JP2012054442A - Method of manufacturing solar cell and screen plate making process for use therein - Google Patents

Method of manufacturing solar cell and screen plate making process for use therein Download PDF

Info

Publication number
JP2012054442A
JP2012054442A JP2010196479A JP2010196479A JP2012054442A JP 2012054442 A JP2012054442 A JP 2012054442A JP 2010196479 A JP2010196479 A JP 2010196479A JP 2010196479 A JP2010196479 A JP 2010196479A JP 2012054442 A JP2012054442 A JP 2012054442A
Authority
JP
Japan
Prior art keywords
electrode
finger electrode
printing
screen plate
bus bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010196479A
Other languages
Japanese (ja)
Inventor
Yoko Endo
陽子 遠洞
Rei Mita
怜 三田
Takenori Watabe
武紀 渡部
Hiroyuki Otsuka
寛之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010196479A priority Critical patent/JP2012054442A/en
Publication of JP2012054442A publication Critical patent/JP2012054442A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a screen plate making process in which the joint of a finger electrode and a bus bar electrode can be made linear like the finger electrode without increasing the manufacturing cost of a solar cell or the shadow loss, and thereby disconnection of the joint of the bus bar electrode and the finger electrode can be prevented without losing good appearance of the solar cell.SOLUTION: In the screen plate making process used for manufacturing a solar cell where a bus bar electrode and a finger electrode perpendicular thereto are formed by printing conductive paste, an opening for the bus bar electrode and an opening for the finger electrode are connected at a plurality of parts, the opening width of one half or less of the connections is larger than the opening width for the finger electrode, and the opening width of remaining connections is equal to the width for the finger electrode.

Description

本発明は、生産性がよく、信頼性が高い高効率の太陽電池を作製する方法に関し、更に詳しくは、スクリーン印刷法を利用して印刷された、バスバー電極とフィンガー電極の接続部が断線することなく高アスペクト比の電極を形成することができる太陽電池の製造方法に関する。また、本発明はかかる太陽電池の製造に用いるスクリーン製版に関する。   The present invention relates to a method for manufacturing a highly efficient solar cell with good productivity and high reliability, and more particularly, a connection between a bus bar electrode and a finger electrode printed using a screen printing method is disconnected. The present invention relates to a method for manufacturing a solar cell capable of forming a high aspect ratio electrode without any problem. Moreover, this invention relates to the screen platemaking used for manufacture of this solar cell.

従来の技術を用いて作製された太陽電池の断面図(図1)と、表面の構造(図2)及び裏面の構造(図3)を説明する。一般的な太陽電池セルは、シリコン等のp型半導体基板100に、n型となるドーパントを拡散して、n型拡散層101を形成することによりpn接合が形成されている。n型拡散層101の上には、SiNx膜のような反射防止膜102が形成されている。p型半導体基板100の裏面側には、ほぼ全面にアルミニウムペーストが塗布され、焼結することによりBSF層103とアルミニウム電極104が形成される。また、裏面には集電用としてバスバーとよばれる太い電極106,306が、銀等を含む導電性ペーストを塗布し、焼成することで形成される。一方、受光面側には集電用のフィンガー電極207と、フィンガー電極から電流を集めるために形成されたバスバー電極105,205とよばれる太い電極が、略直角に交わるように櫛形状に配置される。 A cross-sectional view (FIG. 1), a front surface structure (FIG. 2), and a back surface structure (FIG. 3) of a solar cell manufactured using a conventional technique will be described. In a general solar battery cell, a pn junction is formed by diffusing an n-type dopant into a p-type semiconductor substrate 100 such as silicon to form an n-type diffusion layer 101. On the n-type diffusion layer 101, an antireflection film 102 such as a SiN x film is formed. On the back surface side of the p-type semiconductor substrate 100, an aluminum paste is applied to almost the entire surface, and the BSF layer 103 and the aluminum electrode 104 are formed by sintering. On the back surface, thick electrodes 106 and 306 called bus bars for current collection are formed by applying and baking a conductive paste containing silver or the like. On the other hand, finger electrodes 207 for collecting current and thick electrodes called bus bar electrodes 105 and 205 formed to collect current from the finger electrodes are arranged in a comb shape on the light receiving surface side so as to intersect at substantially right angles. The

そして、この種の太陽電池を製造する際、電極形成の方法としては、蒸着法、メッキ法、印刷法、描画法等が挙げられるが、表面フィンガー電極207は、形成が容易で低コストである等の理由のため、一般的には、以下に示すような印刷・焼成法で形成される。すなわち、表面電極材料には、一般に銀粉末と、ガラスフリットと、有機ビヒクルと、有機溶媒とを主成分として配合した導電性ペーストが用いられ、スクリーン印刷法等によりこの導電性ペーストを塗布した後、焼成炉中で高温焼結して表面電極を形成するものである。   And when manufacturing this kind of solar cell, as a method of electrode formation, there are a vapor deposition method, a plating method, a printing method, a drawing method, etc., but the surface finger electrode 207 is easy to form and low cost. For reasons such as these, generally, it is formed by a printing / firing method as shown below. That is, as the surface electrode material, generally a conductive paste containing silver powder, glass frit, organic vehicle, and organic solvent as main components is used, and after applying this conductive paste by a screen printing method or the like. The surface electrode is formed by high-temperature sintering in a firing furnace.

スクリーン印刷とは以下のような方法である。
まず、スクリーン印刷法で用いられているスクリーン製版は、互いに直交する縦糸と横糸とを編み込んだメッシュ材を、感光性の乳剤で被覆するとともに、この乳剤を露光により一部除去することによって略長方形のパターン孔を形成して形成される。このスクリーン製版を被印刷物上に配置させ、スクリーン製版上に載せた印刷ペースト(インク)をパターン上に塗り広げ、印刷スキージと呼ばれる柔軟性を有するヘラを適切なスキージ硬度(60〜80度)、スキージ角度(60〜80度)、圧力(印圧)(0.2〜0.5MPa)、印刷速度(20〜100mm/sec)で移動させることによって、パターン孔を介して被印刷物に付着させ、更に被印刷物に付着させた印刷ペーストを乾燥し、印刷パターンを形成させる方法である。
Screen printing is the following method.
First, the screen plate making used in the screen printing method has a substantially rectangular shape by covering a mesh material in which warp yarns and weft yarns orthogonal to each other are knitted with a photosensitive emulsion and removing the emulsion partly by exposure. These pattern holes are formed. This screen plate making is placed on the substrate, and a printing paste (ink) placed on the screen plate making is spread on the pattern, and a flexible spatula called a printing squeegee is applied to an appropriate squeegee hardness (60 to 80 degrees), By moving at a squeegee angle (60 to 80 degrees), a pressure (printing pressure) (0.2 to 0.5 MPa), and a printing speed (20 to 100 mm / sec), it is attached to the substrate through the pattern holes, Further, the printing paste adhered to the printing material is dried to form a printing pattern.

このとき、印刷ペーストがパターン孔内のメッシュ材が存在しない開口部を通って落下し、被印刷物に付着させた直後は、パターン孔内の縦糸と横糸に相当する部分には印刷ペーストは付着しないが、この後開口部に相当する部分に付着した印刷ペーストの流動が生じるため、均一な厚みの連続的な印刷パターンとなる。   At this time, the printing paste does not adhere to the portion corresponding to the warp and weft in the pattern hole immediately after the printing paste falls through the opening where the mesh material in the pattern hole does not exist and adheres to the substrate. However, since the flow of the printing paste adhering to the portion corresponding to the opening portion thereafter occurs, a continuous printing pattern with a uniform thickness is obtained.

このように、スクリーン印刷法は、スクリーン製版上のパターン開口へ充填された印刷ペーストが、印刷スキージ(ヘラ)の移動により被印刷物に転写されることによって、スクリーン製版に形成したパターン孔と同じパターンを被印刷物上に形成する手法である。   Thus, the screen printing method uses the same pattern as the pattern holes formed in the screen plate making by transferring the printing paste filled into the pattern openings on the screen plate making to the printed material by the movement of the printing squeegee. Is formed on the substrate.

このような方法により形成された表面フィンガー電極207とSi基板100とのコンタクト抵抗(接触抵抗)と電極の配線抵抗は、太陽電池の変換効率に大きな影響を及ぼし、高効率(低セル直列抵抗、高フィルファクターFF(曲線因子))を得るためには、コンタクト抵抗と表面フィンガー電極207の配線抵抗の値が十分に低いことが要求される。   The contact resistance (contact resistance) between the surface finger electrode 207 and the Si substrate 100 formed by such a method and the wiring resistance of the electrode have a great influence on the conversion efficiency of the solar cell, and high efficiency (low cell series resistance, In order to obtain a high fill factor FF (curve factor)), the contact resistance and the wiring resistance value of the surface finger electrode 207 are required to be sufficiently low.

また、受光面においてはできるだけ多くの光を取り込めるように電極面積を小さくしなければならない。前記FFを維持したまま短絡電流(Jsc)を向上させるために、フィンガー電極は細く、縦断面における断面積は大きく、つまり高アスペクト比のフィンガー電極を形成しなくてはならない。   In addition, the electrode area must be reduced so that as much light as possible can be captured on the light receiving surface. In order to improve the short circuit current (Jsc) while maintaining the FF, the finger electrode must be thin and have a large cross-sectional area in the longitudinal section, that is, a high aspect ratio finger electrode must be formed.

太陽電池の電極を形成する手法のうち、高アスペクト比、超細線を形成する手法としては、セルに溝を作ってペーストを充填する方法(特許文献1:特開2006−54374号公報)や、インクジェット法による印刷手法等が開示されている。しかし、前者は基板に溝を作る工程を含むために基板にダメージを与える可能性があるため好ましくない。後者のインクジェット法は圧力をかけて細いノズルから液滴を噴射する仕組みのため、細線を形成するには適した手法であるが、高さを稼ぐことは難しい。   Among the methods for forming the electrodes of the solar cell, as a method for forming a high aspect ratio, ultrafine wire, a method of forming a groove in a cell and filling a paste (Patent Document 1: JP-A-2006-54374), A printing method using an inkjet method is disclosed. However, the former is not preferable because it includes a step of forming a groove in the substrate and may damage the substrate. The latter ink-jet method is a method suitable for forming a thin line because it applies a pressure to eject droplets from a thin nozzle, but it is difficult to increase the height.

一方、スクリーン印刷法は、印刷パターンの作成が容易なこと、印圧の調節により基板に与えるダメージを最小限にできること、セル1枚あたりの作業速度も早く、低コストで生産性に優れた手法である。そしてチクソ性の高い導電性ペーストを用いることで、転写されたあとも形状を保ち、高アスペクト比の電極を形成することができる。   On the other hand, the screen printing method is easy to create a printing pattern, can minimize damage to the substrate by adjusting the printing pressure, has a high working speed per cell, is low cost, and has excellent productivity. It is. By using a conductive paste having high thixotropy, it is possible to form an electrode having a high aspect ratio while maintaining the shape after being transferred.

以上より、スクリーン印刷は他の印刷手法に比べ安価で、高アスペクト比の電極を形成するのに適した手法である。   As described above, screen printing is a method that is cheaper than other printing methods and suitable for forming electrodes with a high aspect ratio.

しかし、スクリーン印刷の場合には、印刷方向(印刷スキージの進行方向)が断線を助長させる要素となる。
図4は、従来のスクリーン製版の開口部を示し、401はバスバー電極用開口でその幅はWbであり、402はフィンガー電極用開口でその幅はWfである。403はバスバー電極用開口とフィンガー電極用開口との接続部であり、この従来のスクリーン製版の開口接続部403の開口幅Wcはフィンガー電極用開口幅Wfと同じに形成されている。一般的にはフィンガー電極の断線を防ぐために、印刷方向とフィンガー電極はほぼ平行に、一方、印刷方向とバスバー電極はほぼ垂直となっている。このとき、印刷後の電極は、フィンガー電極に対し印刷開始側の、バスバー電極とフィンガー電極の接続部の幅が、非常に狭くなってしまう(図5の508)。特に細線印刷の場合には顕著に見られる。これは、フィンガー電極とバスバー電極の接続部では、バスバー電極開口部に印刷スキージが落ち込み、接続部のペースト塗布量が減るためである。一方で、印刷終了側のバスバー電極とフィンガー電極の接続部の幅は、ペースト塗布量が多いために太くなる傾向がある(図5の509)。
However, in the case of screen printing, the printing direction (traveling direction of the printing squeegee) is an element that promotes disconnection.
FIG. 4 shows an opening of a conventional screen plate making, 401 is a bus bar electrode opening and its width is Wb, 402 is a finger electrode opening and its width is Wf. Reference numeral 403 denotes a connecting portion between the bus bar electrode opening and the finger electrode opening, and the opening width Wc of the opening connecting portion 403 of this conventional screen plate making is formed to be the same as the finger electrode opening width Wf. Generally, in order to prevent disconnection of the finger electrode, the printing direction and the finger electrode are substantially parallel, while the printing direction and the bus bar electrode are substantially vertical. At this time, the width of the connection portion between the bus bar electrode and the finger electrode on the printing start side of the electrode after printing becomes very narrow (508 in FIG. 5). This is particularly noticeable in the case of fine line printing. This is because, at the connection portion between the finger electrode and the bus bar electrode, the printing squeegee falls in the bus bar electrode opening, and the amount of paste applied to the connection portion is reduced. On the other hand, the width of the connection portion between the bus bar electrode and the finger electrode on the printing end side tends to increase due to the large amount of paste applied (509 in FIG. 5).

上記問題を解決するために、バスバー電極とフィンガー電極の接続部の幅を広くする方法が開示されている(特許文献2:特開2009−272405号公報)。しかしながら、この手法を用いると、バスバー電極とフィンガー電極の接続部が過剰に太いためににじんだり、だまになったりする。そのためにシャドーロスが増加してしまい、特性が低くなってしまうという問題があった。また、太陽電池は当然のことながら太陽光の下で使用されるデバイスであり、他の半導体デバイスと異なって、公衆の目に触れる機会が多い。従って、太陽電池には特性だけでなく、外観も非常に重要な要素となる。前記提案は、バスバー電極とフィンガー電極の接続部が太くなってしまうことにより、フィンガー電極太さが不連続となり、美観を損ねてしまうという問題があった。   In order to solve the above problem, a method of widening the width of the connection portion between the bus bar electrode and the finger electrode is disclosed (Patent Document 2: JP 2009-272405 A). However, when this method is used, the connection portion between the bus bar electrode and the finger electrode is excessively thick, so that it is blurred or fooled. For this reason, there is a problem that the shadow loss increases and the characteristics are lowered. Naturally, a solar cell is a device used under sunlight, and unlike other semiconductor devices, it has many opportunities to be exposed to the public. Therefore, not only the characteristics but also the appearance of solar cells are very important elements. The proposal has a problem in that the connection between the bus bar electrode and the finger electrode becomes thick, so that the thickness of the finger electrode becomes discontinuous and the aesthetic appearance is impaired.

また、従来、特開2005−150540号公報(特許文献3)には、片側全面に対して開口幅を大きくさせたスクリーン製版が記載されているが、特許文献3のスクリーン製版は幅100μm以上の太い電極を対象とするものであり、このような太線で片側全面の開口幅を大きくすると、高価なペーストを大量に使うので、コストが増加してしまうという問題がある。   Conventionally, JP 2005-150540 A (Patent Document 3) describes a screen plate making with an opening width larger than the entire surface on one side, but the screen plate making of Patent Document 3 has a width of 100 μm or more. This is intended for thick electrodes, and if the opening width of the entire surface on one side is increased with such a thick line, a large amount of expensive paste is used, which increases the cost.

特開2006−54374号公報JP 2006-54374 A 特開2009−272405号公報JP 2009-272405 A 特開2005−150540号公報JP-A-2005-150540

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、高いアスペクト比を有し抵抗が低い電極を形成することによって、変換効率の高い太陽電池を低コストで製造する方法、及びその方法に用いるスクリーン製版を提供するものである。   The present invention has been made in view of the above problems, and an object of the present invention is to produce a solar cell with high conversion efficiency at low cost by forming an electrode having a high aspect ratio and low resistance. And a screen plate making used in the method.

上記課題を解決するために、本発明は、導電性ペーストを印刷してバスバー電極とこれに直交するフィンガー電極を形成する太陽電池の製造に用いるスクリーン製版であって、該スクリーン製版はバスバー電極用開口とフィンガー電極用開口が複数の箇所で接続され、該接続部片側の半数以下の開口幅がフィンガー電極用開口幅よりも大きく、残りの接続部の開口幅がフィンガー電極用幅と同じであることを特徴とするスクリーン製版を提供する(請求項1)。
この場合、バスバー電極用開口の印刷開始側の片側の全部に前記フィンガー電極用開口幅よりも大きい開口幅のフィンガー接続部を有し、残りの接続部の開口幅がフィンガー電極用幅と同じであることが好ましい(請求項2)。
この場合、上記スクリーン製版のフィンガー電極の開口幅が80μm以下であることが好ましい(請求項3)。一般的に用いられている開口幅80超〜100μmであれば、上記のような断線が発生することは稀である。本手法が効果的なのは開口幅80μm以下の細線である。なお、開口幅が50〜80μm、特に60〜70μmであれば、本方法は非常に有効である。
また、印刷後のフィンガー電極の幅は接続部が印刷後フィンガー電極幅と同等でないと、太陽電池の美観を損ね、外観不良となり歩留りが低下してしまう。そのため、上記スクリーン製版のバスバー電極とフィンガー電極接続部の開口幅が、フィンガー電極開口幅の1.0倍より大きく、1.5倍以下であることが好ましい(請求項4)。
In order to solve the above-mentioned problems, the present invention provides a screen plate for use in manufacturing a solar cell in which a conductive paste is printed to form bus bar electrodes and finger electrodes orthogonal to the bus bar electrodes. The opening and the finger electrode opening are connected at a plurality of locations, the opening width of half or less on one side of the connecting portion is larger than the finger electrode opening width, and the remaining connecting portion has the same opening width as the finger electrode width. A screen plate making is provided (claim 1).
In this case, all of the bus bar electrode openings on one side of the printing start side have finger connection portions having an opening width larger than the finger electrode opening width, and the remaining connection portions have the same opening width as the finger electrode width. It is preferable that it is present (claim 2).
In this case, it is preferable that the opening width of the finger electrode of the screen plate making is 80 μm or less. If the opening width is generally over 80 to 100 μm, the disconnection as described above rarely occurs. This technique is effective for fine lines with an opening width of 80 μm or less. If the opening width is 50 to 80 μm, particularly 60 to 70 μm, this method is very effective.
Further, if the width of the finger electrode after printing is not equal to the width of the finger electrode after printing, the aesthetic appearance of the solar cell is impaired, the appearance is deteriorated, and the yield is lowered. Therefore, it is preferable that the opening width of the bus bar electrode and the finger electrode connecting portion of the screen making is larger than 1.0 times and 1.5 times or less of the finger electrode opening width.

本発明は、更に、上記のスクリーン製版を用いて導電性ペーストを印刷し、バスバー電極とフィンガー電極を形成する太陽電池の製造方法であって、フィンガー電極の長手方向に沿って上記印刷を行うことを特徴とする太陽電池の製造方法を提供する(請求項5)。
上記のような特徴を有するスクリーン製版を用いて印刷する太陽電池の製造方法において、フィンガー電極の断線を防止するために、フィンガー電極に対して印刷方向はほぼ平行であることが望ましい。
印刷方向がフィンガー電極とほぼ平行の場合、印刷後の電極は、フィンガー電極に対し印刷開始側のバスバー電極とフィンガー電極の接続部の幅が、細くなることが多い。そのため、バスバー電極とフィンガー電極の、少なくとも印刷開始側の接続部の開口幅が、フィンガー電極より大きいことが望ましい。
The present invention further relates to a method for manufacturing a solar cell in which a conductive paste is printed using the screen plate making to form bus bar electrodes and finger electrodes, and the printing is performed along the longitudinal direction of the finger electrodes. A method for manufacturing a solar cell is provided (claim 5).
In the method for manufacturing a solar cell that is printed using the screen plate making having the above-described features, it is desirable that the printing direction is substantially parallel to the finger electrodes in order to prevent disconnection of the finger electrodes.
When the printing direction is substantially parallel to the finger electrode, the width of the connection portion between the bus bar electrode on the printing start side and the finger electrode is often narrower with respect to the finger electrode after printing. Therefore, it is desirable that at least the opening width of the connection portion between the bus bar electrode and the finger electrode on the printing start side is larger than the finger electrode.

本発明のスクリーン製版を用いれば、太陽電池製造コストを増加させることやシャドーロスを増加させることがなく、更には、フィンガー電極とバスバー電極の接続部をフィンガー電極と同様の直線とすることができるために、太陽電池の美観を損ねることなく、バスバー電極とフィンガー電極の接続部の断線を防止することができる。   If the screen plate-making of this invention is used, it will not increase a solar cell manufacturing cost or a shadow loss, and also can make the connection part of a finger electrode and a bus-bar electrode into the same straight line as a finger electrode. Therefore, disconnection of the connection part of a bus-bar electrode and a finger electrode can be prevented, without impairing the beauty | look of a solar cell.

一般的な太陽電池の電極の断面図である。It is sectional drawing of the electrode of a common solar cell. 一般的な太陽電池の表面形状を示す図である。It is a figure which shows the surface shape of a common solar cell. 一般的な太陽電池の裏面形状を示す図である。It is a figure which shows the back surface shape of a common solar cell. 従来のスクリーン製版の開口部拡大図である。It is an opening part enlarged view of the conventional screen plate making. 従来のスクリーン製版による印刷後拡大図である。It is an enlarged view after printing by the conventional screen plate making. 比較のスクリーン製版の開口部拡大図である。It is an enlarged view of an opening of a comparative screen plate making. 比較のスクリーン製版による印刷後拡大図である。It is an enlarged view after printing by comparative screen plate making. 本発明のスクリーン製版の開口部拡大図である。It is an opening part enlarged view of the screen platemaking of this invention. 本発明のスクリーン製版による印刷後拡大図である。It is an enlarged view after printing by screen plate making of the present invention.

本発明に係るスクリーン製版は、太陽電池の作製に用いられるものであり、本発明の太陽電池の作製方法の一例を以下に述べる。ただし、本発明はこの方法で作製された太陽電池に限られるものではない。   The screen plate making according to the present invention is used for the production of a solar cell, and an example of the method for producing the solar cell of the present invention will be described below. However, the present invention is not limited to the solar cell manufactured by this method.

高純度シリコンにホウ素あるいはガリウムのようなIII族元素をドープし、比抵抗0.1〜5Ω・cmとしたアズカット単結晶{100}p型シリコン基板表面のスライスダメージを、濃度5〜60質量%の水酸化ナトリウムや水酸化カリウムのような高濃度のアルカリ、もしくは、フッ酸と硝酸の混酸等を用いてエッチングする。単結晶シリコン基板は、CZ法、FZ法のいずれの方法によって作製されてもよい。   Slice damage on the surface of an as-cut single crystal {100} p-type silicon substrate doped with a high purity silicon group III element such as boron or gallium and having a specific resistance of 0.1 to 5 Ω · cm, concentration of 5 to 60% by mass Etching is performed using a high concentration alkali such as sodium hydroxide or potassium hydroxide, or a mixed acid of hydrofluoric acid and nitric acid. The single crystal silicon substrate may be manufactured by either the CZ method or the FZ method.

引き続き、基板表面にテクスチャとよばれる微小な凹凸形成を行う。テクスチャは太陽電池の反射率を低下させるための有効な方法である。テクスチャは、加熱した水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム等のアルカリ溶液(濃度1〜10質量%、温度60〜100℃)中に10〜30分程度浸漬することで容易に作製される。上記溶液中に、所定量の2−プロパノールを溶解させ、反応を促進させることが多い。   Subsequently, minute unevenness called texture is formed on the substrate surface. Texture is an effective way to reduce solar cell reflectivity. The texture should be immersed for about 10 to 30 minutes in an alkali solution (concentration 1 to 10% by mass, temperature 60 to 100 ° C.) such as heated sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, and sodium bicarbonate. Easy to make. In many cases, a predetermined amount of 2-propanol is dissolved in the solution to promote the reaction.

テクスチャ形成後、塩酸、硫酸、硝酸、フッ酸等、もしくはこれらの混合液の酸性水溶液中で洗浄する。経済的及び効率的見地から、塩酸中での洗浄が好ましい。清浄度を向上するため、塩酸溶液中に、0.5〜5質量%の過酸化水素水を混合させ、60〜90℃に加温して洗浄してもよい。   After texture formation, washing is performed in an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, or the like, or a mixture thereof. From an economic and efficient standpoint, washing in hydrochloric acid is preferred. In order to improve the cleanliness, 0.5 to 5 mass% hydrogen peroxide solution may be mixed in the hydrochloric acid solution and heated to 60 to 90 ° C. for washing.

この基板上に、オキシ塩化リンを用いた気相拡散法によりエミッタ層を形成する。一般的なシリコン太陽電池は、pn接合を受光面にのみ形成する必要があり、これを達成するために基板同士を2枚重ね合わせた状態で拡散したり、拡散前に裏面にSiO2膜やSiNx膜等を拡散マスクとして形成して、裏面にpn接合ができないような工夫を施す必要がある。拡散後、表面にできたガラスをフッ酸等で除去する。 On this substrate, an emitter layer is formed by vapor phase diffusion using phosphorus oxychloride. In general silicon solar cells, it is necessary to form a pn junction only on the light-receiving surface, and in order to achieve this, diffusion is performed in a state where two substrates are overlapped, or a SiO 2 film or the like is formed on the back surface before diffusion. It is necessary to devise such that a pn junction cannot be formed on the back surface by forming a SiN x film or the like as a diffusion mask. After diffusion, the glass formed on the surface is removed with hydrofluoric acid or the like.

次に、受光面の反射防止膜形成を行う。製膜にはプラズマCVD装置を用い、SiNx膜を約100nm製膜する。反応ガスとして、モノシラン(SiH4)及びアンモニア(NH3)を混合して用いることが多いが、NH3の代わりに窒素を用いることも可能であり、また、プロセス圧力の調整、反応ガスの希釈、更には、基板に多結晶シリコンを用いた場合には基板のバルクパッシベーション効果を促進するため、反応ガスに水素を混合することもある。 Next, an antireflection film is formed on the light receiving surface. A SiN x film is formed to a thickness of about 100 nm using a plasma CVD apparatus. As the reaction gas, monosilane (SiH 4 ) and ammonia (NH 3 ) are often mixed and used, but nitrogen can be used instead of NH 3 , and the process pressure can be adjusted and the reaction gas diluted. Furthermore, when polycrystalline silicon is used for the substrate, hydrogen may be mixed into the reaction gas in order to promote the bulk passivation effect of the substrate.

次いで、裏面電極をスクリーン印刷法で形成する。上記基板の裏面に、銀粉末とガラスフリットを有機物バインダで混合したペーストをバスバー状にスクリーン印刷したのち、アルミニウム粉末を有機物バインダで混合したペーストをバスバー以外の領域にスクリーン印刷する。印刷後、5〜30分間、700〜800℃の温度で焼成して、裏面電極が形成される。裏面電極形成は印刷法によるほうが好ましいが、蒸着法、スパッタリング法等で作製することも可能である。   Next, a back electrode is formed by a screen printing method. A paste in which silver powder and glass frit are mixed with an organic binder is screen-printed on the back surface of the substrate in a bus bar shape, and then a paste in which aluminum powder is mixed with an organic binder is screen-printed in a region other than the bus bar. After printing, the back electrode is formed by baking at a temperature of 700 to 800 ° C. for 5 to 30 minutes. The back electrode is preferably formed by a printing method, but can also be formed by a vapor deposition method, a sputtering method, or the like.

次に、表面電極をスクリーン印刷法で形成する。上記基板の表面に、銀粉末とガラスフリットと有機物バインダを混合したペーストを、フィンガー電極幅が30〜80μm、フィンガー電極間隔0.5〜4.0mmで設計されたくし型の印刷パターンを有するスクリーン製版を用いて印刷する。印刷後、印刷したペーストを乾燥させ、5〜30分間、700〜800℃の温度で焼成して、表面電極が形成される。   Next, the surface electrode is formed by a screen printing method. Screen engraving having a comb-shaped printing pattern designed on the surface of the substrate with a paste prepared by mixing silver powder, glass frit and an organic binder with a finger electrode width of 30 to 80 μm and a finger electrode interval of 0.5 to 4.0 mm. Use to print. After printing, the printed paste is dried and baked at a temperature of 700 to 800 ° C. for 5 to 30 minutes to form a surface electrode.

ここで、本発明のスクリーン製版は、図8に示したように、バスバー電極用開口401とフィンガー電極用開口402との接続部において、印刷開始側接続部の開口808の幅Wcをバスバー電極用開口幅Wbより狭く、フィンガー電極用開口幅Wfより広く形成すると共に、印刷終了側接続部の開口809の幅をフィンガー電極用開口幅と同じにする(図8)ものである。なお、この場合、印刷開始側接続部のうち1〜50%、特に15〜30%をフィンガー電極用開口幅Wfより広く形成することが好ましい。   Here, in the screen plate making of the present invention, as shown in FIG. 8, the width Wc of the opening 808 on the printing start side connecting portion is set to the bus bar electrode at the connecting portion between the bus bar electrode opening 401 and the finger electrode opening 402. The width is narrower than the opening width Wb and wider than the finger electrode opening width Wf, and the width of the opening 809 of the print end side connecting portion is made the same as the finger electrode opening width (FIG. 8). In this case, it is preferable that 1 to 50%, particularly 15 to 30%, of the print start side connection portion is formed wider than the finger electrode opening width Wf.

この場合、図6に示す印刷開始側接続部の開口608の幅Wc及び印刷終了側接続部の開口609の幅それぞれをバスバー電極用開口幅Wbより狭く、フィンガー電極用開口幅Wfより広く形成したスクリーン製版を用いた場合、図7に示したように、印刷開始側接続部領域に存するフィンガー電極708の幅がフィンガー電極207本来の幅Wfとほぼ一致し、印刷開始側のフィンガー電極がバスバー電極に至るまで同一幅を持って形成され、一方、印刷終了側接続部領域に存するフィンガー電極709の幅がフィンガー電極207本来の幅Wfより広い状態に印刷形成される。また、図8に示すスクリーン製版を用いた場合、図9に示したように、フィンガー電極207は印刷開始側及び印刷終了側接続部領域に存するフィンガー電極908,909の幅がフィンガー電極207本来の幅Wfと一致し、同一幅の直線状フィンガー電極207が印刷形成される。   In this case, the width Wc of the opening 608 of the printing start side connection portion and the width of the opening 609 of the printing end side connection portion shown in FIG. 6 are each made narrower than the bus bar electrode opening width Wb and wider than the finger electrode opening width Wf. When screen plate making is used, as shown in FIG. 7, the width of the finger electrode 708 existing in the print start side connection area is substantially equal to the original width Wf of the finger electrode 207, and the finger electrode on the print start side is the bus bar electrode. On the other hand, the finger electrode 709 existing in the printing end side connection region is printed and formed in a state wider than the original width Wf of the finger electrode 207. Further, when the screen plate making shown in FIG. 8 is used, as shown in FIG. 9, the finger electrode 207 has the width of the finger electrodes 908 and 909 existing in the connection area on the printing start side and the printing end side. A linear finger electrode 207 having the same width as that of the width Wf is printed.

一般的に用いられているフィンガー電極を印刷する場合のスクリーン製版の開口幅は80超〜100μmである。この場合、フィンガー電極は十分太く、厚く印刷できるために、上記のような断線が発生することは稀である。しかし、開口幅80μm以下の細線になると、バスバー電極とフィンガー電極の膜厚差が大きくなり、熱収縮量の違いにより断線が発生してしまう。   In the case of printing finger electrodes that are generally used, the opening width of the screen plate making is more than 80 to 100 μm. In this case, since the finger electrode is sufficiently thick and can be printed thickly, the disconnection as described above rarely occurs. However, when the opening width is 80 μm or less, the difference in film thickness between the bus bar electrode and the finger electrode becomes large, and disconnection occurs due to the difference in heat shrinkage.

そのため、本発明では、開口幅80μm以下、好ましくは50〜80μm、特に60〜70μmの細線のパターンを印刷する場合には、スクリーン製版のバスバー電極とフィンガー電極の接続部の開口幅が、バスバー電極より小さく、フィンガー電極より大きいスクリーン製版を用いて印刷する。   Therefore, in the present invention, when printing a fine line pattern having an opening width of 80 μm or less, preferably 50 to 80 μm, particularly 60 to 70 μm, the opening width of the connection portion between the bus bar electrode and the finger electrode of the screen making is determined as the bus bar electrode. Printing is performed using a screen plate making that is smaller and larger than the finger electrodes.

印刷開始、終了側のバスバー電極とフィンガー電極の接続部の開口幅を極端に広くした場合、印刷後の幅は太くなってしまい、フィンガー太さが不連続となることで、セルの美観を損ねるため外観不良となってしまうおそれがある。また、電極面積の増加により、シャドーロスが増加し、セル特性を低下させる。つまり、印刷後のフィンガー電極の幅は接続部が印刷後フィンガー電極幅と同等でなければならない。そのため、前記接続部の開口幅は、フィンガー電極の開口幅より大きく、1.5倍以下の幅が好ましい。   If the opening width of the connection between the bus bar electrode and finger electrode at the start and end of printing is made extremely wide, the width after printing becomes thick, and the finger thickness becomes discontinuous, which impairs the aesthetics of the cell. Therefore, there is a risk that the appearance will be poor. In addition, the increase in the electrode area increases the shadow loss and degrades the cell characteristics. That is, the width of the finger electrode after printing must be equal to the width of the finger electrode after printing. Therefore, the opening width of the connection part is preferably larger than the opening width of the finger electrode and not more than 1.5 times.

スクリーン印刷の印刷方向に関しては、フィンガー電極の断線を防止するために、フィンガー電極に対して印刷方向はほぼ平行のほうがよい。
また、前記印刷方向の場合には、バスバー電極に対して印刷方向が垂直となるために、バスバー電極に印刷スキージが落ち込み、印刷開始側のバスバー電極とフィンガー電極の接続部の塗布量が減少し、断線を招きやすくする。そのため、少なくとも印刷開始側のバスバー電極とフィンガー電極の接続部の開口幅が、バスバー電極より小さく、フィンガー電極より大きいスクリーン製版を用いて印刷することが好ましい。
Regarding the printing direction of screen printing, in order to prevent disconnection of the finger electrode, the printing direction is preferably substantially parallel to the finger electrode.
In the case of the printing direction, since the printing direction is perpendicular to the bus bar electrode, the printing squeegee falls on the bus bar electrode, and the amount of application at the connection portion between the bus bar electrode on the printing start side and the finger electrode is reduced. , Make it easier to invite disconnection. For this reason, it is preferable to perform printing using a screen plate-making method in which at least the opening width of the connection portion between the bus bar electrode and the finger electrode on the printing start side is smaller than the bus bar electrode and larger than the finger electrode.

上記のような手法を用いて電極を形成した後、大気下、700〜800℃で5〜30分間熱処理することにより焼結させる。これにより、バスバー電極及びフィンガー電極が形成される。裏面電極及び受光面電極の焼成は一度に行うことも可能である。   After forming an electrode using the above methods, it is sintered by heat treatment at 700 to 800 ° C. for 5 to 30 minutes in the atmosphere. Thereby, a bus-bar electrode and a finger electrode are formed. The back electrode and the light-receiving surface electrode can be baked at the same time.

以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

本発明の有効性を確認するため、以下の工程を半導体基板30枚について行い、太陽電池を作製した。
印刷パターンは、従来のパターンA(フィンガー電極開口(Wf)60μm:比較例)に対して、バスバー電極とフィンガー電極の印刷開始側接続部の開口(Wc)を80μm(実施例)、100μm(比較例)としたスクリーン製版を用意した。印刷終了側接続部の開口はフィンガー電極開口(Wf)と同じにした。バスバー電極の開口幅(Wb)はすべて2mmに統一した。
In order to confirm the effectiveness of the present invention, the following steps were performed on 30 semiconductor substrates to produce solar cells.
The printing pattern is 80 μm (example), 100 μm (comparison) with respect to the conventional pattern A (finger electrode opening (Wf) 60 μm: comparative example), with the opening (Wc) of the bus bar electrode and the finger electrode on the printing start side connecting portion. Example) Screen plate making was prepared. The opening at the printing end side connection portion was the same as the finger electrode opening (Wf). All the opening widths (Wb) of the bus bar electrodes were unified to 2 mm.

まず、図1に示すように、15cm角、厚さ250μm、比抵抗2.0Ω・cmの、ホウ素ドープ{100}p型アズカットシリコン基板100を用意し、濃水酸化カリウム水溶液によりダメージ層を除去、テクスチャを形成、オキシ塩化リン雰囲気下850℃で熱処理したエミッタ層101を形成し、フッ酸にてリンガラスを除去し、洗浄、乾燥させた。次にプラズマCVD装置を用い、SiNx膜102を製膜し、裏面に、銀粉末とガラスフリットを有機物バインダで混合したペーストをバスバー状にスクリーン印刷した後(106)、アルミニウム粉末を有機物バインダで混合したペーストをバスバー以外の領域にスクリーン印刷した(104)。有機溶媒を乾燥して裏面電極を形成した半導体基板を作製した。 First, as shown in FIG. 1, a boron-doped {100} p-type as-cut silicon substrate 100 having a 15 cm square, a thickness of 250 μm, and a specific resistance of 2.0 Ω · cm is prepared, and a damage layer is formed with a concentrated potassium hydroxide aqueous solution. Removal, texture formation, emitter layer 101 heat-treated at 850 ° C. in a phosphorus oxychloride atmosphere was formed, phosphorus glass was removed with hydrofluoric acid, washed and dried. Next, a SiN x film 102 is formed using a plasma CVD apparatus, and a paste obtained by mixing silver powder and glass frit with an organic binder is screen-printed in a bus bar shape on the back surface (106), and then aluminum powder is coated with an organic binder. The mixed paste was screen printed in an area other than the bus bar (104). A semiconductor substrate having a back electrode formed by drying the organic solvent was produced.

次に、この半導体基板上に、銀粉末と、ガラスフリットと、有機ビヒクルと、有機溶媒とを主成分とし、添加物として金属酸化物を含有した導電性ペーストを、上記印刷パターンを有するスクリーン製版を用いて、スキージ硬度70度、スキージ角度70度、印圧0.3MPa、印刷速度50mm/secで半導体基板上に形成された反射防止膜上に塗布した。印刷後、150℃のクリーンオーブンで有機溶媒の乾燥を行った後、800℃の空気雰囲気下で焼成した。   Next, on this semiconductor substrate, a conductive paste containing silver powder, glass frit, an organic vehicle, and an organic solvent as main components and a metal oxide as an additive is applied to a screen plate having the above printing pattern. Was applied on the antireflection film formed on the semiconductor substrate at a squeegee hardness of 70 degrees, a squeegee angle of 70 degrees, a printing pressure of 0.3 MPa, and a printing speed of 50 mm / sec. After printing, the organic solvent was dried in a clean oven at 150 ° C. and then fired in an air atmosphere at 800 ° C.

このように作製した太陽電池30枚について、光学顕微鏡による電極観察とソーラーシュミレーター(25℃の雰囲気の中、照射強度:1kW/m2、スペクトル:AM1.5グローバル)による評価を行った。外観検査では、光学顕微鏡にて印刷後のフィンガー幅と接続部の幅を観察し、その差がフィンガー電極幅の±20%以上の場合、外観不良とした。また、断線の有無は顕微鏡にて目視検査を行った。実施例1の結果平均を表1に示す。 The 30 solar cells thus fabricated were evaluated by electrode observation with an optical microscope and a solar simulator (in a 25 ° C. atmosphere, irradiation intensity: 1 kW / m 2 , spectrum: AM1.5 global). In the appearance inspection, the finger width after printing and the width of the connection portion were observed with an optical microscope, and when the difference was ± 20% or more of the finger electrode width, the appearance was regarded as defective. Moreover, the presence or absence of the disconnection was visually inspected with a microscope. The average results of Example 1 are shown in Table 1.

Figure 2012054442
Figure 2012054442

バスバー電極とフィンガー電極の接続部の幅は、標準条件Aに比べてBではフィンガー電極と同等の太さになったが、Cではフィンガー電極太さより太くなり、外観不良となった。また、顕微鏡によりバスバー電極とフィンガー電極の接続部の断線を確認したところ、B〜Cでは確認されなかった。   The width of the connection portion between the bus bar electrode and the finger electrode was the same as that of the finger electrode in B compared with the standard condition A, but was thicker than the finger electrode in C, resulting in poor appearance. Moreover, when the disconnection of the connection part of a bus-bar electrode and a finger electrode was confirmed with the microscope, it was not confirmed by BC.

短絡電流はバスバー電極とフィンガー電極の接続部の開口が大きいCでは減少した。これは幅増加によるシャドーロスが原因である。一方曲線因子は、断線が起きたAに比べて、断線していない水準のほうが約2%高い75.2%を示した。   The short-circuit current decreased at C where the opening of the connection portion between the bus bar electrode and the finger electrode was large. This is due to the shadow loss due to the increase in width. On the other hand, the curve factor showed 75.2%, which is about 2% higher than the level A where disconnection occurred.

バスバー電極とフィンガー電極の接続部の開口幅をフィンガー電極より大きくすることで断線を回避することができた。しかし、開口幅が1.6倍以上になったとき、幅が太って外観不良となったり、短絡電流が低下して変換効率が低下したりする。   Disconnection could be avoided by making the opening width of the connection portion between the bus bar electrode and the finger electrode larger than the finger electrode. However, when the opening width is 1.6 times or more, the width is wide and the appearance is poor, or the short-circuit current is lowered and the conversion efficiency is lowered.

従来法ではバスバー電極とフィンガー電極の接続部の断線が発生したが、本発明のスクリーン製版を用いれば工程数を増やすことなく、高アスペクト比の電極を断線なく形成することができる。   In the conventional method, disconnection of the connection portion between the bus bar electrode and the finger electrode occurred. However, if the screen plate making of the present invention is used, an electrode having a high aspect ratio can be formed without disconnection without increasing the number of steps.

100 p型半導体基板
101 n型拡散層
102 反射防止膜(SiNx膜)
103 BSF層
104 アルミニウム電極
105、205 表面バスバー
106、306 裏面バスバー
207 フィンガー電極
403、608、808 スクリーン製版における印刷開始側接続部の開口
609、809 スクリーン製版における印刷終了側接続部の開口
708、908 印刷開始側接続部領域に存するフィンガー電極
709、909 印刷終了側接続部領域に存するフィンガー電極
100 p-type semiconductor substrate 101 n-type diffusion layer 102 antireflection film (SiN x film)
103 BSF layer 104 Aluminum electrode 105, 205 Front surface bus bar 106, 306 Back surface bus bar 207 Finger electrode 403, 608, 808 Opening of printing start side connection portion 609, 809 in screen plate making Opening 708, 908 of connecting end portion in screen plate making Finger electrodes 709 and 909 existing in the print start side connection area A finger electrode existing in the print end side connection area

Claims (5)

導電性ペーストを印刷してバスバー電極とこれに直交するフィンガー電極を形成する太陽電池の製造に用いるスクリーン製版であって、該スクリーン製版はバスバー電極用開口とフィンガー電極用開口が複数の箇所で接続され、該接続部の半数以下の開口幅がフィンガー電極用開口幅よりも大きく、残りの接続部の開口幅がフィンガー電極用幅と同じであることを特徴とするスクリーン製版。   A screen plate for use in the production of a solar cell in which a conductive paste is printed to form a bus bar electrode and a finger electrode perpendicular to the bus bar electrode. The screen plate is connected to the bus bar electrode opening and the finger electrode opening at a plurality of locations. The screen plate making is characterized in that the opening width of half or less of the connecting portions is larger than the finger electrode opening width, and the remaining connecting portions have the same opening width as the finger electrode width. バスバー電極用開口の印刷開始側の片側の全部に前記フィンガー電極用開口幅よりも大きい開口幅のフィンガー接続部を有し、残りの接続部の開口幅がフィンガー電極用幅と同じであることを特徴とする請求項1記載のスクリーン製版。   It has a finger connection part having an opening width larger than the finger electrode opening width on one side of the printing start side of the bus bar electrode opening, and the opening widths of the remaining connection parts are the same as the finger electrode width. The screen plate making according to claim 1, wherein 上記スクリーン製版のフィンガー電極の開口幅が80μm以下であることを特徴とする請求項1又は2記載のスクリーン製版。   3. The screen plate making according to claim 1, wherein the opening width of the finger electrode of the screen plate making is 80 [mu] m or less. 上記スクリーン製版のバスバー電極とフィンガー電極接続部の開口幅が、フィンガー電極開口幅の1.0倍より大きく、1.5倍以下であることを特徴とする請求項1乃至3のいずれか1項記載のスクリーン製版。   The opening width of the bus bar electrode and the finger electrode connecting portion of the screen plate making is larger than 1.0 times and 1.5 times or less of the finger electrode opening width. Screen plate making as described. 請求項1乃至4のいずれか1項に記載のスクリーン製版を用いて導電性ペーストを印刷し、バスバー電極とフィンガー電極を形成する太陽電池の製造方法であって、フィンガー電極の長手方向に沿って上記印刷を行うことを特徴とする太陽電池の製造方法。   It is a manufacturing method of the solar cell which prints an electrically conductive paste using the screen platemaking of any one of Claim 1 thru | or 4, and forms a bus-bar electrode and a finger electrode, Comprising: Along the longitudinal direction of a finger electrode A method for producing a solar cell, wherein the printing is performed.
JP2010196479A 2010-09-02 2010-09-02 Method of manufacturing solar cell and screen plate making process for use therein Pending JP2012054442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010196479A JP2012054442A (en) 2010-09-02 2010-09-02 Method of manufacturing solar cell and screen plate making process for use therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010196479A JP2012054442A (en) 2010-09-02 2010-09-02 Method of manufacturing solar cell and screen plate making process for use therein

Publications (1)

Publication Number Publication Date
JP2012054442A true JP2012054442A (en) 2012-03-15

Family

ID=45907454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010196479A Pending JP2012054442A (en) 2010-09-02 2010-09-02 Method of manufacturing solar cell and screen plate making process for use therein

Country Status (1)

Country Link
JP (1) JP2012054442A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014057031A (en) * 2012-09-14 2014-03-27 Shin Etsu Chem Co Ltd Solar cell, method for manufacturing the same and solar cell module
WO2014080894A1 (en) 2012-11-21 2014-05-30 長州産業株式会社 Photovoltaic apparatus
WO2014040834A3 (en) * 2012-09-17 2014-06-26 Imec Method for improving the adhesion of plated metal layers to silicon
JP2014168047A (en) * 2013-02-01 2014-09-11 Shin Etsu Chem Co Ltd Method for manufacturing solar cell and solar cell
WO2015151245A1 (en) * 2014-04-02 2015-10-08 三菱電機株式会社 Solar cell and solar cell module
KR20180032554A (en) 2015-07-22 2018-03-30 신에쓰 가가꾸 고교 가부시끼가이샤 Screen printing machine, screen printing method and electrode forming method of solar cell
WO2020020159A1 (en) * 2018-07-24 2020-01-30 浙江爱旭太阳能科技有限公司 Crystalline silicon solar cell screen for positive electrode hollow molding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338631A (en) * 2002-05-22 2003-11-28 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2005150540A (en) * 2003-11-18 2005-06-09 Sharp Corp Screen for forming light receiving face electrode, method for manufacturing solar battery cell using same, and solar battery cell manufactured by same method
JP2009272405A (en) * 2008-05-02 2009-11-19 Mitsubishi Electric Corp Solar battery element and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338631A (en) * 2002-05-22 2003-11-28 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2005150540A (en) * 2003-11-18 2005-06-09 Sharp Corp Screen for forming light receiving face electrode, method for manufacturing solar battery cell using same, and solar battery cell manufactured by same method
JP2009272405A (en) * 2008-05-02 2009-11-19 Mitsubishi Electric Corp Solar battery element and manufacturing method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014057031A (en) * 2012-09-14 2014-03-27 Shin Etsu Chem Co Ltd Solar cell, method for manufacturing the same and solar cell module
WO2014040834A3 (en) * 2012-09-17 2014-06-26 Imec Method for improving the adhesion of plated metal layers to silicon
CN104603956A (en) * 2012-09-17 2015-05-06 Imec非营利协会 Method for improving the adhesion of plated metal layers to silicon
WO2014080894A1 (en) 2012-11-21 2014-05-30 長州産業株式会社 Photovoltaic apparatus
JP2014168047A (en) * 2013-02-01 2014-09-11 Shin Etsu Chem Co Ltd Method for manufacturing solar cell and solar cell
WO2015151245A1 (en) * 2014-04-02 2015-10-08 三菱電機株式会社 Solar cell and solar cell module
JPWO2015151245A1 (en) * 2014-04-02 2017-04-13 三菱電機株式会社 Solar cell and solar cell module
KR20180032554A (en) 2015-07-22 2018-03-30 신에쓰 가가꾸 고교 가부시끼가이샤 Screen printing machine, screen printing method and electrode forming method of solar cell
WO2020020159A1 (en) * 2018-07-24 2020-01-30 浙江爱旭太阳能科技有限公司 Crystalline silicon solar cell screen for positive electrode hollow molding
JP2021532587A (en) * 2018-07-24 2021-11-25 浙江愛旭太陽能科技有限公司Zhejiang Aiko Solar Energy Technology Co., Ltd. Crystalline silicon solar cell screen printing plate for positive electrode hollow molding
JP7210696B2 (en) 2018-07-24 2023-01-23 浙江愛旭太陽能科技有限公司 Crystalline silicon solar cell screen printing plate for positive electrode hollow molding

Similar Documents

Publication Publication Date Title
JP5761208B2 (en) Screen making for solar cell and method for printing electrode of solar cell
US8253011B2 (en) Semiconductor substrate, electrode forming method, and solar cell fabricating method
EP2355167A2 (en) Method for manufacturing electrode for solar cell, substrate for solar cell manufactured by the same, and solar cell manufactured by the same
JP2012054442A (en) Method of manufacturing solar cell and screen plate making process for use therein
JPWO2005109524A1 (en) Solar cell and manufacturing method thereof
JP2007521668A (en) Back contact solar cell and its manufacturing method
JP5318478B2 (en) Method for forming solar cell electrode and method for manufacturing solar cell using the same
US9171975B2 (en) Solar cell element and process for production thereof
JP5477233B2 (en) Manufacturing method of solar cell
JP6125417B2 (en) Metal mask for screen printing and method for manufacturing solar cell
JP2010161178A (en) Solar cell and manufacturing method thereof
JP2011061109A (en) Method of manufacturing solar cell element, and the solar cell element
JP6336139B2 (en) Solar cell element and manufacturing method thereof
JP5920130B2 (en) Manufacturing method of solar cell
JP2017147266A (en) Method for forming solar battery collector electrode
EP3702048B1 (en) Method for drying polyimide paste and method for producing solar cells capable of highly-efficient photoelectric conversion
JP5858025B2 (en) Manufacturing method of solar cell
JP2011138922A (en) Solar cell and screen printing plate for manufacturing solar cell
JP5760956B2 (en) Method for forming finger electrode
JP6371883B2 (en) Manufacturing method of back junction solar cell
JP2015216215A (en) Back-junction solar cell and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007