WO2012057267A1 - Method for producing solar cell, and printing plate - Google Patents

Method for producing solar cell, and printing plate Download PDF

Info

Publication number
WO2012057267A1
WO2012057267A1 PCT/JP2011/074824 JP2011074824W WO2012057267A1 WO 2012057267 A1 WO2012057267 A1 WO 2012057267A1 JP 2011074824 W JP2011074824 W JP 2011074824W WO 2012057267 A1 WO2012057267 A1 WO 2012057267A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
main surface
width
printing plate
solar cell
Prior art date
Application number
PCT/JP2011/074824
Other languages
French (fr)
Japanese (ja)
Inventor
平 茂治
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012057267A1 publication Critical patent/WO2012057267A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/24Stencils; Stencil materials; Carriers therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing
    • H05K3/1225Screens or stencils; Holders therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10143Solar cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a solar cell and a printing plate suitably used for manufacturing a solar cell.
  • the solar cell includes a photoelectric conversion unit that generates carriers by receiving light, and an electrode that collects carriers generated by the photoelectric conversion unit.
  • an electrode an electrode having a plurality of finger portions and a bus bar portion electrically connected to the plurality of finger portions (hereinafter, may be referred to as “comb electrode”) is widely used.
  • Patent Document 1 proposes a method of forming by screen printing.
  • a screen printing plate for forming a comb-shaped electrode a printing plate in which a width of one side portion of a connecting portion with respect to an opening for forming a bus bar portion is smaller than a width of the other side portion among the openings for forming a finger portion It has been proposed to use By using this screen printing plate and moving the squeegee from the other side to the one side to perform electrode printing, it is possible to prevent the connection portion of the finger portion with the bus bar portion from becoming thicker than the other portions.
  • the manufacturing method of the solar cell which concerns on 1 aspect of this invention is equipped with the photoelectric conversion part and the electrode distribute
  • the present invention relates to a method of manufacturing a solar cell having a bus bar portion that is connected to each other and intersects a finger portion.
  • the method for manufacturing a solar cell according to one aspect of the present invention includes a step of placing a printing plate on one main surface of a photoelectric conversion unit, a conductive paste on the printing plate, and a squeegee in one direction. Forming an electrode by moving from the side toward the other side.
  • the printing plate has a first opening and a second opening.
  • the method for manufacturing a solar cell includes a step of placing a printing plate on one main surface of a photoelectric conversion unit, a conductive paste on the printing plate, and a single squeegee.
  • An electrode pattern having a plurality of finger portions extending in one direction on one main surface and a bus bar portion extending in the other direction intersecting one direction by moving from one side of the direction toward the other side.
  • a step of printing a conductive paste wherein the printing plate has a first opening corresponding to the finger portion and a second opening corresponding to the bus bar portion, and is more than the second opening of the first opening.
  • the upstream end connected to the second opening of the upstream portion located on one side is from the first main surface opposite to the photoelectric conversion portion of the printing plate to the second main surface on the photoelectric conversion portion side. It has a portion that tapers toward the side.
  • the printing plate according to one aspect of the present invention is a printing plate for screen printing having a first main surface and a second main surface, the second opening extending in one direction, and the one direction. And a plurality of first openings respectively connected to both ends in the width direction of the second opening, and connected to one end in the width direction of the first opening.
  • the opening has a wider width than the first opening connected to the other end, and the first opening connected to the other end extends from the first main surface side to the second main surface side. It has a tapered part.
  • FIG. 1 is a schematic plan view of a solar cell according to an embodiment of the present invention. It is a schematic side view showing the process of printing an electrode. It is a schematic plan view of a printing plate.
  • FIG. 4 is a schematic plan view in which a portion IV in FIG. 3 is enlarged.
  • FIG. 5 is a schematic cross-sectional view taken along line VV in FIG. 4.
  • FIG. 5 is a schematic cross-sectional view taken along line VI-VI in FIG. 4.
  • FIG. 5 is a schematic cross-sectional view taken along line VII-VII in FIG. 4. It is a typical top view showing the structure of the electrode formed in a comparative example.
  • It is a schematic plan view showing a part of a printing plate according to a first modification.
  • the solar cell 1 shown in FIG. 1 is merely an example.
  • the present invention is not limited to the solar cell 1 at all.
  • the solar cell 1 includes a photoelectric conversion unit 10.
  • the photoelectric conversion unit 10 generates carriers such as electrons and holes by receiving light.
  • the photoelectric conversion unit 10 includes a substrate made of a crystalline semiconductor having a first conductivity type and a semiconductor region having a second conductivity type.
  • the semiconductor region can be formed by introducing a second conductivity type impurity into the substrate.
  • the semiconductor region can be formed by stacking a semiconductor layer containing an impurity of the second conductivity type on the substrate.
  • the photoelectric conversion unit 10 has a light receiving surface 10a and a back surface 10b.
  • An electrode 11 is disposed on the light receiving surface 10a. Although illustration is omitted, electrodes are similarly arranged on the back surface 10b.
  • the shape of the electrode on the back surface 10b is not particularly limited.
  • the electrode on the back surface 10b may have the same shape as the electrode 11 or may be different.
  • the electrode on the back surface 10b may be formed in a planar shape on substantially the entire back surface 10b.
  • the electrode 11 preferably has a smaller area than the electrode on the back surface 10b in order to reduce light shielding loss.
  • the material of the electrode is not particularly limited as long as it has conductivity.
  • the electrode can be formed of, for example, a metal such as silver, copper, aluminum, titanium, nickel, or chromium, or an alloy containing one or more of these metals.
  • the electrode may have a plurality of conductive layers.
  • the width of the finger portion 12 (the width in the x direction) is made as small as possible.
  • the width of the finger portion 12 does not have to be constant along the length direction (y direction).
  • the width of the finger portion 12 may be reduced as the distance from the bus bar portion 13a or the bus bar portion 13b increases along the length direction.
  • the bus bar portion 13 a has a line shape extending along the x direction and is electrically connected to the plurality of finger portions 12.
  • the bus bar portion 13 b also has a line shape extending along the x direction, and is electrically connected to the plurality of finger portions 12. Carriers collected by all of the plurality of finger portions 12 are collected by the bus bar portion 13a and the bus bar portion 13b.
  • the bus bar portion 13a and the bus bar portion 13b have a width (y direction width) larger than that of the finger portion 12 in order to reduce resistance loss.
  • the photoelectric conversion unit 10 is prepared.
  • the printing plate 20 is disposed on the light receiving surface 10 a of the photoelectric conversion unit 10.
  • the conductive paste 31 is supplied onto the printing plate 20, and the squeegee 30 is moved from the y2 side to the y1 side along the moving direction F, whereby the conductive paste 30 is photoelectrically converted through the opening formed in the printing plate 20.
  • the electrode 11 is formed by hardening the conductive paste 31 extruded on the photoelectric conversion unit 10.
  • an electrode is also formed on the back surface 10b.
  • the solar cell 1 is completed by the above.
  • the conductive paste used for forming the electrode is not particularly limited as long as it contains a conductive material for forming the electrode.
  • the conductive paste may be, for example, a thermosetting paste made of a thermosetting resin in which conductive particles are dispersed, or may be a fired paste. *
  • the printing plate 20 has a plurality of first openings 21 and a plurality of second openings 22a and 22b.
  • the plurality of first openings 21 correspond to the plurality of finger portions 12, and a plurality of linear openings extending along the y direction are formed along the x direction.
  • the second opening 22a has a line shape along the X direction corresponding to the bus bar portion 13a.
  • the second opening 22b has a line shape along the X direction corresponding to the bus bar portion 13b.
  • the first opening 21 is on the downstream end 21a1 located on the y1 side (downstream in the movement direction F) of the second opening 22a and on the y2 side (upstream in the movement direction F) of the second opening 22a.
  • An upstream end 21b1 positioned, a downstream end 21a2 positioned on the y1 side of the second opening 22b, an upstream end 21b2 positioned on the y2 side of the second opening 22b, and the other portion 21c including.
  • the downstream end portions 21a1, 21a2, the upstream end portions 21b1, 21b2, and the other portions 21c have different shapes.
  • the downstream end 21a1 has the same shape as the downstream end 21a2.
  • the upstream end 21b1 has the same shape as the upstream end 21b2.
  • FIG. 4 shows the planar shapes of the upstream end 21b1, the downstream end 21a1, and the other portion 21c, and FIG. 4 is used for the planar shapes of the upstream end 21b2 and the downstream end 21a2.
  • the cross-sectional shape of the downstream end 21a1 is shown in FIG. 6, and FIG. 6 is used for the downstream end 21a2.
  • the cross-sectional shape of the upstream end 21b1 is shown in FIG. 7, and FIG. 7 is used for the upstream end 21b2.
  • FIG. 4 is a schematic top view showing the IV portion of FIG. 3 in an enlarged manner.
  • the second opening 22a has the x direction as the long direction and the y direction as the short direction.
  • the second opening 22a extends in the x direction, and the first opening 22b is connected to both sides in the short direction.
  • the downstream end 21a1 of the first opening 22b is connected to the y1 side (one side) of the second opening, and the upstream end 21b1 is connected to the y2 side (the other side).
  • the downstream end 21a1 has a width W2 substantially equal to the width W1 of the other portion 21c.
  • the upstream end 21b1 has a width W4 that is larger than the width W2 of the downstream end 21a1.
  • the length of the upstream end 21b1 along the y direction is shorter than the length of the downstream end 21a1 along the y direction.
  • the other portion 21 c is formed so that the width is constant in the z direction (the thickness direction of the printing plate 20). That is, in the other portion 21c, the width is W1 in any portion in the z direction.
  • the downstream end 21a1 has a first portion 23 and a second portion 24 in the z direction.
  • the first portion 23 is provided on the first main surface 20 a (upper surface) side of the printing plate 20 opposite to the photoelectric conversion unit 10.
  • the first portion 23 tapers from the first main surface 20a toward the second main surface 20b (lower surface) side on the photoelectric conversion unit 10 side. That is, the width of the first portion 23 decreases from the first main surface 20a toward the second main surface 20b.
  • the width of the first portion 23 monotonously decreases from the first main surface 20a toward the second main surface 20b.
  • the second portion 24 is located closer to the second main surface 20b than the first portion 23 is.
  • the second portion 24 extends from the tip of the first portion 23 on the second main surface 20b side to the second main surface 20b.
  • the width of the second portion 24 is constant in the z direction.
  • the width of the second portion 24 is substantially equal to the width at the tip of the first portion 23 on the second main surface 20b side. For this reason, the opening area of the second portion 24 is substantially equal to the opening area at the tip of the first portion 23 on the second main surface 20b side.
  • the electrodes are usually printed by using a printing plate in which the width of the first opening 21 is constant in the y direction and the z direction.
  • the amount of paste passing through each of the upstream end and the downstream end of the first opening is different from the amount of paste passing through the other portions.
  • the amount of paste passing through the downstream end immediately after passing through the second opening is greater than the amount of paste passing through other portions.
  • the amount of paste passing through the downstream end increases as it approaches the second opening.
  • the passage amount of the paste at the upstream end is smaller than the passage amount of the paste at the other portions. Further, the amount of paste passing through the upstream end portion decreases as the second opening is approached. Therefore, as shown in FIG.
  • the width of the portion 112b1 located on the upstream side of the bus bar portion of the finger portion 112 becomes narrower as it approaches the bus bar portion, while located on the downstream side of the bus bar portion.
  • the width of the portion 112a1 becomes thicker as it approaches the bus bar portion. Accordingly, the finger portions cannot be formed with a uniform width and high accuracy.
  • Patent Document 1 by making the opening width at the upstream end of the printing plate wider than the opening width at the downstream end, the amount of paste passing through the upstream end is increased, and the paste at the downstream end is increased. Trying to reduce the amount of passage. However, simply reducing the opening width at the downstream end portion makes it difficult for the conductive paste that has entered the opening to come off, and this portion may cause printing scraping or disconnection. For this reason, it is difficult to sufficiently reduce the width of the finger portion at the position corresponding to the downstream end portion. Further, if the opening width at the upstream end is simply widened, the conductive paste is likely to bleed on the photoelectric conversion portion and may spread undesirably. Also in this case, it is difficult to sufficiently reduce the width of the finger portion at the position corresponding to the upstream end portion.
  • the downstream end 21a1 has a first portion 23 that becomes narrower from the first main surface 20a toward the second main surface 20b, and a second portion that has a small opening area. Part 24.
  • the amount of paste passing through the downstream end 21a1 can be reduced by making the second portion 24 thinner.
  • the length in the Z direction of the second portion, which is narrow is smaller than the length in the Z direction of the printing plate 20, the paste is easily removed. Therefore, the width
  • the upstream end 21b1 has a width W4 on the first main surface 20a of the upstream end 21b1 larger than the width W1 of the other portion 21c, and the first end of the upstream end 21b1.
  • the width of the main surface 20a is smaller than the width of the second main surface 20b. For this reason, the passage amount of the paste at the upstream end 21b1 is increased.
  • the width W5 of the second main surface 20b of the upstream end 21b1 is smaller than W4. Therefore, the amount of paste that is pushed out to the photoelectric conversion unit side is restricted, and bleeding is unlikely to occur. For this reason, the width
  • the width of the finger portion 12 can be reduced, so that the light shielding loss due to the finger portion 12 can be reduced. For this reason, the solar cell with improved photoelectric conversion characteristics can be manufactured.
  • the length of the upstream connection portion with respect to the bus bar portion of the finger portion which tends to be narrow, is shorter than the length of the downstream connection portion with respect to the bus bar portion of the finger portion, which tends to be wide. For this reason, it is preferable that the length of the upstream end 21b1 is shorter than the length of the downstream end 21a1.
  • first to seventh modifications may be implemented alone or in combination of two or more.
  • the solar cell may satisfy both the characteristics of the first modification and the characteristics of the second modification.
  • width W4 at the upstream end portions 21b1 and 21b2 may be increased toward the second openings 22a and 22b. By doing so, the width
  • the present invention is not limited to this configuration.
  • the length in the z direction of the second portion 24 may be increased toward the second openings 22a and 22b. By doing so, the width
  • each of the bus bar portions 13a and 13b is linear has been described.
  • the bus bar portion does not necessarily have to be linear.
  • the bus bar portion may be formed in a zigzag shape, for example.
  • the width W2 of the first main surface 20a of the first portion 23 is equal to the width W1 of the other portion 21c has been described, but the width W2 may be larger than the width W1. Even in such a case, since the second portion 24 is provided, it is possible to suppress an excessive amount of paste passing through the downstream end 21a1.
  • the said embodiment demonstrated the example which forms the electrode which has a finger part whose width
  • the present invention can also be applied when forming an electrode having a portion. In this case, what is necessary is just to adjust suitably the planar shape of an upstream edge part and a downstream edge part corresponding to the planar shape of a finger part.
  • SYMBOLS 1 Solar cell, 10 ... Photoelectric conversion part, 10a ... Light-receiving surface, 10b ... Back surface, 11 ... Electrode, 12 ... Finger part, 13a, 13b ... Bus-bar part, 20 ... Printing plate, 20a ... 1st main surface, 20b 2nd main surface, 21 ... 1st opening, 21a1, 21a2 ... Downstream end, 21b1, 21b2 ... Upstream end, 22a, 22b ... 2nd opening, 23 ... 1st part, 24 ... 2nd part, 25 ... 3rd part, 30 ... Squeegee, 31 ... Conductive paste

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

[Problem] To provide a method capable of producing a solar cell having high photoelectric conversion characteristics. [Solution] The downstream end part (21a1) of a first opening (21) comprises a first portion (23) and a second portion (24). The downstream end part (21a1) is the end part on the side of a second opening (22a) in a downstream portion positioned further to the other side in one direction (y) than the second opening. The first portion (23) tapers in the direction from a first main surface (20a) of a printing plate (20) on the side opposite from a photoelectric conversion unit (10) toward a second main surface (20b) on the side of the photoelectric conversion unit (10). The second portion (24) is positioned further toward the photoelectric conversion unit (10) than the first portion (23). The second portion (24) has an aperture surface area equivalent to the opening surface area of that end of the first portion (23) which is on the side of the photoelectric conversion unit (10).

Description

太陽電池の製造方法及び印刷版Solar cell manufacturing method and printing plate
 本発明は、太陽電池の製造方法及び太陽電池の製造に好適に用いられる印刷版に関する。 The present invention relates to a method for manufacturing a solar cell and a printing plate suitably used for manufacturing a solar cell.
 近年、環境負荷が小さいエネルギー源として、太陽電池が大いに注目されている。太陽電池は、受光によりキャリアを生成する光電変換部と、光電変換部で生成されたキャリアを収集する電極とを有している。電極として、複数のフィンガー部と、複数のフィンガー部と電気的に接続されたバスバー部とを有する電極(以下、「くし型電極」と記すことがある。)が広く用いられている。 In recent years, solar cells have attracted a great deal of attention as an energy source with a low environmental impact. The solar cell includes a photoelectric conversion unit that generates carriers by receiving light, and an electrode that collects carriers generated by the photoelectric conversion unit. As an electrode, an electrode having a plurality of finger portions and a bus bar portion electrically connected to the plurality of finger portions (hereinafter, may be referred to as “comb electrode”) is widely used.
 くし型電極の形成方法として、特許文献1ではスクリーン印刷による形成方法が提案されている。この文献では、くし型電極形成用のスクリーン印刷版として、フィンガー部形成用の開口のうち、バスバー部形成用の開口に対する接続部の一方側部分の幅が他方側部分の幅よりも小さい印刷版を用いることが提案されている。このスクリーン印刷版を用い、他方側から一方側にスキージを移動させて電極の印刷を行うことにより、フィンガー部のバスバー部との接続部が他の部分よりも太くなることを抑制できる。 As a method for forming a comb-shaped electrode, Patent Document 1 proposes a method of forming by screen printing. In this document, as a screen printing plate for forming a comb-shaped electrode, a printing plate in which a width of one side portion of a connecting portion with respect to an opening for forming a bus bar portion is smaller than a width of the other side portion among the openings for forming a finger portion It has been proposed to use By using this screen printing plate and moving the squeegee from the other side to the one side to perform electrode printing, it is possible to prevent the connection portion of the finger portion with the bus bar portion from becoming thicker than the other portions.
特許第4391803号公報Japanese Patent No. 4391803
 しかしながら、特許文献1に記載のスクリーン印刷版では、フィンガー部形成用の開口の一部を他の部分よりも幅狭にするので、フィンガー部の幅を小さくし難い。 However, in the screen printing plate described in Patent Document 1, it is difficult to reduce the width of the finger part because a part of the opening for forming the finger part is narrower than the other part.
 また、フィンガー部形成用の開口の一部を他の部分より幅広にするので、フィンガー部を形成する際に電極形成がにじんで広がりやすい。このため、フィンガー部の幅を小さくし難い。 Also, since a part of the opening for forming the finger part is made wider than the other part, the electrode formation tends to spread and spread when the finger part is formed. For this reason, it is difficult to reduce the width of the finger portion.
 本発明の一態様に係る太陽電池の製造方法は、光電変換部と、光電変換部の一主面上に配された電極とを備え、電極が一方向に延びるフィンガー部と、フィンガー部に電気的に接続されておりフィンガー部と交差しているバスバー部とを有する太陽電池を製造する方法に関する。本発明の一態様に係る太陽電池の製造方法は、光電変換部の一主面の上に印刷版を配置する工程と、印刷版の上に導電性ペーストを供給し、スキージを一方向の一方側から他方側に向けて移動させることにより電極を形成する工程とを備える。印刷版は、第1の開口と、第2の開口とを有する。第1の開口は、フィンガー部に対応する開口である。第2の開口は、バスバー部に対応する開口である。第2の開口は、第1の開口と交差している。第1の開口の第2の開口よりも他方側に位置する下流側部分の第2の開口側端部である下流側端部は、第1の部分と、第2の部分とを含む。第1の部分は、印刷版の光電変換部とは反対側の第1の主面から光電変換部側の第2の主面側に向かって先細っている。第2の部分は、第1の部分よりも光電変換部側に位置している。第2の部分は、第1の部分の光電変換部側の先端における開口面積と等しい開口面積を有する。 The manufacturing method of the solar cell which concerns on 1 aspect of this invention is equipped with the photoelectric conversion part and the electrode distribute | arranged on one main surface of the photoelectric conversion part, an electrode is extended to one direction, and an electric power is supplied to a finger part. In particular, the present invention relates to a method of manufacturing a solar cell having a bus bar portion that is connected to each other and intersects a finger portion. The method for manufacturing a solar cell according to one aspect of the present invention includes a step of placing a printing plate on one main surface of a photoelectric conversion unit, a conductive paste on the printing plate, and a squeegee in one direction. Forming an electrode by moving from the side toward the other side. The printing plate has a first opening and a second opening. The first opening is an opening corresponding to the finger portion. The second opening is an opening corresponding to the bus bar portion. The second opening intersects the first opening. The downstream end that is the second opening side end of the downstream portion located on the other side of the second opening of the first opening includes a first portion and a second portion. The first portion tapers from the first main surface opposite to the photoelectric conversion unit of the printing plate toward the second main surface side on the photoelectric conversion unit side. The second part is located closer to the photoelectric conversion unit than the first part. The second portion has an opening area equal to the opening area at the tip of the first portion on the photoelectric conversion unit side.
 また、本発明の一態様に係る太陽電池の製造方法は、光電変換部の一主面の上に印刷版を配置する工程と、印刷版の上に導電性ペーストを供給し、スキージを一の方向の一方側から他方側に向けて移動させることにより、一主面上に一の方向に延びる複数のフィンガー部と一の方向に交差する他の方向に延びるバスバー部とを有する電極のパターンに導電性ペーストを印刷する工程を備え、印刷版は、フィンガー部に対応する第1の開口と、バスバー部に対応する第2の開口とを有し、第1の開口の第2の開口よりも一方側に位置する上流側部分の第2の開口に接続される上流側端部は、印刷版の光電変換部とは反対側の第1の主面から光電変換部側の第2の主面側に向かって先細る部分を有する。 The method for manufacturing a solar cell according to one embodiment of the present invention includes a step of placing a printing plate on one main surface of a photoelectric conversion unit, a conductive paste on the printing plate, and a single squeegee. An electrode pattern having a plurality of finger portions extending in one direction on one main surface and a bus bar portion extending in the other direction intersecting one direction by moving from one side of the direction toward the other side. A step of printing a conductive paste, wherein the printing plate has a first opening corresponding to the finger portion and a second opening corresponding to the bus bar portion, and is more than the second opening of the first opening. The upstream end connected to the second opening of the upstream portion located on one side is from the first main surface opposite to the photoelectric conversion portion of the printing plate to the second main surface on the photoelectric conversion portion side. It has a portion that tapers toward the side.
 また、本発明の一態様に係る印刷版は、第1の主面及び第2の主面を有するスクリーン印刷用の印刷版であって、一の方向に延びる第2の開口と、一の方向に交差する他の方向に延び、第2の開口の幅方向の両端に夫々連結される複数の第1の開口と、を有し、第1の開口の幅方向の一端に連結される第1の開口は、他端に連結される第1の開口よりも広い幅を有し、他端に連結される第1の開口は、第1の主面側から前記第2の主面側に向かって先細る部分を有する。 The printing plate according to one aspect of the present invention is a printing plate for screen printing having a first main surface and a second main surface, the second opening extending in one direction, and the one direction. And a plurality of first openings respectively connected to both ends in the width direction of the second opening, and connected to one end in the width direction of the first opening. The opening has a wider width than the first opening connected to the other end, and the first opening connected to the other end extends from the first main surface side to the second main surface side. It has a tapered part.
 本発明によれば、光電変換効率が高い太陽電池を製造し得る方法及びこれに好適に用いられる印刷版を提供することができる。 According to the present invention, it is possible to provide a method capable of producing a solar cell with high photoelectric conversion efficiency and a printing plate suitably used for the method.
本発明を実施した一実施形態に係る太陽電池の略図的平面図である。1 is a schematic plan view of a solar cell according to an embodiment of the present invention. 電極を印刷する工程を表す略図的側面図である。It is a schematic side view showing the process of printing an electrode. 印刷版の略図的平面図である。It is a schematic plan view of a printing plate. 図3のIV部分を拡大した略図的平面図である。FIG. 4 is a schematic plan view in which a portion IV in FIG. 3 is enlarged. 図4の線V-V部分の略図的断面図である。FIG. 5 is a schematic cross-sectional view taken along line VV in FIG. 4. 図4の線VI-VI部分の略図的断面図である。FIG. 5 is a schematic cross-sectional view taken along line VI-VI in FIG. 4. 図4の線VII-VII部分の略図的断面図である。FIG. 5 is a schematic cross-sectional view taken along line VII-VII in FIG. 4. 比較例において形成される電極の構造を表す模式的平面図である。It is a typical top view showing the structure of the electrode formed in a comparative example. 第1の変形例に係る印刷版の一部分を表す略図的平面図である。It is a schematic plan view showing a part of a printing plate according to a first modification. 第2の変形例に係る印刷版の一部分を表す略図的平面図である。It is a schematic plan view showing a part of a printing plate according to a second modification. 第3の変形例に係る印刷版の一部分を表す略図的断面図である。It is a schematic sectional drawing showing a part of printing plate concerning the 3rd modification. 第4の変形例に係る印刷版の一部分を表す略図的断面図である。It is a schematic sectional drawing showing a part of printing plate concerning the 4th modification. 第5の変形例に係る印刷版の一部分を表す略図的断面図である。It is a schematic sectional drawing showing a part of printing plate concerning the 5th modification. 第6の変形例に係る印刷版の一部分を表す略図的断面図である。It is a schematic sectional drawing showing a part of printing plate concerning the 6th modification. 第7の変形例に係る印刷版の一部分を表す略図的断面図である。It is a schematic sectional drawing showing a part of printing plate concerning the 7th modification.
 以下、本発明を実施した好ましい形態について、図1に示す太陽電池1を例に挙げて説明する。但し、太陽電池1は、単なる例示である。本発明は、太陽電池1に何ら限定されない。 Hereinafter, a preferred embodiment in which the present invention is implemented will be described using the solar cell 1 shown in FIG. 1 as an example. However, the solar cell 1 is merely an example. The present invention is not limited to the solar cell 1 at all.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described, and the ratio of the dimensions of the objects drawn in the drawings may be different from the ratio of the dimensions of the actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 (太陽電池1の構成)
 図1に示されるように、本実施形態に係る太陽電池1は光電変換部10を有する。光電変換部10は、受光により電子や正孔などのキャリアを生成する。光電変換部10は、第1導電型を有する結晶性半導体からなる基板と、第2導電型を有する半導体領域とを含む。半導体領域は、基板中に第2導電型の不純物を導入することによって形成され得る。或いは半導体領域は、基板上に第2導電型の不純物を含む半導体層を積層することによって形成され得る。
(Configuration of solar cell 1)
As shown in FIG. 1, the solar cell 1 according to this embodiment includes a photoelectric conversion unit 10. The photoelectric conversion unit 10 generates carriers such as electrons and holes by receiving light. The photoelectric conversion unit 10 includes a substrate made of a crystalline semiconductor having a first conductivity type and a semiconductor region having a second conductivity type. The semiconductor region can be formed by introducing a second conductivity type impurity into the substrate. Alternatively, the semiconductor region can be formed by stacking a semiconductor layer containing an impurity of the second conductivity type on the substrate.
 光電変換部10は、受光面10aと裏面10bとを有する。受光面10a上には電極11が配されている。図示は省略するが、裏面10b上にも、同様に電極が配されている。裏面10b上の電極の形状は特に限定されない。裏面10b上の電極は、電極11と同様の形状を有していてもよいし、異なっていても良い。例えば裏面10b上の電極は、裏面10bの略全面上に面状に形成されていてもよい。電極11は、遮光ロス低減のため裏面10b上の電極よりも小面積にすることが好ましい。 The photoelectric conversion unit 10 has a light receiving surface 10a and a back surface 10b. An electrode 11 is disposed on the light receiving surface 10a. Although illustration is omitted, electrodes are similarly arranged on the back surface 10b. The shape of the electrode on the back surface 10b is not particularly limited. The electrode on the back surface 10b may have the same shape as the electrode 11 or may be different. For example, the electrode on the back surface 10b may be formed in a planar shape on substantially the entire back surface 10b. The electrode 11 preferably has a smaller area than the electrode on the back surface 10b in order to reduce light shielding loss.
 電極の材質は、導電性を有する限りにおいて特に限定されない。電極は、例えば、銀、銅、アルミニウム、チタン、ニッケル、クロムなどの金属や、それらの金属のうちの一種以上を含む合金により形成することができる。電極は、複数の導電層を有していてもよい。 The material of the electrode is not particularly limited as long as it has conductivity. The electrode can be formed of, for example, a metal such as silver, copper, aluminum, titanium, nickel, or chromium, or an alloy containing one or more of these metals. The electrode may have a plurality of conductive layers.
 電極11は、複数のフィンガー部12と、複数のバスバー部13a、13bとを有する。複数のフィンガー部12は、受光により光電変換部10で生成されたキャリアを収集するために、受光面10aのほぼ全面上に配されている。複数のフィンガー部12のそれぞれは、y方向(第1方向)に沿って延びるライン状の形状を有する。複数のフィンガー部12は、y方向に交差するx方向(第2方向)に沿って所定の間隔を隔てて配列されている。太陽電池1では、複数のフィンガー部12は、y方向に直交するx方向に沿って配列されている。フィンガー部12は、遮光ロスを低減するためにできるだけ小面積にされる。具体的に、フィンガー部12の幅(x方向の幅)はできるだけ小さくされる。フィンガー部12の幅は、長さ方向(y方向)に沿って一定である必要はない。例えば、フィンガー部12の幅は、長さ方向に沿ってバスバー部13a或いはバスバー部13bから遠ざかるほど小さくされていても良い。 The electrode 11 has a plurality of finger portions 12 and a plurality of bus bar portions 13a and 13b. The plurality of finger portions 12 are arranged on substantially the entire light receiving surface 10a in order to collect carriers generated by the photoelectric conversion unit 10 by light reception. Each of the plurality of finger portions 12 has a linear shape extending along the y direction (first direction). The plurality of finger portions 12 are arranged at predetermined intervals along the x direction (second direction) intersecting the y direction. In the solar cell 1, the plurality of finger portions 12 are arranged along the x direction orthogonal to the y direction. The finger portion 12 is made as small as possible in order to reduce the light shielding loss. Specifically, the width of the finger portion 12 (the width in the x direction) is made as small as possible. The width of the finger portion 12 does not have to be constant along the length direction (y direction). For example, the width of the finger portion 12 may be reduced as the distance from the bus bar portion 13a or the bus bar portion 13b increases along the length direction.
 バスバー部13aはx方向に沿って延びるライン状の形状を有しており、複数のフィンガー部12と電気的に接続されている。バスバー部13bもx方向に沿って延びるライン状の形状を有しており、複数のフィンガー部12と電気的に接続されている。バスバー部13a及びバスバー部13bによって、複数のフィンガー部12の全てによって収集されたキャリアが集電される。バスバー部13a及びバスバー部13bは、抵抗ロスを低減するために幅(y方向の幅)がフィンガー部12よりも大きくされる。 The bus bar portion 13 a has a line shape extending along the x direction and is electrically connected to the plurality of finger portions 12. The bus bar portion 13 b also has a line shape extending along the x direction, and is electrically connected to the plurality of finger portions 12. Carriers collected by all of the plurality of finger portions 12 are collected by the bus bar portion 13a and the bus bar portion 13b. The bus bar portion 13a and the bus bar portion 13b have a width (y direction width) larger than that of the finger portion 12 in order to reduce resistance loss.
 (太陽電池1の製造方法)
 いかに、太陽電池1の製造方法について説明する。
(Manufacturing method of solar cell 1)
A method for manufacturing the solar cell 1 will now be described.
 まず、光電変換部10を用意する。次に、図2に示されるように、光電変換部10の受光面10aの上に印刷版20を配置する。印刷版20の上に導電性ペースト31を供給し、スキージ30をy2側からy1側へ移動方向Fに沿って移動させることにより、導電性ペースト30を印刷版20に形成された開口を通して光電変換部上10上に押し出す。その後、光電変換部上10上に押し出された導電性ペースト31を硬化させることにより、電極11を形成する。同様にして裏面10b上にも電極も形成する。以上により、太陽電池1を完成させる。 First, the photoelectric conversion unit 10 is prepared. Next, as illustrated in FIG. 2, the printing plate 20 is disposed on the light receiving surface 10 a of the photoelectric conversion unit 10. The conductive paste 31 is supplied onto the printing plate 20, and the squeegee 30 is moved from the y2 side to the y1 side along the moving direction F, whereby the conductive paste 30 is photoelectrically converted through the opening formed in the printing plate 20. Extrude on top 10. Then, the electrode 11 is formed by hardening the conductive paste 31 extruded on the photoelectric conversion unit 10. Similarly, an electrode is also formed on the back surface 10b. The solar cell 1 is completed by the above.
 電極の形成に用いられる導電性ペーストは、電極を形成するための導電材料を含むものである限りにおいて特に限定されない。導電性ペーストは、例えば、導電性粒子が分散した熱硬化性の樹脂からなる熱硬化型ペーストであってもよいし、焼成型ペーストであってもよい。  The conductive paste used for forming the electrode is not particularly limited as long as it contains a conductive material for forming the electrode. The conductive paste may be, for example, a thermosetting paste made of a thermosetting resin in which conductive particles are dispersed, or may be a fired paste. *
 次に、印刷版20の構成について、図3~図7を参照しながら詳細に使用する。 Next, the configuration of the printing plate 20 will be used in detail with reference to FIGS.
 図3に示すように、印刷版20は、複数の第1の開口21と、複数の第2の開口22a、22bを有する。複数の第1の開口21は、複数のフィンガー部12に対応し、y方向に沿って延びるライン状の開口がx方向に沿うように複数形成されている。第2の開口22aは、バスバー部13aに対応してX方向に沿うライン状の形状を有する。第2の開口22bは、バスバー部13bに対応してX方向に沿うライン状の形状を有する。 As shown in FIG. 3, the printing plate 20 has a plurality of first openings 21 and a plurality of second openings 22a and 22b. The plurality of first openings 21 correspond to the plurality of finger portions 12, and a plurality of linear openings extending along the y direction are formed along the x direction. The second opening 22a has a line shape along the X direction corresponding to the bus bar portion 13a. The second opening 22b has a line shape along the X direction corresponding to the bus bar portion 13b.
 第1の開口21は、第2の開口22aのy1側(移動方向Fの下流側)に位置する下流側端部21a1と、第2の開口22aのy2側(移動方向Fの上流側)に位置する上流側端部21b1と、第2の開口22bのy1側に位置する下流側端部21a2と、第2の開口22bのy2側に位置する上流側端部21b2と、その他の部分21cとを含む。印刷版20では、下流側端部21a1,21a2と、上流側端部21b1,21b2と、その他の部分21cとでは、形状が相互に異なっている。下流側端部21a1は下流側端部21a2と同様の形状を有する。また、上流側端部21b1も上流側端部21b2と同様の形状を有する。 The first opening 21 is on the downstream end 21a1 located on the y1 side (downstream in the movement direction F) of the second opening 22a and on the y2 side (upstream in the movement direction F) of the second opening 22a. An upstream end 21b1 positioned, a downstream end 21a2 positioned on the y1 side of the second opening 22b, an upstream end 21b2 positioned on the y2 side of the second opening 22b, and the other portion 21c including. In the printing plate 20, the downstream end portions 21a1, 21a2, the upstream end portions 21b1, 21b2, and the other portions 21c have different shapes. The downstream end 21a1 has the same shape as the downstream end 21a2. The upstream end 21b1 has the same shape as the upstream end 21b2.
 従って、ここでは上流側端部21b1、下流側端部21a1及びその他の部分21cの平面形状を図4に示し、上流側端部21b2、下流側端部21a2の平面形状に関しては図4を援用する。また、下流側端部21a1の断面形状を図6に示し、下流側端部21a2に関しては、図6を援用する。さらに、上流側端部21b1の断面形状を図7に示し、上流側端部21b2に関しては、図7を援用する。 Accordingly, FIG. 4 shows the planar shapes of the upstream end 21b1, the downstream end 21a1, and the other portion 21c, and FIG. 4 is used for the planar shapes of the upstream end 21b2 and the downstream end 21a2. . Moreover, the cross-sectional shape of the downstream end 21a1 is shown in FIG. 6, and FIG. 6 is used for the downstream end 21a2. Furthermore, the cross-sectional shape of the upstream end 21b1 is shown in FIG. 7, and FIG. 7 is used for the upstream end 21b2.
 図4は、図3のIV部分を拡大して示す、略図的な上面図である。第2の開口22aはx方向を長手方向とし、y方向を短手方向とする。第2の開口22aはx方向に延びており、短手方向の両側に第1の開口22bが連結されている。具体的に、第2の開口のy1側(一方側)には第1の開口22bの下流側端部21a1が連結され、y2側(他方側)には上流側端部21b1が連結されている。印刷版20の上面(第1の主面20a)において、下流側端部21a1は、その他の部分21cの幅W1と略等しい幅W2を有する。また、上流側端部21b1は、下流側端部21a1の幅W2より大きい幅W4を有する。上流側端部21b1のy方向に沿った長さは、下流側端部21a1のy方向に沿った長さよりも短い。 FIG. 4 is a schematic top view showing the IV portion of FIG. 3 in an enlarged manner. The second opening 22a has the x direction as the long direction and the y direction as the short direction. The second opening 22a extends in the x direction, and the first opening 22b is connected to both sides in the short direction. Specifically, the downstream end 21a1 of the first opening 22b is connected to the y1 side (one side) of the second opening, and the upstream end 21b1 is connected to the y2 side (the other side). . On the upper surface (first main surface 20a) of the printing plate 20, the downstream end 21a1 has a width W2 substantially equal to the width W1 of the other portion 21c. Further, the upstream end 21b1 has a width W4 that is larger than the width W2 of the downstream end 21a1. The length of the upstream end 21b1 along the y direction is shorter than the length of the downstream end 21a1 along the y direction.
 図5に示されるように、その他の部分21cは、z方向(印刷版20の厚み方向)に幅が一定となるように形成されている。すなわち、その他の部分21cにおいては、z方向のいずれの部分においても、幅がW1である。 As shown in FIG. 5, the other portion 21 c is formed so that the width is constant in the z direction (the thickness direction of the printing plate 20). That is, in the other portion 21c, the width is W1 in any portion in the z direction.
 図6に示されるように、下流側端部21a1は、z方向に第1の部分23と、第2の部分24とを有する。第1の部分23は、印刷版20の光電変換部10とは反対側の第1の主面20a(上面)側の部分に設けられている。第1の部分23は、第1の主面20aから、光電変換部10側の第2の主面20b(下面)側に向かって先細になっている。すなわち、第1の部分23の幅は、第1の主面20aから第2の主面20b側に向かって小さくなっている。具体的に印刷版20では、第1の部分23の幅は、第1の主面20aから第2の主面20b側に向かって単調に減少している。 As shown in Fig. 6, the downstream end 21a1 has a first portion 23 and a second portion 24 in the z direction. The first portion 23 is provided on the first main surface 20 a (upper surface) side of the printing plate 20 opposite to the photoelectric conversion unit 10. The first portion 23 tapers from the first main surface 20a toward the second main surface 20b (lower surface) side on the photoelectric conversion unit 10 side. That is, the width of the first portion 23 decreases from the first main surface 20a toward the second main surface 20b. Specifically, in the printing plate 20, the width of the first portion 23 monotonously decreases from the first main surface 20a toward the second main surface 20b.
 第2の部分24は、第1の部分23よりも第2の主面20b側に位置している。本実施形態では、第2の部分24は、第1の部分23の第2の主面20b側先端から第2の主面20bにまで至っている。第2の部分24の幅は、z方向において一定である。第2の部分24の幅は、第1の部分23の第2の主面20b側の先端における幅と略等しい。このため、第2の部分24の開口面積は、第1の部分23の第2の主面20b側の先端における開口面積と略等しい。 The second portion 24 is located closer to the second main surface 20b than the first portion 23 is. In the present embodiment, the second portion 24 extends from the tip of the first portion 23 on the second main surface 20b side to the second main surface 20b. The width of the second portion 24 is constant in the z direction. The width of the second portion 24 is substantially equal to the width at the tip of the first portion 23 on the second main surface 20b side. For this reason, the opening area of the second portion 24 is substantially equal to the opening area at the tip of the first portion 23 on the second main surface 20b side.
 第1の部分23のz方向に沿った長さは、印刷版20の厚みの0.1倍~0.6倍であることが好ましい。第2の部分24のz方向に沿った長さは、印刷版20の厚みの0.4倍~0.9倍であることが好ましい。第2の部分24のz方向に沿った長さは、第1の部分23のz方向に沿った長さの0.8倍~1.0倍であることが好ましい。 The length of the first portion 23 along the z direction is preferably 0.1 to 0.6 times the thickness of the printing plate 20. The length of the second portion 24 along the z direction is preferably 0.4 to 0.9 times the thickness of the printing plate 20. The length of the second portion 24 along the z direction is preferably 0.8 to 1.0 times the length of the first portion 23 along the z direction.
 図7に示されるように、上流側端部21b1は、第1の主面20a側から第2の主面20b側に向かって先細になっている部分を有する。印刷版20では、上流側端部21b1の全体が、第1の主面20a側から第2の主面20b側に向かって先細っている。すなわち、上流側端部21b1の幅は、第1の主面20aから第2の主面20bに向かって小さくなっている。上流側端部21b1の第1の主面20aにおける幅は、第2の主面20bにおける幅より小さい。上流側端部21b1の第2の主面20bにおける幅W5は、その他の部分21cの幅W1と略等しい。 As shown in Fig. 7, the upstream end 21b1 has a portion that tapers from the first main surface 20a side toward the second main surface 20b side. In the printing plate 20, the entire upstream end 21b1 tapers from the first main surface 20a toward the second main surface 20b. That is, the width of the upstream end 21b1 decreases from the first main surface 20a toward the second main surface 20b. The width at the first main surface 20a of the upstream end 21b1 is smaller than the width at the second main surface 20b. The width W5 of the second main surface 20b of the upstream end 21b1 is substantially equal to the width W1 of the other portion 21c.
 ところで、通常は第1の開口21の幅がy方向及びz方向において一定である印刷版を用いて電極の印刷を行っている。しかしながら、この場合は、第1の開口の上流側端部及び下流側端部のそれぞれにおけるペーストの通過量が、その他の部分におけるペーストの通過量と異なる。具体的には、第2の開口部を通過した直後の下流側端部におけるペーストの通過量は、その他の部分におけるペーストの通過量よりも多くなる。また、下流側端部におけるペーストの通過量は、第2の開口に近づくにつれて多くなる。一方、上流側端部におけるペーストの通過量は、その他の部分におけるペーストの通過量よりも少なくなる。また、上流側端部におけるペーストの通過量は、第2の開口に近づくにつれて少なくなる。よって、図8に示されるように、フィンガー部112のバスバー部よりも上流側に位置している部分112b1の幅は、バスバー部に近づくにつれて細くなる一方、バスバー部よりも下流側に位置している部分112a1の幅は、バスバー部に近づくにつれて太くなる。従って、フィンガー部を均一な幅で、高精度に形成することができない。 Incidentally, the electrodes are usually printed by using a printing plate in which the width of the first opening 21 is constant in the y direction and the z direction. However, in this case, the amount of paste passing through each of the upstream end and the downstream end of the first opening is different from the amount of paste passing through the other portions. Specifically, the amount of paste passing through the downstream end immediately after passing through the second opening is greater than the amount of paste passing through other portions. Further, the amount of paste passing through the downstream end increases as it approaches the second opening. On the other hand, the passage amount of the paste at the upstream end is smaller than the passage amount of the paste at the other portions. Further, the amount of paste passing through the upstream end portion decreases as the second opening is approached. Therefore, as shown in FIG. 8, the width of the portion 112b1 located on the upstream side of the bus bar portion of the finger portion 112 becomes narrower as it approaches the bus bar portion, while located on the downstream side of the bus bar portion. The width of the portion 112a1 becomes thicker as it approaches the bus bar portion. Accordingly, the finger portions cannot be formed with a uniform width and high accuracy.
 そこで、特許文献1では、印刷版の上流側端部における開口幅を下流側端部における開口幅より広くすることによって、上流側端部におけるペーストの通過量を多くし、下流側端部におけるペーストの通過量を少なくしようとしている。しかしながら、下流側端部における開口幅を単に小さくしただけでは、開口内に入り込んだ導電性ペーストが抜けにくくなり、この部分で印刷カスレ或いは断線を生じさせる場合がある。このため、下流側端部に対応する位置のフィンガー部の幅を十分小さくすることが困難である。また、上流側端部における開口幅を単に広くしただけでは、光電変換部上で導電性ペーストのにじみが生じ易く、不所望に拡がってしまう場合がある。この場合にも、上流側端部に対応する位置のフィンガー部の幅を十分小さくすることが困難である。 Therefore, in Patent Document 1, by making the opening width at the upstream end of the printing plate wider than the opening width at the downstream end, the amount of paste passing through the upstream end is increased, and the paste at the downstream end is increased. Trying to reduce the amount of passage. However, simply reducing the opening width at the downstream end portion makes it difficult for the conductive paste that has entered the opening to come off, and this portion may cause printing scraping or disconnection. For this reason, it is difficult to sufficiently reduce the width of the finger portion at the position corresponding to the downstream end portion. Further, if the opening width at the upstream end is simply widened, the conductive paste is likely to bleed on the photoelectric conversion portion and may spread undesirably. Also in this case, it is difficult to sufficiently reduce the width of the finger portion at the position corresponding to the upstream end portion.
 それに対して、印刷版20では、下流側端部21a1は、第1の主面20aから第2の主面20b側に向かって幅狭となる第1の部分23と、開口面積が小さな第2の部分24とを有する。このため、第2の部分24を細くすることによって下流側端部21a1におけるペーストの通過量を少なくすることができる。また、幅狭である第2の部分のZ方向の長さが印刷版20のZ方向の長さより小さいので、ペーストが抜け易くなる。従って、下流側端部21a1対応する部分のフィンガー部の幅を、従来よりも小さくすることができる。このため、印刷版20を用いることにより、フィンガー部12が細い場合であっても、高い形状精度でフィンガー部12を形成することができる。 On the other hand, in the printing plate 20, the downstream end 21a1 has a first portion 23 that becomes narrower from the first main surface 20a toward the second main surface 20b, and a second portion that has a small opening area. Part 24. For this reason, the amount of paste passing through the downstream end 21a1 can be reduced by making the second portion 24 thinner. Further, since the length in the Z direction of the second portion, which is narrow, is smaller than the length in the Z direction of the printing plate 20, the paste is easily removed. Therefore, the width | variety of the finger part of the part corresponding to the downstream end part 21a1 can be made smaller than before. For this reason, by using the printing plate 20, even if the finger portion 12 is thin, the finger portion 12 can be formed with high shape accuracy.
 また、本実施形態では、上流側端部21b1は、上流側端部21b1の第1の主面20aにおける幅W4は、その他の部分21cの幅W1よりも大きく、上流側端部21b1の第1の主面20aにおける幅は、第2の主面20bにおける幅より小さい。このため、上流側端部21b1におけるペーストの通過量が増大されている。また、上流側端部21b1の第2の主面20bにおける幅W5が、W4より小さくなっている。よって、光電変換部側に押し出されるペーストの量が規制され、にじみが生じ難い。このため、上流側端部21b1に対応する位置のフィンガー部12の幅を、十分小さくすることができる。従って、フィンガー部12をより高い形状精度で形成することができる。 In the present embodiment, the upstream end 21b1 has a width W4 on the first main surface 20a of the upstream end 21b1 larger than the width W1 of the other portion 21c, and the first end of the upstream end 21b1. The width of the main surface 20a is smaller than the width of the second main surface 20b. For this reason, the passage amount of the paste at the upstream end 21b1 is increased. Further, the width W5 of the second main surface 20b of the upstream end 21b1 is smaller than W4. Therefore, the amount of paste that is pushed out to the photoelectric conversion unit side is restricted, and bleeding is unlikely to occur. For this reason, the width | variety of the finger part 12 of the position corresponding to the upstream edge part 21b1 can be made small enough. Therefore, the finger part 12 can be formed with higher shape accuracy.
 従って、印刷版20を用いて電極11を形成することにより、フィンガー部12の幅を小さくすることができるので、フィンガー部12による遮光ロスを低減することができる。このため、光電変換特性が向上した太陽電池を製造することができる。 Therefore, by forming the electrode 11 using the printing plate 20, the width of the finger portion 12 can be reduced, so that the light shielding loss due to the finger portion 12 can be reduced. For this reason, the solar cell with improved photoelectric conversion characteristics can be manufactured.
 なお、幅狭になりがちな、フィンガー部のバスバー部に対する上流側接続部の長さは、幅広になりがちな、フィンガー部のバスバー部に対する下流側接続部の長さよりも短い。このため、上流側端部21b1の長さは、下流側端部21a1の長さよりも短いことが好ましい。 It should be noted that the length of the upstream connection portion with respect to the bus bar portion of the finger portion, which tends to be narrow, is shorter than the length of the downstream connection portion with respect to the bus bar portion of the finger portion, which tends to be wide. For this reason, it is preferable that the length of the upstream end 21b1 is shorter than the length of the downstream end 21a1.
 以下に、上記実施形態の変形例について説明する。以下の説明において、上記実施形態と実質的共通の機能を有する部材を共通の符号で参照し、説明を省略する。 Hereinafter, modifications of the above embodiment will be described. In the following description, members having substantially the same functions as those of the above embodiment are referred to by the same reference numerals, and description thereof is omitted.
 以下の第1~第7の変形例において説明する特徴は、単独で実施してもよいし、2つ以上を組み合わせて実施することもできる。例えば、太陽電池は、第1の変形例の特徴と第2の変形例の特徴との両方を満たしていてもよい。 The features described in the following first to seventh modifications may be implemented alone or in combination of two or more. For example, the solar cell may satisfy both the characteristics of the first modification and the characteristics of the second modification.
 (第1の変形例)
 上記実施形態では、下流側端部21a1の第1の主面20aにおける幅W2がその他の部分21cの幅W1と等しい場合について説明したが、図9に示されるように、幅W2を幅W1よりも狭くしてもよい。そうすることにより、フィンガー部のバスバー部に対する上流側接続部の幅が太くなることをより効果的に抑制することができる。
(First modification)
In the above embodiment, the case where the width W2 of the first main surface 20a of the downstream end 21a1 is equal to the width W1 of the other portion 21c has been described. However, as shown in FIG. May be narrowed. By doing so, it can suppress more effectively that the width | variety of the upstream connection part with respect to the bus-bar part of a finger part becomes thick.
 (第2の変形例)
 上記実施形態では、上流側端部21b1,21b2及び下流側端部21a1,21a2のそれぞれにおいて幅がy方向に一定である例について説明した。但し、本発明は、この構成に限定されない。例えば、図10に示されるように、下流側端部21a1、21a2における幅W2が第2の開口22a、22b側に向かって狭くなるようにしてもよい。そうすることにより、フィンガー部のバスバー部に対する上流側接続部の幅をより均一にすることができる。
(Second modification)
In the above-described embodiment, the example in which the width is constant in the y direction at each of the upstream end portions 21b1 and 21b2 and the downstream end portions 21a1 and 21a2 has been described. However, the present invention is not limited to this configuration. For example, as shown in FIG. 10, the width W2 at the downstream end portions 21a1, 21a2 may be narrowed toward the second openings 22a, 22b. By doing so, the width | variety of the upstream connection part with respect to the bus-bar part of a finger part can be made more uniform.
 また、上流側端部21b1、21b2における幅W4が第2の開口22a、22b側に向かって広くなるようにしてもよい。そうすることにより、フィンガー部のバスバー部に対する下流側接続部の幅をより均一にすることができる。 Further, the width W4 at the upstream end portions 21b1 and 21b2 may be increased toward the second openings 22a and 22b. By doing so, the width | variety of the downstream connection part with respect to the bus-bar part of a finger part can be made more uniform.
 (第3の変形例)
 上記実施形態では、第2の部分24のz方向における長さがy方向に一定である例について説明した。但し、本発明は、この構成に限定されない。例えば、図11に示すように、第2の部分24のz方向における長さは、第2の開口22a、22b側にいくほど長くなるようにしてもよい。そうすることにより、フィンガー部のバスバー部に対する上流側接続部の幅をより均一にすることができる。
(Third Modification)
In the above embodiment, the example in which the length in the z direction of the second portion 24 is constant in the y direction has been described. However, the present invention is not limited to this configuration. For example, as shown in FIG. 11, the length in the z direction of the second portion 24 may be increased toward the second openings 22a and 22b. By doing so, the width | variety of the upstream connection part with respect to the bus-bar part of a finger part can be made more uniform.
 (第4の変形例)
 上記実施形態では、上流側端部21b1、21b2の全体がz方向において第2の主面20b側に向かって先細る形状に形成されている例について説明した。但し、本発明は、この構成に限定されない。例えば、図12に示されるように、上流側端部21b1、21b2も、第2の主面20b側に向かって先細る第1の部分23と、幅が一定である第2の部分24とを有していてもよい。
(Fourth modification)
In the above-described embodiment, the example in which the entire upstream end portions 21b1 and 21b2 are formed in a tapered shape toward the second main surface 20b side in the z direction has been described. However, the present invention is not limited to this configuration. For example, as shown in FIG. 12, the upstream end portions 21b1 and 21b2 also include a first portion 23 that tapers toward the second main surface 20b side and a second portion 24 that has a constant width. You may have.
 (第5の変形例)
 上記実施形態では、下流側端部21a1、21a2が、第1及び第2の部分23,24により構成されている例について説明した。但し、本発明は、この構成に限定されない。例えば、図13に示されるように、第2の部分24よりも第2の主面20b側に、第2の主面20b側に向かって幅広となる第3の部分25が設けられていてもよい。
(Fifth modification)
In the above embodiment, an example in which the downstream end portions 21a1 and 21a2 are configured by the first and second portions 23 and 24 has been described. However, the present invention is not limited to this configuration. For example, as shown in FIG. 13, even if a third portion 25 that is wider toward the second main surface 20 b side than the second portion 24 is provided on the second main surface 20 b side. Good.
 (第6及び第7の変形例)
 上記実施形態では、下流側端部21a1、21a2の第1の部分23の幅が第2の主面20b側に向かって線形的に細くなる例について説明した。但し、本発明は、この構成に限定されない。例えば、図14や図15に示されるように、下流側端部21a1、21a2の第1の部分23の幅は、第2の主面20b側に向かって高次関数的に細くなっていてもよい。
(6th and 7th modification)
In the above-described embodiment, the example in which the width of the first portion 23 of the downstream end portions 21a1 and 21a2 is linearly narrowed toward the second main surface 20b side has been described. However, the present invention is not limited to this configuration. For example, as shown in FIGS. 14 and 15, the width of the first portion 23 of the downstream end portions 21a1 and 21a2 may be narrowed in a high-order function toward the second main surface 20b. Good.
 また、上記実施形態では、バスバー部13a、13bのそれぞれが直線状である例について説明した。但し、本発明においては、バスバー部は、直線状である必要は必ずしもない。バスバー部は、例えば、ジグザグ形状に形成されていてもよい。  In the above embodiment, an example in which each of the bus bar portions 13a and 13b is linear has been described. However, in the present invention, the bus bar portion does not necessarily have to be linear. The bus bar portion may be formed in a zigzag shape, for example. *
 また、上記実施形態では、上流側端部21b1を第2の主面20b側に向かって先細る形状としたが、上流側端部は、上流側端部及び下流側端部以外の部分と同様に、z方向に幅が均一なものであってもよい。  In the above embodiment, the upstream end 21b1 is tapered toward the second main surface 20b. However, the upstream end is the same as the portion other than the upstream end and the downstream end. In addition, the width may be uniform in the z direction. *
 上記実施形態では、第1の部分23の第1の主面20aにおける幅W2が、その他の部分21cの幅W1と等しい例について説明したが、幅W2は、幅W1よりも大きくてもよい。その場合であっても、第2の部分24が設けられているため、下流側端部21a1におけるペーストの通過量が多くなりすぎることを抑制することができる。 In the above embodiment, the example in which the width W2 of the first main surface 20a of the first portion 23 is equal to the width W1 of the other portion 21c has been described, but the width W2 may be larger than the width W1. Even in such a case, since the second portion 24 is provided, it is possible to suppress an excessive amount of paste passing through the downstream end 21a1.
 また、上記実施形態では、その他の部分21cは、z方向に幅が一定である例について説明したが、本発明はこれに限られるものではない。 In the above-described embodiment, the example in which the width of the other portion 21c is constant in the z direction has been described, but the present invention is not limited to this.
 また、上記実施形態では、y方向に幅が一定であるフィンガー部を有する電極を形成する例について説明したが、バスバー部から離れるにつれて幅が狭くなる先細状のフィンガー部やそれ以外の形状のフィンガー部を有する電極を形成する場合にも本発明を適用することができる。この場合、上流側端部及び下流側端部の平面形状を、フィンガー部の平面形状に対応して適宜調整すれば良い。 Moreover, although the said embodiment demonstrated the example which forms the electrode which has a finger part whose width | variety is constant in ay direction, the taper-shaped finger part which becomes narrow as it leaves | separates from a bus-bar part, and the finger of other shapes The present invention can also be applied when forming an electrode having a portion. In this case, what is necessary is just to adjust suitably the planar shape of an upstream edge part and a downstream edge part corresponding to the planar shape of a finger part.
1…太陽電池、10…光電変換部、10a…受光面、10b…裏面、11…電極、12…フィンガー部、13a、13b…バスバー部、20…印刷版、20a…第1の主面、20b…第2の主面、21…第1の開口、21a1,21a2…下流側端部、21b1,21b2…上流側端部、22a、22b…第2の開口、23…第1の部分、24…第2の部分、25…第3の部分、30…スキージ、31…導電性ペースト DESCRIPTION OF SYMBOLS 1 ... Solar cell, 10 ... Photoelectric conversion part, 10a ... Light-receiving surface, 10b ... Back surface, 11 ... Electrode, 12 ... Finger part, 13a, 13b ... Bus-bar part, 20 ... Printing plate, 20a ... 1st main surface, 20b 2nd main surface, 21 ... 1st opening, 21a1, 21a2 ... Downstream end, 21b1, 21b2 ... Upstream end, 22a, 22b ... 2nd opening, 23 ... 1st part, 24 ... 2nd part, 25 ... 3rd part, 30 ... Squeegee, 31 ... Conductive paste

Claims (14)

  1.  光電変換部の一主面の上に印刷版を配置する工程と、
     前記印刷版の上に導電性ペーストを供給し、スキージを一の方向の一方側から他方側に向けて移動させることにより、前記一主面上に、前記一の方向に延びる複数のフィンガー部と前記一の方向に交差する他の方向に延びるバスバー部とを有する電極のパターンに前記導電性ペーストを印刷する工程を備え、
     前記印刷版は、前記フィンガー部に対応する第1の開口と、前記バスバー部に対応する第2の開口とを有し、
     前記第1の開口の前記第2の開口よりも前記他方側に位置する下流側部分の前記第2の開口に接続される下流側端部は、前記印刷版の前記光電変換部とは反対側の第1の主面から前記光電変換部側の第2の主面側に向かって先細る第1の部分と、前記第1の部分よりも前記光電変換部側に位置しており、前記第1の部分の前記光電変換部側の先端における開口面積と等しい開口面積を有する第2の部分とを含む、太陽電池の製造方法。
    Arranging a printing plate on one main surface of the photoelectric conversion unit;
    A plurality of finger portions extending in the one direction on the one main surface by supplying a conductive paste on the printing plate and moving the squeegee from one side to the other side in the one direction. Printing the conductive paste on a pattern of electrodes having a bus bar portion extending in the other direction intersecting the one direction,
    The printing plate has a first opening corresponding to the finger portion and a second opening corresponding to the bus bar portion,
    The downstream end connected to the second opening of the downstream portion located on the other side of the second opening of the first opening is opposite to the photoelectric conversion unit of the printing plate A first portion that tapers from the first main surface toward the second main surface on the photoelectric conversion portion side, and is positioned closer to the photoelectric conversion portion than the first portion, And a second part having an opening area equal to the opening area at the tip of the one part on the photoelectric conversion part side.
  2.  請求項1に記載の太陽電池の製造方法であって、
     前記下流側端部の前記第1の主面における幅は、前記下流側部分の前記下流側端部以外の部分の前記第1の主面における幅と等しい。
    It is a manufacturing method of the solar cell of Claim 1, Comprising:
    The width of the downstream end portion on the first main surface is equal to the width of the downstream main portion other than the downstream end portion on the first main surface.
  3.  請求項1に記載の太陽電池の製造方法であって、
     前記下流側端部の前記第1の主面における幅は、前記下流側部分の前記下流側端部以外の部分の前記第1の主面における幅よりも狭い。
    It is a manufacturing method of the solar cell of Claim 1, Comprising:
    The width at the first main surface of the downstream end is narrower than the width at the first main surface of the portion other than the downstream end of the downstream portion.
  4.  請求項3に記載の太陽電池の製造方法であって、
     前記下流側端部の前記第1の主面における幅は、前記第2の開口側に向かって狭くなる。
    It is a manufacturing method of the solar cell of Claim 3, Comprising:
    The width of the downstream end portion on the first main surface becomes narrower toward the second opening side.
  5.  請求項1~4のいずれか一項に記載の太陽電池の製造方法であって、
     前記第2の部分の厚み方向における長さは、前記第2の開口側にいくほど長くなる。
    A method for producing a solar cell according to any one of claims 1 to 4,
    The length in the thickness direction of the second portion becomes longer as it goes to the second opening side.
  6.  請求項1~5のいずれか一項に記載の太陽電池の製造方法であって、
     前記第2の部分の厚み方向における長さは、前記印刷版の厚み方向における長さの0.1倍~0.6倍の範囲内にある。
    A method for producing a solar cell according to any one of claims 1 to 5,
    The length in the thickness direction of the second portion is in the range of 0.1 to 0.6 times the length in the thickness direction of the printing plate.
  7.  請求項1~6のいずれか一項に記載の太陽電池の製造方法であって、
     前記第1の開口の前記第2の開口よりも一方側に位置する上流側部分の前記第2の開口に接続される上流側端部は、前記第1の主面側から前記第2の主面側に向かって先細る部分を有し、前記上流側端部の前記第1の主面における幅は、前記上流側部分の前記上流側端部以外の部分の前記第1の主面における幅よりも大きい。
    A method for producing a solar cell according to any one of claims 1 to 6,
    The upstream end connected to the second opening of the upstream portion located on one side of the second opening of the first opening is connected to the second main surface from the first main surface side. A width at the first main surface of the upstream end portion is a width at the first main surface of the portion other than the upstream end portion of the upstream portion. Bigger than.
  8.  請求項7に記載の太陽電池の製造方法であって、
     前記上流側端部の前記第1の主面における幅は、前記第2の開口側に向かって広くなる。
    It is a manufacturing method of the solar cell according to claim 7,
    The width of the upstream end portion on the first main surface becomes wider toward the second opening side.
  9.  請求項7または8に記載の太陽電池の製造方法であって、
     前記下流側部分の前記一方向に沿った長さは、前記上流側端部の前記一方向に沿った長さよりも長い。
    A method for producing a solar cell according to claim 7 or 8,
    The length of the downstream portion along the one direction is longer than the length of the upstream end portion along the one direction.
  10.  光電変換部の一主面の上に印刷版を配置する工程と、
     前記印刷版の上に導電性ペーストを供給し、スキージを一の方向の一方側から他方側に向けて移動させることにより、前記一主面上に、前記一の方向に延びる複数のフィンガー部と前記一の方向に交差する他の方向に延びるバスバー部とを有する電極のパターンに前記導電性ペーストを印刷する工程を備え、
     前記印刷版は、前記フィンガー部に対応する第1の開口と、前記バスバー部に対応する第2の開口とを有し、
     前記第1の開口の前記第2の開口よりも前記一方側に位置する上流側部分の前記第2の開口に接続される上流側端部は、前記印刷版の前記光電変換部とは反対側の第1の主面から前記光電変換部側の第2の主面側に向かって先細る部分を有する、太陽電池の製造方法。
    Arranging a printing plate on one main surface of the photoelectric conversion unit;
    A plurality of finger portions extending in the one direction on the one main surface by supplying a conductive paste on the printing plate and moving the squeegee from one side to the other side in the one direction. Printing the conductive paste on a pattern of electrodes having a bus bar portion extending in the other direction intersecting the one direction,
    The printing plate has a first opening corresponding to the finger portion and a second opening corresponding to the bus bar portion,
    An upstream end connected to the second opening of the upstream portion located on the one side of the second opening of the first opening is opposite to the photoelectric conversion unit of the printing plate The manufacturing method of a solar cell which has a part which tapers toward the 2nd main surface side by the side of the said photoelectric conversion part from the 1st main surface.
  11. 請求項10に記載の太陽電池の製造方法であって、
    前記上流側端部の前記第1の主面における幅は、前記上流側部分の前記上流側端部以外の部分の前記第1の主面における幅よりも大きい。
    It is a manufacturing method of the solar cell according to claim 10,
    The width of the upstream end portion on the first main surface is larger than the width of the upstream main portion other than the upstream end portion on the first main surface.
  12.  第1の主面及び第2の主面を有するスクリーン印刷用の印刷版であって、
     一の方向に延びる第2の開口と、
     前記一の方向に交差する他の方向に延び、前記第2の開口の幅方向の両端に夫々連結される複数の第1の開口と、を有し、
     前記第1の開口の幅方向の一端に連結される第1の開口は、他端に連結される第1の開口よりも広い幅を有し、
     前記一端に連結される第1の開口は、前記第1の主面側から前記第2の主面側に向かって先細る部分を有する。
    A printing plate for screen printing having a first main surface and a second main surface,
    A second opening extending in one direction;
    A plurality of first openings extending in the other direction intersecting the one direction and connected to both ends in the width direction of the second opening,
    The first opening connected to one end in the width direction of the first opening has a width wider than the first opening connected to the other end,
    The first opening connected to the one end has a portion that tapers from the first main surface side toward the second main surface side.
  13.  第1の主面及び第2の主面を有するスクリーン印刷用の印刷版であって、
     一の方向に延びる第2の開口と、
     前記一の方向に交差する他の方向に延び、前記第2の開口の幅方向の両端に夫々連結される複数の第1の開口と、を有し、
     前記第1の開口の幅方向の一端に連結される第1の開口は、他端に連結される第1の開口よりも広い幅を有し、
     前記他端に連結される第1の開口は、前記第1の主面から前記第2の主面側に向かって先細る第1の部分と、前記第1の部分よりも前記第2の主面側に位置しており、前記第1の部分の前記第2の主面側の先端における開口面積と等しい開口面積を有する第2の部分と、を含む。
    A printing plate for screen printing having a first main surface and a second main surface,
    A second opening extending in one direction;
    A plurality of first openings extending in the other direction intersecting the one direction and connected to both ends in the width direction of the second opening,
    The first opening connected to one end in the width direction of the first opening has a width wider than the first opening connected to the other end,
    The first opening connected to the other end includes a first portion that tapers from the first main surface toward the second main surface, and the second main portion than the first portion. And a second portion that is located on the surface side and has an opening area equal to the opening area at the tip of the first portion on the second main surface side of the first portion.
  14.  請求項13に記載のスクリーン印刷用の印刷版であって、
     前記一端に連結される第1の開口は、前記第1の主面側から前記第2の主面側に向かって先細る部分を有する。
    A printing plate for screen printing according to claim 13,
    The first opening connected to the one end has a portion that tapers from the first main surface side toward the second main surface side.
PCT/JP2011/074824 2010-10-27 2011-10-27 Method for producing solar cell, and printing plate WO2012057267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-240305 2010-10-27
JP2010240305A JP2014013783A (en) 2010-10-27 2010-10-27 Method of manufacturing solar cell

Publications (1)

Publication Number Publication Date
WO2012057267A1 true WO2012057267A1 (en) 2012-05-03

Family

ID=45993970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074824 WO2012057267A1 (en) 2010-10-27 2011-10-27 Method for producing solar cell, and printing plate

Country Status (2)

Country Link
JP (1) JP2014013783A (en)
WO (1) WO2012057267A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160022991A1 (en) * 2013-03-11 2016-01-28 Ohio State Innovation Foundation Multi-carrier processing in auditory prosthetic devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3629683A1 (en) * 2018-09-27 2020-04-01 Siemens Aktiengesellschaft Printing screen for squeegee printing, method for making same and use

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163090A (en) * 1984-09-05 1986-04-01 株式会社日立製作所 Printed board of solder paste
JPH0357697A (en) * 1989-07-26 1991-03-13 Murakami Screen Kk Printing metal mask and preparation thereof
JPH0951110A (en) * 1995-08-09 1997-02-18 Yamanochi Tadashi Method for manufacturing solar cell
JP2003338631A (en) * 2002-05-22 2003-11-28 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2005150540A (en) * 2003-11-18 2005-06-09 Sharp Corp Screen for forming light receiving face electrode, method for manufacturing solar battery cell using same, and solar battery cell manufactured by same method
JP2009272405A (en) * 2008-05-02 2009-11-19 Mitsubishi Electric Corp Solar battery element and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163090A (en) * 1984-09-05 1986-04-01 株式会社日立製作所 Printed board of solder paste
JPH0357697A (en) * 1989-07-26 1991-03-13 Murakami Screen Kk Printing metal mask and preparation thereof
JPH0951110A (en) * 1995-08-09 1997-02-18 Yamanochi Tadashi Method for manufacturing solar cell
JP2003338631A (en) * 2002-05-22 2003-11-28 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2005150540A (en) * 2003-11-18 2005-06-09 Sharp Corp Screen for forming light receiving face electrode, method for manufacturing solar battery cell using same, and solar battery cell manufactured by same method
JP2009272405A (en) * 2008-05-02 2009-11-19 Mitsubishi Electric Corp Solar battery element and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160022991A1 (en) * 2013-03-11 2016-01-28 Ohio State Innovation Foundation Multi-carrier processing in auditory prosthetic devices
US10137301B2 (en) * 2013-03-11 2018-11-27 Ohio State Innovation Foundation Multi-carrier processing in auditory prosthetic devices

Also Published As

Publication number Publication date
JP2014013783A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
EP2372775B1 (en) Electrode structure of solar cell
US20120192932A1 (en) Solar cell and its electrode structure
US10693022B2 (en) Solar cell with specific front surface electrode design
WO2014096929A2 (en) Photovoltaic cell element having a specific electrode configuration
JP5879512B2 (en) Solar cell module
US20120298171A1 (en) Solar cell
KR20150088784A (en) Photovoltaic apparatus
JP2019033303A (en) Solar battery module
JP2014017277A (en) Solar cell and solar cell module
WO2013076861A1 (en) Solar cell and solar cell manufacturing method
JP6064769B2 (en) Solar cell module and solar cell
WO2012057267A1 (en) Method for producing solar cell, and printing plate
WO2012090641A1 (en) Solar cell
JP5974300B2 (en) Solar cell and manufacturing method thereof
KR20140041723A (en) Photovoltaic cell and method of manufacturing such a cell
US20140202516A1 (en) Solar cell, solar cell module, and method for manufacturing solar cell
JP2012138545A (en) Solar cell and solar cell module
EP2345084B1 (en) Solar cell and method for producing the same
DE112012006613B4 (en) Solar cell module and solar cell module manufacturing process
JP2011023622A (en) Solar cell and method for manufacturing the same
US20150144175A1 (en) Photovoltaic module with photovoltaic cells having local widening of the bus
JP2020057694A (en) Solar cell
WO2012132595A1 (en) Solar cell
TWI482289B (en) Solar cell
JP6573151B2 (en) Manufacturing method of solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP