JP2011138922A - Solar cell and screen printing plate for manufacturing solar cell - Google Patents

Solar cell and screen printing plate for manufacturing solar cell Download PDF

Info

Publication number
JP2011138922A
JP2011138922A JP2009297835A JP2009297835A JP2011138922A JP 2011138922 A JP2011138922 A JP 2011138922A JP 2009297835 A JP2009297835 A JP 2009297835A JP 2009297835 A JP2009297835 A JP 2009297835A JP 2011138922 A JP2011138922 A JP 2011138922A
Authority
JP
Japan
Prior art keywords
electrode
bus bar
solar cell
maximum thickness
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009297835A
Other languages
Japanese (ja)
Inventor
Yoko Endo
陽子 遠洞
Rei Mita
怜 三田
Takenori Watabe
武紀 渡部
Naoki Ishikawa
直揮 石川
Hiroyuki Otsuka
寛之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009297835A priority Critical patent/JP2011138922A/en
Publication of JP2011138922A publication Critical patent/JP2011138922A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell which has sufficient adhesive strength in connecting a lead wire to a back silver electrode of the solar cell, characteristics of which do not degrade, and which can be produced in an inexpensive manner; and to provide a screen printing plate used to manufacture the solar cell. <P>SOLUTION: The solar cell includes a bus bar electrode 106 at least on its rear surface, wherein: a line width of the bus bar electrode is 2.0 mm or more but less than 2.5 mm, the maximum thickness is 9.0 μm or larger, and a proportion of the minimum thickness to the maximum thickness of the electrode is 0-80%; the line width of the bus bar electrode is 2.5 mm ore more but less than 3.0 mm, the maximum thickness is 6.6 μm or larger, and a proportion of the minimum thickness to the maximum thickness of the electrode is 0-80%; or the line width of the bus bar electrode is 3.0-5.0 mm, the maximum thickness is 4.0 μm or larger, and a proportion of the minimum thickness to the maximum thickness of the electrode is 30-80%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、安価で高効率の太陽電池、及びその作製に用いるスクリーン製版に関する。   The present invention relates to a low-cost and high-efficiency solar cell and a screen plate making used for the production.

一般的な太陽電池セルは、図1〜3に示したように、シリコン等のP型半導体基板100に、n型となるドーパントを拡散して、N型拡散層101を形成することによりPN接合を形成している。N型拡散層101の上には、SiNx膜のような反射防止膜102が形成されている。P型半導体基板100の裏面側には、アルミニウムペーストが塗布され、焼成することによりBSF層103とアルミニウム電極104が形成される。また、受光面側には集電用のフィンガー電極107と、そこから電流を集めるために形成されたバスバー電極105とよばれる太い電極と、裏面側にはバスバー電極106が、銀などを含む導電性ペーストを塗布して、焼成することにより形成される。 As shown in FIGS. 1 to 3, a general solar battery cell has a PN junction formed by diffusing an n-type dopant into a P-type semiconductor substrate 100 such as silicon to form an N-type diffusion layer 101. Is forming. On the N-type diffusion layer 101, an antireflection film 102 such as a SiN x film is formed. The BSF layer 103 and the aluminum electrode 104 are formed on the back side of the P-type semiconductor substrate 100 by applying an aluminum paste and baking it. Further, a finger electrode 107 for collecting current on the light receiving surface side, a thick electrode called a bus bar electrode 105 formed to collect current therefrom, and a bus bar electrode 106 on the back surface side are electrically conductive including silver. It is formed by applying a functional paste and baking.

また、太陽電池セルは、所定の電圧及び電流を得るために複数の太陽電池セルを直列又は並列に接続して太陽電池モジュールとして構成されて使用される。この場合の接続方法としては、表面のバスバー電極105と、太陽電池セルの裏面に形成されたバスバー電極106とを、リード線を用いて半田付けするのが一般的である。該リード線としては半田で被覆した銅線が主に用いられる。   Moreover, in order to obtain a predetermined voltage and current, the solar battery cell is configured and used as a solar battery module by connecting a plurality of solar battery cells in series or in parallel. As a connection method in this case, it is common to solder the bus bar electrode 105 on the front surface and the bus bar electrode 106 formed on the back surface of the solar battery cell using lead wires. As the lead wire, a copper wire coated with solder is mainly used.

昨今、太陽電池は環境問題を背景に、クリーンエネルギーの一つとして需要は拡大しつつあるが、一般の商用電力と比較してエネルギーコストの高いことがその普及の障害となっている。太陽電池製造コストの削減は重要な課題であるが、同時に太陽電池の性能は最低限維持しなくてはならない。   In recent years, the demand for solar cells is expanding as one of clean energy against the background of environmental problems, but the high cost of energy compared to general commercial power is an obstacle to its spread. Reduction of solar cell manufacturing costs is an important issue, but at the same time, the performance of solar cells must be maintained to a minimum.

これまでに太陽電池製造に関わるコスト削減対策の一つとして、裏面銀電極を薄膜化することを検討した。しかし、電極を薄膜化するとリード線を半田付けした際の接着強度が低下し、十分な信頼性が得られなかった。   So far, as one of the cost-reduction measures for solar cell manufacturing, we have considered thinning the backside silver electrode. However, when the electrode is thinned, the adhesive strength when soldering the lead wire is lowered, and sufficient reliability cannot be obtained.

これまで報告されてきた電極接着強度を向上させる方法としては、電極バスバー上に、銅箔を厚く接着して接着強度を高めたり(特許文献1:特開2000−340812号公報)、電極に穴を空け半田を充填して接着強度を高めたり(特許文献2:特開2005−243790号公報)、ペースト材料を検討して接着強度を高めたり(特許文献3:特開2007−281023号公報)、いくつか提案がなされている。しかしながらこれらは、工数を必要としたり、材料にコストがかかってしまう。   As a method for improving the electrode adhesive strength that has been reported so far, a copper foil is adhered thickly on the electrode bus bar to increase the adhesive strength (Patent Document 1: Japanese Patent Laid-Open No. 2000-340812), or a hole in the electrode. The adhesive strength is increased by emptying and soldering (Patent Document 2: Japanese Patent Laid-Open No. 2005-243790), or the paste material is examined to increase the adhesive strength (Patent Document 3: Japanese Patent Laid-Open No. 2007-281033). Some suggestions have been made. However, these require man-hours and cost for materials.

これに対し、特開2006−339342号公報(特許文献4)では接着強度を向上させるために、パターンの異なる2版を用いてバスバーに凹凸を形成することによりコスト削減を目指した。しかしながら、電極幅を細くする場合にはリード線も細くしなくてはならず、接着面積の減少により十分な接着強度が得られないことが分かった。また、2回別版で印刷を行うために、工数が多く、コストがかかってしまう。   On the other hand, in JP-A-2006-339342 (Patent Document 4), in order to improve the adhesive strength, an attempt was made to reduce costs by forming irregularities on the bus bar using two plates having different patterns. However, when the electrode width is reduced, the lead wire must also be reduced, and it has been found that sufficient adhesion strength cannot be obtained due to the reduction of the adhesion area. In addition, since printing is performed twice as separate versions, the number of steps is large and the cost is increased.

特開2000−340812号公報JP 2000-340812 A 特開2005−243790号公報JP 2005-243790 A 特開2007−281023号公報JP 2007-281023 A 特開2006−339342号公報JP 2006-339342 A

本発明は、上記問題に鑑みてなされたものであり、リード線を太陽電池セルの裏面銀電極に接続する際に十分な接着強度を有し、かつ特性低下せず、安価に製造し得る太陽電池及びこれの製造に用いるスクリーン製版を提供することを目的としたものである。   The present invention has been made in view of the above problems, and has a sufficient adhesive strength when connecting a lead wire to a back surface silver electrode of a solar battery cell, and does not deteriorate in characteristics and can be manufactured at low cost. An object of the present invention is to provide a battery and a screen plate for use in the production thereof.

上記目的を達成するために、下記の太陽電池及びスクリーン製版を提供する。
請求項1:
少なくとも裏面にバスバー電極を有する太陽電池であって、
該バスバー電極線幅が2.0mm以上2.5mm未満で、最大厚みが9.0μm以上であって、電極最大厚みに対する最小厚みの割合が0〜80%、もしくは、
該バスバー電極線幅が2.5mm以上3.0mm未満で、最大厚みが6.6μm以上であって、電極最大厚みに対する最小厚みの割合が0〜80%、もしくは、
該バスバー電極線幅が3.0mm以上5.0mm以下で、最大厚みが4.0μm以上であって、電極最大厚みに対する最小厚みの割合が30〜80%
であることを特徴とする太陽電池。
請求項2:
少なくともバスバー用開口部内に50%以下の閉口部を有することを特徴とする太陽電池裏面用スクリーン製版。
請求項3:
最近接する開口部の距離が100μm以下であることを特徴とする請求項2記載のスクリーン製版。
請求項4:
請求項2又は3のいずれか1項に記載のスクリーン製版で製造されたバスバー電極を裏面に有する太陽電池。
In order to achieve the above object, the following solar cell and screen plate making are provided.
Claim 1:
A solar cell having a bus bar electrode on at least the back surface,
The bus bar electrode line width is 2.0 mm or more and less than 2.5 mm, the maximum thickness is 9.0 μm or more, and the ratio of the minimum thickness to the electrode maximum thickness is 0 to 80%, or
The bus bar electrode line width is 2.5 mm or more and less than 3.0 mm, the maximum thickness is 6.6 μm or more, and the ratio of the minimum thickness to the electrode maximum thickness is 0 to 80%, or
The bus bar electrode line width is 3.0 mm or more and 5.0 mm or less, the maximum thickness is 4.0 μm or more, and the ratio of the minimum thickness to the electrode maximum thickness is 30 to 80%.
A solar cell characterized by being
Claim 2:
A screen engraving for a back surface of a solar cell, comprising at least a closed portion of 50% or less in a bus bar opening.
Claim 3:
The screen plate making according to claim 2, wherein the distance between the closest openings is 100 µm or less.
Claim 4:
The solar cell which has the bus-bar electrode manufactured by the screen platemaking of any one of Claim 2 or 3 in a back surface.

本発明によれば、バスバー表面に凹凸を形成することで電極表面積が大きくなり、リード線接着時の接着強度が向上してはがれにくくなる。このとき特性低下も見られない。また、電極ペースト使用量を節約できるため、コスト削減に極めて有効である。更に、本発明の具現化は、スクリーン製版の軽微な設計変更で可能である。   According to the present invention, the surface area of the electrode is increased by forming irregularities on the surface of the bus bar, and the adhesion strength at the time of bonding the lead wire is improved and it is difficult to peel off. At this time, no characteristic deterioration is observed. Further, since the amount of electrode paste used can be saved, it is extremely effective for cost reduction. Furthermore, the present invention can be realized by a slight design change of screen plate making.

一般的な太陽電池の電極の断面図である。It is sectional drawing of the electrode of a common solar cell. 一般的な太陽電池の表面形状を示す平面図である。It is a top view which shows the surface shape of a common solar cell. 一般的な太陽電池の裏面形状を示す裏面図である。It is a back view which shows the back surface shape of a common solar cell. 図3のパターンで印刷した後のバスバー電極の断面図である。It is sectional drawing of the bus-bar electrode after printing with the pattern of FIG. 本発明に係る、印刷パターンの形状の一例を示す正面図である。It is a front view which shows an example of the shape of the printing pattern based on this invention. 図5のパターンで印刷した後のバスバー電極の断面図である。It is sectional drawing of the bus-bar electrode after printing with the pattern of FIG. 本発明に係る、印刷パターンの形状の他の例を示す平面図である。It is a top view which shows the other example of the shape of a printing pattern based on this invention. 図7のパターンで印刷した後のバスバー電極の断面図である。It is sectional drawing of the bus-bar electrode after printing with the pattern of FIG. 本発明に係る、印刷パターンの形状の別の例を示す平面図である。It is a top view which shows another example of the shape of a printing pattern based on this invention. (A)は本発明に係る、印刷パターンの形状を示す平面図であり、(B)はAの拡大図である。(A) is a top view which shows the shape of the printing pattern based on this invention, (B) is an enlarged view of A. FIG. バスバー厚さと、引張強度の関係を示すグラフである。It is a graph which shows the relationship between bus bar thickness and tensile strength. バスバー幅と、引張強度の関係を示すグラフである。It is a graph which shows the relationship between a bus-bar width and tensile strength. バスバー幅と厚さの関係を示すグラフである。It is a graph which shows the relationship between a bus-bar width and thickness.

本発明の太陽電池の作製方法の一例を以下に述べる。但し、本発明はこの方法で作製された太陽電池に限られるものではない。   An example of a method for manufacturing the solar cell of the present invention will be described below. However, the present invention is not limited to the solar cell manufactured by this method.

高純度シリコンにホウ素あるいはガリウムのようなIII族元素をドープし、比抵抗0.1〜5Ω・cmとしたアズカット単結晶{100}p型シリコン基板表面のスライスダメージを、濃度5〜60質量%の水酸化ナトリウムや水酸化カリウムのような高濃度のアルカリ、もしくは、ふっ酸と硝酸の混酸などを用いてエッチングする。単結晶シリコン基板は、CZ法、FZ法いずれの方法によって作製されてもよい。   Slice damage on the surface of an as-cut single crystal {100} p-type silicon substrate doped with a high purity silicon group III element such as boron or gallium and having a specific resistance of 0.1 to 5 Ω · cm, concentration of 5 to 60% by mass Etching is performed using a high concentration alkali such as sodium hydroxide or potassium hydroxide, or a mixed acid of hydrofluoric acid and nitric acid. The single crystal silicon substrate may be manufactured by either the CZ method or the FZ method.

引き続き、基板表面にテクスチャとよばれる微小な凹凸形成を行う。テクスチャは太陽電池の反射率を低下させるための有効な方法である。テクスチャは、加熱した水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム等のアルカリ溶液(濃度1〜10質量%、温度60〜100℃)中に10〜30分程度浸漬することで容易に作製される。上記溶液中に、所定量の2−プロパノールを溶解させ、反応を促進させることが多い。   Subsequently, minute unevenness called texture is formed on the substrate surface. Texture is an effective way to reduce solar cell reflectivity. The texture should be immersed for about 10 to 30 minutes in an alkali solution (concentration 1 to 10% by mass, temperature 60 to 100 ° C.) such as heated sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, and sodium bicarbonate. Easy to make. In many cases, a predetermined amount of 2-propanol is dissolved in the solution to promote the reaction.

テクスチャ形成後、塩酸、硫酸、硝酸、ふっ酸等、もしくはこれらの混合液の酸性水溶液中で洗浄する。経済的及び効率的見地から、塩酸中での洗浄が好ましい。清浄度を向上するため、塩酸溶液中に、0.5〜5質量%の過酸化水素を混合させ、60〜90℃に加温して洗浄してもよい。   After texture formation, washing is performed in an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, or the like, or a mixture thereof. From an economic and efficient standpoint, washing in hydrochloric acid is preferred. In order to improve the cleanliness, 0.5 to 5% by mass of hydrogen peroxide may be mixed in a hydrochloric acid solution and heated to 60 to 90 ° C. for washing.

この基板上に、オキシ塩化リンを用いた気相拡散法によりエミッタ層を形成する。一般的なシリコン太陽電池は、PN接合を受光面にのみ形成する必要があり、これを達成するために基板同士を2枚重ね合わせた状態で拡散したり、拡散前に裏面にSiO2膜やSiNx膜などを拡散マスクとして形成して、裏面にPN接合ができないような工夫を施す必要がある。拡散後、表面にできたガラスをふっ酸などで除去する。 On this substrate, an emitter layer is formed by vapor phase diffusion using phosphorus oxychloride. Common silicon solar cell, it is necessary to form only on the light receiving surface of the PN junction, or diffused in a state superimposed two substrates to each other in order to achieve this, SiO 2 film Ya on the back surface before spreading A SiN x film or the like is formed as a diffusion mask, and it is necessary to devise such that a PN junction cannot be formed on the back surface. After diffusion, the glass on the surface is removed with hydrofluoric acid.

次に、受光面の反射防止膜形成を行う。製膜には前述のプラズマCVD装置を用いSiNx膜を約100nm製膜する。反応ガスとして、モノシラン(SiH4)及びアンモニア(NH3)を混合して用いることが多いが、NH3の代わりに窒素を用いることも可能であり、また、プロセス圧力の調整、反応ガスの希釈、更には、基板に多結晶シリコンを用いた場合には基板のバルクパッシベーション効果を促進するため、反応ガスに水素を混合することもある。 Next, an antireflection film is formed on the light receiving surface. For film formation, the above-described plasma CVD apparatus is used to form a SiN x film of about 100 nm. As the reaction gas, monosilane (SiH 4 ) and ammonia (NH 3 ) are often mixed and used, but nitrogen can be used instead of NH 3 , and the process pressure can be adjusted and the reaction gas diluted. Furthermore, when polycrystalline silicon is used for the substrate, hydrogen may be mixed into the reaction gas in order to promote the bulk passivation effect of the substrate.

次いで、裏面電極及び受光面の電極をスクリーン印刷法で形成する。上記基板の裏面に、銀粉末とガラスフリットを有機物バインダで混合したペーストをバスバー状にスクリーン印刷したのち、アルミニウム粉末を有機物バインダで混合したペーストをバスバー以外の領域にスクリーン印刷する。印刷後、5〜30分間,700〜800℃の温度で焼成して、裏面電極が形成される。裏面電極形成は印刷法による方が好ましいが、蒸着法、スパッタ法等で作製することも可能である。   Next, the back electrode and the light receiving electrode are formed by screen printing. A paste in which silver powder and glass frit are mixed with an organic binder is screen-printed on the back surface of the substrate in a bus bar shape, and then a paste in which aluminum powder is mixed with an organic binder is screen-printed in a region other than the bus bar. After printing, the back electrode is formed by baking at a temperature of 700 to 800 ° C. for 5 to 30 minutes. The back electrode is preferably formed by a printing method, but can also be formed by a vapor deposition method, a sputtering method, or the like.

裏面バスバーを図3で示されるパターンで印刷すると、裏面バスバー106の表面はフラットになる(図4)。これまでの実験で十分な接着強度(=2N以上)を有するためには、少なくともバスバー厚みが6.2μm(図11実線)か、バスバーの幅が2.3mm(図12実線)必要であり、これらの値以下になると急激に接着強度が減少することがわかった。図11〜13のような引張強度の等強度線が描ける。この図より、バスバー幅が2.0〜2.5mmのときの引張強度はある程度の厚さが必要であることが分かる。導電性ペースト粘度によって吐出量が変化すると、引張強度が得られないことがある。多少バスバー厚さが小さくても十分な引張強度を得られるような太陽電池セルを安定的に作ることは必須である。   When the back bus bar is printed with the pattern shown in FIG. 3, the surface of the back bus bar 106 becomes flat (FIG. 4). In order to have sufficient adhesive strength (= 2N or more) in the experiments so far, at least the bus bar thickness is 6.2 μm (FIG. 11 solid line) or the bus bar width is 2.3 mm (FIG. 12 solid line). It was found that the adhesive strength sharply decreased below these values. The isointensity lines of tensile strength as shown in FIGS. From this figure, it can be seen that the tensile strength when the bus bar width is 2.0 to 2.5 mm needs to have a certain thickness. If the discharge rate changes depending on the conductive paste viscosity, the tensile strength may not be obtained. It is essential to stably produce solar cells that can obtain sufficient tensile strength even if the bus bar thickness is somewhat small.

これを解決するためには裏面バスバーに凹凸を形成して表面積を多くして、接着強度を高める手法が効果的である。   In order to solve this, it is effective to increase the adhesive strength by forming irregularities on the back bus bar to increase the surface area.

電極に凹凸を形成する手法としては、例えば、印刷後に凹凸を圧着して溝を作ったり、電極を削ったりする方法が考えられる。しかし、基板を圧着すると割れが発生したり、基板を傷める原因となる。また、スクリーン印刷パターンが異なる2版を用いて2度印刷することでバスバーに凹凸を形成する方法が報告されている(特許文献4:特開2006−339342号公報)。これも工数が増えてしまうという問題があった。より良い手法は、スクリーン製版のバスバー印刷パターンに閉口部を有することで実現する。最も簡単なパターンは図5に示すような開口部208aの中央部に閉口部208bを一つ有するパターンである。この版を使用して印刷した裏面バスバー106の横断面を図6に示す。リード線との接着面積を増やして、接着強度を向上させることができる。更に図7のように開口部、閉口部を連続的に有するパターンで印刷すれば、図8に示すような横断面図となり、更に接着面積が増して接着力は向上して効果的である。また、従来の箱型バスバー電極に比べて、ペースト使用量が少なく、接着強度を保つことができる。更に、図9に示すような、矩形や菱形パターンにするのも良い。   As a method for forming the unevenness on the electrode, for example, a method of pressing the unevenness after printing to form a groove or scraping the electrode can be considered. However, when the substrate is pressure-bonded, cracking occurs or the substrate is damaged. In addition, a method for forming irregularities on a bus bar by printing twice using two plates having different screen printing patterns has been reported (Patent Document 4: Japanese Patent Application Laid-Open No. 2006-339342). This also has the problem that man-hours increase. A better technique is realized by having a closed portion in the bus bar printing pattern of screen making. The simplest pattern is a pattern having one closing portion 208b at the center of the opening 208a as shown in FIG. A cross section of the backside bus bar 106 printed using this plate is shown in FIG. The adhesion area can be improved by increasing the adhesion area with the lead wire. Further, if printing is performed with a pattern having continuous openings and closed portions as shown in FIG. 7, a cross-sectional view as shown in FIG. 8 is obtained, and the adhesive area is further increased and the adhesive force is improved. Moreover, compared with the conventional box-type bus bar electrode, the amount of paste used is small, and the adhesive strength can be maintained. Further, a rectangular or rhombus pattern as shown in FIG. 9 may be used.

図7に示されるパターンを用いて凹凸形成した場合の引張強度を図11、図12に破線で示す。バスバー厚10mm一定の場合はバスバー幅3〜4mmのとき、フラットな電極に比べ凹凸電極では引張強度が向上した。一方、バスバー幅が4mm一定のときは、引張強度は維持され、必要厚みを2μmほど減らすことができた。この結果を、図13に破線で示す。   The tensile strength when unevenness is formed using the pattern shown in FIG. 7 is shown by broken lines in FIGS. When the bus bar thickness was fixed at 10 mm, the tensile strength was improved with the concave and convex electrodes when the bus bar width was 3 to 4 mm compared to the flat electrode. On the other hand, when the bus bar width was constant at 4 mm, the tensile strength was maintained and the required thickness could be reduced by about 2 μm. The result is shown by a broken line in FIG.

本発明に係る裏面バスバーの凹凸型の形状は、特に限定されるものではないが、上述したように、例えば横断面形状としては図5で示される製版パターンで印刷された図6のような凹型や、図7で示される製版パターンで印刷された図8のような連続的に凹凸形状を持つものが挙げられる。あるいは図9で示される製版パターンで印刷され、バスバー縦横の断面図が図8のようになったものも含む。   The shape of the concave-convex shape of the backside bus bar according to the present invention is not particularly limited, but as described above, for example, a concave shape as shown in FIG. 6 printed with a plate-making pattern shown in FIG. Or what has a continuously uneven | corrugated shape like FIG. 8 printed by the platemaking pattern shown by FIG. Alternatively, it is printed with the plate-making pattern shown in FIG. 9, and the bus bar vertical and horizontal cross-sectional views are as shown in FIG.

従って、本発明においては、裏面のバスバー電極は、
バスバー電極線幅が2.0mm以上2.5mm未満で、最大厚みが9.0μm以上であって、電極最大厚みに対する最小厚みの割合が0〜80%、もしくは、
バスバー電極線幅が2.5mm以上3.0mm未満で、最大厚みが6.6μm以上であって、電極最大厚みに対する最小厚みの割合が0〜80%、もしくは、
該バスバー電極線幅が3.0mm以上5.0mm以下で、最大厚みが4.0μm以上であって、電極最大厚みに対する最小厚みの割合が30〜80%であることが必要である。
なお、電極最大厚みXと最小厚みYの比は
(Y/X)×100
で表される。
Therefore, in the present invention, the bus bar electrode on the back surface is
The bus bar electrode line width is 2.0 mm or more and less than 2.5 mm, the maximum thickness is 9.0 μm or more, and the ratio of the minimum thickness to the electrode maximum thickness is 0 to 80%, or
The bus bar electrode line width is 2.5 mm or more and less than 3.0 mm, the maximum thickness is 6.6 μm or more, and the ratio of the minimum thickness to the electrode maximum thickness is 0 to 80%, or
It is necessary that the bus bar electrode line width is 3.0 mm or more and 5.0 mm or less, the maximum thickness is 4.0 μm or more, and the ratio of the minimum thickness to the electrode maximum thickness is 30 to 80%.
The ratio of the maximum electrode thickness X to the minimum thickness Y is (Y / X) × 100.
It is represented by

また、上記凹凸をスクリーン製版にて形成する場合、スクリーン製版はバスバー用開口部内に50%以下の閉口部を有することが好ましく、最近接する開口部間の距離は100μm以下であることが好ましい。   Moreover, when forming the said unevenness | corrugation by screen plate-making, it is preferable that screen plate-making has a 50% or less closed part in the opening part for bus bars, and it is preferable that the distance between the adjacent opening parts is 100 micrometers or less.

本発明のバスバーの凹凸は、開口部と閉口部を有するスクリーン製版と、ペーストのにじみを利用している。開口部は50%超でないと、本発明に係るペーストにじみを利用した印刷はできない。開口部間の距離が100μmを超えると、ペーストのにじみが足りず、バスバーが分裂し、基板が露出する。このとき、基板とリード線を接着しにくいので、モジュール強度としては不十分となってしまう。一方、閉口部が少なすぎる場合、ペーストは開口間を充填するものの、凹凸ができにくいために表面積が稼げず接着強度は従来並みとなる。また、銀使用量の削減効果も小さい。   The unevenness of the bus bar of the present invention uses screen plate making having an opening and a closing portion and bleeding of paste. If the opening is not more than 50%, printing using paste bleeding according to the present invention cannot be performed. When the distance between the openings exceeds 100 μm, the paste is not sufficiently blotted, the bus bar is split, and the substrate is exposed. At this time, since it is difficult to bond the substrate and the lead wire, the module strength is insufficient. On the other hand, when the number of closed portions is too small, the paste fills between the openings, but since the unevenness is difficult to be formed, the surface area cannot be gained and the adhesive strength becomes the same as before. In addition, the effect of reducing the amount of silver used is small.

最後に、受光面電極として銀粉末とガラスフリットを有機物バインダと混合した銀ペーストをスクリーン印刷した後、熱処理によりSiNx膜に銀粉末を貫通させ(ファイアースルー)、電極とシリコンを導通させる。裏面電極及び受光面電極の焼成は一度に行うことも可能である。 Finally, a silver paste in which silver powder and glass frit are mixed with an organic binder is screen-printed as a light-receiving surface electrode, and then the silver powder is passed through the SiN x film by heat treatment (fire-through) to make the electrode and silicon conductive. The back electrode and the light-receiving surface electrode can be baked at the same time.

以下に、本発明の実施例を説明するが、本発明はこれに限定されるものではない。
本発明の有効性を確認するため、以下に示す手法で太陽電池の作製を行った。
バスバー電極の線幅は2.5mm、電極最大厚みは12μm、電極最大厚さに対する最小厚さの比を30%としたものに本発明の印刷パターンBを、更に比較のために、バスバー電極の線幅、電極最大厚みを同様にして、電極最大厚さに対する最小厚さの比を81%としたものに従来の印刷パターンAを、以下に示すパターンで印刷した。
印刷パターンは、従来のパターンA(開口割合100%:図3)と、本発明のパターンB(開口割合71%:図10:開口100μmと閉口40μmが交互に連続しているパターン)の2種類を用意し、それぞれのパターンをST150、ST250、ST350の3種類のメッシュで製版を作製した。
Examples of the present invention will be described below, but the present invention is not limited thereto.
In order to confirm the effectiveness of the present invention, a solar cell was produced by the following method.
The bus bar electrode has a line width of 2.5 mm, an electrode maximum thickness of 12 μm, and a ratio of the minimum thickness to the electrode maximum thickness of 30%. A conventional print pattern A was printed with the following pattern in the same manner with the line width and the maximum electrode thickness set to a ratio of the minimum thickness to the maximum electrode thickness of 81%.
There are two types of printing patterns, the conventional pattern A (opening ratio 100%: FIG. 3) and the pattern B of the present invention (opening ratio 71%: FIG. 10: patterns in which 100 μm openings and 40 μm openings are alternately continuous). Was prepared, and each pattern was made with three types of meshes ST150, ST250, and ST350.

拡散厚さ250μm、比抵抗1Ω・cmの、ホウ素ドープ{100}p型アズカットシリコン基板60枚に対し、熱濃水酸化カリウム水溶液によりダメージ層を除去後、水酸化カリウム/2−プロパノール水溶液中に浸漬しテクスチャ形成を行い、引き続き塩酸/過酸化水素混合溶液中で洗浄を行った。次に、オキシ塩化リン雰囲気下、870℃で裏面同士を重ねた状態で熱処理し、エミッタ層を形成した。拡散後、ふっ酸にてガラスを除去し、洗浄、乾燥させた。   After removing a damaged layer with a hot concentrated potassium hydroxide aqueous solution on 60 boron-doped {100} p-type ascut silicon substrates having a diffusion thickness of 250 μm and a specific resistance of 1 Ω · cm, in a potassium hydroxide / 2-propanol aqueous solution The film was dipped in to form a texture, followed by washing in a hydrochloric acid / hydrogen peroxide mixed solution. Next, it heat-processed in the phosphorus oxychloride atmosphere in the state which accumulated the back surfaces at 870 degreeC, and formed the emitter layer. After diffusion, the glass was removed with hydrofluoric acid, washed and dried.

以上の処理の後、プラズマCVD装置を用いてSiNx膜を受光面反射防止膜として全試料に対し形成した。次に、裏面電極として銀ペーストをスクリーン製版A,B、メッシュ3種類で10枚ずつ印刷し乾燥した。次いで裏面電極としてアルミニウムペーストを、受光面に銀ペーストをスクリーン印刷し、乾燥した。水準A,Bを780℃の空気雰囲気下で焼成し、I−V測定を行ったところ、パターンA,Bの特性は同等であった。次に、引張強度試験を行った。接着引張強度は、バスバーに2mm幅のリード線をはんだ付けし、接着したリード線を垂直方向に引っ張り、リード線が基板から剥離するときの力のピークと定義する。測定結果2N以上を合格とした。結果は、パターンAではST150メッシュのみ合格であった。パターンBでは剥離は起こらなかった。 After the above treatment, a SiN x film was formed as a light-receiving surface antireflection film on all samples using a plasma CVD apparatus. Next, 10 sheets of silver paste were printed on the back plate A, B, and 3 types of meshes as the back electrode and dried. Next, an aluminum paste was screen-printed as a back electrode and a silver paste was screen-printed on the light-receiving surface and dried. When the levels A and B were baked in an air atmosphere at 780 ° C. and IV measurement was performed, the characteristics of the patterns A and B were equivalent. Next, a tensile strength test was performed. The adhesive tensile strength is defined as a peak of force when a lead wire having a width of 2 mm is soldered to a bus bar, the bonded lead wire is pulled in a vertical direction, and the lead wire is peeled from the substrate. A measurement result of 2N or more was considered acceptable. As a result, only ST150 mesh was passed in pattern A. No peeling occurred in pattern B.

Figure 2011138922
Figure 2011138922

従来の印刷パターンでは、裏面銀電極を薄くしていくと、剥離が確認される電極厚みでも、本発明による印刷パターンを用いれば、剥離は観測されなかった。   In the conventional printed pattern, when the back surface silver electrode was made thinner, even if the electrode thickness was confirmed to be peeled, no peeling was observed using the printed pattern according to the present invention.

100 P型半導体基板
101 N型拡散層
102 反射防止膜
103 BSF層
104 アルミニウム電極
105 表面バスバー電極
106 裏面バスバー電極
107 フィンガー電極
208a バスバー開口部
208b バスバー閉口部
100 P-type semiconductor substrate 101 N-type diffusion layer 102 Antireflection film 103 BSF layer 104 Aluminum electrode 105 Front bus bar electrode 106 Back bus bar electrode 107 Finger electrode 208a Bus bar opening 208b Bus bar closing part

Claims (4)

少なくとも裏面にバスバー電極を有する太陽電池であって、
該バスバー電極線幅が2.0mm以上2.5mm未満で、最大厚みが9.0μm以上であって、電極最大厚みに対する最小厚みの割合が0〜80%、もしくは、
該バスバー電極線幅が2.5mm以上3.0mm未満で、最大厚みが6.6μm以上であって、電極最大厚みに対する最小厚みの割合が0〜80%、もしくは、
該バスバー電極線幅が3.0mm以上5.0mm以下で、最大厚みが4.0μm以上であって、電極最大厚みに対する最小厚みの割合が30〜80%
であることを特徴とする太陽電池。
A solar cell having a bus bar electrode on at least the back surface,
The bus bar electrode line width is 2.0 mm or more and less than 2.5 mm, the maximum thickness is 9.0 μm or more, and the ratio of the minimum thickness to the electrode maximum thickness is 0 to 80%, or
The bus bar electrode line width is 2.5 mm or more and less than 3.0 mm, the maximum thickness is 6.6 μm or more, and the ratio of the minimum thickness to the electrode maximum thickness is 0 to 80%, or
The bus bar electrode line width is 3.0 mm or more and 5.0 mm or less, the maximum thickness is 4.0 μm or more, and the ratio of the minimum thickness to the electrode maximum thickness is 30 to 80%.
A solar cell characterized by being
少なくともバスバー用開口部内に50%以下の閉口部を有することを特徴とする太陽電池裏面用スクリーン製版。   A screen engraving for a back surface of a solar cell, comprising at least a closed portion of 50% or less in a bus bar opening. 最近接する開口部の距離が100μm以下であることを特徴とする請求項2記載のスクリーン製版。   The screen plate making according to claim 2, wherein the distance between the closest openings is 100 µm or less. 請求項2又は3のいずれか1項に記載のスクリーン製版で製造されたバスバー電極を裏面に有する太陽電池。   The solar cell which has the bus-bar electrode manufactured by the screen platemaking of any one of Claim 2 or 3 in a back surface.
JP2009297835A 2009-12-28 2009-12-28 Solar cell and screen printing plate for manufacturing solar cell Pending JP2011138922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009297835A JP2011138922A (en) 2009-12-28 2009-12-28 Solar cell and screen printing plate for manufacturing solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009297835A JP2011138922A (en) 2009-12-28 2009-12-28 Solar cell and screen printing plate for manufacturing solar cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013224860A Division JP5858025B2 (en) 2013-10-30 2013-10-30 Manufacturing method of solar cell

Publications (1)

Publication Number Publication Date
JP2011138922A true JP2011138922A (en) 2011-07-14

Family

ID=44350060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297835A Pending JP2011138922A (en) 2009-12-28 2009-12-28 Solar cell and screen printing plate for manufacturing solar cell

Country Status (1)

Country Link
JP (1) JP2011138922A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014524153A (en) * 2011-07-28 2014-09-18 ハンファ キュー セルズ ゲーエムベーハー Solar cell and method for producing the same
JP2014216388A (en) * 2013-04-23 2014-11-17 三菱電機株式会社 Solar cell module and solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281797A (en) * 2003-03-17 2004-10-07 Kyocera Corp Solar cell module
JP2004281799A (en) * 2003-03-17 2004-10-07 Kyocera Corp Solar cell module
JP2006156693A (en) * 2004-11-29 2006-06-15 Kyocera Corp Solar battery element and solar battery module using it
JP2009016713A (en) * 2007-07-09 2009-01-22 Sharp Corp Manufacturing method of solar cell and solar cell, and screen for printing
WO2009129092A1 (en) * 2008-04-15 2009-10-22 E. I. Du Pont De Nemours And Company Aluminum pastes and use thereof in the production of silicon solar cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281797A (en) * 2003-03-17 2004-10-07 Kyocera Corp Solar cell module
JP2004281799A (en) * 2003-03-17 2004-10-07 Kyocera Corp Solar cell module
JP2006156693A (en) * 2004-11-29 2006-06-15 Kyocera Corp Solar battery element and solar battery module using it
JP2009016713A (en) * 2007-07-09 2009-01-22 Sharp Corp Manufacturing method of solar cell and solar cell, and screen for printing
WO2009129092A1 (en) * 2008-04-15 2009-10-22 E. I. Du Pont De Nemours And Company Aluminum pastes and use thereof in the production of silicon solar cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014524153A (en) * 2011-07-28 2014-09-18 ハンファ キュー セルズ ゲーエムベーハー Solar cell and method for producing the same
JP2014216388A (en) * 2013-04-23 2014-11-17 三菱電機株式会社 Solar cell module and solar cell

Similar Documents

Publication Publication Date Title
JP5368022B2 (en) Solar cell
JP5761208B2 (en) Screen making for solar cell and method for printing electrode of solar cell
EP1887633B1 (en) Solar cell and solar cell manufacturing method
KR101719949B1 (en) Solar battery cell, method for producing same, and solar battery module
US20100243059A1 (en) Solar battery cell
JP6126219B2 (en) Back contact solar cell
WO2014098016A1 (en) Solar cell and method for producing same
JP5353282B2 (en) Solar cell
JP2007214372A (en) Solar battery and its manufacturing method
WO2007122897A1 (en) Solar cell with interconnector, solar cell module and method for manufacturing solar cell module
JP5335140B2 (en) Printing plate and method for producing solar cell element using the printing plate
JP2015159276A (en) Solar battery element, and solar battery module
JP2012054442A (en) Method of manufacturing solar cell and screen plate making process for use therein
JP2005353851A (en) Solar cell module
JP5171653B2 (en) Solar cell and manufacturing method thereof
JP2011138922A (en) Solar cell and screen printing plate for manufacturing solar cell
JP5858025B2 (en) Manufacturing method of solar cell
JP5477233B2 (en) Manufacturing method of solar cell
WO2013143350A1 (en) Solar cell, module and method for manufacturing solar cell electrode
JP5097617B2 (en) SOLAR CELL, ITS MANUFACTURING METHOD, AND SOLAR CELL SYSTEM HAVING THE SAME
JP5920130B2 (en) Manufacturing method of solar cell
JP6336139B2 (en) Solar cell element and manufacturing method thereof
JP5541395B2 (en) Manufacturing method of solar cell
JP2011187906A (en) Solar cell element and method of manufacturing the same
WO2009150741A1 (en) Photovoltaic device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903