WO2014073223A1 - Method for manufacturing solar cell, printing mask, solar cell, and solar cell module - Google Patents

Method for manufacturing solar cell, printing mask, solar cell, and solar cell module Download PDF

Info

Publication number
WO2014073223A1
WO2014073223A1 PCT/JP2013/059693 JP2013059693W WO2014073223A1 WO 2014073223 A1 WO2014073223 A1 WO 2014073223A1 JP 2013059693 W JP2013059693 W JP 2013059693W WO 2014073223 A1 WO2014073223 A1 WO 2014073223A1
Authority
WO
WIPO (PCT)
Prior art keywords
warp
solar cell
weft
electrode
yarns
Prior art date
Application number
PCT/JP2013/059693
Other languages
French (fr)
Japanese (ja)
Inventor
土井 誠
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014545587A priority Critical patent/JP5866029B2/en
Priority to CN201380048458.8A priority patent/CN104641474B/en
Priority to TW102139485A priority patent/TWI523253B/en
Publication of WO2014073223A1 publication Critical patent/WO2014073223A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/12Stencil printing; Silk-screen printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a solar cell, a printing mask, a solar cell, and a solar cell module.
  • solar cells constituting solar cell modules are mainly provided with electrodes on each of a front surface that is a light receiving surface of a substrate material such as silicon and a back surface on the opposite side.
  • a front surface that is a light receiving surface of a substrate material such as silicon
  • a back surface on the opposite side.
  • solar cells in which electrodes are formed only on the back surface of both surfaces have been put into practical use, but solar cells in which electrodes are formed on both surfaces are still widely used.
  • a reflection structure of sunlight on the surface of a substrate material such as silicon is changed, and a texture structure (unevenness) for taking the reflected light into the substrate is formed by a technique such as etching.
  • a pn bond is formed by a technique such as diffusion.
  • an antireflection film for reducing the reflection of sunlight by a light interference effect is formed on at least one surface of the substrate material using a silicon nitride film or the like.
  • Patent Documents 2 and 3 disclose a method for manufacturing a solar cell having electrodes on both the front surface side and the back surface side of a substrate material.
  • a printing mask used for screen printing is a material to be printed by fixing a base material called a screen mesh made of metal thread or chemical fiber to a mask frame, and fixing the part other than the part that allows metal paste to pass through with resin. Used for patterning.
  • a metal paste material used as an electrode material is usually made of silver as a conductive metal, but it is very expensive.
  • simply reducing the amount of electrode material used increases the resistance loss at the electrode and reduces the power generation efficiency of the solar cell. Therefore, it is required to reduce the amount of metal paste used without reducing the power generation efficiency of the solar cell.
  • the grid electrode width is preferably narrow.
  • the electrical resistance increases and the resistance loss increases only by reducing the electrode width, it is desirable that the grid electrode is thicker.
  • the thickness of the grid electrode is determined by mask specifications such as the screen mesh wire diameter and opening width.
  • the specifications are expressed using the number of yarns per inch (25.4 mm) used for the screen mesh (hereinafter referred to as mesh count) and the wire diameter of the yarns.
  • mesh count the number of yarns per inch used for the screen mesh
  • wire diameter of the yarns 200 yarns per inch and a yarn having a wire diameter of 40 ⁇ m are expressed as “200 ⁇ 40”. Therefore, the larger the number, the finer the mesh, and the relatively smaller the wire diameter.
  • the screen mesh is attached to the mask frame so that the warp or weft of the screen mesh is inclined 20 to 30 degrees with respect to the grid electrode pattern. This is because when the grid electrode pattern and the yarn are parallel, the pattern edge is covered with the yarn, so that a precise electrode pattern cannot be formed.
  • the bus electrode of the solar cell is soldered to the back bus electrode of the adjacent solar cell with a soldered copper wire and connected in series.
  • the bus electrode refers to a bus electrode on the surface side.
  • the electrode on the back side bus is described as the back bus electrode.
  • bonding strength by soldering is required, so there is a limit to reducing the bus electrode width. Therefore, in order to reduce the amount of metal paste used in the bus electrode, it is necessary to reduce the thickness of the bus electrode.
  • the bus electrode thickness is determined by mask specifications such as the screen mesh wire diameter and opening width as in the case of the grid electrode, if the grid electrode thickness is increased in order to improve power generation efficiency, the bus electrode thickness is increased. It will also be thicker. In the bus electrode, since the collected current flows on the soldered copper wire soldered on the bus electrode, increasing the thickness of the bus electrode does not reduce the resistance loss and does not improve the power generation efficiency. .
  • Japanese Patent No. 4486622 (see paragraph 0014) Japanese Patent No. 4319006 (see paragraph 0019) Japanese Patent No. 4481869 (see paragraph 0052)
  • the thickness of the grid electrode In order to improve the power generation efficiency of the solar cell, when the thickness of the grid electrode is increased, the thickness of the bus electrode is also increased, and the amount of metal paste used is increased. On the other hand, if the thickness of the bus electrode is reduced in order to reduce the amount of metal paste used, the thickness of the grid electrode is also reduced, resulting in a problem that the power generation efficiency of the solar cell is significantly reduced.
  • the present invention was made to solve the above problems, and a solar cell manufacturing method capable of reducing the amount of metal paste used as an electrode material while maintaining the same power generation efficiency of the solar cell, It aims at obtaining the printing mask used in the manufacturing method, a solar cell provided with the electrode manufactured by the manufacturing method, and a solar cell module.
  • a paste containing a conductive material as an electrode material is applied to an electrode forming surface of a substrate through a print mask corresponding to the electrode shape having a bus electrode portion and a grid electrode portion.
  • a method of manufacturing a solar cell including a screen printing process includes the step of applying the paste using the printing mask using a screen mesh in which the bus electrode portion has a larger number of yarns than the grid electrode portion and is reticulated. To do.
  • the printing mask of the present invention is a printing mask used when applying a paste containing a conductive material as an electrode material to the electrode forming surface of the substrate,
  • the screen mesh for holding the paste is characterized in that the bus electrode portion is formed by arranging yarns in a larger number than the grid electrode portion.
  • the present invention it is possible to reduce the amount of metal paste used in the grid electrode by using a printing mask using a screen mesh in which the yarn is arranged in a larger number than the grid electrode portion in the bus electrode portion.
  • the amount of metal paste used at the bus electrode can be reduced. Thereby, the manufacturing cost of the solar cell can be reduced while maintaining the power generation efficiency of the solar cell at the same level.
  • FIG. 1 is an external view showing the surface of a solar cell including electrodes formed by the method for manufacturing a solar cell according to the first embodiment of the present invention.
  • FIG. 2 is an external view showing the back surface of the solar cell.
  • 3 is a cross-sectional view of the EE portion of the solar cell shown in FIGS. 1 and 2.
  • FIG. 4 is a schematic cross-sectional view of a stage portion of a printing machine used in a screen printing process.
  • FIG. 5 is an enlarged cross-sectional view of the main part of FIG.
  • FIG. 6 is a plan view showing an example of a substrate material on which an electrode is formed by the method of Embodiment 1 of the present invention.
  • FIG. 7 is a plan view showing an example of a substrate material on which an electrode is formed by the method of Embodiment 1 of the present invention.
  • FIG. 8 is a top view showing a printing mask used in the screen printing process.
  • FIG. 9 is an enlarged cross-sectional view of the FF portion of the grid electrode portion of FIG.
  • FIG. 10 is an enlarged cross-sectional view of the GG portion of the bus electrode portion of FIG.
  • FIG. 11 is a schematic plan view of a mask (blank) before forming an electrode pattern in the printing mask used in the method of Embodiment 1 of the present invention.
  • FIG. 12 is an enlarged plan view showing details of the screen mesh according to the first embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of the HH portion of the screen mesh of FIG.
  • FIG. 14 is a schematic plan view after an electrode pattern is formed on a printing mask used in the electrode forming method according to Embodiment 1 of the present invention.
  • 15 is an enlarged plan view showing details of a part of the configuration shown in FIG.
  • FIG. 16 is a schematic diagram enlarging a part of the grid electrode portion of the screen mesh according to the first embodiment.
  • FIG. 17 is a list showing transmission thicknesses of grid electrode portions of the screen mesh according to the first embodiment.
  • FIG. 18 is a schematic enlarged view of a part of the bus electrode portion of the screen mesh according to the first embodiment.
  • FIG. 19 is a list showing transmission thicknesses of bus electrode portions of the screen mesh according to the first embodiment.
  • FIG. 20 is a list summarizing the comparison between the conventional example and the present embodiment.
  • FIG. 21 is an enlarged plan view showing details of the screen mesh according to the second embodiment of the present invention.
  • 22 is a cross-sectional view of the JJ portion of the screen mesh of FIG.
  • FIG. 23 is a list showing the angles of the densely packed portions of the screen mesh of the second embodiment where the yarns are densely packed.
  • FIG. 24 is a list showing the widths of the dense portions where the yarns are dense, of the screen mesh of the second embodiment.
  • FIG. 25 is a schematic cross-sectional view illustrating the procedure of the method for manufacturing the solar cell module according to Embodiment 3 of the present invention.
  • FIG. 26 is a schematic cross-sectional view illustrating the procedure of the method for manufacturing the solar cell module according to Embodiment 3 of the present invention.
  • FIG. 1 is a diagram illustrating a surface that is a light-receiving surface of a solar cell including an electrode formed by the method for forming an electrode of a solar cell according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a back surface opposite to the light receiving surface of the solar cell shown in FIG. 3 is a cross-sectional view taken along the line EE of FIGS.
  • a surface electrode composed of a grid electrode 21 and a bus electrode 22 is provided on the surface of the solar cell 1.
  • the grid electrode 21 and the bus electrode 22 are orthogonal to each other.
  • the horizontal direction indicated by the arrow X in FIGS. 1 and 2 is the longitudinal direction of the grid electrode 21.
  • the vertical direction indicated by the arrow Y in FIGS. 1 and 2 is the longitudinal direction of the bus electrode 22.
  • a back aluminum electrode 23 and a back bus electrode 24 are provided on the back surface of the solar cell 1.
  • FIG. 3 shows a cross-sectional view taken along the line EE of FIGS.
  • the upper side is a light receiving surface (surface).
  • an n layer 32 is formed by phosphorus diffusion, and a photoelectric conversion part having a pn junction is formed.
  • An antireflection film 33 is formed on the n layer 32.
  • a bus electrode 22 is provided above the antireflection film 33. The antireflection film 33 under the bus electrode 22 is melted by firing, and the bus electrode 22 is in electrical contact with the n layer 32.
  • a back aluminum electrode 23 and a back bus electrode 24 are provided on the back side.
  • FIG. 4 is a schematic cross-sectional view of the stage portion of the printing machine used in the screen printing process.
  • the metal paste 5 is applied to the electrode forming surface of the substrate material 3 through the printing mask 2.
  • FIG. 5 is an enlarged view of a main part of FIG.
  • the printing machine shown in FIGS. 4 and 5 includes a stage 4 for placing the substrate material 3, and the stage 4 includes a suction mechanism 7 for fixing the substrate material 3.
  • the suction mechanism 7 fixes the substrate material 3 to the stage 4 by sucking air at the stage 4.
  • the printing mask 2 includes a mask frame 6, a warp thread 11, and a weft thread 12, and includes a screen mesh 9 attached to the printing surface side of the mask frame 6 and a photosensitive emulsion 10.
  • FIG. 5 is drawn with the stage 4 and the mask frame 6 omitted.
  • FIG. 6 and 7 are plan views showing examples of substrate materials for forming electrodes according to the first embodiment.
  • the substrate material 3 for example, a square shape shown in FIG. 6 or a rounded quadrangular shape having four corners of an arc as shown in FIG. 7 is used.
  • the one side M of the square shape shown in FIG. 6 and the one side equivalent width M of the rounded square shape shown in FIG. 7 are, for example, 156 mm.
  • the substrate material 3 for example, a silicon wafer that is a thin plate-like silicon is used.
  • the substrate material 3 may be made of any material as long as an electrode can be formed by a screen printing process.
  • the metal paste 5 includes a conductive material as an electrode material, and the components are adjusted so as to maintain a desired viscosity.
  • Typical conductive materials used for the metal paste 5 include gold, silver, copper, platinum and palladium.
  • the metal paste 5 contains one or more of these conductive materials.
  • the printing machine applies the metal paste 5 to the electrode forming surface of the substrate material 3 through the print mask 2 by scanning the squeegee 8 on the print mask 2 on which the metal paste 5 is placed.
  • the metal paste 5 is not passed through the portion covered with the photosensitive emulsion 10, but the metal paste 5 is passed through the portion where the screen mesh 9 is exposed.
  • the pattern is transferred onto the electrode forming surface.
  • the metal paste 5 applied to the substrate material 3 by screen printing becomes an electrode by a process generally called firing.
  • heat treatment is performed so that the peak temperature is 900 ° C. or lower, preferably 750 to 800 ° C.
  • the heat treatment time in the firing furnace is generally within 2 minutes.
  • pn separation When the separation of the p-type electrode and the n-type electrode (hereinafter referred to as pn separation) is performed prior to the formation of the electrode by screen printing, in order to suppress the occurrence of leakage current due to the adhesion of the electrode material, It is necessary to suppress adhesion of the metal paste 5 to 13 and to provide a margin 14. For this purpose, it is desirable to form a pattern so that the peripheral portion of the printing mask is covered with the photosensitive emulsion 10. Also, when performing pn separation by laser processing or the like after electrode formation, it is desirable to suppress adhesion of the metal paste 5 to the outer edge side surface 13 and to provide a margin 14 in order to suppress the occurrence of leakage current.
  • the solar cell electrode is formed by the process as described above.
  • a solar cell is manufactured with the manufacturing method similar to the past except the formation method of the electrode for solar cells.
  • FIG. 8 is a top view showing the printing mask 2 used in the screen printing process
  • FIG. 9 is an enlarged sectional view of the FF portion (grid electrode portion) of FIG.
  • FIG. 9 is a cross-sectional view at an angle parallel to the weft 12.
  • the horizontal direction indicated by the arrow X in FIG. 8 is the longitudinal direction of the grid electrode 21.
  • the vertical direction indicated by the arrow Y in FIG. 8 is the longitudinal direction of the bus electrode 22.
  • the screen mesh 9 has warp yarns 11, weft yarns 12 and photosensitive emulsion 10.
  • the photosensitive emulsion 10 is provided with a grid electrode opening 41.
  • FIG. 10 is an enlarged cross-sectional view of the GG portion (bus electrode portion) of FIG.
  • FIG. 10 is a cross-sectional view at an angle parallel to the weft 12.
  • the screen mesh 9 has warp yarns 11, weft yarns 12 and photosensitive emulsion 10.
  • the photosensitive emulsion 10 is provided with a bus electrode opening 42.
  • the printing mask 2 according to the present embodiment is characterized in that the screen mesh for holding the paste is netted so that two threads are formed at the bus electrode portion.
  • FIG. 11 is a schematic diagram of a mask (blank) before forming an electrode pattern in the printing mask used in the electrode forming method of the first embodiment.
  • FIG. 12 is an enlarged view of the square ABCD in FIG.
  • the square part ABCD in FIG. 11 corresponds to the outer peripheral corner part ABCD in FIG.
  • the vertical direction indicated by the arrow X in FIG. 11 is the direction in which the grid electrode 21 is in the longitudinal direction.
  • the horizontal direction indicated by the arrow Y in FIG. 11 is the direction in which the bus electrode 22 is in the longitudinal direction.
  • FIG. 11 is a layout view in which FIG. 8 is rotated 90 degrees clockwise.
  • the mask (blank) is composed of a screen mesh 9 and a mask frame 6.
  • a screen mesh 9 is attached to the printing surface side of the mask frame 6.
  • FIG. 12 is a plan view showing a method for making the screen mesh 9.
  • the screen mesh 9 has warp threads 111 to 120 and weft threads 131 to 140.
  • diagonal lines are provided for each warp yarn.
  • the conventional screen mesh is netted so that the warp and weft alternate alternately, but the screen mesh 9 of the first embodiment is netted so that the top and bottom are partially continuous.
  • the weft 131 is below the warp 111, above the warp 112, 113, below the warp 114, above the warp 115, below the warp 116, above the warp 117, below the warp 118, above the warp 119, below the warp 120. Netted to pass through.
  • the warp yarns 112 and 113 are different from conventional nets in that they pass the upper side continuously.
  • FIG. 13 is a sectional view taken along line HH in FIG. It is sectional drawing in a weft 131 part. Since the weft 131 passes below the warp 111 and above the warp 112, the position of the weft 131 is changed from the bottom to the top between the warp 111 and the warp 112. Therefore, a certain distance is required between the warp yarn 111 and the warp yarn 112 in order to pass the weft 131. Usually, the interval between the warp yarn 111 and the warp yarn 112 needs to be about 2 to 4 times the diameter of the weft yarn 131.
  • the distance between the warp yarn 112 and the warp yarn 113 is not limited at the position of the weft yarn 131 and can be brought close to each other.
  • the weft 132 is above the warp 111, below the warp 112, 113, above the warp 114, below the warp 115, above the warp 116, below the warp 117, above the warp 118, below the warp 119, above the warp 120. Netted to pass through.
  • the warp yarns 112 and 113 are different from conventional nets in that they pass continuously on the lower side.
  • the weft 133 is below the warp 111, above the warp 112, below the warp 113, 114, above the warp 115, below the warp 116, above the warp 117, below the warp 118, above the warp 119, below the warp 120. Netted to pass through.
  • the warp yarns 113 and 114 are different from the conventional nets in that they pass through the lower side continuously.
  • the weft 131 passes above the warp yarns 112 and 113.
  • the weft 132 passes under the warp yarns 112 and 113.
  • the weft thread 133 passes below the warp threads 113 and 114.
  • the weft yarn 134 passes above the warp yarns 113 and 114.
  • the weft 135 passes below the warps 113 and 114.
  • the weft thread 136 passes under the warp threads 114 and 115.
  • the weft thread 137 passes above the warp threads 114 and 115.
  • the weft 138 passes under the warp yarns 114 and 115.
  • the weft 139 passes below the warp yarns 115 and 116.
  • the weft yarn 140 passes above the warp yarns 115 and 116.
  • the warps 112 and 113 can be brought close to each other.
  • the warps 112, 113 can be brought closer.
  • the warp threads 113 and 114 can be brought close to each other.
  • the warp yarns 113 and 114 can be brought close to each other.
  • the warp yarns 113 and 114 can be brought close to each other at the position of the weft yarn 135.
  • the warps 114, 115 can be brought close to each other.
  • the warp threads 114 and 115 can be brought close to each other.
  • the warp threads 114 and 115 can be brought close to each other.
  • the warp threads 115 and 116 can be brought close to each other.
  • the warps 115, 116 can be brought closer.
  • the distance between the warp yarns can be reduced, so that the warp yarns can be arranged more densely than the conventional example. That is, the number of warp yarns per unit length can be increased.
  • the warp 113 When paying attention to the warp, the warp 113 is at the same upper side as the warp 112 at the position of the weft 132 and is therefore close to the warp 112. Since the weft 133 is on the same upper side as the warp 114, it is close to the warp 114. That is, the position of the warp yarn 113 is shifted from the warp yarn 112 side to the warp yarn 114 side at an intermediate position 161 between the weft yarn 132 and the weft yarn 133. Similarly, the position of the warp yarn 114 is shifted from the warp yarn 113 side to the warp yarn 115 side at an intermediate position 162 between the weft yarn 135 and the weft yarn 136. Similarly, the position of the warp yarn 115 is shifted from the warp yarn 114 side to the warp yarn 116 side at an intermediate position 163 between the weft yarn 138 and the weft yarn 139.
  • a dense portion 150 where the distance between the warp yarns is short is formed diagonally as in the region surrounded by the broken line in FIG. be able to.
  • the dense spot 150 is continuously formed in the Y direction from the upper end to the lower end of the mesh.
  • An angle formed by the dense portion 150 and warps other than the dense portion is defined as ⁇ 2.
  • the example in which the continuous warp yarns are shifted to the side for every three weft yarns has been described, but it is not limited to every three weft yarns. Any configuration such as every one weft, every two wefts, every four wefts, every five wefts, etc. may be used. By changing this configuration, the angle ⁇ 2 of the densely-packed portion 150 formed obliquely can be changed.
  • FIG. 14 is a schematic view after the electrode pattern is formed in the printing mask used in the electrode forming method of the first embodiment.
  • FIG. 15 is an enlarged view of a part of FIG.
  • the vertical direction indicated by the arrow X in FIG. 14 is the longitudinal direction of the grid electrode 21.
  • the horizontal direction indicated by the arrow Y in FIG. 14 is the longitudinal direction of the bus electrode 22.
  • the printing mask 2 is obtained by coating and forming a pattern of the photosensitive emulsion 10 on the screen mesh 9, and the screen mesh 9 and the photosensitive emulsion 10 covering a part of the screen mesh 9. And a mask frame 6.
  • the photosensitive emulsion 10 has an opening 20 composed of a grid electrode opening 41 and a bus electrode opening 42.
  • the grid electrode openings 41 are arranged so that the vertical direction and the X direction in FIG.
  • the bus electrode openings 42 are arranged so that the horizontal direction and the Y direction in FIG.
  • the screen mesh 9 is affixed to the mask frame 6 by rotating from the arrangement of FIG. 12 so that the dense location 150 overlaps the bus electrode opening 42.
  • the Y direction becomes the horizontal direction and overlaps with the bus electrode opening 42 of FIG.
  • bus electrode openings 42 are provided.
  • Four dense places 150 are provided on the screen mesh 9 so as to overlap the four places, and the dense places 150 are rotated and pasted so as to be in the horizontal direction, and then the bus electrode openings 42 are arranged at the dense places. It may be installed according to 150.
  • the warp yarns can be densely arranged only at the positions of the bus electrode openings 42.
  • the metal paste 5 is blocked from passing through the portion covered with the photosensitive emulsion 10, and the metal paste 5 is applied to the portion where the screen mesh 9 is exposed, that is, the opening 20. Let it pass.
  • the mask frame 6 holds the photosensitive emulsion 10 and the screen mesh 9.
  • the configuration of the printing mask 2 may be appropriately changed as long as it has characteristics suitable for screen printing for electrode formation.
  • the printing mask 2 generally uses stainless steel as a screen mesh material, but instead of stainless steel, a screen mesh made of a synthetic fiber material or a screen mesh made of a metal material other than stainless steel is used. It may be what you do.
  • the printing mask 2 may be used by attaching a metal member pattern to a screen mesh in place of the photosensitive emulsion 10.
  • FIG. 16 shows an enlarged schematic view of a part of the grid electrode portion of the screen mesh of the first embodiment.
  • the configuration of the screen mesh of the grid electrode portion is the same as the configuration of the conventional screen mesh.
  • the warp yarns 401 and 402 are formed with a warp yarn wire diameter Dv1.
  • the warp yarns 401 and 402 are arranged at an interval of the warp yarn opening width Wv1.
  • the warp pitch Pv1 is a total value of the warp opening width Wv1 and the warp wire diameter Dv1.
  • the weft yarns 403 and 404 are formed with a weft yarn diameter Dh1.
  • the wefts 403 and 404 are arranged with an interval of the weft opening width Wh1.
  • the weft pitch Ph1 is a total value of the weft opening width Wh1 and the weft wire diameter Dh1.
  • the weft 403 passes below the warp yarn 401 and passes above the warp yarn 402.
  • the weft 404 passes above the warp 401 and passes below the warp 402.
  • the warp yarn diameter Dv1 and the weft yarn diameter Dh1 are the same.
  • the warp opening width Wv1 and the weft opening width Wh1 are the same.
  • transmission thickness As an index indicating the amount of paste discharged from the screen mesh, an index called transmission thickness is used.
  • the thickness after the paste spreads is called the transmission thickness.
  • it is an index generally referred to as a permeation volume or a permeation volume, it is an index having a dimension of length, and is referred to as a permeation thickness in this specification.
  • the transmission thickness is expressed by the following equation.
  • ⁇ Thickness is usually the same as (warp yarn diameter + weft yarn diameter).
  • a screen mesh that has been crushed after knitting yarn can have a thickness of about 50% of the warp wire diameter + the weft wire diameter.
  • FIG. 17 shows a list of calculated transmission thicknesses of the grid electrode part.
  • the warp yarn diameter Dv1 and the weft yarn diameter Dh1 were the same.
  • the warp opening width Wv1 and the weft opening width Wh1 were the same.
  • transmission thickness of the conventional screen mesh also becomes the same thickness.
  • A1 is “200 ⁇ 40”.
  • the opening width is equal to the value obtained by subtracting the wire diameter from the pitch. In A1, since the wire diameter is 40 ⁇ m, the opening width is 87 ⁇ m.
  • the thickness is assumed to be equal to the thickness of a general screen mesh.
  • the thickness shown in FIG. 17 is that of a general screen mesh.
  • the transmission height is 29.6 ⁇ m.
  • A2 is “250 ⁇ 30”.
  • the transmission height is 22.8 ⁇ m.
  • A3 is “290 ⁇ 20”.
  • the transmission height is 20.8 ⁇ m.
  • A4 is “360 ⁇ 16”.
  • the transmission height is 16.7 ⁇ m.
  • FIG. 18 shows an enlarged schematic view of a part of the bus electrode portion of the screen mesh according to the first embodiment.
  • the warp yarns 441, 442, 443, and 444 are formed with the warp wire diameter Dv2.
  • the warp yarn 443 and the warp yarn 444 are arranged with the warp yarn adjacent width Wv3.
  • the warp yarn 441 and the warp yarn 442 are arranged with the warp yarn adjacent width Wv3.
  • the warp yarn 442 and the warp yarn 443 are arranged with a warp yarn opening width Wv2.
  • the warp pitch Pv2 is a total value of two warp opening width Wv2, warp adjacent width Wv3, and warp wire diameter Dv1.
  • the weft yarns 445 and 446 are formed with a weft yarn wire diameter Dh2.
  • the weft 445 and the weft 446 are arranged with a weft opening width Wh2.
  • the weft 445 passes below the warp yarns 441 and 442 and passes above the warp yarns 443 and 444.
  • the weft 446 passes above the warp yarns 441 and 442 and passes below the warp yarns 443 and 444.
  • the weft pitch Ph2 is a total value of the weft opening width Wh2 and the weft wire diameter Dh2.
  • the warp yarn diameter Dv2 and the weft yarn diameter Dh2 are the same.
  • the warp opening width Wv2 and the weft opening width Wh2 are the same.
  • the transmission thickness is expressed by the following equation.
  • Warp pitch Pv2 warp yarn opening width Wv2 + warp yarn adjacent width Wv3 + 2 ⁇ warp yarn wire diameter Dv2
  • Weft pitch Ph2 weft opening width Wh2 + weft wire diameter Dh2
  • FIG. 19 shows a list of calculated transmission thicknesses of the screen mesh according to the present embodiment.
  • the adjacent ratio is a ratio between the warp adjacent width Wv3 and the warp wire diameter Dv2. When the adjacent ratio is 0, it indicates that the two warps are closely arranged. When the adjacency ratio is 0.5, it indicates that the two warp yarns are arranged with an interval of half the wire diameter of the warp yarns.
  • the warp yarn opening width Wv2 and the weft yarn opening width Wh2 were the same as the opening widths Wv1 and Wh1 of the grid electrode portion.
  • B1 is the case where the wire diameter and opening width are the same as “200 ⁇ 40”, and two warps are closely arranged.
  • the transmission height is 22.5 ⁇ m.
  • B2 is the case where the same wire diameter and opening width as “250 ⁇ 30” are used, and two warp yarns are closely arranged.
  • the transmission height is 17.6 ⁇ m.
  • B3 is the case where the wire diameter and opening width are the same as “290 ⁇ 20”, and two warps are closely arranged.
  • the transmission height is 17.0 ⁇ m.
  • B4 is the case where the wire diameter and opening width are the same as “360 ⁇ 16”, and two warp yarns are closely arranged.
  • the transmission height is 13.6 ⁇ m.
  • C1 is the case where the same wire diameter and opening width as “200 ⁇ 40” are used, and two warps are arranged with half the wire diameter open.
  • the transmission height is 20.1 ⁇ m.
  • C2 is the case where the same wire diameter and opening width as “250 ⁇ 30” are used, and two warps are arranged with half the wire diameter open.
  • the transmission height is 15.8 ⁇ m.
  • C3 is the case where the wire diameter and opening width are the same as “290 ⁇ 20”, and two warps are arranged with half the wire diameter open.
  • the transmission height is 15.5 ⁇ m.
  • C4 is the case where the same wire diameter and opening width as “360 ⁇ 16” are used, and two warps are arranged with half the wire diameter open. In C4, the transmission height is 12.5 ⁇ m.
  • FIG. 20 shows a table summarizing comparison of transmission thicknesses of the grid electrode portion and the bus electrode portion. Since the configuration of the screen mesh of the grid electrode portion is the same as the configuration of the conventional screen mesh, FIG. 20 is also a comparison of the transmission thickness of the bus electrode portion of the conventional example and the first embodiment.
  • the transmission thickness ratio is a ratio of the transmission thickness of the bus electrode portion to the transmission thickness of the grid electrode portion. With a wire diameter of 40 ⁇ m and an opening width of 87 ⁇ m, the transmission thickness of the bus electrode portion is reduced to 76% when two warps are closely arranged. When two warp yarns are arranged with half the wire diameter open, the transmission thickness is reduced to 84%.
  • the transmission thickness of the bus electrode portion is reduced to 77%.
  • the transmission thickness is reduced to 84%.
  • the transmission thickness of the bus electrode portion is reduced to 81% when two warps are closely arranged.
  • the transmission thickness is reduced to 86%.
  • the transmission thickness of the bus electrode portion is reduced to 82% when two warps are closely arranged.
  • the transmission thickness is reduced to 86%.
  • the screen mesh 9 used for the printing mask 2 is arranged so that the dense location 150 and the bus electrode opening 42 overlap each other.
  • the transmission thickness at the bus electrode can be reduced without changing the transmission thickness of the metal paste 5 at the grid electrode. That is, the amount of the metal paste 5 used at the bus electrode can be reduced without changing the shape of the grid electrode. For example, when two warps are arranged with a half of the wire diameter with a wire diameter of 20 ⁇ m and an opening width of 68 ⁇ m, the amount of metal paste used in the bus electrode is reduced to 86% as the transmission thickness decreases. be able to.
  • the effect when the wire diameter of the warp and the wire diameter of the weft is the same has been described.
  • the same effect can be obtained when the wire diameter of the warp and the wire diameter of the weft are changed.
  • the diameter and the wire diameter of the weft may be changed.
  • the paste is applied to a substrate material such as silicon by using a screen mesh in which a larger number of threads are arranged in the bus electrode portion than in the grid electrode portion.
  • the amount of metal paste used for the bus electrode can be reduced without changing the amount of paste used for the grid electrode. Thereby, the usage-amount of a metal paste can be reduced, keeping the electric power generation efficiency of a solar cell comparable.
  • the electrode forming method according to the first embodiment of the present invention by using the above-described printing mask, it is possible to reduce the amount of metal paste used for the front bus electrode even if a conventional printing machine is used. . For this reason, according to the present embodiment, it is possible to obtain a reduction in the amount of metal paste used by a screen printing method similar to the conventional method except that the printing mask is changed. Moreover, the electrode formation method of this invention can be easily implemented by adding to the specification of a printing mask with respect to the method of a comparative example. The electrode forming method of the present invention is particularly useful for an electrode on the light receiving surface side of a solar cell.
  • the grid electrode is used.
  • the amount of metal paste used at the bus electrode can be reduced without reducing the amount of metal paste used at the bus. Thereby, the manufacturing cost of the solar cell can be reduced while maintaining the power generation efficiency of the solar cell at the same level.
  • the solar cell manufacturing method, the printing mask, and the solar cell according to the present embodiment are useful for reducing the cost of the solar cell.
  • FIG. 1 The printing mask according to the second embodiment of the present invention will be described in detail.
  • the solar cell electrode forming method and solar cell according to the second embodiment of the present invention are the same as those of the first embodiment except for the print mask and the electrode shape formed thereby.
  • FIG. 21 and 22 show the configuration of the screen mesh 501 according to the second embodiment of the present invention, in which the configuration in which the warp yarns are continuous is changed.
  • the second embodiment is different from the first embodiment in that a plurality of adjacent portions of warp yarns are continuously provided.
  • FIG. 21 is a diagram showing a method for making the screen mesh 501.
  • the screen mesh 501 has warps 511 to 520 and wefts 531 to 540.
  • the weft 531 is netted so as to pass under the warp yarns 511 and 512, above the warp yarns 513 and 514, below the warp yarns 515 and 516, above the warp yarns 517 and 518, below the warp yarn 519, and above the warp yarn 520. That is, the nets are formed so that four sets of warp yarns continuously passing on the same side are arranged adjacent to each other.
  • FIG. 22 is a sectional view taken along line JJ in FIG. It is sectional drawing in a weft 531 part. Since the weft 531 passes under the warp 512 and above the warp 513, the position of the weft 531 is changed from the bottom to the top between the warp 512 and the warp 513. Accordingly, the gap between the warp yarn 512 and the warp yarn 513 requires a certain amount of space in order to pass the weft yarn 531.
  • the gap between the warp yarn 514 and the warp yarn 515 needs a certain distance in order to pass the weft yarn 531.
  • the weft 531 passes under the warp 516 and above the warp 517, a certain distance is required between the warp 516 and the warp 517 in order to pass the weft 531.
  • the warp 518 and the warp 519 need a certain distance to pass the weft 531.
  • the weft 531 passes over the warp 513 and the warp 514, the position does not change between the warp 513 and the warp 514. Therefore, the distance between the warp yarn 513 and the warp yarn 514 is not limited and can be approached. Further, since the weft 531 passes under the warp 515 and the warp 516, the distance between the warp 515 and the warp 516 is not limited and can be made closer. Further, since the weft 531 passes over the warp 517 and the warp 518, the distance between the warp 517 and the warp 518 is not limited and can be made closer.
  • the weft 531 passes below the warp yarns 511 and 512, above the warp yarns 513 and 514, below the warp yarns 515 and 516, and above the warp yarns 517 and 518.
  • the weft 532 passes above the warp yarns 511 and 512, below the warp yarns 513 and 514, above the warp yarns 515 and 516, and below the warp yarns 517 and 518.
  • the weft 533 passes below the warp yarns 511 and 512, above the warp yarns 513 and 514, below the warp yarns 515 and 516, and above the warp yarns 517 and 518.
  • the weft 534 passes below the warp yarns 512 and 513, above the warp yarns 514 and 515, below the warp yarns 516 and 517, and above the warp yarns 518 and 519.
  • the weft 535 passes above the warp yarns 512 and 513, below the warp yarns 514 and 515, above the warp yarns 516 and 517, and below the warp yarns 518 and 519.
  • the weft 536 passes below the warp yarns 512 and 513, above the warp yarns 514 and 515, below the warp yarns 516 and 517, and above the warp yarns 518 and 519.
  • the weft 537 passes below the warp yarns 513 and 514, above the warp yarns 515 and 516, below the warp yarns 517 and 518, and above the warp yarns 519 and 520.
  • the weft 538 passes above the warp yarns 513 and 514, below the warp yarns 515 and 516, above the warp yarns 517 and 518, and below the warp yarns 519 and 520.
  • the weft 539 passes below the warps 513, 514, above the warps 515, 516, below the warps 517, 518, and above the warps 519, 520.
  • the weft 540 passes below the warp yarns 514 and 515, above the warp yarns 516 and 517, below the warp yarns 518 and 519, and above the warp yarn 520.
  • the warp yarns 511, 512 can be brought close to each other.
  • the warp yarns 513 and 514 can be brought close to each other.
  • the warp yarns 515 and 516 can be brought close to each other.
  • the warp yarns 517 and 518 can be brought close to each other.
  • the warp yarns 512 and 513 can be brought close to each other.
  • the warp yarns 514 and 515 can be brought close to each other. Further, the warps 516 and 517 can be brought close to each other. Moreover, the warp yarns 518 and 519 can be brought close to each other. At the positions of the weft yarns 537, 538, 539, the warp yarns 513, 514 can be brought close to each other. Moreover, the warp yarns 515 and 516 can be brought close to each other. Moreover, the warp yarns 517 and 518 can be brought close to each other. Moreover, the warp yarns 519 and 520 can be brought close to each other. At the position of the weft 540, the warps 514, 515 can be brought closer to each other. Further, the warps 516 and 517 can be brought close to each other. Moreover, the warp yarns 518 and 519 can be brought close to each other.
  • a warp yarn can be arrange
  • the warp 512 When paying attention to the warp, the warp 512 is located on the same upper side as the warp 511 at the position of the weft 533, and thus is close to the warp 511. Since the position of the weft 534 is on the same upper side as the warp 513, it is close to the warp 513. That is, the position of the warp yarn 512 is shifted from the warp yarn 511 side to the warp yarn 513 side at an intermediate position between the weft yarn 533 and the weft yarn 534. Similarly, the position of the warp yarn 513 is shifted from the warp yarn 512 side to the warp yarn 514 side at an intermediate position between the weft yarn 536 and the weft yarn 537.
  • the position of the warp yarn 514 is shifted from the warp yarn 513 side to the warp yarn 515 side at an intermediate position between the weft yarn 533 and the weft yarn 534. Further, the position is shifted from the warp yarn 513 side to the warp yarn 515 side at an intermediate position between the weft yarn 539 and the weft yarn 540.
  • the dense portion 550 in which the distance between the warp yarns is short is formed diagonally as in the region surrounded by the broken line in FIG. be able to.
  • the dense spot 550 is continuously formed in the Y direction from the upper end to the lower end of the mesh.
  • the angle and width of the crowded area 550 are calculated.
  • the warp cycle for shifting the warp yarns to the side is Nh2 and the warp yarn continuous group in which the warp yarns are continuous is Nv2
  • the crowded portion angle ⁇ 2 that is an angle formed by the warp yarn and the crowded portion 550
  • FIG. 23 shows a calculation example of the crowded portion angle ⁇ 2 when the warp period Nh2 is changed.
  • the weft yarn pitch Ph2 and the warp yarn pitch Pv2 were calculated under the condition of C3 in FIG.
  • the weft pitch Ph2 is 88 ⁇ m and the warp pitch Pv2 is 118 ⁇ m.
  • the warp period Nh2 is increased, the crowded portion angle ⁇ 2 is decreased.
  • the crowded portion angle ⁇ 2 is 24.1 °.
  • the warp period Nh2 need not be constant over the entire length in the Y direction.
  • the dense portion angle ⁇ 1 is between 33.9 ° when the warp cycle is 2 and 24.1 ° when the warp cycle is 3 can do. In this manner, by adjusting the warp yarn period, it is possible to realize an arbitrary crowded portion angle ⁇ 2.
  • FIG. 24 shows a calculation example of the crowded portion width L2 when the warp yarn period Nh2 and the warp yarn continuous set Nv2 are changed.
  • the weft yarn pitch Ph2 and the warp yarn pitch Pv2 were calculated under the condition of C3 in FIG.
  • the weft pitch Ph2 is 88 ⁇ m and the warp pitch Pv2 is 118 ⁇ m.
  • the warp cycle Nh2 is 3, and the warp yarn continuous set Nv2 is 15, the crowded portion width L2 is 1932 ⁇ m ⁇ 1.9 mm.
  • the bus width is 2 mm
  • the wire diameters Dv2 and Dh2 are 20 ⁇ m
  • the warp opening width Wv2 is 68 ⁇ m
  • the warp adjacent width Wv3 is 10 ⁇ m
  • the warp period Nh2 is 3
  • the warp continuous group Nv2 is 15 sets. Then, the stainless steel mesh is rotated by (24.1 + 90) ° and attached to the printing mask, so that the bus opening and the dense portion can be arranged to coincide with each other.
  • the dense portion width is slightly smaller than the bus electrode width.
  • the dense portion where the warp yarns are partially arranged is formed. Can do.
  • the dense portion width which is the width of the place where the warp yarns are densely arranged can be freely selected.
  • the dense point angle ⁇ 2 that is an angle formed by the warp yarns and the dense points can be freely selected.
  • the paste is applied to a substrate material such as silicon by using a screen mesh in which a larger number of threads are arranged in the bus electrode portion than in the grid electrode portion.
  • the amount of metal paste used for the bus electrode can be reduced without changing the amount of paste used for the grid electrode. Thereby, the usage-amount of a metal paste can be reduced, keeping the electric power generation efficiency of a solar cell comparable.
  • the use amount of the metal paste used for the front bus electrode can be reduced by using the above-described printing mask even if a usual printing machine is used. .
  • the electrode formation method of this invention can be easily implemented by adding to the specification of a printing mask with respect to the method of a comparative example.
  • the electrode forming method of the present invention is particularly useful for an electrode on the light receiving surface side of a solar cell.
  • the grid electrode is used.
  • the amount of metal paste used at the bus electrode can be reduced without reducing the amount of metal paste used at the bus.
  • the manufacturing cost of the solar cell can be reduced while maintaining the power generation efficiency of the solar cell at the same level.
  • the dense portion width which is the width of the place where the warp yarns are densely arranged can be freely selected.
  • the dense portion angle which is the angle formed by the warp yarns and the dense portions, can be freely selected.
  • the solar cell manufacturing method, the printing mask, and the solar cell according to the second embodiment are useful for reducing the cost of the solar cell.
  • FIG. 25 and 26 are schematic cross-sectional views illustrating the procedure of the method for manufacturing the solar cell module according to the third embodiment.
  • the upper side of FIGS. 25 and 26 is the light receiving surface side.
  • FIG. 25 is a diagram of the solar cell module installed state and a state where the upper side is the light receiving surface side.
  • the translucent resin member 16 is installed on the translucent substrate 15.
  • the translucent resin member 16 is provided with a solar cell 17 with wiring.
  • the solar cell with wiring 17 has a predetermined number of solar cells 1 (see FIG.
  • the solar cell with wiring 17 is installed on the translucent resin member 16 with the back surface of each solar cell 1 facing upward and the front surface facing the translucent substrate 15.
  • FIG. 25 shows a state in which the translucent substrate 15, the translucent resin member 16, the solar cell 17 with wiring, the translucent resin member 16, and the back sheet 18 are stacked in order from the top of the figure.
  • a solar cell module integrated with 18 is produced.
  • a vacuum thermocompression bonding device called a laminator for the heating and pressure bonding treatment in the production of the solar cell module.
  • the laminator heat-deforms the translucent resin member 16 and the back sheet 18 and further integrates them by thermosetting, and seals the solar cell in the translucent resin layer 19.
  • the vacuum thermocompression bonding apparatus heats and crimps each member in a reduced pressure environment.
  • a translucent resin member 16 and the back sheet 18 can prevent gaps and bubbles from remaining, and can press the members with uniform pressure.
  • the heating and pressure-bonding process in the vacuum thermocompression bonding apparatus is performed at a temperature of 200 degrees or less, preferably 150 to 200 degrees. It is assumed that the temperature in the heating and pressure bonding processes can be appropriately changed depending on the material of the translucent resin member 16 and the like.
  • the translucent substrate 15 for example, a glass substrate is used.
  • substrate 15 should just be able to permeate
  • the translucent resin member 16 is one of resins such as ethylene vinyl acetate, polyvinyl butyral, epoxy, acrylic, urethane, olefin, polyester, silicon, polystyrene, polycarbonate, and rubber. Contains one or more. As long as the translucent resin member 16 can transmit sunlight, any material other than those listed here may be used.
  • the back sheet 18 a sheet made of one or a plurality of resins such as polyester, polyvinyl, polycarbonate and polyimide is used.
  • the back sheet 18 may be made of any material other than those listed here as long as it has sufficient strength, moisture resistance and weather resistance for protecting the solar cell module.
  • the back sheet 18 may be made of not only a resin material but also a composite material obtained by bonding metal foil materials in order to improve strength, moisture resistance, and weather resistance. Further, the back sheet 18 may be formed by bonding a metal material having a high reflectance or a transparent member having a high refractive index to a resin material by vapor deposition or the like.
  • the end face of the solar cell module may be protected with a tape made of a rubber-based resin member or the like in order to improve the adhesiveness of the laminating process and prevent moisture from entering from the outside.
  • a tape made of a rubber-based resin member or the like in order to improve the adhesiveness of the laminating process and prevent moisture from entering from the outside.
  • butyl rubber or the like is used as the rubber-based resin member.
  • the solar cell module may be provided with a frame that surrounds the outer periphery in view of ease of handling as a structure.
  • the frame is configured using a metal member such as aluminum or an aluminum alloy, for example.
  • the third embodiment can obtain an inexpensive solar cell module by a simple method without significantly changing the method of the comparative example. This is very useful industrially.

Abstract

The purpose of the present invention is to obtain a method for manufacturing a solar cell capable of reducing the amount of a metallic paste constituting an electrode material while retaining the same level of power generation efficiency in the solar cell. A method for manufacturing a solar cell including a screen printing step for applying a paste containing a conductive material constituting the electrode material to the electrode-formation surface of a substrate, via a printing mask corresponding to an electrode shape having a bus electrode part and a grid electrode part, wherein the method for manufacturing the solar cell is characterized in that the screen printing step includes a step for applying the paste using the printing mask, there being used in the printing mask a screen mesh woven by arranging a larger number of filaments in the bus electrode part than in the grid electrode part.

Description

太陽電池の製造方法、印刷マスク、太陽電池および太陽電池モジュールSOLAR CELL MANUFACTURING METHOD, PRINT MASK, SOLAR CELL, AND SOLAR CELL MODULE
 本発明は、太陽電池の製造方法、印刷マスク、太陽電池および太陽電池モジュールに関する。 The present invention relates to a method for manufacturing a solar cell, a printing mask, a solar cell, and a solar cell module.
 現在、太陽電池モジュールを構成する太陽電池としては、シリコン等の基板材料の受光面である表面と、その反対側の裏面との各々に電極を備えるものが主流である。近年、その両面のうちの裏面のみに電極が形成された太陽電池も実用化されているが、両面に電極が形成された太陽電池が、依然として多く普及している。 Currently, solar cells constituting solar cell modules are mainly provided with electrodes on each of a front surface that is a light receiving surface of a substrate material such as silicon and a back surface on the opposite side. In recent years, solar cells in which electrodes are formed only on the back surface of both surfaces have been put into practical use, but solar cells in which electrodes are formed on both surfaces are still widely used.
 例えば、特許文献1では、太陽電池の製造に際して、次のような手順を採用する。まず、シリコン等の基板材料の表面に、太陽光の基板表面での反射角度を変化させ、反射光を基板内に取り込むためのテクスチャ構造(凹凸)をエッチング等の手法により形成する。次に、拡散等の手法によりpn結合を形成する。次に、当該基板材料の少なくとも一面に、太陽光の反射を光干渉効果により低減するための反射防止膜を窒化シリコン膜等により形成する。次に、反射防止膜上にパターンを設けて金属ペーストを塗布し、金属ペーストを加熱して金属ペーストに含まれたガラスにより反射防止膜を溶融させ、基板との電気的接合を取るための焼成を実施し、電極を形成する。さらに、ガラス成分を溶解する性質のエッチング液に基板材料を浸漬させて、電極に含まれるガラス成分を溶解して電極の電気抵抗を低減する。
また、例えば特許文献2および3には、基板材料の表面側と裏面側の両面に電極を有する太陽電池の製造方法が開示されている。
For example, in patent document 1, the following procedures are employ | adopted at the time of manufacture of a solar cell. First, a reflection structure of sunlight on the surface of a substrate material such as silicon is changed, and a texture structure (unevenness) for taking the reflected light into the substrate is formed by a technique such as etching. Next, a pn bond is formed by a technique such as diffusion. Next, an antireflection film for reducing the reflection of sunlight by a light interference effect is formed on at least one surface of the substrate material using a silicon nitride film or the like. Next, a pattern is formed on the antireflection film, a metal paste is applied, the metal paste is heated, the antireflection film is melted by glass contained in the metal paste, and firing is performed for electrical connection with the substrate. To form an electrode. Further, the substrate material is immersed in an etching solution having a property of dissolving the glass component to dissolve the glass component contained in the electrode, thereby reducing the electrical resistance of the electrode.
For example, Patent Documents 2 and 3 disclose a method for manufacturing a solar cell having electrodes on both the front surface side and the back surface side of a substrate material.
 一般に、太陽電池用電極を形成する手法としては、スクリーン印刷等の簡便な方法が採用されている。スクリーン印刷に用いられる印刷マスクは、金属の糸や化学繊維を製網したスクリーンメッシュと呼ばれる基材をマスクフレームに固定し、金属ペーストを透過させる部分以外を樹脂で固めて成型して、被印刷物のパターニングに使用する。 Generally, as a method for forming a solar cell electrode, a simple method such as screen printing is employed. A printing mask used for screen printing is a material to be printed by fixing a base material called a screen mesh made of metal thread or chemical fiber to a mask frame, and fixing the part other than the part that allows metal paste to pass through with resin. Used for patterning.
 太陽電池モジュールのコストダウンのためには、価格面で大きな割合を占める太陽電池の構成材料のコストダウン抜きには実現が極めて困難である。例えば、基材である基板材料に始まって、各工程で用いる材料や消耗器具類等に至るまで、ありとあらゆるものの見直しが必要となる。中でも電極材料として使用される金属ペースト材料は、導電性金属として銀を用いることが通例となっているが、価格が非常に高価である。しかしながら、単純に電極材料の使用量を減らすと、電極での抵抗損失が増加し、太陽電池の発電効率が低下する。従って、太陽電池の発電効率を低下させずに、金属ペーストの使用量を減らすことが求められる。 In order to reduce the cost of the solar cell module, it is extremely difficult to realize the cost reduction of the constituent material of the solar cell, which occupies a large proportion in price. For example, it is necessary to review everything from the substrate material, which is a base material, to the materials and consumables used in each process. Among them, a metal paste material used as an electrode material is usually made of silver as a conductive metal, but it is very expensive. However, simply reducing the amount of electrode material used increases the resistance loss at the electrode and reduces the power generation efficiency of the solar cell. Therefore, it is required to reduce the amount of metal paste used without reducing the power generation efficiency of the solar cell.
 太陽電池の表面側の電流を集電するためのグリッド電極では、グリッド電極が配置されている部分は発電を行わないため、グリッド電極幅は細い方が望ましい。しかしながら、電極幅を細くするだけでは電気抵抗が増加して抵抗損失が増加するため、グリッド電極の厚さは厚い方が望ましい。グリッド電極の厚さを厚くするほど抵抗損失が減って太陽電池の発電効率は向上する。
従来のスクリーン印刷マスクを用いた場合、電極の厚さは、スクリーンメッシュの線径や開口幅等のマスク仕様によって決められる。
In the grid electrode for collecting the current on the surface side of the solar cell, since the portion where the grid electrode is arranged does not generate power, the grid electrode width is preferably narrow. However, since the electrical resistance increases and the resistance loss increases only by reducing the electrode width, it is desirable that the grid electrode is thicker. As the thickness of the grid electrode is increased, the resistance loss is reduced and the power generation efficiency of the solar cell is improved.
When a conventional screen printing mask is used, the thickness of the electrode is determined by mask specifications such as the screen mesh wire diameter and opening width.
 印刷マスクでは、スクリーンメッシュに使用される1インチ(25.4mm)当たりの糸の本数(以下、メッシュカウントと呼称)とその糸の線径を用いてその仕様を表す。例えば、1インチ当たり200本の糸を配し、線径が40μmの糸を使用したものを「200φ40」と表現する。従って、本数が多いほど網の目が細かいことを表し、相対的には線径も細くなる。 In the printing mask, the specifications are expressed using the number of yarns per inch (25.4 mm) used for the screen mesh (hereinafter referred to as mesh count) and the wire diameter of the yarns. For example, 200 yarns per inch and a yarn having a wire diameter of 40 μm are expressed as “200φ40”. Therefore, the larger the number, the finer the mesh, and the relatively smaller the wire diameter.
 従来の印刷マスクでは、スクリーンメッシュは、グリッド電極パターンに対してスクリーンメッシュの縦糸または横糸が20~30度傾斜するようにマスクフレームに貼り付けられる。これは、グリッド電極パターンと糸が平行になると、パターンエッジが糸で覆われることにより、精密な電極パターンが形成できないためである。 In the conventional printing mask, the screen mesh is attached to the mask frame so that the warp or weft of the screen mesh is inclined 20 to 30 degrees with respect to the grid electrode pattern. This is because when the grid electrode pattern and the yarn are parallel, the pattern edge is covered with the yarn, so that a precise electrode pattern cannot be formed.
 太陽電池モジュールでは、太陽電池のバス電極を、隣り合う太陽電池の裏バス電極と半田付き銅線で半田付けして直列に接続する。
 なお、本明細書では、バス電極とは、表面側のバス電極のことを示す。裏面側のバスの電極は裏バス電極と記述する。
 太陽電池同士を半田付き銅線で半田付けして接続するためのバス電極では、半田付けによる接合強度が求められるため、バス電極幅を減少させるのには限度がある。
 従って、バス電極での金属ペーストの使用量を減らすためには、バス電極の厚さを薄くする必要がある。
 しかしながら、バス電極の厚さは、グリッド電極と同様にスクリーンメッシュの線径や開口幅等のマスク仕様によって決まるので、発電効率を向上させるためにグリッド電極の厚さを厚くすると、バス電極の厚さも厚くなる。
なお、バス電極では、集電された電流はバス電極上に半田付けされた半田付き銅線上を流れるため、バス電極の厚さを厚くしても抵抗損失低減効果はなく、発電効率は向上しない。
In the solar cell module, the bus electrode of the solar cell is soldered to the back bus electrode of the adjacent solar cell with a soldered copper wire and connected in series.
In the present specification, the bus electrode refers to a bus electrode on the surface side. The electrode on the back side bus is described as the back bus electrode.
In a bus electrode for soldering and connecting solar cells with a soldered copper wire, bonding strength by soldering is required, so there is a limit to reducing the bus electrode width.
Therefore, in order to reduce the amount of metal paste used in the bus electrode, it is necessary to reduce the thickness of the bus electrode.
However, since the bus electrode thickness is determined by mask specifications such as the screen mesh wire diameter and opening width as in the case of the grid electrode, if the grid electrode thickness is increased in order to improve power generation efficiency, the bus electrode thickness is increased. It will also be thicker.
In the bus electrode, since the collected current flows on the soldered copper wire soldered on the bus electrode, increasing the thickness of the bus electrode does not reduce the resistance loss and does not improve the power generation efficiency. .
特許第4486622号公報(0014段落参照)Japanese Patent No. 4486622 (see paragraph 0014) 特許第4319006号公報(0019段落参照)Japanese Patent No. 4319006 (see paragraph 0019) 特許第4481869号公報(0052段落参照)Japanese Patent No. 4481869 (see paragraph 0052)
 太陽電池の発電効率向上のために、グリッド電極の厚さを厚くすると、バス電極の厚さも厚くなり、金属ペーストの使用量が増加するという課題があった。
一方、金属ペーストの使用量削減のために、バス電極の厚さを薄くすると、グリッド電極の厚さも薄くなり、太陽電池の発電効率が大幅に低下するという課題があった。
In order to improve the power generation efficiency of the solar cell, when the thickness of the grid electrode is increased, the thickness of the bus electrode is also increased, and the amount of metal paste used is increased.
On the other hand, if the thickness of the bus electrode is reduced in order to reduce the amount of metal paste used, the thickness of the grid electrode is also reduced, resulting in a problem that the power generation efficiency of the solar cell is significantly reduced.
 本発明は上記のような問題点を解消するためになされたもので、太陽電池の発電効率を同程度に保ったままで、電極材料である金属ペーストの使用量を低減できる太陽電池の製造方法、その製造方法において使用する印刷マスク、その製造方法により製造された電極を備える太陽電池および太陽電池モジュールを得ることを目的とする。 The present invention was made to solve the above problems, and a solar cell manufacturing method capable of reducing the amount of metal paste used as an electrode material while maintaining the same power generation efficiency of the solar cell, It aims at obtaining the printing mask used in the manufacturing method, a solar cell provided with the electrode manufactured by the manufacturing method, and a solar cell module.
 本発明の太陽電池の製造方法は、バス電極部とグリッド電極部とを有する電極形状に応じた印刷マスクを介して、電極材料である導電性材料を含むペーストを基板の電極形成面に塗布するスクリーン印刷工程を含む太陽電池の製造方法であって、
 前記スクリーン印刷工程は、前記バス電極部で前記グリッド電極部よりも多い本数で糸を並べて製網したスクリーンメッシュを用いた前記印刷マスクを使用し、前記ペーストを塗布する工程を含むことを特徴とする。
また、本発明の印刷マスクは、電極材料である導電性材料を含むペーストを基板の電極形成面に塗布する際に使用する印刷マスクであって、
 前記ペーストを保持するためのスクリーンメッシュが、前記バス電極部で前記グリッド電極部よりも多い本数で糸を並べて製網したことを特徴とする。
In the method for manufacturing a solar cell according to the present invention, a paste containing a conductive material as an electrode material is applied to an electrode forming surface of a substrate through a print mask corresponding to the electrode shape having a bus electrode portion and a grid electrode portion. A method of manufacturing a solar cell including a screen printing process,
The screen printing step includes the step of applying the paste using the printing mask using a screen mesh in which the bus electrode portion has a larger number of yarns than the grid electrode portion and is reticulated. To do.
The printing mask of the present invention is a printing mask used when applying a paste containing a conductive material as an electrode material to the electrode forming surface of the substrate,
The screen mesh for holding the paste is characterized in that the bus electrode portion is formed by arranging yarns in a larger number than the grid electrode portion.
 本発明によれば、バス電極部で前記グリッド電極部よりも多い本数で糸を並べて製網したスクリーンメッシュを用いた印刷マスクを使用することで、グリッド電極での金属ペースト使用量を減らさずにバス電極での金属ペースト使用量を減らすことができる。これにより、太陽電池の発電効率を同程度に保ったままで、太陽電池の製造コストを下げることができる。 According to the present invention, it is possible to reduce the amount of metal paste used in the grid electrode by using a printing mask using a screen mesh in which the yarn is arranged in a larger number than the grid electrode portion in the bus electrode portion. The amount of metal paste used at the bus electrode can be reduced. Thereby, the manufacturing cost of the solar cell can be reduced while maintaining the power generation efficiency of the solar cell at the same level.
図1は、本発明の実施の形態1にかかる太陽電池の製造方法によって形成された電極を備える太陽電池の表面を示す外観図。1 is an external view showing the surface of a solar cell including electrodes formed by the method for manufacturing a solar cell according to the first embodiment of the present invention. 図2は、太陽電池の裏面を示す外観図。FIG. 2 is an external view showing the back surface of the solar cell. 図3は、図1および図2に示す太陽電池のE-E部分の断面図。3 is a cross-sectional view of the EE portion of the solar cell shown in FIGS. 1 and 2. FIG. 図4は、スクリーン印刷工程にて使用する印刷機の、ステージ部分の模式断面図。FIG. 4 is a schematic cross-sectional view of a stage portion of a printing machine used in a screen printing process. 図5は、図4の要部拡大断面図。FIG. 5 is an enlarged cross-sectional view of the main part of FIG. 図6は、本発明の実施の形態1の方法により電極を形成する基板材料の例を示す平面図。FIG. 6 is a plan view showing an example of a substrate material on which an electrode is formed by the method of Embodiment 1 of the present invention. 図7は、本発明の実施の形態1の方法により電極を形成する基板材料の例を示す平面図。FIG. 7 is a plan view showing an example of a substrate material on which an electrode is formed by the method of Embodiment 1 of the present invention. 図8は、スクリーン印刷工程にて使用する印刷マスクを示す上面図。FIG. 8 is a top view showing a printing mask used in the screen printing process. 図9は、図8のグリッド電極部のF-F部分の拡大断面図。FIG. 9 is an enlarged cross-sectional view of the FF portion of the grid electrode portion of FIG. 図10は、図8のバス電極部のG-G部分の拡大断面図。FIG. 10 is an enlarged cross-sectional view of the GG portion of the bus electrode portion of FIG. 図11は、本発明の実施の形態1の方法に使用する印刷マスクにおける電極パターンを形成する前のマスク(ブランク)の平面模式図。FIG. 11 is a schematic plan view of a mask (blank) before forming an electrode pattern in the printing mask used in the method of Embodiment 1 of the present invention. 図12は、本発明の実施の形態1のスクリーンメッシュの詳細を示す拡大平面図。FIG. 12 is an enlarged plan view showing details of the screen mesh according to the first embodiment of the present invention. 図13は、図12のスクリーンメッシュのH-H部分の断面図。13 is a cross-sectional view of the HH portion of the screen mesh of FIG. 図14は、本発明の実施の形態1の電極形成方法に使用する印刷マスクにおける電極パターンを形成した後の平面模式図。FIG. 14 is a schematic plan view after an electrode pattern is formed on a printing mask used in the electrode forming method according to Embodiment 1 of the present invention. 図15は、図14に示す構成のうちの一部についての詳細を示す拡大平面図。15 is an enlarged plan view showing details of a part of the configuration shown in FIG. 図16は、本実施の形態1のスクリーンメッシュのグリッド電極部の一部を拡大した模式図。FIG. 16 is a schematic diagram enlarging a part of the grid electrode portion of the screen mesh according to the first embodiment. 図17は、本実施の形態1のスクリーンメッシュのグリッド電極部の透過厚さを示した一覧表。FIG. 17 is a list showing transmission thicknesses of grid electrode portions of the screen mesh according to the first embodiment. 図18は、本実施の形態1のスクリーンメッシュのバス電極部の一部を拡大した模式図。FIG. 18 is a schematic enlarged view of a part of the bus electrode portion of the screen mesh according to the first embodiment. 図19は、本実施の形態1のスクリーンメッシュのバス電極部の透過厚さを示した一覧表。FIG. 19 is a list showing transmission thicknesses of bus electrode portions of the screen mesh according to the first embodiment. 図20は、従来例と本実施の形態との比較をまとめた一覧表。FIG. 20 is a list summarizing the comparison between the conventional example and the present embodiment. 図21は、本発明の実施の形態2のスクリーンメッシュの詳細を示す拡大平面図。FIG. 21 is an enlarged plan view showing details of the screen mesh according to the second embodiment of the present invention. 図22は、図21のスクリーンメッシュのJ-J部分の断面図。22 is a cross-sectional view of the JJ portion of the screen mesh of FIG. 図23は、本実施の形態2のスクリーンメッシュの、糸が密集した密集箇所の角度を示した一覧表。FIG. 23 is a list showing the angles of the densely packed portions of the screen mesh of the second embodiment where the yarns are densely packed. 図24は、本実施の形態2のスクリーンメッシュの、糸が密集した密集箇所の幅を示した一覧表。FIG. 24 is a list showing the widths of the dense portions where the yarns are dense, of the screen mesh of the second embodiment. 図25は、本発明の実施の形態3による太陽電池モジュールの製造方法の手順を説明する断面模式図。FIG. 25 is a schematic cross-sectional view illustrating the procedure of the method for manufacturing the solar cell module according to Embodiment 3 of the present invention. 図26は、本発明の実施の形態3による太陽電池モジュールの製造方法の手順を説明する断面模式図。FIG. 26 is a schematic cross-sectional view illustrating the procedure of the method for manufacturing the solar cell module according to Embodiment 3 of the present invention.
 以下に、本発明にかかる太陽電池用電極の形成方法、印刷マスク、太陽電池および太陽電池モジュールの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a method for forming a solar cell electrode, a printing mask, a solar cell, and a solar cell module according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 本発明の実施の形態1による太陽電池用電極の形成方法、印刷マスクおよび太陽電池について説明する。
 図1は、本発明の実施の形態1にかかる太陽電池の電極形成方法によって形成された電極を備える太陽電池の受光面である表面を示す図である。図2は、図1に示す太陽電池について、受光面とは反対側の裏面を示す図である。図3は、図1および図2のE-E断面図である。太陽電池1の表面には、グリッド電極21およびバス電極22からなる表面電極が設けられている。グリッド電極21およびバス電極22は互いに直交している。
図1、図2の矢印Xで示した水平方向がグリッド電極21の長手方向である。図1、図2の矢印Yで示した垂直方向がバス電極22の長手方向である。
太陽電池1の裏面には、裏アルミ電極23および裏バス電極24が設けられている。
Embodiment 1 FIG.
A method for forming an electrode for a solar cell, a printing mask, and a solar cell according to Embodiment 1 of the present invention will be described.
FIG. 1 is a diagram illustrating a surface that is a light-receiving surface of a solar cell including an electrode formed by the method for forming an electrode of a solar cell according to the first embodiment of the present invention. FIG. 2 is a diagram showing a back surface opposite to the light receiving surface of the solar cell shown in FIG. 3 is a cross-sectional view taken along the line EE of FIGS. A surface electrode composed of a grid electrode 21 and a bus electrode 22 is provided on the surface of the solar cell 1. The grid electrode 21 and the bus electrode 22 are orthogonal to each other.
The horizontal direction indicated by the arrow X in FIGS. 1 and 2 is the longitudinal direction of the grid electrode 21. The vertical direction indicated by the arrow Y in FIGS. 1 and 2 is the longitudinal direction of the bus electrode 22.
A back aluminum electrode 23 and a back bus electrode 24 are provided on the back surface of the solar cell 1.
 図3に図1、図2のE-E断面図を示す。図中、上側が受光面(表面)である。p型シリコン基板31の上面には、リン拡散によりn層32が形成され、pn接合を有する光電変換部が形成されている。n層32の上側には、反射防止膜33が成膜されている。反射防止膜33の上側にはバス電極22が設けられている。バス電極22の下の反射防止膜33は焼成によって溶融されており、バス電極22はn層32と電気的に接触している。裏面側には、裏アルミ電極23および裏バス電極24が設けられている。 FIG. 3 shows a cross-sectional view taken along the line EE of FIGS. In the figure, the upper side is a light receiving surface (surface). On the upper surface of the p-type silicon substrate 31, an n layer 32 is formed by phosphorus diffusion, and a photoelectric conversion part having a pn junction is formed. An antireflection film 33 is formed on the n layer 32. A bus electrode 22 is provided above the antireflection film 33. The antireflection film 33 under the bus electrode 22 is melted by firing, and the bus electrode 22 is in electrical contact with the n layer 32. On the back side, a back aluminum electrode 23 and a back bus electrode 24 are provided.
 次に、本実施の形態1にかかる太陽電池の表面電極の電極形成方法について説明する。図4は、スクリーン印刷工程にて使用する印刷機のうち、ステージ部分の模式断面図である。スクリーン印刷工程では、印刷マスク2を介して、基板材料3の電極形成面に金属ペースト5を塗布する。図5は、図4の要部拡大図である。
 図4および図5に示す印刷機は、基板材料3を載置するためのステージ4を備え、ステージ4には、基板材料3を固定するための吸引機構7を備える。吸引機構7は、ステージ4におけるエアーの吸引によって、基板材料3をステージ4に固定する。
Next, the electrode formation method of the surface electrode of the solar cell concerning this Embodiment 1 is demonstrated. FIG. 4 is a schematic cross-sectional view of the stage portion of the printing machine used in the screen printing process. In the screen printing process, the metal paste 5 is applied to the electrode forming surface of the substrate material 3 through the printing mask 2. FIG. 5 is an enlarged view of a main part of FIG.
The printing machine shown in FIGS. 4 and 5 includes a stage 4 for placing the substrate material 3, and the stage 4 includes a suction mechanism 7 for fixing the substrate material 3. The suction mechanism 7 fixes the substrate material 3 to the stage 4 by sucking air at the stage 4.
 印刷マスク2は、マスクフレーム6と、縦糸11と横糸12を有し、マスクフレーム6の印刷面側に貼り付けられたスクリーンメッシュ9と、感光性乳剤10とを備える。
図5は、ステージ4およびマスクフレーム6を省略して描いたものである。
The printing mask 2 includes a mask frame 6, a warp thread 11, and a weft thread 12, and includes a screen mesh 9 attached to the printing surface side of the mask frame 6 and a photosensitive emulsion 10.
FIG. 5 is drawn with the stage 4 and the mask frame 6 omitted.
 図6および図7は、本実施の形態1により電極を形成する基板材料の例を示す平面図である。基板材料3としては、例えば、図6に示す正方形形状のものや、図7に示すように、正方形の四隅を円弧状とした角丸四角形形状のものを使用する。図6に示す正方形形状の一辺M、図7に示す角丸四角形形状の一辺相当幅Mは、例えば156mmとする。 6 and 7 are plan views showing examples of substrate materials for forming electrodes according to the first embodiment. As the substrate material 3, for example, a square shape shown in FIG. 6 or a rounded quadrangular shape having four corners of an arc as shown in FIG. 7 is used. The one side M of the square shape shown in FIG. 6 and the one side equivalent width M of the rounded square shape shown in FIG. 7 are, for example, 156 mm.
 基板材料3としては、例えば、薄板状のシリコンであるシリコンウェハを使用する。なお、基板材料3は、スクリーン印刷工程によって電極を形成することが可能であれば、いずれの材質のものであっても良いものとする。 As the substrate material 3, for example, a silicon wafer that is a thin plate-like silicon is used. The substrate material 3 may be made of any material as long as an electrode can be formed by a screen printing process.
 金属ペースト5は、電極材料である導電性材料を含み、所望の粘度を保つように成分が調整されている。金属ペースト5に使用される代表的な導電性材料としては、金、銀、銅、白金およびパラジウム等があげられる。金属ペースト5は、これらの導電性材料の一つあるいは複数を含む。 The metal paste 5 includes a conductive material as an electrode material, and the components are adjusted so as to maintain a desired viscosity. Typical conductive materials used for the metal paste 5 include gold, silver, copper, platinum and palladium. The metal paste 5 contains one or more of these conductive materials.
 印刷機は、金属ペースト5が載せられた状態の印刷マスク2上にてスキージ8を走査させることで、印刷マスク2を介して、基板材料3の電極形成面に金属ペースト5を塗布する。印刷マスク2のうち感光性乳剤10でカバーされた部分では金属ペースト5を通過させず、スクリーンメッシュ9を露出させた部分で金属ペースト5を通過させることで、印刷機は、印刷マスク2の印刷パターンを電極形成面上に転写する。 The printing machine applies the metal paste 5 to the electrode forming surface of the substrate material 3 through the print mask 2 by scanning the squeegee 8 on the print mask 2 on which the metal paste 5 is placed. In the printing mask 2, the metal paste 5 is not passed through the portion covered with the photosensitive emulsion 10, but the metal paste 5 is passed through the portion where the screen mesh 9 is exposed. The pattern is transferred onto the electrode forming surface.
 スクリーン印刷により基板材料3に塗布された金属ペースト5は、一般に焼成と称される処理によって電極となる。焼成工程では、ピーク温度を900度以下、望ましくは750度から800度とする加熱処理を実施する。焼成炉での加熱処理の時間は、概ね2分以内とする。 The metal paste 5 applied to the substrate material 3 by screen printing becomes an electrode by a process generally called firing. In the baking step, heat treatment is performed so that the peak temperature is 900 ° C. or lower, preferably 750 to 800 ° C. The heat treatment time in the firing furnace is generally within 2 minutes.
 スクリーン印刷による電極の形成より以前にp型電極とn型電極との分離(以下、pn分離と称する)を行っている場合、電極材料の付着によるリーク電流の発生を抑制させるために、外縁側面13への金属ペースト5の付着を抑制し、かつ余白14を設ける必要がある。そのためには、印刷マスクの周縁部を感光性乳剤10で覆うよう、パターン形成を行うことが望ましい。また、電極形成後にレーザー加工等によるpn分離を行う場合も、リーク電流の発生を抑制させるためには、外縁側面13への金属ペースト5の付着を抑制し、かつ余白14を設けることが望ましい。 When the separation of the p-type electrode and the n-type electrode (hereinafter referred to as pn separation) is performed prior to the formation of the electrode by screen printing, in order to suppress the occurrence of leakage current due to the adhesion of the electrode material, It is necessary to suppress adhesion of the metal paste 5 to 13 and to provide a margin 14. For this purpose, it is desirable to form a pattern so that the peripheral portion of the printing mask is covered with the photosensitive emulsion 10. Also, when performing pn separation by laser processing or the like after electrode formation, it is desirable to suppress adhesion of the metal paste 5 to the outer edge side surface 13 and to provide a margin 14 in order to suppress the occurrence of leakage current.
 以上のような工程により、太陽電池用電極が形成される。なお、太陽電池用電極の形成方法以外は、従来と同様の製造方法により、太陽電池が製造される。 The solar cell electrode is formed by the process as described above. In addition, a solar cell is manufactured with the manufacturing method similar to the past except the formation method of the electrode for solar cells.
 次に、本実施の形態1による太陽電池の表面電極の電極形成に使用する印刷マスク2について詳細に説明する。
図8はスクリーン印刷工程にて使用する印刷マスク2を示す上面図、図9は、図8のF-F部分(グリッド電極部)の拡大断面図である。図9は横糸12に平行な角度での断面図である。図8の矢印Xで示した水平方向がグリッド電極21の長手方向である。図8の矢印Yで示した垂直方向がバス電極22の長手方向である。
スクリーンメッシュ9は、縦糸11と横糸12と感光性乳剤10を有する。感光性乳剤10には、グリッド電極開口部41が設けられている。
Next, the printing mask 2 used for electrode formation of the surface electrode of the solar cell according to the first embodiment will be described in detail.
FIG. 8 is a top view showing the printing mask 2 used in the screen printing process, and FIG. 9 is an enlarged sectional view of the FF portion (grid electrode portion) of FIG. FIG. 9 is a cross-sectional view at an angle parallel to the weft 12. The horizontal direction indicated by the arrow X in FIG. 8 is the longitudinal direction of the grid electrode 21. The vertical direction indicated by the arrow Y in FIG. 8 is the longitudinal direction of the bus electrode 22.
The screen mesh 9 has warp yarns 11, weft yarns 12 and photosensitive emulsion 10. The photosensitive emulsion 10 is provided with a grid electrode opening 41.
 図10は図8のG-G部分(バス電極部)の拡大断面図である。図10は横糸12に平行な角度での断面図である。
スクリーンメッシュ9は、縦糸11と横糸12と感光性乳剤10を有する。感光性乳剤10には、バス電極開口部42が設けられている。
本実施の形態の印刷マスク2は、ペーストを保持するためのスクリーンメッシュが、バス電極部で糸を2本となるように製網したことを特徴とする。
FIG. 10 is an enlarged cross-sectional view of the GG portion (bus electrode portion) of FIG. FIG. 10 is a cross-sectional view at an angle parallel to the weft 12.
The screen mesh 9 has warp yarns 11, weft yarns 12 and photosensitive emulsion 10. The photosensitive emulsion 10 is provided with a bus electrode opening 42.
The printing mask 2 according to the present embodiment is characterized in that the screen mesh for holding the paste is netted so that two threads are formed at the bus electrode portion.
 図11は、本実施の形態1の電極形成方法に使用する印刷マスクにおいて、電極パターンを形成する前のマスク(ブランク)の模式図である。図12は、図11の四角部ABCDを拡大した図である。図11の四角部ABCDと図12の外周角部ABCDが対応する。
 図11の矢印Xで示した垂直方向がグリッド電極21の長手方向となる方向である。図11の矢印Yで示した水平方向がバス電極22の長手方向となる方向である。図11は、図8を時計回りに90度回転させた配置図となっている。
 マスク(ブランク)は、スクリーンメッシュ9とマスクフレーム6とで構成される。
 マスクフレーム6の印刷面側に、スクリーンメッシュ9が貼り付けられる。
FIG. 11 is a schematic diagram of a mask (blank) before forming an electrode pattern in the printing mask used in the electrode forming method of the first embodiment. FIG. 12 is an enlarged view of the square ABCD in FIG. The square part ABCD in FIG. 11 corresponds to the outer peripheral corner part ABCD in FIG.
The vertical direction indicated by the arrow X in FIG. 11 is the direction in which the grid electrode 21 is in the longitudinal direction. The horizontal direction indicated by the arrow Y in FIG. 11 is the direction in which the bus electrode 22 is in the longitudinal direction. FIG. 11 is a layout view in which FIG. 8 is rotated 90 degrees clockwise.
The mask (blank) is composed of a screen mesh 9 and a mask frame 6.
A screen mesh 9 is attached to the printing surface side of the mask frame 6.
 図12と図13を用いて、スクリーンメッシュ9の製網方法を示す。
 図12は、スクリーンメッシュ9の製網方法を示した平面図である。スクリーンメッシュ9は縦糸111~120と横糸131~140を有する。
 図中、縦糸の繋がり方を明確にするために、縦糸1本毎に斜線を入れてある。
 従来のスクリーンメッシュは、縦糸と横糸が交互に上下を入れ替えるように製網されるが、本実施の形態1のスクリーンメッシュ9では、上下が部分的に連続するように製網される。
A method for making the screen mesh 9 will be described with reference to FIGS.
FIG. 12 is a plan view showing a method for making the screen mesh 9. The screen mesh 9 has warp threads 111 to 120 and weft threads 131 to 140.
In the figure, in order to clarify how warp yarns are connected, diagonal lines are provided for each warp yarn.
The conventional screen mesh is netted so that the warp and weft alternate alternately, but the screen mesh 9 of the first embodiment is netted so that the top and bottom are partially continuous.
 横糸131は、縦糸111の下、縦糸112,113の上、縦糸114の下、縦糸115の上、縦糸116の下、縦糸117の上、縦糸118の下、縦糸119の上、縦糸120の下を通るように製網される。ここで、縦糸112、113では連続して上側を通る事が従来の製網とは異なる。 The weft 131 is below the warp 111, above the warp 112, 113, below the warp 114, above the warp 115, below the warp 116, above the warp 117, below the warp 118, above the warp 119, below the warp 120. Netted to pass through. Here, the warp yarns 112 and 113 are different from conventional nets in that they pass the upper side continuously.
 図13に図12のH-H断面図を示す。横糸131部での断面図である。
 横糸131は、縦糸111の下、縦糸112の上を通るので、縦糸111と縦糸112の間で下から上に位置を変える。従って、縦糸111と縦糸112の間隔は、横糸131を通すために、ある程度の間隔が必要である。通常、縦糸111と縦糸112の間隔は、横糸131の直径の2倍から4倍程度が必要となる。
FIG. 13 is a sectional view taken along line HH in FIG. It is sectional drawing in a weft 131 part.
Since the weft 131 passes below the warp 111 and above the warp 112, the position of the weft 131 is changed from the bottom to the top between the warp 111 and the warp 112. Therefore, a certain distance is required between the warp yarn 111 and the warp yarn 112 in order to pass the weft 131. Usually, the interval between the warp yarn 111 and the warp yarn 112 needs to be about 2 to 4 times the diameter of the weft yarn 131.
 一方、横糸131は、縦糸112の上、縦糸113の上を通るので、縦糸112と縦糸113の間では位置を変えない。従って、横糸131の位置では縦糸112と縦糸113の間隔には制限が無く、近づけることができる。 On the other hand, since the weft 131 passes over the warp 112 and the warp 113, the position does not change between the warp 112 and the warp 113. Accordingly, the distance between the warp yarn 112 and the warp yarn 113 is not limited at the position of the weft yarn 131 and can be brought close to each other.
 横糸132は、縦糸111の上、縦糸112,113の下、縦糸114の上、縦糸115の下、縦糸116の上、縦糸117の下、縦糸118の上、縦糸119の下、縦糸120の上を通るように製網される。ここで、縦糸112,113では連続して下側を通る事が従来の製網とは異なる。 The weft 132 is above the warp 111, below the warp 112, 113, above the warp 114, below the warp 115, above the warp 116, below the warp 117, above the warp 118, below the warp 119, above the warp 120. Netted to pass through. Here, the warp yarns 112 and 113 are different from conventional nets in that they pass continuously on the lower side.
 横糸133は、縦糸111の下、縦糸112の上、縦糸113,114の下、縦糸115の上、縦糸116の下、縦糸117の上、縦糸118の下、縦糸119の上、縦糸120の下を通るように製網される。ここで、縦糸113,114では連続して下側を通る事が従来の製網とは異なる。 The weft 133 is below the warp 111, above the warp 112, below the warp 113, 114, above the warp 115, below the warp 116, above the warp 117, below the warp 118, above the warp 119, below the warp 120. Netted to pass through. Here, the warp yarns 113 and 114 are different from the conventional nets in that they pass through the lower side continuously.
 横糸が縦糸の上側または下側を連続して通る箇所に注目すると、以下のようになる。
  横糸131は縦糸112,113の上側を通る。
  横糸132は縦糸112,113の下側を通る。
  横糸133は縦糸113,114の下側を通る。
  横糸134は縦糸113,114の上側を通る。
  横糸135は縦糸113,114の下側を通る。
  横糸136は縦糸114,115の下側を通る。
  横糸137は縦糸114,115の上側を通る。
  横糸138は縦糸114,115の下側を通る。
  横糸139は縦糸115,116の下側を通る。
  横糸140は縦糸115,116の上側を通る。
When attention is paid to the place where the weft passes continuously above or below the warp, the following is obtained.
The weft 131 passes above the warp yarns 112 and 113.
The weft 132 passes under the warp yarns 112 and 113.
The weft thread 133 passes below the warp threads 113 and 114.
The weft yarn 134 passes above the warp yarns 113 and 114.
The weft 135 passes below the warps 113 and 114.
The weft thread 136 passes under the warp threads 114 and 115.
The weft thread 137 passes above the warp threads 114 and 115.
The weft 138 passes under the warp yarns 114 and 115.
The weft 139 passes below the warp yarns 115 and 116.
The weft yarn 140 passes above the warp yarns 115 and 116.
 縦糸が同じ側を通る箇所では、縦糸間の距離を近づけることができるので、縦糸間の距離に注目すると、以下のようになる。
  横糸131の位置では縦糸112,113を近づけることができる。
  横糸132の位置では縦糸112,113を近づけることができる。
  横糸133の位置では縦糸113,114を近づけることができる。
  横糸134の位置では縦糸113,114を近づけることができる。
  横糸135の位置では縦糸113,114を近づけることができる。
  横糸136の位置では縦糸114,115を近づけることができる。
  横糸137の位置では縦糸114,115を近づけることができる。
  横糸138の位置では縦糸114,115を近づけることができる。
  横糸139の位置では縦糸115,116を近づけることができる。
  横糸140の位置では縦糸115,116を近づけることができる。
Since the distance between the warp yarns can be reduced at the place where the warp yarns pass on the same side, the following is a focus on the distance between the warp yarns.
At the position of the weft 131, the warps 112 and 113 can be brought close to each other.
At the position of the weft 132, the warps 112, 113 can be brought closer.
At the position of the weft thread 133, the warp threads 113 and 114 can be brought close to each other.
At the position of the weft yarn 134, the warp yarns 113 and 114 can be brought close to each other.
The warp yarns 113 and 114 can be brought close to each other at the position of the weft yarn 135.
At the position of the weft 136, the warps 114, 115 can be brought close to each other.
At the position of the weft thread 137, the warp threads 114 and 115 can be brought close to each other.
At the position of the weft thread 138, the warp threads 114 and 115 can be brought close to each other.
At the position of the weft thread 139, the warp threads 115 and 116 can be brought close to each other.
At the position of the weft 140, the warps 115, 116 can be brought closer.
 このように構成することにより、縦糸の間隔を近づけることができるので、従来例よりも縦糸を密に配置することができる。即ち、単位長さあたりの縦糸の本数を増やすことができる。 By configuring in this way, the distance between the warp yarns can be reduced, so that the warp yarns can be arranged more densely than the conventional example. That is, the number of warp yarns per unit length can be increased.
 縦糸に着目してみると、縦糸113は、横糸132の位置では縦糸112と同じ上側にあるので、縦糸112に近い距離にある。横糸133の位置では縦糸114と同じ上側にあるので、縦糸114に近い距離にある。
即ち、縦糸113は、横糸132と横糸133との中間位置161で縦糸112の側から縦糸114の側に位置がずれる。
同様に、縦糸114は、横糸135と横糸136との中間位置162で縦糸113の側から縦糸115の側に位置がずれる。
同様に、縦糸115は、横糸138と横糸139との中間位置163で縦糸114の側から縦糸116の側に位置がずれる。
When paying attention to the warp, the warp 113 is at the same upper side as the warp 112 at the position of the weft 132 and is therefore close to the warp 112. Since the weft 133 is on the same upper side as the warp 114, it is close to the warp 114.
That is, the position of the warp yarn 113 is shifted from the warp yarn 112 side to the warp yarn 114 side at an intermediate position 161 between the weft yarn 132 and the weft yarn 133.
Similarly, the position of the warp yarn 114 is shifted from the warp yarn 113 side to the warp yarn 115 side at an intermediate position 162 between the weft yarn 135 and the weft yarn 136.
Similarly, the position of the warp yarn 115 is shifted from the warp yarn 114 side to the warp yarn 116 side at an intermediate position 163 between the weft yarn 138 and the weft yarn 139.
 このように、横糸3本毎に連続する縦糸を横にずらすように製網することにより、縦糸間の距離が近い密集箇所150を図12の破線で囲んだ領域のように、斜めに形成することができる。この密集箇所150は、Yの方向にメッシュの上端から下端まで連続して形成される。
 この密集箇所150と密集箇所以外の縦糸との成す角度をθ2とする。
In this way, by forming a net so that the warp yarns that are continuous every three weft yarns are shifted laterally, a dense portion 150 where the distance between the warp yarns is short is formed diagonally as in the region surrounded by the broken line in FIG. be able to. The dense spot 150 is continuously formed in the Y direction from the upper end to the lower end of the mesh.
An angle formed by the dense portion 150 and warps other than the dense portion is defined as θ2.
 なお、本実施例では、横糸3本毎に連続する縦糸を横にずらした例を説明したが、横糸3本毎に限定されるものではない。横糸1本毎、横糸2本毎、横糸4本毎、横糸5本毎等、どのような構成でもかまわない。
 この構成を変えることにより、斜めに形成された密集箇所150の角度θ2を変えることができる。
In the present embodiment, the example in which the continuous warp yarns are shifted to the side for every three weft yarns has been described, but it is not limited to every three weft yarns. Any configuration such as every one weft, every two wefts, every four wefts, every five wefts, etc. may be used.
By changing this configuration, the angle θ2 of the densely-packed portion 150 formed obliquely can be changed.
 図14は本実施の形態1の電極形成方法に使用する印刷マスクにおいて、電極パターンを形成した後の模式図である。図15は、図14の一部を拡大した図である。
 図14の矢印Xで示した垂直方向がグリッド電極21の長手方向である。図14の矢印Yで示した水平方向がバス電極22の長手方向である。
FIG. 14 is a schematic view after the electrode pattern is formed in the printing mask used in the electrode forming method of the first embodiment. FIG. 15 is an enlarged view of a part of FIG.
The vertical direction indicated by the arrow X in FIG. 14 is the longitudinal direction of the grid electrode 21. The horizontal direction indicated by the arrow Y in FIG. 14 is the longitudinal direction of the bus electrode 22.
 印刷マスク2は、図14および図15に示すように、感光性乳剤10のパターンをスクリーンメッシュ9に塗布形成したもので、スクリーンメッシュ9と、スクリーンメッシュ9の一部を覆う感光性乳剤10と、マスクフレーム6とを備える。
 感光性乳剤10は、グリッド電極開口部41とバス電極開口部42からなる開口部20を有する。グリッド電極開口部41は、垂直方向、図15のX方向が長手方向となるように配置される。バス電極開口部42は、水平方向、図15のY方向が長手方向となるように配置される。
As shown in FIGS. 14 and 15, the printing mask 2 is obtained by coating and forming a pattern of the photosensitive emulsion 10 on the screen mesh 9, and the screen mesh 9 and the photosensitive emulsion 10 covering a part of the screen mesh 9. And a mask frame 6.
The photosensitive emulsion 10 has an opening 20 composed of a grid electrode opening 41 and a bus electrode opening 42. The grid electrode openings 41 are arranged so that the vertical direction and the X direction in FIG. The bus electrode openings 42 are arranged so that the horizontal direction and the Y direction in FIG.
 スクリーンメッシュ9は、密集箇所150がバス電極開口部42と重なるように、図12の配置から回転させてマスクフレーム6に貼り付けられる。図12の配置から時計回りに(θ2+90°)の角度で回転させれば、Y方向が水平方向となって、図15のバス電極開口部42と重なる。 The screen mesh 9 is affixed to the mask frame 6 by rotating from the arrangement of FIG. 12 so that the dense location 150 overlaps the bus electrode opening 42. When rotated clockwise (θ2 + 90 °) from the arrangement of FIG. 12, the Y direction becomes the horizontal direction and overlaps with the bus electrode opening 42 of FIG.
 図14のパターンでは、バス電極開口部42が4本設けられている。この4本の箇所に重なるように、スクリーンメッシュ9に密集箇所150を4箇所設けておき、密集箇所150が水平方向になるように回転させて貼り付けた後、バス電極開口部42を密集箇所150にあわせて設置すれば良い。 In the pattern of FIG. 14, four bus electrode openings 42 are provided. Four dense places 150 are provided on the screen mesh 9 so as to overlap the four places, and the dense places 150 are rotated and pasted so as to be in the horizontal direction, and then the bus electrode openings 42 are arranged at the dense places. It may be installed according to 150.
 このようにスクリーンメッシュ9の密集箇所150とバス電極開口部42を一致させるように配置することにより、バス電極開口部42の位置でだけ、縦糸を密に配置することができる。 Thus, by arranging the dense locations 150 of the screen mesh 9 and the bus electrode openings 42 so as to coincide with each other, the warp yarns can be densely arranged only at the positions of the bus electrode openings 42.
 印刷マスク2によれば、図5に示すように感光性乳剤10で覆われた部分では金属ペースト5の通過を阻止し、スクリーンメッシュ9を露出させた部分、つまり開口部20では金属ペースト5を通過させる。マスクフレーム6は、感光性乳剤10およびスクリーンメッシュ9を保持する。 According to the printing mask 2, as shown in FIG. 5, the metal paste 5 is blocked from passing through the portion covered with the photosensitive emulsion 10, and the metal paste 5 is applied to the portion where the screen mesh 9 is exposed, that is, the opening 20. Let it pass. The mask frame 6 holds the photosensitive emulsion 10 and the screen mesh 9.
 印刷マスク2は、電極形成のためのスクリーン印刷に適する特性を備えるものであれば、構成を適宜変更しても良い。例えば、印刷マスク2は、スクリーンメッシュの材料として一般的にはステンレスを使用するが、ステンレスに代えて、合成繊維系材料からなるスクリーンメッシュや、ステンレス以外の他の金属材料からなるスクリーンメッシュを使用するものであっても良い。また、印刷マスク2は、感光性乳剤10に代えて、金属部材のパターンをスクリーンメッシュに貼着して使用するものとしても良い。 The configuration of the printing mask 2 may be appropriately changed as long as it has characteristics suitable for screen printing for electrode formation. For example, the printing mask 2 generally uses stainless steel as a screen mesh material, but instead of stainless steel, a screen mesh made of a synthetic fiber material or a screen mesh made of a metal material other than stainless steel is used. It may be what you do. The printing mask 2 may be used by attaching a metal member pattern to a screen mesh in place of the photosensitive emulsion 10.
 スクリーンメッシュ9を通過する金属ペーストの吐出量について、図16と図18を用いて説明する。
 図16に、本実施の形態1のスクリーンメッシュのグリッド電極部の一部を拡大した模式図を示す。本発明の実施の形態1において、グリッド電極部のスクリーンメッシュの構成は、従来のスクリーンメッシュの構成と同じである。 
 縦糸401,402は縦糸線径Dv1で形成される。
縦糸401と402は縦糸開口幅Wv1の間隔を開けて配置される。
 縦糸ピッチPv1は、縦糸開口幅Wv1と縦糸線径Dv1の合計値である。
The discharge amount of the metal paste that passes through the screen mesh 9 will be described with reference to FIGS. 16 and 18.
FIG. 16 shows an enlarged schematic view of a part of the grid electrode portion of the screen mesh of the first embodiment. In the first embodiment of the present invention, the configuration of the screen mesh of the grid electrode portion is the same as the configuration of the conventional screen mesh.
The warp yarns 401 and 402 are formed with a warp yarn wire diameter Dv1.
The warp yarns 401 and 402 are arranged at an interval of the warp yarn opening width Wv1.
The warp pitch Pv1 is a total value of the warp opening width Wv1 and the warp wire diameter Dv1.
 横糸403,404は横糸線径Dh1で形成される。
横糸403,404は横糸開口幅Wh1の間隔を開けて配置される。
 横糸ピッチPh1は、横糸開口幅Wh1と横糸線径Dh1の合計値である。
 横糸403は、縦糸401の下側を通り、縦糸402の上側を通る。
 横糸404は、縦糸401の上側を通り、縦糸402の下側を通る。
 一般的には、縦糸線径Dv1と横糸線径Dh1は同じである。また、縦糸開口幅Wv1と横糸開口幅Wh1は同じである。
The weft yarns 403 and 404 are formed with a weft yarn diameter Dh1.
The wefts 403 and 404 are arranged with an interval of the weft opening width Wh1.
The weft pitch Ph1 is a total value of the weft opening width Wh1 and the weft wire diameter Dh1.
The weft 403 passes below the warp yarn 401 and passes above the warp yarn 402.
The weft 404 passes above the warp 401 and passes below the warp 402.
Generally, the warp yarn diameter Dv1 and the weft yarn diameter Dh1 are the same. Further, the warp opening width Wv1 and the weft opening width Wh1 are the same.
 スクリーンメッシュからのペーストの吐出量を示す指標として、透過厚さという指標が用いられる。図16に基づいて、透過厚さについて説明する。
スクリーンメッシュの開口部に、スクリーンメッシュの厚さ(=紗厚)だけ充填されたペーストは、スクリーンメッシュが取り除かれた後、表面張力でスクリーンメッシュがあった場所に広がる。その分だけ厚さが紗厚より薄くなる。
ペーストが広がった後の厚さを透過厚さと呼ぶ。一般的には透過容積または透過体積と呼ばれている指標であるが、長さの次元を持った指標であるので、本明細書では透過厚さと呼ぶ。透過厚さは以下の式で示される。
 透過厚さ=(開口面積×紗厚)/(縦糸ピッチPv1×横糸ピッチPh1)
   開口面積=縦糸開口幅Wv1×横糸開口幅Wh1
   縦糸ピッチPv1=縦糸開口幅Wv1+縦糸線径Dv1
   横糸ピッチPh1=横糸開口幅Wh1+横糸線径Dh1
As an index indicating the amount of paste discharged from the screen mesh, an index called transmission thickness is used. The transmission thickness will be described based on FIG.
After the screen mesh is removed, the paste filled in the screen mesh opening by the thickness of the screen mesh (= thickness) spreads to the place where the screen mesh was present due to surface tension. The thickness becomes thinner than that.
The thickness after the paste spreads is called the transmission thickness. Although it is an index generally referred to as a permeation volume or a permeation volume, it is an index having a dimension of length, and is referred to as a permeation thickness in this specification. The transmission thickness is expressed by the following equation.
Permeation thickness = (opening area × 紗 thickness) / (warp pitch Pv1 × weft pitch Ph1)
Opening area = warp opening width Wv1 x weft opening width Wh1
Warp pitch Pv1 = warp yarn opening width Wv1 + warp yarn wire diameter Dv1
Weft pitch Ph1 = Weft opening width Wh1 + Weft wire diameter Dh1
 紗厚は通常、(縦糸線径+横糸線径)と同一である。糸を編んだ後、押しつぶすような加工を行ったスクリーンメッシュでは、紗厚が縦糸線径+横糸線径の50%程度のものまで可能である。 紗 Thickness is usually the same as (warp yarn diameter + weft yarn diameter). A screen mesh that has been crushed after knitting yarn can have a thickness of about 50% of the warp wire diameter + the weft wire diameter.
 図17に、グリッド電極部の透過厚さを計算した一覧表を示す。
 縦糸線径Dv1と横糸線径Dh1は同じとした。また、縦糸開口幅Wv1と横糸開口幅Wh1は同じとした。
 なお、従来のスクリーンメッシュの構成は、グリッド電極部のスクリーンメッシュの構成と同じであるので、従来のスクリーンメッシュの透過厚さも同じ厚さになる。
A1は「200φ40」である。A1では、25.4mm当たり200本の糸が並ぶので、ピッチは25.4mm/200本=127μmとなる。開口幅は、ピッチから線径を引いた値と等しい。A1では、線径が40μmであるので、開口幅は87μmとなる。紗厚は、一般的なスクリーンメッシュの紗厚と等しいものとする。図17に記載した紗厚は、一般的なスクリーンメッシュの紗厚である。
A1では、透過高さは29.6μmである。
A2は「250φ30」である。A2では、透過高さは22.8μmである。
A3は「290φ20」である。A3では、透過高さは20.8μmである。
A4は「360φ16」である。A4では、透過高さは16.7μmである。
FIG. 17 shows a list of calculated transmission thicknesses of the grid electrode part.
The warp yarn diameter Dv1 and the weft yarn diameter Dh1 were the same. The warp opening width Wv1 and the weft opening width Wh1 were the same.
In addition, since the structure of the conventional screen mesh is the same as the structure of the screen mesh of a grid electrode part, the permeation | transmission thickness of the conventional screen mesh also becomes the same thickness.
A1 is “200φ40”. In A1, since 200 yarns are arranged per 25.4 mm, the pitch is 25.4 mm / 200 = 127 μm. The opening width is equal to the value obtained by subtracting the wire diameter from the pitch. In A1, since the wire diameter is 40 μm, the opening width is 87 μm. The thickness is assumed to be equal to the thickness of a general screen mesh. The thickness shown in FIG. 17 is that of a general screen mesh.
In A1, the transmission height is 29.6 μm.
A2 is “250φ30”. In A2, the transmission height is 22.8 μm.
A3 is “290φ20”. In A3, the transmission height is 20.8 μm.
A4 is “360φ16”. In A4, the transmission height is 16.7 μm.
 図18に、本実施の形態1のスクリーンメッシュのバス電極部の一部を拡大した模式図を示す。
 縦糸441、442、443、444は縦糸線径Dv2で形成される。
 縦糸443と縦糸444は縦糸隣接幅Wv3で配置される。
 縦糸441と縦糸442も同様に縦糸隣接幅Wv3で配置される。
 縦糸442と縦糸443は縦糸開口幅Wv2で配置される。
 縦糸ピッチPv2は、縦糸開口幅Wv2と縦糸隣接幅Wv3と縦糸線径Dv1の2本分の合計値である。
FIG. 18 shows an enlarged schematic view of a part of the bus electrode portion of the screen mesh according to the first embodiment.
The warp yarns 441, 442, 443, and 444 are formed with the warp wire diameter Dv2.
The warp yarn 443 and the warp yarn 444 are arranged with the warp yarn adjacent width Wv3.
Similarly, the warp yarn 441 and the warp yarn 442 are arranged with the warp yarn adjacent width Wv3.
The warp yarn 442 and the warp yarn 443 are arranged with a warp yarn opening width Wv2.
The warp pitch Pv2 is a total value of two warp opening width Wv2, warp adjacent width Wv3, and warp wire diameter Dv1.
 横糸445、446は横糸線径Dh2で形成される。
横糸445と横糸446は横糸開口幅Wh2で配置される。
 横糸445は、縦糸441、442の下側を通り、縦糸443、444の上側を通る。
 横糸446は、縦糸441、442の上側を通り、縦糸443、444の下側を通る。
 横糸ピッチPh2は、横糸開口幅Wh2と横糸線径Dh2の合計値である。
一般的には、縦糸線径Dv2と横糸線径Dh2は同じである。また、縦糸開口幅Wv2と横糸開口幅Wh2は同じである。
The weft yarns 445 and 446 are formed with a weft yarn wire diameter Dh2.
The weft 445 and the weft 446 are arranged with a weft opening width Wh2.
The weft 445 passes below the warp yarns 441 and 442 and passes above the warp yarns 443 and 444.
The weft 446 passes above the warp yarns 441 and 442 and passes below the warp yarns 443 and 444.
The weft pitch Ph2 is a total value of the weft opening width Wh2 and the weft wire diameter Dh2.
Generally, the warp yarn diameter Dv2 and the weft yarn diameter Dh2 are the same. The warp opening width Wv2 and the weft opening width Wh2 are the same.
 本実施の形態1では、透過厚さは以下の式で示される。
 透過厚さ=(開口面積×紗厚)/(縦糸ピッチPv2×横糸ピッチPh2)
   開口面積=(縦糸開口幅Wv2+縦糸隣接幅Wv3)×横糸開口幅Wh2
   縦糸ピッチPv2=縦糸開口幅Wv2+縦糸隣接幅Wv3+2×縦糸線径Dv2
   横糸ピッチPh2=横糸開口幅Wh2+横糸線径Dh2
In the first embodiment, the transmission thickness is expressed by the following equation.
Permeation thickness = (opening area × 紗 thickness) / (warp pitch Pv2 × weft pitch Ph2)
Opening area = (warp yarn opening width Wv2 + warp yarn adjacent width Wv3) × weft yarn opening width Wh2
Warp pitch Pv2 = warp yarn opening width Wv2 + warp yarn adjacent width Wv3 + 2 × warp yarn wire diameter Dv2
Weft pitch Ph2 = weft opening width Wh2 + weft wire diameter Dh2
 図19に、本実施の形態のスクリーンメッシュの透過厚さを計算した一覧表を示す。
 隣接比は縦糸隣接幅Wv3と縦糸線径Dv2の比である。
 隣接比が0の場合、2本の縦糸が密接して配置されていることを示す。
 隣接比が0.5の場合、2本の縦糸が縦糸の線径の半分の間隔を開けて配置されていることを示す。
 縦糸開口幅Wv2および横糸開口幅Wh2は、グリッド電極部の開口幅Wv1、Wh1と同じとした。
FIG. 19 shows a list of calculated transmission thicknesses of the screen mesh according to the present embodiment.
The adjacent ratio is a ratio between the warp adjacent width Wv3 and the warp wire diameter Dv2.
When the adjacent ratio is 0, it indicates that the two warps are closely arranged.
When the adjacency ratio is 0.5, it indicates that the two warp yarns are arranged with an interval of half the wire diameter of the warp yarns.
The warp yarn opening width Wv2 and the weft yarn opening width Wh2 were the same as the opening widths Wv1 and Wh1 of the grid electrode portion.
 B1は「200φ40」と同じ線径、開口幅とし、2本の縦糸を密接して配置した場合である。B1では、透過高さは22.5μmである。
B2は「250φ30」と同じ線径、開口幅とし、2本の縦糸を密接して配置した場合である。B2では、透過高さは17.6μmである。
B3は「290φ20」と同じ線径、開口幅とし、2本の縦糸を密接して配置した場合である。B3では、透過高さは17.0μmである。
B4は「360φ16」と同じ線径、開口幅とし、2本の縦糸を密接して配置した場合である。B4では、透過高さは13.6μmである。
C1は「200φ40」と同じ線径、開口幅とし、2本の縦糸を線径の半分を開けて配置した場合である。C1では、透過高さは20.1μmである。
C2は「250φ30」と同じ線径、開口幅とし、2本の縦糸を線径の半分を開けて配置した場合である。C2では、透過高さは15.8μmである。
C3は「290φ20」と同じ線径、開口幅とし、2本の縦糸を線径の半分を開けて配置した場合である。C3では、透過高さは15.5μmである。
C4は「360φ16」と同じ線径、開口幅とし、2本の縦糸を線径の半分を開けて配置した場合である。C4では、透過高さは12.5μmである。
B1 is the case where the wire diameter and opening width are the same as “200φ40”, and two warps are closely arranged. In B1, the transmission height is 22.5 μm.
B2 is the case where the same wire diameter and opening width as “250φ30” are used, and two warp yarns are closely arranged. In B2, the transmission height is 17.6 μm.
B3 is the case where the wire diameter and opening width are the same as “290φ20”, and two warps are closely arranged. In B3, the transmission height is 17.0 μm.
B4 is the case where the wire diameter and opening width are the same as “360φ16”, and two warp yarns are closely arranged. In B4, the transmission height is 13.6 μm.
C1 is the case where the same wire diameter and opening width as “200φ40” are used, and two warps are arranged with half the wire diameter open. In C1, the transmission height is 20.1 μm.
C2 is the case where the same wire diameter and opening width as “250φ30” are used, and two warps are arranged with half the wire diameter open. In C2, the transmission height is 15.8 μm.
C3 is the case where the wire diameter and opening width are the same as “290φ20”, and two warps are arranged with half the wire diameter open. In C3, the transmission height is 15.5 μm.
C4 is the case where the same wire diameter and opening width as “360φ16” are used, and two warps are arranged with half the wire diameter open. In C4, the transmission height is 12.5 μm.
 図20に、グリッド電極部とバス電極部の透過厚さの比較をまとめた表を示す。
 グリッド電極部のスクリーンメッシュの構成は、従来のスクリーンメッシュの構成と同じであるので、図20は従来例と本実施の形態1のバス電極部の透過厚さの比較にもなっている。
 透過厚さ比は、グリッド電極部の透過厚さに対する、バス電極部の透過厚さの比である。
 線径40μm、開口幅87μmでは、2本の縦糸を密接して配置すると、バス電極部の透過厚さは76%に減少する。2本の縦糸を線径の半分を開けて配置すると、透過厚さは84%に減少する。
 線径30μm、開口幅72μmでは、2本の縦糸を密接して配置すると、バス電極部の透過厚さは77%に減少する。2本の縦糸を線径の半分を開けて配置すると、透過厚さは84%に減少する。
 線径20μm、開口幅68μmでは、2本の縦糸を密接して配置すると、バス電極部の透過厚さは81%に減少する。2本の縦糸を線径の半分を開けて配置すると、透過厚さは86%に減少する。
 線径16μm、開口幅55μmでは、2本の縦糸を密接して配置すると、バス電極部の透過厚さは82%に減少する。2本の縦糸を線径の半分を開けて配置すると、透過厚さは86%に減少する。
以上のように、本実施の形態1によると、グリッド電極の透過厚さを変えずにバス電極透過厚さを減少させることができる。
FIG. 20 shows a table summarizing comparison of transmission thicknesses of the grid electrode portion and the bus electrode portion.
Since the configuration of the screen mesh of the grid electrode portion is the same as the configuration of the conventional screen mesh, FIG. 20 is also a comparison of the transmission thickness of the bus electrode portion of the conventional example and the first embodiment.
The transmission thickness ratio is a ratio of the transmission thickness of the bus electrode portion to the transmission thickness of the grid electrode portion.
With a wire diameter of 40 μm and an opening width of 87 μm, the transmission thickness of the bus electrode portion is reduced to 76% when two warps are closely arranged. When two warp yarns are arranged with half the wire diameter open, the transmission thickness is reduced to 84%.
With a wire diameter of 30 μm and an opening width of 72 μm, if two warps are arranged closely, the transmission thickness of the bus electrode portion is reduced to 77%. When two warp yarns are arranged with half the wire diameter open, the transmission thickness is reduced to 84%.
With a wire diameter of 20 μm and an opening width of 68 μm, the transmission thickness of the bus electrode portion is reduced to 81% when two warps are closely arranged. When two warp yarns are arranged with half the wire diameter open, the transmission thickness is reduced to 86%.
With a wire diameter of 16 μm and an opening width of 55 μm, the transmission thickness of the bus electrode portion is reduced to 82% when two warps are closely arranged. When two warp yarns are arranged with half the wire diameter open, the transmission thickness is reduced to 86%.
As described above, according to the first embodiment, the bus electrode transmission thickness can be reduced without changing the transmission thickness of the grid electrode.
 印刷マスク2に用いるスクリーンメッシュ9は、図12および図15に示すように、密集箇所150とバス電極開口部42が重なるように配置される。
 このように配置することにより、グリッド電極での金属ペースト5の透過厚さを変えずに、バス電極での透過厚さを減らすことができる。即ち、グリッド電極の形状を変えずにバス電極での金属ペースト5の使用量を減らすことができる。
 例えば、線径20μm、開口幅68μmで、2本の縦糸を線径の半分を開けて配置すると、バス電極での金属ペーストの使用量は、透過厚さの減少に伴って86%に減少させることができる。
なお、実施の形態1では、縦糸の線径と横糸の線径が同じ場合の効果について説明したが、縦糸の線径と横糸の線径を変えた場合でも同様の効果があり、縦糸の線径と横糸の線径を変えても構わない。
As shown in FIGS. 12 and 15, the screen mesh 9 used for the printing mask 2 is arranged so that the dense location 150 and the bus electrode opening 42 overlap each other.
By arranging in this way, the transmission thickness at the bus electrode can be reduced without changing the transmission thickness of the metal paste 5 at the grid electrode. That is, the amount of the metal paste 5 used at the bus electrode can be reduced without changing the shape of the grid electrode.
For example, when two warps are arranged with a half of the wire diameter with a wire diameter of 20 μm and an opening width of 68 μm, the amount of metal paste used in the bus electrode is reduced to 86% as the transmission thickness decreases. be able to.
In the first embodiment, the effect when the wire diameter of the warp and the wire diameter of the weft is the same has been described. However, the same effect can be obtained when the wire diameter of the warp and the wire diameter of the weft are changed. The diameter and the wire diameter of the weft may be changed.
 このように、縦糸を部分的に2本が同じ側に来るように製網することにより、部分的に縦糸を密に配置する密集箇所を形成することができる。この密集箇所とバス電極開口部を一致させて配置することにより、バス電極部でグリッド電極部よりも多い本数で糸を並べて製網したスクリーンメッシュを用いてペーストをシリコン等の基板材料に塗布することができ、グリッド電極のペースト使用量を変えずに、バス電極の金属ペースト使用量を減らすことができる。これにより、太陽電池の発電効率を同程度に保ったままで、金属ペーストの使用量を減らすことができる。 Thus, by densely arranging the warp yarns so that the two yarns are on the same side, it is possible to form a dense portion where the warp yarns are partially densely arranged. By arranging the dense locations and the bus electrode openings so as to coincide with each other, the paste is applied to a substrate material such as silicon by using a screen mesh in which a larger number of threads are arranged in the bus electrode portion than in the grid electrode portion. The amount of metal paste used for the bus electrode can be reduced without changing the amount of paste used for the grid electrode. Thereby, the usage-amount of a metal paste can be reduced, keeping the electric power generation efficiency of a solar cell comparable.
 本発明の実施の形態1による電極形成方法では、上記の印刷マスクを使用することにより、通例の印刷機を使用しても表バス電極で使用される金属ペーストの使用量を削減することが出来る。このため、本実施の形態によれば、印刷マスクを変更する以外は従来と同様のスクリーン印刷方法により、金属ペーストの使用量削減を得ることが可能となる。また、本発明の電極形成方法は、比較例の手法に対して、印刷マスクの仕様に変更を加えることで、容易に実施することができる。本発明の電極形成方法は、太陽電池の受光面側の電極に、特に有用なものである。 In the electrode forming method according to the first embodiment of the present invention, by using the above-described printing mask, it is possible to reduce the amount of metal paste used for the front bus electrode even if a conventional printing machine is used. . For this reason, according to the present embodiment, it is possible to obtain a reduction in the amount of metal paste used by a screen printing method similar to the conventional method except that the printing mask is changed. Moreover, the electrode formation method of this invention can be easily implemented by adding to the specification of a printing mask with respect to the method of a comparative example. The electrode forming method of the present invention is particularly useful for an electrode on the light receiving surface side of a solar cell.
 本発明の実施の形態1による電極形成方法を用いることにより、バス電極部で前記グリッド電極部よりも多い本数で糸を並べて製網したスクリーンメッシュを用いた印刷マスクを使用することで、グリッド電極での金属ペースト使用量を減らさずにバス電極での金属ペースト使用量を減らすことができる。これにより、太陽電池の発電効率を同程度に保ったままで、太陽電池の製造コストを下げることができる。 By using the electrode forming method according to the first embodiment of the present invention, by using a printing mask using a screen mesh in which a larger number of yarns are arranged in the bus electrode portion than in the grid electrode portion, the grid electrode is used. The amount of metal paste used at the bus electrode can be reduced without reducing the amount of metal paste used at the bus. Thereby, the manufacturing cost of the solar cell can be reduced while maintaining the power generation efficiency of the solar cell at the same level.
 以上のように、本実施の形態にかかる太陽電池の製造方法、印刷マスクおよび太陽電池は、太陽電池の低コスト化に有用である。 As described above, the solar cell manufacturing method, the printing mask, and the solar cell according to the present embodiment are useful for reducing the cost of the solar cell.
実施の形態2.
 本発明の実施の形態2による印刷マスクについて詳細に説明する。
なお、本発明の実施の形態2による太陽電池用電極の形成方法および太陽電池については、印刷マスクおよびそれによって形成された電極形状以外は実施の形態1と同じである。
Embodiment 2. FIG.
The printing mask according to the second embodiment of the present invention will be described in detail.
The solar cell electrode forming method and solar cell according to the second embodiment of the present invention are the same as those of the first embodiment except for the print mask and the electrode shape formed thereby.
 図21、図22に、縦糸が連続する構成を変更した、本発明の実施の形態2のスクリーンメッシュ501の構成を示す。
 実施の形態2では、縦糸が隣り合う箇所を連続して複数設けたことが実施の形態1と異なる。
 図21は、スクリーンメッシュ501の製網方法を示した図である。スクリーンメッシュ501は縦糸511~520と横糸531~540を有する。
 横糸531は、縦糸511、512の下、縦糸513、514の上、縦糸515、516の下、縦糸517、518の上、縦糸519の下、縦糸520の上を通るように製網される。即ち、縦糸が連続して同じ側を通る箇所を、4組隣り合って配置するように製網されている。
21 and 22 show the configuration of the screen mesh 501 according to the second embodiment of the present invention, in which the configuration in which the warp yarns are continuous is changed.
The second embodiment is different from the first embodiment in that a plurality of adjacent portions of warp yarns are continuously provided.
FIG. 21 is a diagram showing a method for making the screen mesh 501. The screen mesh 501 has warps 511 to 520 and wefts 531 to 540.
The weft 531 is netted so as to pass under the warp yarns 511 and 512, above the warp yarns 513 and 514, below the warp yarns 515 and 516, above the warp yarns 517 and 518, below the warp yarn 519, and above the warp yarn 520. That is, the nets are formed so that four sets of warp yarns continuously passing on the same side are arranged adjacent to each other.
 図22に図21のJ-J断面図を示す。横糸531部での断面図である。
 横糸531は、縦糸512の下、縦糸513の上を通るので、縦糸512と縦糸513の間で下から上に位置を変える。従って、縦糸512と縦糸513の間隔は、横糸531を通すために、ある程度の間隔が必要である。
FIG. 22 is a sectional view taken along line JJ in FIG. It is sectional drawing in a weft 531 part.
Since the weft 531 passes under the warp 512 and above the warp 513, the position of the weft 531 is changed from the bottom to the top between the warp 512 and the warp 513. Accordingly, the gap between the warp yarn 512 and the warp yarn 513 requires a certain amount of space in order to pass the weft yarn 531.
 同様に、横糸531は、縦糸514の上、縦糸515の下を通るので、縦糸514と縦糸515の間で上から下に位置を変える。従って、縦糸514と縦糸515の間隔は、横糸531を通すために、ある程度の間隔が必要である。 Similarly, since the weft 531 passes above the warp 514 and below the warp 515, the position is changed from the top to the bottom between the warp 514 and the warp 515. Accordingly, the gap between the warp yarn 514 and the warp yarn 515 needs a certain distance in order to pass the weft yarn 531.
 同様に、横糸531は、縦糸516の下、縦糸517の上を通るので、縦糸516と縦糸517の間隔は、横糸531を通すために、ある程度の間隔が必要である。
また、横糸531は、縦糸518の上、縦糸519の下を通るので、縦糸518と縦糸519の間隔は、横糸531を通すために、ある程度の間隔が必要である。
Similarly, since the weft 531 passes under the warp 516 and above the warp 517, a certain distance is required between the warp 516 and the warp 517 in order to pass the weft 531.
In addition, since the weft 531 passes over the warp 518 and under the warp 519, the warp 518 and the warp 519 need a certain distance to pass the weft 531.
 一方、横糸531は、縦糸511、縦糸512の下を通るので、縦糸511と縦糸512の間では位置を変えない。従って、縦糸511と縦糸512の間隔には制限が無く、近づけることができる。 On the other hand, since the weft 531 passes under the warp 511 and the warp 512, the position does not change between the warp 511 and the warp 512. Therefore, there is no restriction | limiting in the space | interval of the warp yarn 511 and the warp yarn 512, and it can approach.
 同様に、横糸531は、縦糸513、縦糸514の上を通るので、縦糸513と縦糸514の間では位置を変えない。従って、縦糸513と縦糸514の間隔には制限が無く、近づけることができる。
また、横糸531は、縦糸515、縦糸516の下を通るので、縦糸515と縦糸516の間隔には制限が無く、近づけることができる。
また、横糸531は、縦糸517、縦糸518の上を通るので、縦糸517と縦糸518の間隔には制限が無く、近づけることができる。
Similarly, since the weft 531 passes over the warp 513 and the warp 514, the position does not change between the warp 513 and the warp 514. Therefore, the distance between the warp yarn 513 and the warp yarn 514 is not limited and can be approached.
Further, since the weft 531 passes under the warp 515 and the warp 516, the distance between the warp 515 and the warp 516 is not limited and can be made closer.
Further, since the weft 531 passes over the warp 517 and the warp 518, the distance between the warp 517 and the warp 518 is not limited and can be made closer.
 横糸が縦糸の上側また下側を連続して通る箇所に注目すると、以下のようになる。
  横糸531は縦糸511,512の下側、縦糸513,514の上側、縦糸515,516の下側、縦糸517,518の上側を通る。
  横糸532は縦糸511,512の上側、縦糸513,514の下側、縦糸515,516の上側、縦糸517,518の下側を通る。
  横糸533は縦糸511,512の下側、縦糸513,514の上側、縦糸515,516の下側、縦糸517,518の上側を通る。
  横糸534は縦糸512,513の下側、縦糸514,515の上側、縦糸516,517の下側、縦糸518,519の上側を通る。
  横糸535は縦糸512,513の上側、縦糸514,515の下側、縦糸516,517の上側、縦糸518,519の下側を通る。
  横糸536は縦糸512,513の下側、縦糸514,515の上側、縦糸516,517の下側、縦糸518,519の上側を通る。
  横糸537は縦糸513,514の下側、縦糸515,516の上側、縦糸517,518の下側、縦糸519,520の上側を通る。
  横糸538は縦糸513,514の上側、縦糸515,516の下側、縦糸517,518の上側、縦糸519,520の下側を通る。
  横糸539は縦糸513,514の下側、縦糸515,516の上側、縦糸517,518の下側、縦糸519,520の上側を通る。
  横糸540は縦糸514,515の下側、縦糸516,517の上側、縦糸518,519の下側、縦糸520の上側を通る。
When attention is paid to the location where the weft thread passes continuously above or below the warp thread, it is as follows.
The weft 531 passes below the warp yarns 511 and 512, above the warp yarns 513 and 514, below the warp yarns 515 and 516, and above the warp yarns 517 and 518.
The weft 532 passes above the warp yarns 511 and 512, below the warp yarns 513 and 514, above the warp yarns 515 and 516, and below the warp yarns 517 and 518.
The weft 533 passes below the warp yarns 511 and 512, above the warp yarns 513 and 514, below the warp yarns 515 and 516, and above the warp yarns 517 and 518.
The weft 534 passes below the warp yarns 512 and 513, above the warp yarns 514 and 515, below the warp yarns 516 and 517, and above the warp yarns 518 and 519.
The weft 535 passes above the warp yarns 512 and 513, below the warp yarns 514 and 515, above the warp yarns 516 and 517, and below the warp yarns 518 and 519.
The weft 536 passes below the warp yarns 512 and 513, above the warp yarns 514 and 515, below the warp yarns 516 and 517, and above the warp yarns 518 and 519.
The weft 537 passes below the warp yarns 513 and 514, above the warp yarns 515 and 516, below the warp yarns 517 and 518, and above the warp yarns 519 and 520.
The weft 538 passes above the warp yarns 513 and 514, below the warp yarns 515 and 516, above the warp yarns 517 and 518, and below the warp yarns 519 and 520.
The weft 539 passes below the warps 513, 514, above the warps 515, 516, below the warps 517, 518, and above the warps 519, 520.
The weft 540 passes below the warp yarns 514 and 515, above the warp yarns 516 and 517, below the warp yarns 518 and 519, and above the warp yarn 520.
 縦糸が同じ側を通る箇所では、縦糸間の距離を近づけることができるので、縦糸間の距離に注目すると、以下のようになる。
 横糸531,532,533の位置では、縦糸511,512を近づけることができる。また、縦糸513,514を近づけることができる。また、縦糸515,516を近づけることができる。また、縦糸517,518を近づけることができる。
 横糸534,535,536の位置では、縦糸512,513を近づけることができる。また、縦糸514,515を近づけることができる。また、縦糸516,517を近づけることができる。また、縦糸518,519を近づけることができる。
 横糸537,538,539の位置では、縦糸513,514を近づけることができる。また、縦糸515,516を近づけることができる。また、縦糸517,518を近づけることができる。また、縦糸519,520を近づけることができる。
横糸540の位置では、縦糸514,515を近づけることができる。また、縦糸516,517を近づけることができる。また、縦糸518,519を近づけることができる。
Since the distance between the warp yarns can be reduced at the place where the warp yarns pass on the same side, the following is a focus on the distance between the warp yarns.
At the positions of the weft yarns 531, 532, 533, the warp yarns 511, 512 can be brought close to each other. Moreover, the warp yarns 513 and 514 can be brought close to each other. Moreover, the warp yarns 515 and 516 can be brought close to each other. Moreover, the warp yarns 517 and 518 can be brought close to each other.
At the positions of the weft yarns 534, 535, and 536, the warp yarns 512 and 513 can be brought close to each other. Moreover, the warp yarns 514 and 515 can be brought close to each other. Further, the warps 516 and 517 can be brought close to each other. Moreover, the warp yarns 518 and 519 can be brought close to each other.
At the positions of the weft yarns 537, 538, 539, the warp yarns 513, 514 can be brought close to each other. Moreover, the warp yarns 515 and 516 can be brought close to each other. Moreover, the warp yarns 517 and 518 can be brought close to each other. Moreover, the warp yarns 519 and 520 can be brought close to each other.
At the position of the weft 540, the warps 514, 515 can be brought closer to each other. Further, the warps 516 and 517 can be brought close to each other. Moreover, the warp yarns 518 and 519 can be brought close to each other.
 このように構成することにより、縦糸の間隔を近づけることができるので、従来例よりも縦糸を密に配置することができる。即ち、単位長さあたりの縦糸の本数を増やすことができる。
 また、縦糸が密に配置された箇所を連続して形成できるので、縦糸が密に配置された箇所の幅を自由に設定することができる。
By comprising in this way, since the space | interval of a warp yarn can be closely approached, a warp yarn can be arrange | positioned more densely than a prior art example. That is, the number of warp yarns per unit length can be increased.
Moreover, since the places where the warp yarns are densely arranged can be formed continuously, the width of the places where the warp yarns are densely arranged can be freely set.
 縦糸に着目してみると、縦糸512は、横糸533の位置では縦糸511と同じ上側にあるので、縦糸511に近い位置にある。横糸534の位置では縦糸513と同じ上側にあるので、縦糸513に近い位置にある。
即ち、縦糸512は、横糸533と横糸534の中間位置で縦糸511の側から縦糸513の側に位置がずれる。
同様に、縦糸513は、横糸536と横糸537の中間位置で縦糸512の側から縦糸514の側に位置がずれる。
同様に、縦糸514は、横糸533と横糸534の中間位置で縦糸513の側から縦糸515の側に位置がずれる。また、横糸539と横糸540の中間位置で縦糸513の側から縦糸515の側に位置がずれる。
When paying attention to the warp, the warp 512 is located on the same upper side as the warp 511 at the position of the weft 533, and thus is close to the warp 511. Since the position of the weft 534 is on the same upper side as the warp 513, it is close to the warp 513.
That is, the position of the warp yarn 512 is shifted from the warp yarn 511 side to the warp yarn 513 side at an intermediate position between the weft yarn 533 and the weft yarn 534.
Similarly, the position of the warp yarn 513 is shifted from the warp yarn 512 side to the warp yarn 514 side at an intermediate position between the weft yarn 536 and the weft yarn 537.
Similarly, the position of the warp yarn 514 is shifted from the warp yarn 513 side to the warp yarn 515 side at an intermediate position between the weft yarn 533 and the weft yarn 534. Further, the position is shifted from the warp yarn 513 side to the warp yarn 515 side at an intermediate position between the weft yarn 539 and the weft yarn 540.
 このように、横糸3本毎に連続する縦糸を横にずらすように製網することにより、縦糸間の距離が近い密集箇所550を図21の破線で囲んだ領域のように、斜めに形成することができる。この密集箇所550は、Yの方向にメッシュの上端から下端まで連続して形成される。 In this way, by forming the net so that the warp yarns that are continuous every three weft yarns are shifted laterally, the dense portion 550 in which the distance between the warp yarns is short is formed diagonally as in the region surrounded by the broken line in FIG. be able to. The dense spot 550 is continuously formed in the Y direction from the upper end to the lower end of the mesh.
 密集箇所550の角度と幅について計算する。
 縦糸を横にずらす縦糸周期をNh2本、縦糸の連続する縦糸連続組をNv2組とすると、縦糸と密集箇所550とが形成する角度である密集箇所角度θ2と、密集箇所550の密集箇所角度θ2に直角な方向の幅である密集箇所幅L2は、以下のように表される。
  tanθ2=Pv2/(Nh2×Ph2)
  cosθ2=(Nv2×Pv2)/L2
The angle and width of the crowded area 550 are calculated.
When the warp cycle for shifting the warp yarns to the side is Nh2 and the warp yarn continuous group in which the warp yarns are continuous is Nv2, the crowded portion angle θ2 that is an angle formed by the warp yarn and the crowded portion 550, and the crowded portion angle θ2 of the crowded portion 550. The crowded portion width L2 which is the width in the direction perpendicular to is expressed as follows.
tan θ2 = Pv2 / (Nh2 × Ph2)
cos θ2 = (Nv2 × Pv2) / L2
 図23に、縦糸周期Nh2を変えた時の、密集箇所角度θ2の計算例を示す。
横糸ピッチPh2と縦糸ピッチPv2は、図19のC3の条件で計算した。横糸ピッチPh2が88μm、縦糸ピッチPv2が118μmでの計算例である。
縦糸周期Nh2を大きくすると、密集箇所角度θ2は小さくなる。図21の縦糸周期3本の状態では、密集箇所角度θ2は24.1°となる。
FIG. 23 shows a calculation example of the crowded portion angle θ2 when the warp period Nh2 is changed.
The weft yarn pitch Ph2 and the warp yarn pitch Pv2 were calculated under the condition of C3 in FIG. In this example, the weft pitch Ph2 is 88 μm and the warp pitch Pv2 is 118 μm.
When the warp period Nh2 is increased, the crowded portion angle θ2 is decreased. In the state of three warp cycles in FIG. 21, the crowded portion angle θ2 is 24.1 °.
 なお、縦糸周期Nh2は、Y方向にの全長に渡って一定である必要はない。例えば、縦糸周期2本と縦糸周期3本を交互に設けることにより、密集箇所角度θ1を縦糸周期2本の時の33.9°と、縦糸周期3本の時の24.1°の間にすることができる。
このように、縦糸周期を調整することにより、任意の密集箇所角度θ2を実現することができる。
The warp period Nh2 need not be constant over the entire length in the Y direction. For example, by alternately providing two warp cycles and three warp cycles, the dense portion angle θ1 is between 33.9 ° when the warp cycle is 2 and 24.1 ° when the warp cycle is 3 can do.
In this manner, by adjusting the warp yarn period, it is possible to realize an arbitrary crowded portion angle θ2.
 図24に、縦糸周期Nh2と縦糸連続組Nv2を変えた時の、密集箇所幅L2の計算例を示す。
横糸ピッチPh2と縦糸ピッチPv2は、図19のC3の条件で計算した。横糸ピッチPh2が88μm、縦糸ピッチPv2が118μmでの計算例である。
縦糸周期Nh2が3本の場合、縦糸連続組Nv2を15組とすると密集箇所幅L2が1932μm≒1.9mmとなる。
FIG. 24 shows a calculation example of the crowded portion width L2 when the warp yarn period Nh2 and the warp yarn continuous set Nv2 are changed.
The weft yarn pitch Ph2 and the warp yarn pitch Pv2 were calculated under the condition of C3 in FIG. In this example, the weft pitch Ph2 is 88 μm and the warp pitch Pv2 is 118 μm.
When the warp cycle Nh2 is 3, and the warp yarn continuous set Nv2 is 15, the crowded portion width L2 is 1932 μm≈1.9 mm.
 即ち、バス幅が2mmの場合、線径Dv2,Dh2を20μm、縦糸開口幅Wv2,横糸開口幅Wh1を68μm、縦糸隣接幅Wv3を10μm、縦糸周期Nh2を3本、縦糸連続組Nv2を15組とし、ステンレスメッシュを(24.1+90)°回転させて印刷マスクに貼り付けることにより、バス開口部と密集箇所を一致させて配置することができる。 That is, when the bus width is 2 mm, the wire diameters Dv2 and Dh2 are 20 μm, the warp opening width Wv2, the weft opening width Wh1 is 68 μm, the warp adjacent width Wv3 is 10 μm, the warp period Nh2 is 3, and the warp continuous group Nv2 is 15 sets. Then, the stainless steel mesh is rotated by (24.1 + 90) ° and attached to the printing mask, so that the bus opening and the dense portion can be arranged to coincide with each other.
 なお、バス電極開口部と密集箇所幅の位置決め精度を考え、密集箇所幅はバス電極幅よりもやや小さくすることが望ましい。 In consideration of the positioning accuracy of the bus electrode opening and the dense portion width, it is desirable that the dense portion width is slightly smaller than the bus electrode width.
 このように、本発明の実施の形態2によれば、縦糸を部分的に2本が同じ側に来るように製網することにより、部分的に縦糸を密に配置する密集箇所を形成することができる。
また、縦糸が密に配置された箇所を連続して形成できるので、縦糸が密に配置された箇所の幅である密集箇所幅を自由に選択することができる。
また、縦糸を横にずらす縦糸周期と縦糸の連続する縦糸連続組を変えることにより、縦糸と密集箇所とが形成する角度である密集箇所角度θ2を自由に選択することができる。
この密集箇所とバス電極開口部を一致させて配置することにより、バス電極部でグリッド電極部よりも多い本数で糸を並べて製網したスクリーンメッシュを用いてペーストをシリコン等の基板材料に塗布することができ、グリッド電極のペースト使用量を変えずに、バス電極の金属ペースト使用量を減らすことができる。これにより、太陽電池の発電効率を同程度に保ったままで、金属ペーストの使用量を減らすことができる。
As described above, according to the second embodiment of the present invention, by forming the warp so that the two yarns are partially on the same side, a dense portion where the warp yarns are partially arranged is formed. Can do.
In addition, since the places where the warp yarns are densely arranged can be formed continuously, the dense portion width which is the width of the place where the warp yarns are densely arranged can be freely selected.
In addition, by changing the warp yarn period in which the warp yarns are laterally shifted and the warp yarn continuous set in which the warp yarns are continuous, the dense point angle θ2 that is an angle formed by the warp yarns and the dense points can be freely selected.
By arranging the dense locations and the bus electrode openings so as to coincide with each other, the paste is applied to a substrate material such as silicon by using a screen mesh in which a larger number of threads are arranged in the bus electrode portion than in the grid electrode portion. The amount of metal paste used for the bus electrode can be reduced without changing the amount of paste used for the grid electrode. Thereby, the usage-amount of a metal paste can be reduced, keeping the electric power generation efficiency of a solar cell comparable.
 本発明の実施の形態2による電極形成方法では、上記の印刷マスクを使用することにより、通例の印刷機を使用しても表バス電極で使用される金属ペーストの使用量を削減することが出来る。このため、本実施の形態によれば、印刷マスクを変更する以外は従来と同様のスクリーン印刷方法により、金属ペーストの使用量削減を得ることが可能となる。また、本発明の電極形成方法は、比較例の手法に対して、印刷マスクの仕様に変更を加えることで、容易に実施することができる。本発明の電極形成方法は、太陽電池の受光面側の電極に、特に有用なものである。 In the electrode forming method according to the second embodiment of the present invention, the use amount of the metal paste used for the front bus electrode can be reduced by using the above-described printing mask even if a usual printing machine is used. . For this reason, according to the present embodiment, it is possible to obtain a reduction in the amount of metal paste used by a screen printing method similar to the conventional method except that the printing mask is changed. Moreover, the electrode formation method of this invention can be easily implemented by adding to the specification of a printing mask with respect to the method of a comparative example. The electrode forming method of the present invention is particularly useful for an electrode on the light receiving surface side of a solar cell.
 本発明の実施の形態2による電極形成方法を用いることにより、バス電極部で前記グリッド電極部よりも多い本数で糸を並べて製網したスクリーンメッシュを用いた印刷マスクを使用することで、グリッド電極での金属ペースト使用量を減らさずにバス電極での金属ペースト使用量を減らすことができる。これにより、太陽電池の発電効率を同程度に保ったままで、太陽電池の製造コストを下げることができる。
また、縦糸が密に配置された箇所を連続して形成できるので、縦糸が密に配置された箇所の幅である密集箇所幅を自由に選択することができる。
また、縦糸を横にずらす縦糸周期と縦糸の連続する縦糸連続組を変えることにより、縦糸と密集箇所とが形成する角度である密集箇所角度を自由に選択することができる。
By using the electrode forming method according to the second embodiment of the present invention, by using a printing mask using a screen mesh in which a larger number of yarns are arranged in the bus electrode portion than in the grid electrode portion, the grid electrode is used. The amount of metal paste used at the bus electrode can be reduced without reducing the amount of metal paste used at the bus. Thereby, the manufacturing cost of the solar cell can be reduced while maintaining the power generation efficiency of the solar cell at the same level.
In addition, since the places where the warp yarns are densely arranged can be formed continuously, the dense portion width which is the width of the place where the warp yarns are densely arranged can be freely selected.
Further, by changing the warp yarn period in which the warp yarns are shifted laterally and the warp yarn continuous set in which the warp yarns are continuous, the dense portion angle, which is the angle formed by the warp yarns and the dense portions, can be freely selected.
 以上のように、本実施の形態2にかかる太陽電池の製造方法、印刷マスクおよび太陽電池は、太陽電池の低コスト化に有用である。 As described above, the solar cell manufacturing method, the printing mask, and the solar cell according to the second embodiment are useful for reducing the cost of the solar cell.
実施の形態3.
 本発明の実施の形態3による太陽電池モジュールについて詳細に説明する。
 図25および図26は、本実施の形態3による太陽電池モジュールの製造方法の手順を説明する断面模式図である。図25、図26の上側が受光面側である。
 図25は、太陽電池モジュールの設置状態、上側が受光面側となっている状態での図であるが、太陽電池モジュールの組立時は、図25の上下を反転した状態で行う。
まず、透光性基板15の上に透光性樹脂部材16を設置する。その透光性樹脂部材16には、配線付き太陽電池17を設置する。配線付き太陽電池17は、本発明の実施の形態1または実施の形態2を用いて作成した所定の枚数の太陽電池1(図1参照)を並列させて、太陽電池のバス電極と隣り合う太陽電池の裏バス電極とを、半田付き銅線で半田付けして直列に配線接合して形成する。
 なお、配線に使用する材料は、半田付き銅線以外にも、導電性のある材料であれば構わない。
配線付き太陽電池17は、各太陽電池1の裏面を上にし、表面を透光性基板15の側にして、透光性樹脂部材16に設置する。
Embodiment 3 FIG.
A solar cell module according to Embodiment 3 of the present invention will be described in detail.
25 and 26 are schematic cross-sectional views illustrating the procedure of the method for manufacturing the solar cell module according to the third embodiment. The upper side of FIGS. 25 and 26 is the light receiving surface side.
FIG. 25 is a diagram of the solar cell module installed state and a state where the upper side is the light receiving surface side. When assembling the solar cell module, the top and bottom of FIG. 25 are reversed.
First, the translucent resin member 16 is installed on the translucent substrate 15. The translucent resin member 16 is provided with a solar cell 17 with wiring. The solar cell with wiring 17 has a predetermined number of solar cells 1 (see FIG. 1) created by using the first embodiment or the second embodiment of the present invention arranged in parallel, and is adjacent to the bus electrode of the solar cell. The back bus electrode of the battery is formed by soldering with a soldered copper wire and connecting the wires in series.
The material used for the wiring may be any conductive material other than the copper wire with solder.
The solar cell with wiring 17 is installed on the translucent resin member 16 with the back surface of each solar cell 1 facing upward and the front surface facing the translucent substrate 15.
 配線付き太陽電池17の上には、さらに透光性樹脂部材16および裏面シート18を設置する。図25には、図の上部から順に、透光性基板15、透光性樹脂部材16、配線付き太陽電池17、透光性樹脂部材16および裏面シート18を重ね合わせた状態を示している。 Further, a translucent resin member 16 and a back sheet 18 are installed on the solar cell 17 with wiring. FIG. 25 shows a state in which the translucent substrate 15, the translucent resin member 16, the solar cell 17 with wiring, the translucent resin member 16, and the back sheet 18 are stacked in order from the top of the figure.
 これらの部材を圧着させた状態で加熱処理を施すことにより、図26に示すように、配線付き太陽電池17が封止された透光性樹脂層19と、透光性基板15と、裏面シート18とが一体化された太陽電池モジュールが作製される。本発明の実施の形態1または実施の形態2の太陽電池用電極の形成方法により形成された電極を備える太陽電池1を用いることで、太陽電池の発電効率を同程度に保ったままで、金属ペーストの使用量を減らすことにより太陽電池の製造コストを下げて、太陽電池モジュールの製造コストを下げることができる。 By performing a heat treatment in a state where these members are pressure-bonded, as shown in FIG. 26, a translucent resin layer 19 in which the solar cell with wiring 17 is sealed, a translucent substrate 15, and a back sheet. A solar cell module integrated with 18 is produced. By using the solar cell 1 provided with the electrode formed by the method for forming a solar cell electrode according to the first or second embodiment of the present invention, the metal paste while maintaining the power generation efficiency of the solar cell at the same level The manufacturing cost of the solar cell module can be lowered by reducing the usage amount of the solar cell module and the manufacturing cost of the solar cell module.
 太陽電池モジュールの作製における加熱および圧着の処理には、ラミネータと称される真空加熱圧着装置を使用することが望ましい。ラミネータは、透光性樹脂部材16や裏面シート18を加熱変形させ、さらにこれらを熱硬化させることにより一体化させるとともに透光性樹脂層19に太陽電池を封止する。 It is desirable to use a vacuum thermocompression bonding device called a laminator for the heating and pressure bonding treatment in the production of the solar cell module. The laminator heat-deforms the translucent resin member 16 and the back sheet 18 and further integrates them by thermosetting, and seals the solar cell in the translucent resin layer 19.
 真空加熱圧着装置は、減圧環境下において、各部材を加熱および圧着させる。これにより、透光性基板15および透光性樹脂部材16間、透光性樹脂部材16および配線付き太陽電池17間、配線付き太陽電池17および透光性樹脂部材16間、透光性樹脂部材16および裏面シート18間のいずれについても、空隙や気泡の残留を防ぎ、各部材を均一な圧力で圧着させることができる。 The vacuum thermocompression bonding apparatus heats and crimps each member in a reduced pressure environment. Thereby, between the translucent board | substrate 15 and the translucent resin member 16, between the translucent resin member 16 and the solar cell 17 with a wiring, between the solar cell 17 with a wiring, and the translucent resin member 16, a translucent resin member 16 and the back sheet 18 can prevent gaps and bubbles from remaining, and can press the members with uniform pressure.
 真空加熱圧着装置での加熱および圧着の処理は、200度以下、望ましくは150度から200度の温度下で実施する。加熱および圧着の処理における温度は、透光性樹脂部材16の材質等により適宜変更可能であるものとする。 The heating and pressure-bonding process in the vacuum thermocompression bonding apparatus is performed at a temperature of 200 degrees or less, preferably 150 to 200 degrees. It is assumed that the temperature in the heating and pressure bonding processes can be appropriately changed depending on the material of the translucent resin member 16 and the like.
 透光性基板15としては、例えばガラス基板を使用する。透光性基板15は、太陽光を透過可能であれば良く、ガラス以外の材質からなるものとしても良い。透光性樹脂部材16は、エチレンビニルアセテート系、ポリビニルブチラール系、エポキシ系、アクリル系、ウレタン系、オレフィン系、ポリエステル系、シリコン系、ポリスチレン系、ポリカーボネート系およびゴム系等の樹脂のうちの一つあるいは複数を含む。透光性樹脂部材16は、太陽光を透過可能であれば、ここで挙げる以外のいずれの材質を使用するものであっても良いものとする。 As the translucent substrate 15, for example, a glass substrate is used. The translucent board | substrate 15 should just be able to permeate | transmit sunlight, and is good also as what consists of materials other than glass. The translucent resin member 16 is one of resins such as ethylene vinyl acetate, polyvinyl butyral, epoxy, acrylic, urethane, olefin, polyester, silicon, polystyrene, polycarbonate, and rubber. Contains one or more. As long as the translucent resin member 16 can transmit sunlight, any material other than those listed here may be used.
 裏面シート18としては、ポリエステル系、ポリビニル系、ポリカーボネート系およびポリイミド系等の樹脂のうちの一つあるいは複数からなるシートを使用する。裏面シート18は、太陽電池モジュールの保護に十分な強度、耐湿性および耐候性を有するものであれば、ここで挙げる以外のいずれの材質からなるものであっても良い。裏面シート18は、強度、耐湿性および耐候性を向上させるために、樹脂材料のみならず、金属箔材料を貼り合わせた複合材料からなるものとしても良い。また、裏面シート18は、高い反射率を持つ金属材料や、高い屈折率を持つ透明部材を、蒸着等により樹脂材料に貼り合わせたものとしても良い。 As the back sheet 18, a sheet made of one or a plurality of resins such as polyester, polyvinyl, polycarbonate and polyimide is used. The back sheet 18 may be made of any material other than those listed here as long as it has sufficient strength, moisture resistance and weather resistance for protecting the solar cell module. The back sheet 18 may be made of not only a resin material but also a composite material obtained by bonding metal foil materials in order to improve strength, moisture resistance, and weather resistance. Further, the back sheet 18 may be formed by bonding a metal material having a high reflectance or a transparent member having a high refractive index to a resin material by vapor deposition or the like.
 太陽電池モジュールの端面は、ラミネート加工の密着性を向上させ、外部からの水分等の浸入を防ぐために、ゴム系樹脂部材等からなるテープにより保護することとしても良い。ゴム系樹脂部材としては、例えば、ブチルゴム等を使用する。さらに、太陽電池モジュールは、構造体としての取り扱い易さに鑑み、外周を囲うフレームを設けることとしても良い。フレームは、例えば、アルミニウムや、アルミニウム合金等の金属部材を用いて構成する。 The end face of the solar cell module may be protected with a tape made of a rubber-based resin member or the like in order to improve the adhesiveness of the laminating process and prevent moisture from entering from the outside. For example, butyl rubber or the like is used as the rubber-based resin member. Furthermore, the solar cell module may be provided with a frame that surrounds the outer periphery in view of ease of handling as a structure. The frame is configured using a metal member such as aluminum or an aluminum alloy, for example.
 本実施の形態1または実施の形態2にかかる電極形成方法により、本実施の形態3は、比較例の手法に大幅な変更を加えること無く、簡便な手法により安価な太陽電池モジュールを得ることができるため、工業上非常に有用である。 By the electrode forming method according to the first embodiment or the second embodiment, the third embodiment can obtain an inexpensive solar cell module by a simple method without significantly changing the method of the comparative example. This is very useful industrially.
 1 太陽電池、2 印刷マスク、3 基板材料、4 ステージ、5 金属ペースト、6 マスクフレーム、7 吸引機構着、8 スキージ、9 スクリーンメッシュ、10 感光性乳剤、11 縦糸、12 横糸、13 外縁側面、14 余白、15 透光性基板、16 透光性樹脂部材、17 配線付き太陽電池、18 裏面シート、19 透光性樹脂層、20 開口部、21 グリッド電極、22 バス電極、23 裏アルミ電極、24 裏バス電極、31 p型シリコン基板、32 n層、33 反射防止膜、41 グリッド電極開口部、42 バス電極開口部、111~120 縦糸、131~140 横糸、150 密集箇所、161 縦糸113の横糸132と横糸133との中間位置、162 縦糸114の横糸135と横糸136との中間位置、163 縦糸115の横糸138と横糸139との中間位置、401,402 縦糸、403,404 横糸、441,442,443,444 縦糸、445,446 横糸、501 スクリーンメッシュ、511~520 縦糸、531~540 横糸、550 密集箇所、Dv1 縦糸線径、Wv1 縦糸開口幅、Pv1 縦糸ピッチ、Dh1 横糸線径、Wh1 横糸開口幅、Ph1 横糸ピッチ、Dv2 縦糸線径、Wv2 縦糸開口幅、Wv3 縦糸隣接幅、Pv2 縦糸ピッチ、Dh2 横糸線径、Wh2 横糸開口幅、Ph2 横糸ピッチ、Nh2 縦糸周期、Nv2 縦糸連続組、θ2 密集箇所角度、L2 密集箇所幅。 1 solar cell, 2 printing mask, 3 substrate material, 4 stage, 5 metal paste, 6 mask frame, 7 suction mechanism, 8 squeegee, 9 screen mesh, 10 photosensitive emulsion, 11 warp, 12 weft, 13 outer edge, 14 margins, 15 translucent substrate, 16 translucent resin member, 17 solar cell with wiring, 18 back sheet, 19 translucent resin layer, 20 opening, 21 grid electrode, 22 bus electrode, 23 back aluminum electrode, 24 back bus electrode, 31 p-type silicon substrate, 32 n layer, 33 antireflection film, 41 grid electrode opening, 42 bus electrode opening, 111-120 warp, 131-140 weft, 150 crowded location, 161 warp 113 Intermediate position between weft 132 and weft 133, weft 135 and weft of warp 114 Intermediate position with 136, 163 intermediate position between weft 138 and weft 139 of warp 115, 401, 402 warp, 403, 404 weft, 441, 442, 443, 444 warp, 445, 446 weft, 501 screen mesh, 511- 520 warp yarns, 531-540 weft yarns, 550 dense locations, Dv1 warp wire diameter, Wv1 warp opening width, Pv1 warp pitch, Dh1 weft wire diameter, Wh1 weft opening width, Ph1 weft pitch, Dv2 warp wire diameter, Wv2 warp opening width, Wv3 Warp Thread Adjacent Width, Pv2 Warp Thread Pitch, Dh2 Weft Thread Diameter, Wh2 Weft Thread Opening Width, Ph2 Weft Thread Pitch, Nh2 Warp Thread Period, Nv2 Warp Yarn Continuous Set, θ2 Concentration Location Angle, L2 Concentration Location Width.

Claims (8)

  1.  バス電極部とグリッド電極部とを有する電極形状に応じた印刷マスクを介して、電極材料である導電性材料を含むペーストを基板の電極形成面に塗布するスクリーン印刷工程を含む太陽電池の製造方法であって、
     前記スクリーン印刷工程は、前記バス電極部で前記グリッド電極部よりも多い本数で糸を並べて製網したスクリーンメッシュを用いた前記印刷マスクを使用し、前記ペーストを塗布する工程を含むことを特徴とする太陽電池の製造方法。
    Solar cell manufacturing method including screen printing step of applying paste containing conductive material as electrode material to electrode forming surface of substrate through printing mask corresponding to electrode shape having bus electrode portion and grid electrode portion Because
    The screen printing step includes the step of applying the paste using the printing mask using a screen mesh in which the bus electrode portion has a larger number of yarns than the grid electrode portion and is reticulated. A method for manufacturing a solar cell.
  2.  前記スクリーンメッシュの縦糸と横糸を交互に上下に製網し、部分的に前記縦糸を上側または下側の同じ側に複数本連続して位置させ、前記縦糸の連続する前記横糸の位置を順にずらすことにより、前記縦糸の連続する密集箇所を斜めに形成するとともに、前記密集箇所に合わせてバス電極パターンを配して形成する前記印刷マスクを使用することを特徴とする請求項1に記載の太陽電池の製造方法。 The screen mesh warp and weft are alternately made up and down, and a plurality of warp yarns are partially positioned on the same side of the upper side or the lower side, and the positions of the weft yarns that are continuous with the warp yarns are sequentially shifted. 2. The sun according to claim 1, wherein the printed mask is formed by forming the densely packed portions of the warp yarns obliquely and arranging a bus electrode pattern in accordance with the densely located portions. Battery manufacturing method.
  3.  前記縦糸が同じ側に連続する本数を2本とする前記印刷マスクを使用することを特徴とする請求項1または2に記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 1 or 2, wherein the printing mask is used in which the number of continuous warps is two on the same side.
  4.  電極材料である導電性材料を含むペーストを基板の電極形成面に塗布する際に使用する印刷マスクであって、
     前記ペーストを保持するためのスクリーンメッシュが、バス電極部でグリッド電極部よりも多い本数で糸を並べて製網したことを特徴とする印刷マスク。
    A printing mask used when applying a paste containing a conductive material as an electrode material to an electrode forming surface of a substrate,
    A printing mask comprising a screen mesh for holding the paste, in which a string is formed by arranging a larger number of yarns in a bus electrode portion than in a grid electrode portion.
  5.  縦糸と横糸が交互に上下に製網される前記スクリーンメッシュを有する前記印刷マスクにおいて、部分的に前記縦糸を上側または下側の同じ側に複数本連続して位置させ、前記縦糸の連続する前記横糸の位置を順にずらすことにより、前記縦糸の連続する密集箇所を斜めに形成するとともに、前記密集箇所に合わせてバス電極パターンを配することを特徴とする請求項4に記載の印刷マスク。 In the printing mask having the screen mesh in which warp yarns and weft yarns are alternately made up and down, a plurality of the warp yarns are continuously located on the same side of the upper side or the lower side, and the warp yarns are continuous. 5. The printing mask according to claim 4, wherein by shifting the position of the weft yarn in order, the dense portions where the warp yarns are continuous are formed obliquely, and a bus electrode pattern is arranged in accordance with the dense portions.
  6.  前記縦糸が同じ側に連続する本数を2本とすることを特徴とする請求項4または請求項5に記載の印刷マスク。 The printing mask according to claim 4 or 5, wherein the number of continuous warp yarns on the same side is two.
  7.  請求項1ないし請求項3に記載の太陽電池の製造方法を用いて形成された太陽電池。 A solar cell formed by using the method for manufacturing a solar cell according to claim 1.
  8.  請求項7に記載の太陽電池を複数配列し、隣り合う前記太陽電池を前記印刷マスクにより形成されたバス電極で相互に接続したことを特徴とする太陽電池モジュール。 A solar cell module, wherein a plurality of solar cells according to claim 7 are arranged, and the adjacent solar cells are connected to each other by bus electrodes formed by the printing mask.
PCT/JP2013/059693 2012-11-12 2013-03-29 Method for manufacturing solar cell, printing mask, solar cell, and solar cell module WO2014073223A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014545587A JP5866029B2 (en) 2012-11-12 2013-03-29 Solar cell manufacturing method and printing mask
CN201380048458.8A CN104641474B (en) 2012-11-12 2013-03-29 The manufacture method of solar cell, mask to print, solar cell and solar module
TW102139485A TWI523253B (en) 2012-11-12 2013-10-31 A method of manufacturing a solar cell, and a printing screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012248064 2012-11-12
JP2012-248064 2012-11-12

Publications (1)

Publication Number Publication Date
WO2014073223A1 true WO2014073223A1 (en) 2014-05-15

Family

ID=50684347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059693 WO2014073223A1 (en) 2012-11-12 2013-03-29 Method for manufacturing solar cell, printing mask, solar cell, and solar cell module

Country Status (4)

Country Link
JP (1) JP5866029B2 (en)
CN (1) CN104641474B (en)
TW (1) TWI523253B (en)
WO (1) WO2014073223A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6735894B2 (en) * 2017-02-16 2020-08-05 三菱電機株式会社 Solar cell manufacturing method and solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341547A (en) * 2005-06-10 2006-12-21 Sharp Corp Printing mask, screen printing method, manufacturing method for photoelectric transducer, and photoelectric transducer
JP2007214455A (en) * 2006-02-10 2007-08-23 Sharp Corp Manufacturing method of solar cell and screen mask for manufacturing solar cell
JP2009272405A (en) * 2008-05-02 2009-11-19 Mitsubishi Electric Corp Solar battery element and manufacturing method therefor
JP2010533962A (en) * 2007-07-19 2010-10-28 アド−ビジョン・インコーポレイテッド Method and apparatus for improved printed cathode for organic electronic devices
WO2012115006A1 (en) * 2011-02-21 2012-08-30 シャープ株式会社 Screen and method for manufacturing solar cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101519A (en) * 2003-09-05 2005-04-14 Hitachi Chem Co Ltd Solar cell unit and solar cell module
CN101826569A (en) * 2010-05-13 2010-09-08 无锡尚德太阳能电力有限公司 Solar cell, screen printing plate and solar cell module thereof
CN202428772U (en) * 2011-12-23 2012-09-12 昆山允升吉光电科技有限公司 Solar cell electrode printing screen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341547A (en) * 2005-06-10 2006-12-21 Sharp Corp Printing mask, screen printing method, manufacturing method for photoelectric transducer, and photoelectric transducer
JP2007214455A (en) * 2006-02-10 2007-08-23 Sharp Corp Manufacturing method of solar cell and screen mask for manufacturing solar cell
JP2010533962A (en) * 2007-07-19 2010-10-28 アド−ビジョン・インコーポレイテッド Method and apparatus for improved printed cathode for organic electronic devices
JP2009272405A (en) * 2008-05-02 2009-11-19 Mitsubishi Electric Corp Solar battery element and manufacturing method therefor
WO2012115006A1 (en) * 2011-02-21 2012-08-30 シャープ株式会社 Screen and method for manufacturing solar cell

Also Published As

Publication number Publication date
TWI523253B (en) 2016-02-21
CN104641474B (en) 2016-08-17
JPWO2014073223A1 (en) 2016-09-08
TW201436271A (en) 2014-09-16
CN104641474A (en) 2015-05-20
JP5866029B2 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
JP6141456B2 (en) Solar cell manufacturing method and printing mask
JP4429306B2 (en) Solar cell and solar cell module
KR102018652B1 (en) Solar cell
US20090032087A1 (en) Manufacturing processes for light concentrating solar module
WO2009099418A2 (en) Manufacturing processes for light concentrating solar module
CN105977328B (en) Solar cell module
JP2011077362A (en) Solar cell, and solar cell module
JP5384164B2 (en) Solar cell and solar cell module
JP6323689B2 (en) Manufacturing method of solar cell module
US20200098943A1 (en) Solar cell module and manufacturing method thereof
JP6064769B2 (en) Solar cell module and solar cell
JP2006165149A (en) Photovolatic element, photovolatic element aggregate, photovolatic element module and manufacturing method of the same
JP5866029B2 (en) Solar cell manufacturing method and printing mask
JP5904881B2 (en) Solar cell manufacturing method and printing mask
JP6877897B2 (en) Solar cell module
JP6384801B2 (en) Solar cell module
TWI667806B (en) Solar cell manufacturing method and solar cell unit
JP6684278B2 (en) Solar cell module
JP6467727B2 (en) Manufacturing method of solar cell module
JP6455099B2 (en) Solar cell unit and method for manufacturing solar cell unit
TWM457294U (en) Solar cell, module and screen printing thereof
JP2013026378A (en) Solar cell, solar cell module and manufacturing method therefor
JP2006165148A (en) Photovolatic element, photovolatic element aggregate, photovolatic element module and manufacturing method of the same
JP5874067B2 (en) SCREEN PLATE FOR PRINTING AND METHOD FOR PRODUCING SOLAR CELL BY THE SCREEN PLATE
TWM571591U (en) MWT type photovoltaic cell for dedicated conductive backplane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545587

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853153

Country of ref document: EP

Kind code of ref document: A1