at a temperature of 150 ° C., and then the aluminum material paste is printed in the shape of the back electrode 6.

裏面電極を形成した後に、表面電極の形成を行う。表面電極も印刷法、インクジェット法、スパッタリング法、蒸着法などの手法を用いることができるが、電極形成の容易さと工程時間との観点から印刷法が好ましい。表面電極の材料には、銀を用いたペーストを使用する。表面電極の印刷は、まず印刷装置に印刷マスク版をセットし、印刷パターンが所定の位置になるようにシリコン基板1を配置する。印刷マスク版には、図2−1および図2−2に示すような略長方形のバス−グリッド電極接続部9、バス電極4、グリッド電極7の形状のパターンが形成されている。そして、印刷処理によりペーストがシリコン基板1上に塗布される。これにより、バス−グリッド電極接続部9、バス電極4、グリッド電極7の形状が同時にシリコン基板1に印刷される。その後、150℃の温度で乾燥を行うことで、ペースト中の有機溶剤が除去され、ペーストが乾燥状態になる。   After forming the back electrode, the front electrode is formed. For the surface electrode, methods such as a printing method, an ink jet method, a sputtering method, and a vapor deposition method can be used, but the printing method is preferable from the viewpoint of the ease of electrode formation and the process time. As a material for the surface electrode, a paste using silver is used. For printing the surface electrode, first, a printing mask plate is set in a printing apparatus, and the silicon substrate 1 is arranged so that the printing pattern is at a predetermined position. On the printing mask plate, patterns of shapes of substantially rectangular bus-grid electrode connecting portions 9, bus electrodes 4, and grid electrodes 7 as shown in FIGS. 2-1 and 2-2 are formed. Then, a paste is applied on the silicon substrate 1 by a printing process. As a result, the shapes of the bus-grid electrode connecting portion 9, the bus electrode 4, and the grid electrode 7 are simultaneously printed on the silicon substrate 1. Thereafter, by drying at a temperature of 150 ° C., the organic solvent in the paste is removed, and the paste becomes dry.

グリッド電極が幅100μm以下の細線である場合には、電流が流れ易くなるように断面積を確保するため、電極膜厚を厚くする必要がある。このため、電極幅100μm以下のグリッド電極の形成には、ペーストを複数回、重ねて印刷する必要がある。そこで、ペーストを乾燥したシリコン基板1を再度印刷装置に取り付け、前回印刷した位置と同じになるように位置合わせを行う。そして、電極の印刷を行い、その後ペーストを乾燥させる。このとき、印刷マスク版におけるバス−グリッド電極接続部9のパターンは、電極幅がバス電極4のパターンの電極幅より小さく且つグリッド電極7のパターンの電極幅よりも大きい値とされる。このような印刷−乾燥工程を必要な電極高さになるまで複数回行う。つぎに、電極を焼き付けるために750℃〜800℃の大気雰囲気で焼成を行い、太陽電池素子が完成する。   When the grid electrode is a thin wire having a width of 100 μm or less, it is necessary to increase the electrode film thickness in order to secure a cross-sectional area so that current can easily flow. For this reason, in order to form a grid electrode having an electrode width of 100 μm or less, it is necessary to print the paste several times. Therefore, the silicon substrate 1 on which the paste has been dried is attached again to the printing apparatus, and alignment is performed so that it is the same as the previously printed position. Then, the electrode is printed, and then the paste is dried. At this time, the pattern of the bus-grid electrode connection portion 9 in the printing mask plate has a value that the electrode width is smaller than the electrode width of the bus electrode 4 pattern and larger than the electrode width of the grid electrode 7 pattern. Such a printing-drying process is performed a plurality of times until the required electrode height is obtained. Next, in order to bake an electrode, it bakes in an air | atmosphere atmosphere of 750 to 800 degreeC, and a solar cell element is completed.

ここで従来の太陽電池素子の製造方法と比較して説明する。従来の太陽電池素子では表面に微小凹凸を形成し、さらに反射防止膜を成膜したシリコン基板に表面電極を印刷法により形成する場合、たとえばグリッド電極の電極幅0.06mm、バス電極の電極幅2.0mmのパターンを有する印刷マスク版を用いて電極をシリコン基板に印刷し、さらに乾燥炉で150℃乾燥する。そして、この印刷工程−乾燥工程をたとえば4回繰り返して電極形成を行う。   Here, it demonstrates compared with the manufacturing method of the conventional solar cell element. In a conventional solar cell element, when a surface electrode is formed by a printing method on a silicon substrate on which fine irregularities are formed on the surface and further an antireflection film is formed, for example, the electrode width of the grid electrode is 0.06 mm, the electrode width of the bus electrode An electrode is printed on a silicon substrate using a printing mask plate having a 2.0 mm pattern, and further dried at 150 ° C. in a drying furnace. And this printing process-drying process is repeated 4 times, for example, and electrode formation is performed.

印刷マスク版の仕様は、たとえば400番メッシュ(線径20μm、開口率50%)、乳剤厚20μmである。形成した表面電極の形状は、バス電極高さ60μm、グリッド電極高さ40μmであり、バス電極4とグリッド電極7との膜厚に大きな差を有する構造になった。   The specifications of the printing mask plate are, for example, 400 mesh (wire diameter 20 μm, aperture ratio 50%) and emulsion thickness 20 μm. The formed surface electrode has a bus electrode height of 60 μm and a grid electrode height of 40 μm, and has a structure having a large difference in film thickness between the bus electrode 4 and the grid electrode 7.

このように形成された電極を750〜800℃の大気中で焼成すると、バス電極4とグリッド電極7との間でクラックが入り断線した。これは、隣り合う異なる膜厚の領域であるバス電極4とグリッド電極7との幅および膜厚に大きく違いがあるため、熱による収縮での歪みのために断線したものである。このように、細線印刷をする場合には電流を効率良く流すように断面積を増加させる多層印刷は必須であるが、グリッド電極7を細線化すると多層印刷においてグリッド電極7とバス電極4とに膜厚の差が生じ、その後の焼成冷却時に断線が発生する。   When the electrode formed in this manner was baked in the atmosphere at 750 to 800 ° C., cracks occurred between the bus electrode 4 and the grid electrode 7, thereby breaking the wire. This is because the width and film thickness of the bus electrode 4 and the grid electrode 7 which are adjacent areas having different film thicknesses are greatly different from each other, and are thus disconnected due to distortion caused by thermal contraction. As described above, in the case of thin line printing, multi-layer printing that increases the cross-sectional area so as to flow current efficiently is indispensable. However, when the grid electrode 7 is thinned, the grid electrode 7 and the bus electrode 4 are formed in the multi-layer printing. A difference in film thickness occurs, and disconnection occurs during subsequent baking and cooling.

ここで、多層印刷においてバス電極4とグリッド電極7とに大きな膜厚の差が生じるのは、グリッド電極7を細線印刷するために細かいメッシュの印刷マスク版で印刷したため、グリッド電極7の細線部のペースト透過率と、バス電極4の印刷部のペースト透過率とに差が生じためである。   Here, the large difference in film thickness between the bus electrode 4 and the grid electrode 7 occurs in the multi-layer printing because the grid electrode 7 is printed with a fine mesh printing mask plate for fine line printing. This is because there is a difference between the paste transmittance of this and the paste transmittance of the printed portion of the bus electrode 4.

しかしながら、本実施の形態においては、バス電極4とグリッド電極7との接続部の電極幅を変更することで印刷マスク版におけるペースト透過率を制御し、隣り合う異なる膜厚の領域間の大きな膜厚の差を無くして断線を防いでいる。印刷パターン面積を小さくするとペーストの透過率が下がることから、バス電極4とグリッド電極7とを接続するバス−グリッド電極接続部9を設け、該バス−グリッド電極接続部9の電極幅Wをバス電極4の電極幅Wより狭く且つグリッド電極7の電極幅Wよりも広くすることにより、バス−グリッド電極接続部9の膜厚Tをバス電極4の膜厚Tとグリッド電極7の膜厚Tとの間の値とする。これにより、隣り合う異なる膜厚の領域間の膜厚差が小さくなり、焼成冷却時における隣り合う異なる膜厚の領域間での断線を防止することができる。すなわち、従来はバス電極4とグリッド電極7との間で生じていた断線を防止することができる。 However, in the present embodiment, the paste transmittance in the printing mask plate is controlled by changing the electrode width of the connection portion between the bus electrode 4 and the grid electrode 7, and a large film between adjacent regions having different film thicknesses. The thickness difference is eliminated to prevent disconnection. Since the transmittance of the paste decreases when the printed pattern area is reduced, a bus-grid electrode connecting portion 9 for connecting the bus electrode 4 and the grid electrode 7 is provided, and the electrode width W C of the bus-grid electrode connecting portion 9 is set to be smaller. by wider than the electrode width W G of and narrower than the electrode width W B of the bus electrode 4 grid electrode 7, the bus - thickness T B and the grid electrode of the film thickness T C of the grid electrode connecting portion 9 bus electrode 4 7 between the film thicknesses TG . Thereby, the film thickness difference between adjacent areas having different film thicknesses is reduced, and disconnection between adjacent areas having different film thicknesses during firing cooling can be prevented. In other words, disconnection that has conventionally occurred between the bus electrode 4 and the grid electrode 7 can be prevented.

このような電極形状の変更は、複雑なプロセスを用いることなく、印刷マスク版の設計の変更だけで容易に実現することができるため、生産コストを増加させること無く適応できる。   Such a change in the electrode shape can be easily realized by only changing the design of the printing mask plate without using a complicated process, and thus can be applied without increasing the production cost.

上述したように、実施の形態1にかかる太陽電池素子によれば、バス電極4とグリッド電極7との間に該バス電極4とグリッド電極7とを接続するバス−グリッド電極接続部9を設け、このバス−グリッド電極接続部9の電極幅をバス電極4の電極幅Wより狭く且つグリッド電極7の電極幅Wよりも広く設定している。これにより、電極形成時のバス−グリッド電極接続部9の膜厚Tがバス電極4の膜厚Tとグリッド電極7の膜厚Tとの間の値となるため、バス電極4とグリッド電極7との間における隣り合う異なる膜厚の領域間の大きな段差が無くなり、隣り合う異なる膜厚の領域間の膜厚差が小さくなり、焼成冷却時における膜厚の差に起因した断線が防止される。 As described above, according to the solar cell element according to the first embodiment, the bus-grid electrode connecting portion 9 that connects the bus electrode 4 and the grid electrode 7 is provided between the bus electrode 4 and the grid electrode 7. , the bus - is set wider than the electrode width W G of the electrode width W B than narrow and the grid electrode 7 of the electrode width of the grid electrode connecting portion 9 bus electrode 4. Thus, the bus electrode formation - for the thickness T C of the grid electrode connecting portion 9 becomes a value between the thickness T G of the thickness T B and the grid electrode 7 of the bus electrode 4, and the bus electrode 4 There is no large step between adjacent regions with different film thicknesses with respect to the grid electrode 7, the difference in film thickness between adjacent regions with different film thicknesses is reduced, and disconnection due to the difference in film thickness during firing cooling is caused. Is prevented.

したがって、実施の形態1にかかる太陽電池素子によれば、電極幅の大きく異なるバス電極4とグリッド電極7との間における断線が防止され、生産性およびコストに優れた太陽電池素子が実現されている。また、断線を起こさずにグリッド電極の電極幅を極力細くすることができるので、太陽電池素子の受光面積を拡大して変換効率を向上させることができる。   Therefore, according to the solar cell element according to the first embodiment, disconnection between the bus electrode 4 and the grid electrode 7 having greatly different electrode widths is prevented, and a solar cell element excellent in productivity and cost is realized. Yes. Moreover, since the electrode width of the grid electrode can be made as small as possible without causing disconnection, the light receiving area of the solar cell element can be expanded to improve the conversion efficiency.

また、実施の形態1にかかる太陽電池素子の製造方法によれば、電極幅の大きく異なるバス電極4とグリッド電極7とを安価且つ簡単なプロセスにより断線を防止して形成し、太陽電池素子のコスト増加や歩留まり低下を生じさせることなく、変換効率に優れた太陽電池素子を作製できる。   Moreover, according to the manufacturing method of the solar cell element according to the first embodiment, the bus electrode 4 and the grid electrode 7 having greatly different electrode widths are formed by preventing the disconnection by an inexpensive and simple process. A solar cell element excellent in conversion efficiency can be produced without causing an increase in cost or a decrease in yield.

実施の形態2.
実施の形態2では、バス−グリッド電極接続部9の他の形状について説明する。図3−1および図3−2は実施の形態2にかかる太陽電池素子のバス−グリッド電極接続部9の構成を説明するための図であり、図3−1はバス−グリッド電極接続部9の周辺部を受光面側から見た要部上面図、図3−2はグリッド電極7の長手方向における断面のうちバス−グリッド電極接続部9の周辺部を示す要部断面図である。なお、実施の形態2にかかる太陽電池素子は、バス−グリッド電極接続部9以外は実施の形態1の太陽電池素子と同じ構成を有する。
Embodiment 2. FIG.
In the second embodiment, another shape of the bus-grid electrode connecting portion 9 will be described. FIGS. 3A and 3B are diagrams for explaining the configuration of the bus-grid electrode connecting portion 9 of the solar cell element according to the second embodiment, and FIGS. FIG. 3B is a cross-sectional view of the main part showing the peripheral part of the bus-grid electrode connecting part 9 in the cross section in the longitudinal direction of the grid electrode 7. In addition, the solar cell element concerning Embodiment 2 has the same structure as the solar cell element of Embodiment 1 except the bus-grid electrode connection part 9. FIG.

実施の形態1では、バス電極4の長手方向においてバス電極4の電極幅Wより狭く且つグリッド電極7の電極幅Wよりも広い電極幅Wを有する略長方形のバス−グリッド電極接続部9を例に挙げたが、図3−1に示すように、バス−グリッド電極接続部9の電極幅を、該バス−グリッド電極接続部9とバス電極4との接続部Dからグリッド電極7の先端方向に向かってグリッド電極7の電極幅まで徐々に変化させても良い。 In the first embodiment, substantially rectangular bus having an electrode width W wider electrode width W C than G electrode width W B than narrow and the grid electrode 7 of the bus electrode 4 in the longitudinal direction of the bus electrodes 4 - grid electrode connecting portion 9 as an example, as shown in FIG. 3A, the electrode width of the bus-grid electrode connection portion 9 is changed from the connection portion D between the bus-grid electrode connection portion 9 and the bus electrode 4 to the grid electrode 7. You may make it change gradually to the electrode width of the grid electrode 7 toward the front-end | tip direction.

すなわち、バス−グリッド電極接続部9が、接続部Dからグリッド電極7の先端方向に向かって細くなる先細り形状とされてもよい。このとき、バス−グリッド電極接続部9がバス電極4と接合する接続部Dの電極幅Wは、バス電極4の電極幅Wと同等もしくはそれ以下とし、バス電極4とバス−グリッド電極接続部9との膜厚の差が大きくならないようにする。図3−1に示す例では、バス−グリッド電極接続部9は、バス電極4との接続部分からグリッド電極7との接続部分に向かって、電極幅Wがバス電極4の電極幅Wからグリッド電極7の電極幅Wに変化している。 In other words, the bus-grid electrode connecting portion 9 may be tapered such that the connecting portion D becomes narrower toward the tip of the grid electrode 7. At this time, the bus - electrode width W D of the connecting portion D to the grid electrode connecting portion 9 is joined to the bus electrode 4, the electrode width of the bus electrode 4 W and B and equal to or less than the bus electrode 4 and the bus - a grid electrode The difference in film thickness from the connection portion 9 is not increased. In the example shown in Figure 3-1, the bus - the grid electrode connecting portion 9, the direction from the connection portion between the bus electrode 4 to the connecting portion between the grid electrode 7, the electrode width W C is the electrode width W B of the bus electrode 4 It is changed to the electrode width W G of the grid electrode 7.

たとえば、バス−グリッド電極接続部9がバス電極4と接合する接続部Dの電極幅Wを2mmとし、グリッド電極7の電極幅Wを60μmとして直線的に変化させると、バス−グリッド電極接続部9の断面形状は、図3−2に示すようにバス−グリッド電極接続部9の膜厚Tが60μmから40μmに緩やかに変化する形状となる。これは、電極の断面形状は、印刷面積に比例した量のペーストが電極印刷用の印刷マスク版を透過して形成されるので、バス−グリッド電極接続部9の電極幅Wを、該バス−グリッド電極接続部9とバス電極4との接続部Dからバス−グリッド電極接続部9とグリッド電極7と接続部Eまでグリッド電極7の電極幅まで徐々に変化させることにより、ペーストの電極印刷用の印刷マスク版の透過量も徐々に変化しているためである。 For example, the bus - the grid electrode connecting portion 9 and 2mm electrode width W D of the connecting portion D to be bonded to the bus electrode 4, the linearly varying the electrode width W G of the grid electrode 7 as 60 [mu] m, the bus - a grid electrode the cross-sectional shape of the connecting portion 9, the bus as shown in Figure 3-2 - a slowly changing shape 40μm film thickness T C of the grid electrode connecting portion 9 is 60 [mu] m. This is because the cross-sectional shape of the electrode is formed by passing an amount of paste in proportion to the printing area through the printing mask plate for electrode printing, so that the electrode width W C of the bus-grid electrode connecting portion 9 -Electrode printing of paste by gradually changing the electrode width of the grid electrode 7 from the connection portion D between the grid electrode connection portion 9 and the bus electrode 4 to the bus-grid electrode connection portion 9, the grid electrode 7 and the connection portion E. This is because the transmission amount of the printing mask plate for use is gradually changing.

このようにバス−グリッド電極接続部9の膜厚Tが緩やかに変化する形状とすることにより、電極膜厚の大きな変化が無くなり、その後の焼成冷却時における熱収縮による断線が生じない電極形成が実現できる。そして、バス−グリッド電極接続部9の形状をこのような形状にすることで、バス電極4とグリッド電極7との間での断線を防止しながら、電極の細線化により従来に比べ受光面積の広い太陽電池素子が実現できる。 Thus bus - by a shape having a thickness T C of the grid electrode connecting portion 9 changes gradually, there is no large change in electrode thickness, the electrode formation disconnection due to heat shrinkage during subsequent sintering cooling does not occur Can be realized. And by making the shape of the bus-grid electrode connection part 9 into such a shape, while preventing the disconnection between the bus electrode 4 and the grid electrode 7, the thinning of the electrode reduces the light receiving area compared to the conventional case. A wide solar cell element can be realized.

上述したバス−グリッド電極接続部9を有する実施の形態2にかかる太陽電池素子は、バス−グリッド電極接続部9を図3−1および図3−2に示すように接続部Dから接続部Eに向かって細くなる先細り形状に印刷すること以外は、実施の形態1の場合と同様にして形成することができる。   In the solar cell element according to the second embodiment having the bus-grid electrode connecting portion 9 described above, the bus-grid electrode connecting portion 9 is connected from the connecting portion D to the connecting portion E as shown in FIGS. It can be formed in the same manner as in the first embodiment except that it is printed in a tapered shape that becomes narrower toward.

また、図3−1および図3−2に示すようなバス−グリッド電極接続部9を形成した場合、グリッド電極7の細線化により従来に比べて受光面積は増えるが、バス−グリッド電極接続部9の面積が多少大きくなるので受光面積の増加効果が小さくなる場合が考えられる。   Further, when the bus-grid electrode connection portion 9 as shown in FIGS. 3A and 3B is formed, the light receiving area is increased as compared with the conventional case due to the thinning of the grid electrode 7, but the bus-grid electrode connection portion. Since the area of 9 is slightly increased, the effect of increasing the light receiving area may be reduced.

そこで、図4−1および図4−2に示すようにバス電極4におけるバス−グリッド電極接続部9との接合部近傍の電極幅が、バス電極4の他の部分の電極幅よりも狭くされた形状とすることで受光面積が増加し、同時にバス電極4とグリッド電極7との間での大きな膜厚の差を無くして断線が防止された電極形成が可能になる。図4−1および図4−2は実施の形態2にかかる太陽電池素子のバス−グリッド電極接続部9の他の構成を説明するための図であり、図4−1はバス−グリッド電極接続部9の周辺部を受光面側から見た要部上面図、図4−2はグリッド電極7の長手方向における断面のうちバス−グリッド電極接続部9の周辺部を示す要部断面図である。   Therefore, as shown in FIG. 4A and FIG. 4B, the electrode width in the vicinity of the joint portion of the bus electrode 4 with the bus-grid electrode connection portion 9 is made narrower than the electrode width of other portions of the bus electrode 4. By adopting such a shape, the light receiving area is increased, and at the same time, a large difference in film thickness between the bus electrode 4 and the grid electrode 7 is eliminated, and an electrode can be formed in which disconnection is prevented. FIGS. 4-1 and FIGS. 4-2 are figures for demonstrating the other structure of the bus-grid electrode connection part 9 of the solar cell element concerning Embodiment 2, FIGS. 4-1 is a bus-grid electrode connection. FIG. 4B is a cross-sectional view of the main portion showing the peripheral portion of the bus-grid electrode connecting portion 9 in the cross section in the longitudinal direction of the grid electrode 7. .

バス電極4におけるバス−グリッド電極接続部9との接合部Fの電極幅Wは、バス電極4の電極幅Wの20%〜80%の幅とすることが好ましい。接合部Fの電極幅Wが極端に狭くなるとバス電極4の電極幅Wも極端に狭くなって電流が制限されるため効率の低下が起こる。このため、受光面積を増やし且つ電極の断線を防ぐには、バス電極4におけるバス−グリッド電極接続部9との接合部Fの電極幅Wは、上記のような範囲とすることが好ましい。 Bus in the bus electrode 4 - electrode width W F of the junction F between the grid electrode connecting portion 9, is preferably 20% to 80% of the width of the electrode width W B of the bus electrode 4. Decrease in efficiency because current is limited by the electrode width W B of the electrode width W F of the junction F is the extremely narrow bus electrode 4 also becomes extremely narrow place. Therefore, To prevent disconnection of and electrodes increase the light receiving area, the bus in the bus electrode 4 - electrode width W F of the junction F between the grid electrode connecting portion 9 is preferably in the range as described above.

このような電極形状の変更は、複雑なプロセスを用いることなく、印刷マスク版の設計の変更だけで容易に実現することができるため、生産コストを増加させること無く適応できる。   Such a change in the electrode shape can be easily realized by only changing the design of the printing mask plate without using a complicated process, and thus can be applied without increasing the production cost.

上述したように、実施の形態2にかかる太陽電池素子によれば、実施の形態1にかかる太陽電池素子と同様に、電極幅の大きく異なるバス電極4とグリッド電極7との間における断線が防止され、生産性、コストおよび変換効率に優れた太陽電池素子が実現される。   As described above, according to the solar cell element according to the second embodiment, as in the solar cell element according to the first embodiment, disconnection between the bus electrode 4 and the grid electrode 7 having greatly different electrode widths is prevented. Thus, a solar cell element excellent in productivity, cost and conversion efficiency is realized.

実施の形態3.
図5は、印刷法により形成した細線電極であるグリッド電極7の、該グリッド電極7の長手方向に沿った断面図である。グリッド電極7として細線電極を印刷法で形成する場合、図5に示すようにグリッド電極7の表面に印刷マスク版のメッシュ10による凹部11(メッシュ跡)が形成され、グリッド電極7の表面に凹凸形状ができる。グリッド電極7の印刷に使用するペーストの特性によるが、細線印刷するためのペーストは粘度が比較的高く、チクソ性の高いものが使用されるので、レベリング特性が悪いためこの傾向が強い。また多層印刷では凹凸形状において凹部の部分に凹部を重ねて、凸部の部分に凸部を重ねて印刷するので、凹凸差がさらに大きくなる。
Embodiment 3 FIG.
FIG. 5 is a cross-sectional view of the grid electrode 7, which is a thin line electrode formed by a printing method, along the longitudinal direction of the grid electrode 7. When a fine line electrode is formed as the grid electrode 7 by a printing method, as shown in FIG. 5, a concave portion 11 (mesh mark) is formed on the surface of the grid electrode 7 by the mesh 10 of the printing mask plate, and the surface of the grid electrode 7 is uneven. Shape is possible. Although depending on the characteristics of the paste used for printing the grid electrode 7, since the paste for thin line printing has a relatively high viscosity and a high thixotropy, this tendency is strong because the leveling characteristics are poor. In multilayer printing, the concave and convex portions are printed with the concave portions overlapped with the concave portions and the convex portions overlapped with the convex portions, so that the unevenness difference is further increased.

電極表面の凹凸形状は電子の流れに大きく影響して集電効率が落ち、太陽電池素子の特性の劣化の原因となる。メッシュ10による凹凸形状はメッシュピッチで決まるので、印刷毎にメッシュピッチの異なる印刷マスク版を使用することもできるが、この場合、コストの増加や印刷処理工程の複雑化が生じる。   The uneven shape on the electrode surface greatly affects the flow of electrons, resulting in a decrease in current collection efficiency, which causes deterioration of the characteristics of the solar cell element. Since the concavo-convex shape by the mesh 10 is determined by the mesh pitch, a printing mask plate having a different mesh pitch can be used for each printing. However, in this case, the cost increases and the printing process steps become complicated.

そこで、電極の多層印刷時に、印刷マスク版(メッシュマスク)とシリコン基板1とを第1の相対位置において、バス電極4とグリッド電極7とバス−グリッド電極接続部9とをシリコン基板1に同時に印刷する第1の工程と、第1の相対位置からグリッド電極7の長手方向と略平行な方向に所定量だけ変位した印刷マスク版(メッシュマスク)とシリコン基板1との第2の相対位置において、バス電極4とグリッド電極7とバス−グリッド電極接続部9とをシリコン基板1に同時に印刷する第2の工程と、を実行する。これにより、凹部11(メッシュ跡)の形成位置を平均化して、凹部11の大きさを小さくして、グリッド電極7の表面を平坦に近づけ、印刷マスク版のメッシュ10による凹部11に起因した太陽電池素子の特性の劣化を防止することができる。   Therefore, at the time of multilayer printing of the electrodes, the printing mask plate (mesh mask) and the silicon substrate 1 are simultaneously placed on the silicon substrate 1 with the bus electrode 4, the grid electrode 7, and the bus-grid electrode connection portion 9 on the silicon substrate 1. A first step of printing, and a second relative position between the silicon substrate 1 and the printing mask plate (mesh mask) displaced by a predetermined amount from the first relative position in a direction substantially parallel to the longitudinal direction of the grid electrode 7 The second step of simultaneously printing the bus electrode 4, the grid electrode 7, and the bus-grid electrode connecting portion 9 on the silicon substrate 1 is executed. Thereby, the formation positions of the recesses 11 (mesh marks) are averaged, the size of the recesses 11 is reduced, the surface of the grid electrode 7 is made flat, and the sun caused by the recesses 11 due to the mesh 10 of the printing mask plate It is possible to prevent the deterioration of the characteristics of the battery element.

たとえば、電極の多層印刷時にメッシュ開口寸法の1/2の値X、またはそのn倍(nX)だけグリッド電極7の長手方向と略平行な方向にシリコン基板1または印刷マスク版をオフセットする(シリコン基板1と印刷マスク版との相対位置を変える)ことで凹部11(メッシュ跡)の形成位置を平均化して、凹部11の大きさを小さくして、グリッド電極7の表面を平坦に近づけることができる。このようにシリコン基板1または印刷マスク版をオフセットするとバス電極4の電極幅は印刷回数分だけX、またはそのn倍(nX)ずつ広くなるので、受光面積が減少しないように、印刷マスク版のバス電極4の線幅をシフトする距離だけ予め狭く設計する。   For example, when the electrode is multilayer printed, the silicon substrate 1 or the printing mask plate is offset in a direction substantially parallel to the longitudinal direction of the grid electrode 7 by a value X that is ½ of the mesh opening size or n times (nX) thereof (silicon By changing the relative position of the substrate 1 and the printing mask plate), the formation positions of the recesses 11 (mesh marks) can be averaged, the size of the recesses 11 can be reduced, and the surface of the grid electrode 7 can be made flat. it can. When the silicon substrate 1 or the printing mask plate is offset in this way, the electrode width of the bus electrode 4 is increased by X or n times (nX) the number of times of printing, so that the light receiving area is not reduced. The bus electrode 4 is designed to be narrow in advance by a distance for shifting the line width.

また、上記のようにオフセットして多層印刷をすることで形状を変更したと同じように膜厚の差を少なくする効果がある。図6は、シリコン基板1または印刷マスク版をオフセットして多層印刷を行った場合の電極の構成を説明するための図であり、グリッド電極7の長手方向における断面のうちバス電極4の周辺部を示す要部断面図である。   Further, there is an effect of reducing the difference in film thickness as in the case of changing the shape by performing multi-layer printing with offset as described above. FIG. 6 is a diagram for explaining the configuration of the electrodes when the multi-layer printing is performed by offsetting the silicon substrate 1 or the printing mask plate, and the peripheral portion of the bus electrode 4 in the cross section in the longitudinal direction of the grid electrode 7. It is principal part sectional drawing which shows these.

シリコン基板1または印刷マスク版の位置を変えて印刷するので、パターン周辺に膜厚の差ができるようになり、たとえば図6に示すようにグリッド電極7の長手方向におけるバス電極4の中央から周辺方向(グリッド電極7の先端方向)へ徐々に膜厚が薄くなるような形状になる。これにより、バス電極4とグリッド電極7との間での大きな段差を無くして両者の膜厚差を小さくし、バス電極4とグリッド電極7との間での熱収縮による断線を防止することができる。   Since printing is performed by changing the position of the silicon substrate 1 or the printing mask plate, a difference in film thickness can be produced around the pattern. For example, as shown in FIG. The film thickness is gradually reduced in the direction (the tip direction of the grid electrode 7). This eliminates a large step between the bus electrode 4 and the grid electrode 7, thereby reducing the difference in film thickness between the two and preventing disconnection due to thermal contraction between the bus electrode 4 and the grid electrode 7. it can.

本願発明者は、外形寸法150mm×150mm、厚さ0.2mmのp型多結晶シリコン基板を用いて以下の実験を行った。このp型多結晶シリコン基板は、受光面側にエッチングにより形成した微小凹凸形状を有しており、この微小凹凸形状の上に表面電極の形成を印刷法で行った。   The inventor of the present application conducted the following experiment using a p-type polycrystalline silicon substrate having an outer dimension of 150 mm × 150 mm and a thickness of 0.2 mm. This p-type polycrystalline silicon substrate has a fine uneven shape formed by etching on the light receiving surface side, and a surface electrode was formed on the fine uneven shape by a printing method.

表面電極の電極形状は、実施の形態2で示した図4−1および図4−2に示す形状であり、設計値としてバス電極4の電極幅2mm、グリッド電極7の電極幅が0.05mm、グリッド電極7の長手方向におけるバス−グリッド電極接続部9の中央部の電極幅Wが0.5mmで接続するような形状とした。そして、バス−グリッド電極接続部9は、グリッド電極7の長手方向において、バス電極4方向に向かって電極幅Wが徐々に広くなり、グリッド電極7の先端方向に向かって徐々に狭くなる電極形状となっている。 The electrode shape of the surface electrode is the shape shown in FIG. 4A and FIG. 4B shown in the second embodiment, and the bus width of the bus electrode 4 is 2 mm and the electrode width of the grid electrode 7 is 0.05 mm as design values. , buses in the longitudinal direction of the grid electrode 7 - electrode width W C of the central portion of the grid electrode connecting portion 9 is shaped to connect 0.5 mm. In the longitudinal direction of the grid electrode 7, the bus-grid electrode connection portion 9 has an electrode width W C that gradually increases toward the bus electrode 4 and gradually decreases toward the tip end of the grid electrode 7. It has a shape.

印刷マスク版は、メッシュに線径16μmのステンスメッシュ325番を使用した。多層印刷時の印刷マスク版のオフセット量を、印刷1回につきメッシュ開口80μmの半分の40μmとし、バス電極4の電極幅Wは1.84mm設計とした。グリッド電極の電極幅Wは0.03mm設計である。 For the printing mask plate, Stained Mesh No. 325 having a wire diameter of 16 μm was used as the mesh. The offset amount of the printing mask plate at the multi-layered printed, a half of 40μm mesh opening 80μm per printing once, electrode width W B of the bus electrode 4 was set to 1.84mm design. Electrode width W G of the grid electrode is 0.03mm design.

印刷は、基板の外形基準で印刷1回につき40μm、グリッド電極7の長手方向と略平行な方向にずらしながら印刷を行った。印刷と印刷との間には、乾燥工程として150℃の乾燥炉でペーストの乾燥処理を行った。このような印刷−乾燥工程を5回繰り返して、表面電極を形成した。   The printing was performed while shifting in a direction substantially parallel to the longitudinal direction of the grid electrode 7 by 40 μm per printing on the basis of the outer shape of the substrate. Between printing, the paste was dried in a drying furnace at 150 ° C. as a drying process. Such a printing-drying process was repeated 5 times to form a surface electrode.

基板の裏面には、148mm×148mm角の領域にアルミペーストを印刷法で印刷して電極形成を行い、820℃で電極を焼成処理した。以上の処理により、実施例のサンプルを得た。実施例のサンプルのバス電極4とグリッド電極7との接続部(バス−グリッド電極接続部9)やグリッド電極7に断線は無く、グリッド電極7の表面の凹凸も少なくなった。   On the back surface of the substrate, an electrode was formed by printing an aluminum paste in a 148 mm × 148 mm square region by a printing method, and the electrode was baked at 820 ° C. The sample of an Example was obtained by the above process. The connection part (bus-grid electrode connection part 9) and the grid electrode 7 of the bus electrode 4 and the grid electrode 7 of the sample of an Example did not have a disconnection, and the unevenness | corrugation of the surface of the grid electrode 7 also decreased.

また、比較サンプルとして、上記と同様のp型多結晶シリコン基板に多層印刷時のオフセットを行わずに、バス電極の電極幅2mm、グリッド電極の電極幅100μmであり、バス−グリッド電極接続部9を備えない従来の太陽電池素子を作製した。   Further, as a comparative sample, an electrode width of 2 mm for the bus electrode and an electrode width of 100 μm for the grid electrode without performing offset at the time of multilayer printing on the same p-type polycrystalline silicon substrate as described above, the bus-grid electrode connecting portion 9 A conventional solar cell element not including the above was produced.

そして、実施例のサンプルおよび比較例のサンプルについて、太陽光をシミュレートする装置を用いて特性を測定した。実施例のサンプルと比較サンプルとを比較すると、比較サンプルの太陽電池素子の電流密度Jが33.2mA/cmであるのに対して実施例のサンプルの電流密度Jは34.0mA/cmと増加し、受光面積の増加分2.5%の電流密度の増加が確認できた。 And about the sample of the Example and the sample of the comparative example, the characteristic was measured using the apparatus which simulates sunlight. When the sample of the example and the comparative sample are compared, the current density J of the solar cell element of the comparative sample is 33.2 mA / cm 2 whereas the current density J of the sample of the example is 34.0 mA / cm 2. As a result, an increase in current density of 2.5% was confirmed.

これにより、シリコン基板と印刷マスク版との相対位置を変えて電極の多層印刷を行うことにより、グリッド電極7の表面に平坦に近づけ、印刷マスク版のメッシュ10による凹部11に起因した太陽電池素子の特性の劣化を防止することができることが確認された。   Thus, by performing multi-layer printing of the electrodes by changing the relative position between the silicon substrate and the printing mask plate, the solar cell element caused by the recesses 11 due to the mesh 10 of the printing mask plate is brought close to the surface of the grid electrode 7. It was confirmed that the deterioration of the characteristics can be prevented.

上述したように、実施の形態3にかかる太陽電池素子の製造方法によれば、電極幅の大きく異なるバス電極4とグリッド電極7との間における断線が防止されるとともに、多層印刷時の印刷マスク版のメッシュ10による凹部11に起因した太陽電池素子の特性の劣化が防止された、生産性、コストおよび変換効率に優れた太陽電池素子を作製することができる。   As described above, according to the method for manufacturing the solar cell element according to the third embodiment, the disconnection between the bus electrode 4 and the grid electrode 7 having greatly different electrode widths is prevented, and the print mask at the time of multilayer printing A solar cell element excellent in productivity, cost, and conversion efficiency in which deterioration of the characteristics of the solar cell element due to the concave portion 11 due to the mesh 10 of the plate is prevented can be produced.

以上のように、本発明にかかる太陽電池素子は、電極幅の大きく異なるグリッド電極とバス電極とを有する太陽電池素子に有用である。   As described above, the solar cell element according to the present invention is useful for a solar cell element having a grid electrode and a bus electrode having greatly different electrode widths.

本発明の実施の形態1にかかる太陽電池素子を受光面側から見た上面図である。It is the top view which looked at the solar cell element concerning Embodiment 1 of this invention from the light-receiving surface side. 図1−1の線分A−Aにおける断面図である。It is sectional drawing in line segment AA of FIGS. 1-1. 本発明の実施の形態1にかかる太陽電池素子のバス−グリッド電極接続部を説明するための図であり、図1−1におけるバス電極とグリッド電極との交点部分である領域Bを拡大して示す図である。It is a figure for demonstrating the bus-grid electrode connection part of the solar cell element concerning Embodiment 1 of this invention, and expands the area | region B which is an intersection part of the bus electrode and grid electrode in FIGS. 1-1. FIG. 本発明の実施の形態1にかかる太陽電池素子のバス−グリッド電極接続部を説明するための図であり、図1−1における領域Bにおけるグリッド電極の長手方向に沿った断面図である。It is a figure for demonstrating the bus-grid electrode connection part of the solar cell element concerning Embodiment 1 of this invention, and is sectional drawing along the longitudinal direction of the grid electrode in the area | region B in FIGS. 1-1. 本発明の実施の形態2にかかる太陽電池素子のバス−グリッド電極接続部を説明するための図であり、バス−グリッド電極接続部の周辺部を受光面側から見た要部上面図である。It is a figure for demonstrating the bus-grid electrode connection part of the solar cell element concerning Embodiment 2 of this invention, and is the principal part top view which looked at the peripheral part of the bus-grid electrode connection part from the light-receiving surface side. . 本発明の実施の形態2にかかる太陽電池素子のバス−グリッド電極接続部を説明するための図であり、グリッド電極の長手方向における断面のうちバス−グリッド電極接続部の周辺部を示す要部断面図である。It is a figure for demonstrating the bus-grid electrode connection part of the solar cell element concerning Embodiment 2 of this invention, and is the principal part which shows the peripheral part of a bus-grid electrode connection part among the cross sections in the longitudinal direction of a grid electrode. It is sectional drawing. 本発明の実施の形態2にかかる太陽電池素子の他のバス−グリッド電極接続部を説明するための図であり、バス−グリッド電極接続部の周辺部を受光面側から見た要部上面図である。It is a figure for demonstrating the other bus-grid electrode connection part of the solar cell element concerning Embodiment 2 of this invention, and the principal part top view which looked at the peripheral part of the bus-grid electrode connection part from the light-receiving surface side It is. 本発明の実施の形態2にかかる太陽電池素子の他のバス−グリッド電極接続部を説明するための図であり、グリッド電極の長手方向における断面のうちバス−グリッド電極接続部の周辺部を示す要部断面図である。It is a figure for demonstrating the other bus-grid electrode connection part of the solar cell element concerning Embodiment 2 of this invention, and shows the peripheral part of a bus-grid electrode connection part among the cross sections in the longitudinal direction of a grid electrode. It is principal part sectional drawing. 印刷法により形成した細線電極であるグリッド電極の長手方向に沿った断面図である。It is sectional drawing along the longitudinal direction of the grid electrode which is a thin wire electrode formed by the printing method. シリコン基板または印刷マスク版をオフセットして多層印刷を行った場合の電極の構成を説明するための図であり、グリッド電極の長手方向における断面のうちバス電極の周辺部を示す要部断面図である。It is a figure for demonstrating the structure of the electrode at the time of performing multilayer printing by offsetting a silicon substrate or a printing mask plate, and is principal part sectional drawing which shows the peripheral part of a bus electrode among the cross sections in the longitudinal direction of a grid electrode. is there.

符号の説明Explanation of symbols

1 シリコン基板
2 微小凹凸
3 反射防止膜
4 バス電極
5 電極
6 裏面電極
7 グリッド電極
9 グリッド電極接続部
10 マスク印刷版のメッシュ
11 凹部
DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Micro unevenness 3 Antireflection film 4 Bus electrode 5 Electrode 6 Back surface electrode 7 Grid electrode 9 Grid electrode connection part 10 Mesh of mask printing plate 11 Concave part

Claims (6)

スクリーン印刷法を用いた多層印刷により形成されたバス電極とこのバス電極の電極幅より狭い電極幅のグリッド電極とを基板の受光面側に有する太陽電池素子であって、
前記バス電極と前記グリッド電極とを接続し、前記バス電極の長手方向における幅が前記バス電極の電極幅より狭く且つ前記グリッド電極の電極幅よりも広い領域を有する電極接続部を備えること、
を特徴とする太陽電池素子。
A solar cell element having a bus electrode formed by multilayer printing using a screen printing method and a grid electrode having an electrode width narrower than the electrode width of the bus electrode on the light receiving surface side of the substrate,
Connecting the bus electrode and the grid electrode, and having an electrode connection portion having a region in which the width in the longitudinal direction of the bus electrode is narrower than the electrode width of the bus electrode and wider than the electrode width of the grid electrode;
A solar cell element characterized by the above.
前記電極接続部が、前記基板の面内方向において、前記バス電極の長手方向における幅が前記バス電極の電極幅より狭く且つ前記グリッド電極の電極幅よりも広い略長方形の形状を有すること、
を特徴とする請求項1に記載の太陽電池素子。
The electrode connecting portion has a substantially rectangular shape in which the width in the longitudinal direction of the bus electrode is narrower than the electrode width of the bus electrode and wider than the electrode width of the grid electrode in the in-plane direction of the substrate;
The solar cell element according to claim 1.
前記電極接続部は、前記バス電極との接続部分から前記グリッド電極との接続部分に向かって、電極幅が前記バス電極の電極幅から前記グリッド電極の電極幅に変化すること、
を特徴とする請求項1に記載の太陽電池素子。
The electrode connection portion has an electrode width that changes from an electrode width of the bus electrode to an electrode width of the grid electrode from a connection portion with the bus electrode toward a connection portion with the grid electrode.
The solar cell element according to claim 1.
前記バス電極は、前記電極接続部との接続部分における前記バス電極の短手方向における幅が、前記電極接続部との接続部分以外における幅よりも狭いこと、
を特徴とする請求項1に記載の太陽電池素子。
The bus electrode has a width in a short direction of the bus electrode in a connection portion with the electrode connection portion, which is narrower than a width in a portion other than the connection portion with the electrode connection portion,
The solar cell element according to claim 1.
スクリーン印刷用のマスクを用いて多層印刷によりバス電極とグリッド電極とを基板に印刷形成する工程として、
前記バス電極と前記グリッド電極とを印刷する際に、前記バス電極と前記グリッド電極とを接続するとともに前記バス電極の長手方向における幅が前記バス電極の電極幅より狭く且つ前記グリッド電極の電極幅よりも広い領域を有する電極接続部を前記バス電極と前記グリッド電極と同時に印刷する印刷工程を含むこと、
を特徴とする太陽電池素子の製造方法。
As a process of printing and forming bus electrodes and grid electrodes on a substrate by multilayer printing using a screen printing mask,
When printing the bus electrode and the grid electrode, the bus electrode is connected to the grid electrode and the width of the bus electrode in the longitudinal direction is smaller than the electrode width of the bus electrode and the electrode width of the grid electrode Including a printing step of printing an electrode connection portion having a wider area simultaneously with the bus electrode and the grid electrode,
The manufacturing method of the solar cell element characterized by these.
前記印刷工程が、
前記マスクと前記基板との第1の相対位置において、前記バス電極と前記グリッド電極と前記電極接続部とを前記基板に同時に印刷する第1の工程と、
前記第1の相対位置から前記グリッド電極の長手方向と略平行な方向に変位した前記マスクと前記基板との第2の相対位置において、前記バス電極と前記グリッド電極と前記電極接続部とを前記基板に同時に印刷する第2の工程と、
を含むことを特徴とする請求項5に記載の太陽電池素子の製造方法。
The printing step comprises:
A first step of simultaneously printing the bus electrode, the grid electrode, and the electrode connection portion on the substrate at a first relative position between the mask and the substrate;
In the second relative position of the mask and the substrate displaced from the first relative position in a direction substantially parallel to the longitudinal direction of the grid electrode, the bus electrode, the grid electrode, and the electrode connection portion are A second step of simultaneously printing on the substrate;
The manufacturing method of the solar cell element of Claim 5 characterized by the above-mentioned.
JP2008120449A 2008-05-02 2008-05-02 Solar battery element and manufacturing method therefor Pending JP2009272405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008120449A JP2009272405A (en) 2008-05-02 2008-05-02 Solar battery element and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008120449A JP2009272405A (en) 2008-05-02 2008-05-02 Solar battery element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2009272405A true JP2009272405A (en) 2009-11-19

Family

ID=41438715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008120449A Pending JP2009272405A (en) 2008-05-02 2008-05-02 Solar battery element and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2009272405A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149067A1 (en) * 2010-05-28 2011-12-01 京セラ株式会社 Printing plate and method for manufacturing solar cell element using the printing plate
JP2012054442A (en) * 2010-09-02 2012-03-15 Shin Etsu Chem Co Ltd Method of manufacturing solar cell and screen plate making process for use therein
WO2012057267A1 (en) * 2010-10-27 2012-05-03 三洋電機株式会社 Method for producing solar cell, and printing plate
JP2012138545A (en) * 2010-12-28 2012-07-19 Sanyo Electric Co Ltd Solar cell and solar cell module
WO2012105381A1 (en) 2011-01-31 2012-08-09 信越化学工業株式会社 Screen printing plate for solar cell and method for printing solar cell electrode
WO2012115006A1 (en) * 2011-02-21 2012-08-30 シャープ株式会社 Screen and method for manufacturing solar cell
US20120291841A1 (en) * 2011-05-16 2012-11-22 Daehee Jang Photovoltaic module
CN103094367A (en) * 2011-10-27 2013-05-08 茂迪股份有限公司 Solar cell and module thereof
JP2013093510A (en) * 2011-10-27 2013-05-16 Kyocera Corp Photoelectric conversion device, and manufacturing method therefor
FR2990797A1 (en) * 2012-05-21 2013-11-22 Commissariat Energie Atomique PHOTOVOLTAIC CELL WITH LOCAL BUS ENLARGEMENT
WO2013191194A1 (en) * 2012-06-19 2013-12-27 株式会社コベルコ科研 Mesh member for screen printing and screen printing plate
WO2014073223A1 (en) * 2012-11-12 2014-05-15 三菱電機株式会社 Method for manufacturing solar cell, printing mask, solar cell, and solar cell module
WO2014040834A3 (en) * 2012-09-17 2014-06-26 Imec Method for improving the adhesion of plated metal layers to silicon
WO2015172823A1 (en) * 2014-05-14 2015-11-19 Applied Materials Italia S.R.L. Solar cell device and method for producing a solar cell device
JP6005269B2 (en) * 2013-05-16 2016-10-12 三菱電機株式会社 SOLAR CELL, ITS MANUFACTURING METHOD, SOLAR CELL MODULE
KR20180046809A (en) * 2016-10-28 2018-05-09 삼성에스디아이 주식회사 Method for manufacturing finger electrode for solar cell
KR20180063750A (en) * 2016-12-02 2018-06-12 삼성에스디아이 주식회사 Method for manufacturing finger electrode for solar cell
CN108565299A (en) * 2018-03-19 2018-09-21 通威太阳能(合肥)有限公司 A kind of solar battery front side figure substep printing technology and its graphic structure
CN109016807A (en) * 2018-07-24 2018-12-18 浙江爱旭太阳能科技有限公司 For the molding crystal silicon solar batteries halftone of positive electrode hollow out
CN109119497A (en) * 2018-08-29 2019-01-01 晶澳(扬州)太阳能科技有限公司 A kind of silicon-based solar cell structure
CN111098587A (en) * 2019-12-30 2020-05-05 晋能光伏技术有限责任公司 Printing screen for heterojunction solar cell and printing method thereof
JP2021532588A (en) * 2018-07-24 2021-11-25 浙江愛旭太陽能科技有限公司Zhejiang Aiko Solar Energy Technology Co., Ltd. Positive electrode of crystalline silicon solar cell with damage prevention grid function

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283736A (en) * 1993-03-29 1994-10-07 Sharp Corp Solar cell
JPH0882920A (en) * 1994-09-12 1996-03-26 Canon Inc Screen printer and screen printing method
JPH09116175A (en) * 1995-10-20 1997-05-02 Sanyo Electric Co Ltd Electrode structure of photovoltaic device
JPH11103084A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Solar cell element and manufacture thereof
JP2001291879A (en) * 2000-04-10 2001-10-19 Sharp Corp Solar battery cell and its manufacturing method
JP2003338631A (en) * 2002-05-22 2003-11-28 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2005150540A (en) * 2003-11-18 2005-06-09 Sharp Corp Screen for forming light receiving face electrode, method for manufacturing solar battery cell using same, and solar battery cell manufactured by same method
JP2007103473A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Solar cell device and solar cell module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283736A (en) * 1993-03-29 1994-10-07 Sharp Corp Solar cell
JPH0882920A (en) * 1994-09-12 1996-03-26 Canon Inc Screen printer and screen printing method
JPH09116175A (en) * 1995-10-20 1997-05-02 Sanyo Electric Co Ltd Electrode structure of photovoltaic device
JPH11103084A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Solar cell element and manufacture thereof
JP2001291879A (en) * 2000-04-10 2001-10-19 Sharp Corp Solar battery cell and its manufacturing method
JP2003338631A (en) * 2002-05-22 2003-11-28 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2005150540A (en) * 2003-11-18 2005-06-09 Sharp Corp Screen for forming light receiving face electrode, method for manufacturing solar battery cell using same, and solar battery cell manufactured by same method
JP2007103473A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Solar cell device and solar cell module

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5335140B2 (en) * 2010-05-28 2013-11-06 京セラ株式会社 Printing plate and method for producing solar cell element using the printing plate
US8703520B2 (en) 2010-05-28 2014-04-22 Kyocera Corporation Printing plate and method for manufacturing solar cell element using the printing plate
WO2011149067A1 (en) * 2010-05-28 2011-12-01 京セラ株式会社 Printing plate and method for manufacturing solar cell element using the printing plate
JP2012054442A (en) * 2010-09-02 2012-03-15 Shin Etsu Chem Co Ltd Method of manufacturing solar cell and screen plate making process for use therein
WO2012057267A1 (en) * 2010-10-27 2012-05-03 三洋電機株式会社 Method for producing solar cell, and printing plate
JP2012138545A (en) * 2010-12-28 2012-07-19 Sanyo Electric Co Ltd Solar cell and solar cell module
US9216607B2 (en) 2011-01-31 2015-12-22 Shin-Etsu Chemical Co., Ltd. Screen printing plate for solar cell and method for printing solar cell electrode
EP2672523B2 (en) 2011-01-31 2019-02-06 Shin-Etsu Chemical Co., Ltd. Screen printing plate for solar cell and method for printing solar cell electrode
EP2672523B1 (en) 2011-01-31 2015-07-22 Shin-Etsu Chemical Co., Ltd. Screen printing plate for solar cell and method for printing solar cell electrode
WO2012105381A1 (en) 2011-01-31 2012-08-09 信越化学工業株式会社 Screen printing plate for solar cell and method for printing solar cell electrode
WO2012115006A1 (en) * 2011-02-21 2012-08-30 シャープ株式会社 Screen and method for manufacturing solar cell
JPWO2012115006A1 (en) * 2011-02-21 2014-07-07 シャープ株式会社 Screen and solar cell manufacturing method
US20120291841A1 (en) * 2011-05-16 2012-11-22 Daehee Jang Photovoltaic module
US8993872B2 (en) * 2011-05-16 2015-03-31 Lg Electronics Inc. Photovoltaic module
CN103094367A (en) * 2011-10-27 2013-05-08 茂迪股份有限公司 Solar cell and module thereof
JP2013093510A (en) * 2011-10-27 2013-05-16 Kyocera Corp Photoelectric conversion device, and manufacturing method therefor
FR2990797A1 (en) * 2012-05-21 2013-11-22 Commissariat Energie Atomique PHOTOVOLTAIC CELL WITH LOCAL BUS ENLARGEMENT
WO2013174734A3 (en) * 2012-05-21 2014-08-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic module with photovoltaic cells having local widening of the bus
WO2013174734A2 (en) 2012-05-21 2013-11-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic module with photovoltaic cells having local widening of the bus
WO2013191194A1 (en) * 2012-06-19 2013-12-27 株式会社コベルコ科研 Mesh member for screen printing and screen printing plate
CN104411504A (en) * 2012-06-19 2015-03-11 株式会社钢臂功科研 Mesh member for screen printing and screen printing plate
JP2014000740A (en) * 2012-06-19 2014-01-09 Kobelco Kaken:Kk Mesh member for screen printing and screen printing plate
WO2014040834A3 (en) * 2012-09-17 2014-06-26 Imec Method for improving the adhesion of plated metal layers to silicon
WO2014073223A1 (en) * 2012-11-12 2014-05-15 三菱電機株式会社 Method for manufacturing solar cell, printing mask, solar cell, and solar cell module
JP5866029B2 (en) * 2012-11-12 2016-02-17 三菱電機株式会社 Solar cell manufacturing method and printing mask
JP6005269B2 (en) * 2013-05-16 2016-10-12 三菱電機株式会社 SOLAR CELL, ITS MANUFACTURING METHOD, SOLAR CELL MODULE
WO2015172823A1 (en) * 2014-05-14 2015-11-19 Applied Materials Italia S.R.L. Solar cell device and method for producing a solar cell device
KR20180046809A (en) * 2016-10-28 2018-05-09 삼성에스디아이 주식회사 Method for manufacturing finger electrode for solar cell
KR20180063750A (en) * 2016-12-02 2018-06-12 삼성에스디아이 주식회사 Method for manufacturing finger electrode for solar cell
CN108565299A (en) * 2018-03-19 2018-09-21 通威太阳能(合肥)有限公司 A kind of solar battery front side figure substep printing technology and its graphic structure
CN109016807A (en) * 2018-07-24 2018-12-18 浙江爱旭太阳能科技有限公司 For the molding crystal silicon solar batteries halftone of positive electrode hollow out
KR20210037697A (en) * 2018-07-24 2021-04-06 저지앙 아이코 솔라 에너지 테크놀로지 컴퍼니., 리미티드. Crystalline silicon solar cell screen for positive electrode blow molding
JP2021532587A (en) * 2018-07-24 2021-11-25 浙江愛旭太陽能科技有限公司Zhejiang Aiko Solar Energy Technology Co., Ltd. Crystalline silicon solar cell screen printing plate for positive electrode hollow molding
JP2021532588A (en) * 2018-07-24 2021-11-25 浙江愛旭太陽能科技有限公司Zhejiang Aiko Solar Energy Technology Co., Ltd. Positive electrode of crystalline silicon solar cell with damage prevention grid function
EP3827987A4 (en) * 2018-07-24 2022-04-06 Zhejiang Aiko Solar Energy Technology Co., Ltd. Crystalline silicon solar cell screen for positive electrode hollow molding
JP7210697B2 (en) 2018-07-24 2023-01-23 浙江愛旭太陽能科技有限公司 Positive electrode of crystalline silicon solar cell with anti-break grid function
JP7210696B2 (en) 2018-07-24 2023-01-23 浙江愛旭太陽能科技有限公司 Crystalline silicon solar cell screen printing plate for positive electrode hollow molding
KR102548459B1 (en) 2018-07-24 2023-06-28 저지앙 아이코 솔라 에너지 테크놀로지 컴퍼니., 리미티드. Crystalline Silicon Solar Cell Screen for Anode Blow Molding
US11817511B2 (en) 2018-07-24 2023-11-14 Zhejiang Aiko Solar Energy Technology Co., Ltd. Positive electrode of crystalline silicon solar cell having gate rupture prevention function
CN109016807B (en) * 2018-07-24 2023-12-01 浙江爱旭太阳能科技有限公司 Crystalline silicon solar cell screen plate for positive electrode hollowed-out forming
CN109119497A (en) * 2018-08-29 2019-01-01 晶澳(扬州)太阳能科技有限公司 A kind of silicon-based solar cell structure
CN109119497B (en) * 2018-08-29 2024-04-05 晶澳(扬州)太阳能科技有限公司 Silicon-based solar cell structure
CN111098587A (en) * 2019-12-30 2020-05-05 晋能光伏技术有限责任公司 Printing screen for heterojunction solar cell and printing method thereof

Similar Documents

Publication Publication Date Title
JP2009272405A (en) Solar battery element and manufacturing method therefor
US7816167B2 (en) Method of fabricating a differential doped solar cell
TW201248872A (en) Screen printing plate for solar cell and method for printing solar cell electrode
WO2005109524A1 (en) Solar cell and manufacturing method thereof
JPWO2007060742A1 (en) Printing mask and solar cell
JP4974756B2 (en) Method for manufacturing solar cell element
CN103858239A (en) All-black-contact solar cell and fabrication method
US7867809B2 (en) One-step diffusion method for fabricating a differential doped solar cell
WO2011155372A1 (en) Solar cell
WO2015068248A1 (en) Solar cell, manufacturing method therefor, and solar-cell module
JP5335140B2 (en) Printing plate and method for producing solar cell element using the printing plate
JP2010109201A (en) Manufacturing method of solar cell
JP4712052B2 (en) Solar cell element and manufacturing method thereof
JP2010161310A (en) Backside electrode type solar cell and method of manufacturing the same
JP4937233B2 (en) Method for roughening substrate for solar cell and method for manufacturing solar cell
WO2015068247A1 (en) Solar cell, manufacturing method therefor, and solar-cell module
JP2012054442A (en) Method of manufacturing solar cell and screen plate making process for use therein
JP2006156646A (en) Solar cell manufacturing method
TW201431101A (en) Solar cell, module comprising the same and method of manufacturing the same
JP6125417B2 (en) Metal mask for screen printing and method for manufacturing solar cell
JP5477233B2 (en) Manufacturing method of solar cell
JP5665975B2 (en) SOLAR CELL, ITS MANUFACTURING METHOD, SOLAR CELL MODULE
JP2013146958A (en) Metal mask and method for manufacturing solar cell
JP2011061109A (en) Method of manufacturing solar cell element, and the solar cell element
JP2006245502A (en) Solar cell and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925