JP2009258436A - 3次元測定装置 - Google Patents

3次元測定装置 Download PDF

Info

Publication number
JP2009258436A
JP2009258436A JP2008108144A JP2008108144A JP2009258436A JP 2009258436 A JP2009258436 A JP 2009258436A JP 2008108144 A JP2008108144 A JP 2008108144A JP 2008108144 A JP2008108144 A JP 2008108144A JP 2009258436 A JP2009258436 A JP 2009258436A
Authority
JP
Japan
Prior art keywords
image
sample
light
confocal microscope
setting data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008108144A
Other languages
English (en)
Inventor
Takahiro Shimizu
高博 清水
Tetsuya Ito
哲也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2008108144A priority Critical patent/JP2009258436A/ja
Priority to TW97122523A priority patent/TWI402495B/zh
Publication of JP2009258436A publication Critical patent/JP2009258436A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

【課題】光の反射率が異なる複数の測定対象部位を有する試料に対しても精度の高い測定を可能とする。
【解決手段】メモリ65には、試料30の第1及び第2の測定対象部位に応じた光量設定データを予め記憶されている。制御ユニット60の第1の画像取得制御部62は、第1の光量設定データで表される光量の光により、共焦点顕微鏡の各焦点位置で得られた各画像の中で輝度が最も高い画素のみが選択された画像を取得し、その画像をメモリ66に記録する。続いて、第2の画像取得制御部63は、第2の光量設定データで表される光量の光により、共焦点顕微鏡の各焦点位置で得られた各画像の中で輝度が最も高い画素のみが選択された画像を取得し、その画像をメモリ66に記録する。そして、3次元測定装置は、第1及び第2の画像取得制御部62,63により取得された画像から輝度が最大の画素が撮像されたときの焦点位置から第1及び第2の測定対象部位の高さを算出する。
【選択図】図2

Description

本発明は、3次元測定装置に関し、特に共焦点顕微鏡のような光学的手段を用いて、コントラストの高い試料の形状を測定する3次元測定装置に関する。
近年、LCD基板や半導体ウェハ等の試料の共焦点画像を共焦点顕微鏡により取得し、その画像を用いて試料の表面形状(高さ)を測定する3次元測定装置が提供されている。この種の3次元測定装置は、例えば被写界深度の浅い共焦点光学顕微鏡を用い、この共焦点光学顕微鏡の合焦位置を光軸方向に移動させながら当該顕微鏡により拡大された試料の光学像をカメラで撮像して、その撮像画像データをメモリに格納する。そして、この撮像画像データの中から輝度が最大となる画素を検出し、その最大輝度の画素を集めて1枚の画像を合成することで全焦点画像(extended focus image)が取得できる。または、その最大輝度が得られたときの合焦位置(高さ)を各画素の位置であるとして1枚の画像を作成することで、高さ画像または断面プロファイルが取得できる。
なお、反射率の大きく異なる2以上の物質を含む試料を撮影するために、試料からの反射光の受光信号レベルが予め設定された適正範囲にあるか否かを判断し、適正範囲外である場合に受光利得可変手段を制御することで該信号レベルが適正範囲内となるように調整するものが知られる(例えば、特許文献1を参照。)。
また、生物用の顕微鏡等では、蛍光ビーズ観察により得られるPSF(Point Spread Function)を用いて3次元デコンボリューション(Deconvolution)を行い、空間分解能を高めたものもある。
特許第3568286号公報
ところで、反射率(または透過率)が大きく異なる2以上の物質を含む試料では、高さを測定しようとする部位の光の反射率(または透過率)が試料の組成により大きく異なるものがある。このような試料の測定対象部位の高さを前記従来の測定装置により測定しようとすると、上記測定対象部位の反射率の違いにより正確な測定を行えないことがあった。
例えば、ほとんど鏡面のように高い反射率を有するクロム蒸着膜の上に部分的にレジストが残っている試料に対し、クロム膜に合わせて顕微鏡の照射光量を設定すると、当該レジスト部分に対しては照度不足となってノイズ等に埋もれてしまう。この結果、ノイズにより偶然に最大輝度が検出されたときの高さを当該レジストの高さとして誤検出してしまう。
また、試料の構造によっても、照明光や反射光の不足が起こる。この様子を図7から図9を参照して説明する。
図7は、以下の説明で想定する試料の斜視図及び断面プロファイルである。試料は、高さAを有する外周部、高さBを有する中央部及び高さCを有する底部を備え、高さはA、B、Cの順で高いとする。底部は深い溝構造の底であり、外周部と底部の間や、底部と中央部の間は、連続的な高さを有する急峻なテーパ状になっている。なお、この試料は、単一の物質により構成されている。
図8は、図7に示す試料の外周部に最適な照明下で測定された高さ画像、断面プロファイル及び全焦点画像である。外周部に最適な照明を照射した場合、底部への照明は、底部の幅が狭いため、対物レンズからの光束が収束する前に外周部や中央部に遮られる。また、底部からの反射光もテーパ部によって散乱される。このため、全焦点画像において底部は、非常に暗く(例えば0の輝度値として)映ることとなる。もちろん、テーパ部自体も(特に鏡面状の場合)、照明光が対物レンズに反射してこないので、非常に暗く映ることとなる。そのため、撮影位置の変更のため合焦位置を高くしたときに偶発的にカメラ像でノイズ(例えば0より高い輝度値)が測定されると、そのときの高さを採用してしまい、図8の高さ画像及び断面プロファイルで示されるように、あたかも針状の突起があるかのような測定結果になってしまう。
一方、図9は、図7に示す試料の底部に最適な照明下で測定された高さ画像、断面プロファイル及び全焦点画像である。底部に最適な照明を照射した場合では、平坦な外周部及び中央部からの反射光があまりに強烈なため、共焦点位置に設けたピンホールを通過した非焦点面からのピンボケ画像までが、カメラのダイナミックレンジを超えてホワイトアウトしてしまう。また、カメラの種類によっては、撮像面の一部に過大な入射光があると入射光の無い部分にも強い信号が観察される現象(例えば、スミア(smear)やブルーミング(blooming))が生じ、非焦点面でもダイナミックレンジを越えてしまうことがある。その結果、実際の高さと異なる位置でも最大輝度が測定され、図9の断面プロファイルで示されるように最後(または最初)に最大輝度が測定された高さA’(例えば、Zスキャンの最終位置)で平坦な断面プロファイルになってしまう。
このように、上述した現象、及びよく知られる回折現象が原因で、近傍に明るい部分があると、最大輝度位置がその明るい部分の高さに引き寄せられてしまう傾向がある。従来のデコンボリューションを用いた測定方法を改良して適用すれば、これらの現象やノイズの問題を改善できる可能性はある。しかしながら、そのためには膨大な記憶容量と計算時間を要し、短い測定時間(タクトタイム)を要求される工業用途には不向きである。またカメラのダイナミックレンジから外れてしまった撮像画像には、有効ではない。
本発明は上記事情によりなされたものであり、その目的は、光の反射率が異なる複数の測定対象部位を有する試料及び立体的な構造のため照射光及び反射光の不足が生じ易い測定対象部位を有する試料に対しても所定時間内に確実に精度の高い測定を可能とする3次元測定装置を提供することにある。
上記目的を達成するため、本発明に係る3次元測定装置は、反射率の異なる第1及び第2の測定対象部位を有する試料の光学像を拡大する共焦点顕微鏡と、前記共焦点顕微鏡により拡大された前記試料の光学像を撮像してその画像データを出力するカメラと、前記試料に対し前記撮像のための光を照射する光量可変型の光源と、前記試料に対する前記共焦点顕微鏡の焦点位置をその光軸方向に可変する駆動機構と、前記カメラ、光源及び駆動機構に接続される制御ユニットとを具備し、前記制御ユニットは、前記試料の第1及び第2の測定対象部位に対応して予め設定された第1及び第2の光量を表す光量設定データを記憶するメモリと、前記メモリに記憶された前記第1の光量設定データに基づいて前記光源の発光量を設定し、この状態で前記駆動機構により前記試料に対する前記共焦点顕微鏡の焦点位置を変化させながら前記カメラにより前記試料の光学像を撮像させてその撮像画像を取得する第1の画像取得制御手段と、前記メモリに記憶された前記第2の光量設定データに基づいて前記光源の発光量を設定し、この状態で前記駆動機構により前記試料に対する前記共焦点顕微鏡の焦点位置を変化させながら前記カメラにより前記試料の光学像を撮像させてその撮像画像を取得する第2の画像取得制御手段と、前記第1及び第2の画像取得制御手段により取得された撮像画像からそれぞれ輝度値が予め設定した最大範囲に含まれる画素領域を抽出し、この抽出した画素領域の輝度値が前記最大範囲内となる画像が取得されたときの前記共焦点顕微鏡の焦点位置をもとに前記第1及び第2の測定対象部位の高さを算出する手段とを備えることを特徴とする。
したがって、試料には、第1及び第2の測定対象部位のそれぞれの反射率に適した光量の光がそれぞれ照射され、その拡大画像が得られる。このため、試料が反射率の異なる第1及び第2の測定対象部位を有する場合でも、これらの測定対象部位ごとにそれぞれ最大輝度となる焦点位置を検出することが可能となり、これにより高精度の高さ測定が可能となる。また、試料が立体的な構造をしており、照明光や反射光の不足が生じやすい測定対象部位を有する場合でも、その測定対象部位における焦点位置を検出することが可能となり、高精度の高さ測定が可能となる。
すなわち、本発明によれば、光の反射率が異なる複数の測定対象部位を有する試料及び立体的な構造のため照射光及び反射光の不足が生じ易い測定対象部位を有する試料に対しても所定時間内に確実に精度の高い測定を可能とする3次元測定装置を提供することができる。
以下、図面を参照しながら、本発明に係る3次元測定装置の実施の形態について詳細に説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る3次元測定装置の構成を示す図である。この3次元測定装置は、ニポウ(Nipkow)式の共焦点顕微鏡10を備える。
共焦点顕微鏡10は、光源20から出力される光を対物レンズ11により試料30に照射し、試料30による上記照射光の反射光により共焦点画像を取得する。共焦点顕微鏡10は、ニポウディスクを用いた共焦点スキャナ12を備えており、対物レンズ11を通った反射光を共焦点位置に設けたピンホールにスキャンする。
光源20は、メタルハライドランプを用いた光源であり、電動絞りやフィルタにより光量(照度)及び波長帯域を変更できるようになっている。照明光を試料へ照射する際、共焦点スキャナ12を介する場合と介さない場合とがある。
カメラ40は、上記共焦点スキャナ12に接続されており、共焦点スキャナ12でスキャンされた共焦点画像を画像データとして取り込む。共焦点顕微鏡10では、例えば最大360fps(フレーム/秒)の画像が取得されるので、最大360fpsのカメラを使用することが好ましいが、本実施形態では120fpsのCCDカメラを使用する。
駆動部50は、制御ユニット60の起動指示に応じ、試料30に対する共焦点顕微鏡10の合焦位置を垂直(Z軸)方向、つまり共焦点顕微鏡10の光軸方向に移動させる。駆動部50には、Z軸方向の位置が移動しても水平方向(X,Y方向)に変位しない真直度の優れた微動Z軸機構(真直度誤差:10nm)を用いる。駆動部50は、高精度に高さ情報を得るため高分解能リニアスケールを搭載し、このスケールにより取得したZ軸座標が、制御ユニットからの指示と一致するように制御する。なお、本実施形態では、駆動部50により顕微鏡全体を動かす場合を説明するが、焦点位置を移動できれば、試料30側を移動させても、ニポウディスクのみあるいは対物レンズのみを移動させてもよい。
制御ユニット60は、例えばCPUやDSP(Digital Signal Processor)、PGA(Programmable Gate Array)等のデジタル信号処理手段を備えたもので、次のように構成される。
図2は、制御ユニット60の機能構成を示すブロック図である。制御ユニット60は、主制御部61と、第1の画像取得制御部62と、第2の画像取得制御部63と、高さ算出部64と、2つのメモリ65,66を備える。このうち、主制御部61、第1の画像取得制御部62、第2の画像取得制御部63及び高さ算出部64は、信号処理手段によりその機能が実現される。
主制御部61は、3次元測定装置の測定動作を統括的に制御するもので、上記光源20、カメラ40、駆動部50及び表示部(図示せず)との間で信号を授受するためのインタフェース機能も備える。
メモリ65には、試料30に光の反射率が異なる複数の測定対象部位がある場合に、これらの測定対象部位ごとに予め設定された最適な光量値を表す光量設定データが、測定対象物の識別情報に対応付けて記憶されている。例えば、試料30がガラス面上にクロムのパターンを形成したものからなる場合、一般にクロムのトップ面は光の反射率が高く、ガラス面は上記クロムのトップ面に比べ反射率が低い。したがって、このような場合には、クロムのトップ面の反射率に対応して設定した第1の光量設定データと、ガラス面の反射率に対応して設定した第2の光量設定データが上記メモリ65に記憶される。なお、メモリ66は後述する第1及び第2の画像取得制御部62,63により得られる画像データを格納するために用いられる。
第1の画像取得制御部62は、上記メモリ65に記憶された第1の光量設定データに基づいて前記光源20の発光量を設定する。そして、第1の画像取得制御部62は、上記第1の光量設定データにより光量が設定された光が光源20から試料30に照射された状態で、駆動部50を駆動して共焦点顕微鏡10の焦点位置を光軸方向に段階的に移動させながら、各焦点位置における試料30の画像をカメラ40に撮像させる。また、この撮像により各焦点位置における試料30の画像が得られるごとに、最大輝度画像の同一位置の画素との間で輝度値を比較する。そして、今の画像の輝度値の方が高ければ、最大輝度画像の当該画素の輝度値を更新してメモリ66に記憶させる。またそれと共に、この輝度値が高い画素を撮像したときの共焦点顕微鏡10の焦点位置を、当該画素に対応付けてメモリ66に記憶させる。これが高さ画像となる。なお、最大輝度画像の初期値は全て0なので、焦点位置を移動させる最初の位置で得られた最初の画像は、そのままその時点での最大輝度画像となる。
第2の画像取得制御部63は、メモリ65に記憶された第2の光量設定データに基づいて前記光源20の発光量を設定する。そして、第1の画像取得制御部62と同様の処理をして、輝度値や焦点位置をメモリ66に記憶させる。第1及び第2の画像取得制御部62、63の処理は、画像が得られる速度にあわせてリアルタイムで行われる。
高さ算出部64は、第1及び第2の画像取得制御部62,63の取得制御によりメモリ66に最終的に残された2つの最大輝度画像の同一画素間において、輝度値が予め設定した上限値を超えていないことを条件に、より大きい輝度値の画素を採用して、1枚の輝度画像を合成する。また、輝度画像を合成する際の画素と同一の画素を採用して同様に1枚の高さ画像を合成する。上限値は、例えばカメラの飽和レベルと同じか、それよりわずかに低い値にする。高さ算出部64は更に、この合成高さ画像からガラス面に対するクロムのトップ面の高さを自動的に算出し、予め定める範囲を超えたときに表示部に警告を出力してもよい。
次に、以上のように構成された3次元測定装置による高さ測定動作を、制御ユニット60の処理手順に従い説明する。図3は、その処理手順と処理内容を示すフローチャートである。ここでは、試料30として、先に述べたようにガラス面上にクロムのパターンを形成したものを用いる場合を例にとって説明する。
メモリ65には、上記クロムのトップ面31の反射率に対応して設定された光量設定データOPと、ガラスの蒸着面32の反射率に対応して設定された光量設定データOPとが予め記録されている。これらの光量設定データOP,OPは、事前に特許文献1のような公知の方法で、例えば試料30に対し光をその光量を変化させながら実際に照射して画像をカメラ40で撮像し、その画像データから最適な光量を手動もしくは自動的に決定することにより得られる。通常、クロムのトップ面31は鏡面状になっており、その反射率はガラス面32の反射率より高い。このため、第1の光量設定データOPの値は、第2の光量設定データOPの値より光量が小さくなるように設定される。
制御ユニット60は、先ず第1の画像取得制御部62による画像取得制御を以下のように実行する。すなわちステップ3aにより、メモリ65からクロムのトップ面31に対応して設定された光量設定データOPを読み出す。
ステップ3bにより、光源20の光量を上記読み出された光量設定データOPに基づいて調整する。これにより、光源20からは、上記光量設定データOPにより指定された光量の光が試料30に照射される。
この状態で第1の画像取得制御部62は、ステップ3cにより最初の焦点位置(例えば、図5のA)から画像取得を開始する。
図4は、第1及び第2の画像取得制御部の撮像制御(ステップ3c及び3g)の処理内容を示すフローチャートである。第1の画像取得制御部62は、先ずステップ4aにおいて、最大輝度画像および高さ画像の各画素値を全て0に初期化する。次に第1の画像取得制御部62は、ステップ4bにおいて、駆動部50を制御して焦点位置を図5に示すAに移動させる。
次にステップ4cにより、カメラ40により撮像された画像IMGを主制御部61を介して取得する。またそれと実質的に同時に、ステップ4dにおいて、上記焦点位置Aにおける正確なZ軸方向の位置座標データを共焦点顕微鏡10のスケーラから取得する。
次にステップ4eにおいて、いま取得した上記焦点位置Aの画像IMG(A)とメモリ66に記憶されている最大輝度画像IMGMAX1との間で、画素ごとに輝度値を比較する。この比較の結果、輝度値がIMG(A)>IMGMAX1であれば、ステップ4gにより当該画素について、IMGMAX1をIMG(A)で上書きして更新する。またそれと共に、高さ画像IMGZMAX1における当該画素を、ステップ4dで取得した位置座標データで更新する。ステップ4e〜ステップ4gまでの処理を、カメラ40により撮像された画像内のすべて画素について実行する。
次に第1の画像取得制御部62は、ステップ4hからステップ4bに戻り、駆動部50を制御して焦点位置を図5に示すBに移動させる。そして、ステップ4c〜4gにより上記焦点位置Aの場合と同様に、画像の取得、メモリ66に記憶された最大輝度画像IMGMAX1との比較、及びその比較結果に基づく最大輝度画像IMGMAX1と高さ画像IMGZMAX1の更新処理を実行する。以後同様に、焦点位置が図5に示すEに到達したことがステップ4hにより検出されるまで、上記ステップ4b〜4hによる処理を繰り返す。Eに到達した時点での最大輝度画像IMGMAX1は、全焦点画像とも呼ぶ。
図5は、上記第1の画像取得制御部62による処理の過程で、各焦点位置A〜Eにおいてそれぞれ得られる共焦点画像の一例を示すものである。同図において、共焦点画像における領域301はガラス32の蒸着面(上面)の画像を示し、また領域302はクロム31のトップ面の画像を、領域303はクロム31のテーパ部の画像をそれぞれ示している。
図5において、焦点位置Aでは、どこにも焦点が合っておらず、対応するすべての領域が真っ暗の画像である。焦点位置Bでは、ガラス32の反射率がクロム31の反射率に対して小さいため、ガラス32の蒸着面で反射光が得られず全ての領域が真っ暗の画像である。焦点位置Cでは、ガラス蒸着面32とクロムのトップ面31の中間位置であるテーパ部に焦点が合っており、領域303が最も明るくなる画像が得られる。焦点位置Dでは、クロムのトップ面32に焦点が合っており、領域302が最も明るくなる画像が得られる。焦点位置Eでは、再びどこにも焦点が合っておらず真っ暗な画像となる。
上記第1の画像取得制御部62による画像取得処理の結果、メモリ66には上記図5に示した焦点位置A〜Eによる各画像の中で輝度が最も高い画素が選択されて最終的に記憶される。また、この最終的に記憶された画素を撮像したときの焦点位置を表すZ軸方向の位置座標データが、当該画素に対応付けられてメモリ66に記憶される。
再び図3に戻り、ステップ3dにより、終了の焦点位置(例えば図5のE)まで画像取得が達したかどうかを判断し、達していなければステップ3cに戻って焦点位置をステップ状に動かして画像取得を続け、達していれば、ステップ3eに進む。
制御ユニット60は、次に第2の画像取得制御部63による画像取得制御を以下のように実行する。すなわち、先ずステップ3eによりメモリ65からガラスの蒸着面32に対応して設定された光量設定データOPを読み出し、ステップ3fにより光源20の光量を上記読み出された光量設定データOPに基づいて調整する。この状態で第2の画像取得制御部63は、光量が異なる以外は全く同じ条件でステップ3cと同一の処理を行う。それにより得られる最大輝度画像と高さ画像を、それぞれIMGMAX2とIMGZMAX2とする。
図6は、上記第2の画像取得制御部63による処理の過程で、各焦点位置A〜Eにおいてそれぞれ得られる共焦点画像の一例を示すものである。図5と比較すると、焦点位置Bにおいてガラス面からノイズレベル以上の適切な輝度の反射光が得られるものの、焦点位置Dにおいてはダイナミックレンジを越える過大な輝度になって、領域302がにじんでしまい、境界を把握することが困難になっている。
図3に戻り、次のステップ3hで上記第2の画像取得制御部63による画像取得制御の終了を確認すると、制御ユニット60は、最後にステップ3iにおいて高さ算出部64を起動し、高さの算出処理を以下のように実行する。高さ算出部64には正常な輝度値の上限値が予め設定されている。高さ算出部64は、最大輝度画像IMGMAX1とIMGMAX2とを画素毎に比較し、この上限値を超えていない範囲で、輝度値の大きい方の画素を選択して、1枚の高さ画像IMGZMAX及び最大輝度画像IMGMAXを合成する。そして、合成された高さ画像IMGZMAXの所定の位置(X―Y座標)をもとにクロムのトップ面31及びガラスの蒸着面32の高さを取り出して、その差分を算出する。
なお、実際の測定において、駆動部50を駆動して共焦点顕微鏡10の焦点位置をZ軸方向に移動させる幅は、I―Zカーブ(縦軸を輝度、横軸をZ軸座標としたときの曲線)の半値幅に依存し、移動幅を大きくしすぎると正しい測定ができない。したがって、所定のZスキャン範囲を短時間で測定するには、輝度を上げて高いS/N比を保ちながら、より高速でカメラ撮像するほかに無い。
本例で用いたマイクロレンズディスク付き共焦点顕微鏡は、従来の共焦点顕微鏡に比べて非常に明るい特徴を持っているので、従来は観察できなかった高倍率での測定も可能となり、対物レンズの選定によりレンジ幅の広い測定が可能となる。
(第2の実施形態)
本発明の第2の実施形態に係る3次元測定装置は、第1の実施形態における画像合成及び高さ算出処理(ステップ3i)を変更させたものである。すなわち、最大輝度画像IMGMAX1とIMGMAX2とを画素毎に比較するのではなく、表1に示すように、最大輝度画像IMGMAX1及びIMGMAX2と予め定めた適正輝度の上限値ThHigh及び下限値ThLowとを比較するようにしている。ここで、上限値ThHighは、第1の実施形態の上限値と同様、カメラの飽和レベルと同じかそれよりわずかに小さく設定し、下限値ThLowは、S/N比が約0dBとなるレベル付近に設定するとよい。また光量設定データOP>OPを前提とする。
Figure 2009258436
画像合成及び高さ算出処理において、取得した最大輝度画像IMGMAX1の輝度値が下限値ThLow未満である場合、最大輝度画像IMGMAX2に関わらず、最大輝度画像IMGMAXの輝度値を0とし、高さ画像IMGZMAXの値を既定の最低値とする。また、最大輝度画像IMGMAX1の輝度値が下限値ThLow以上かつ上限値ThHigh以下である場合、最大輝度画像IMGMAX2に関わらず、最大輝度画像IMGMAXの輝度値を最大輝度画像IMGMAX1とし、高さ画像IMGZMAXの値を高さ画像IMGZMAX1とする。また、最大輝度画像IMGMAX1の輝度値が上限値ThHighより大きく、最大輝度画像IMGMAX2の輝度値が上限値ThHigh未満である場合、最大輝度画像IMGMAXの輝度値を最大輝度画像IMGMAX2とし、高さ画像IMGZMAXの値を高さ画像IMGZMAX2とする。また、最大輝度画像IMGMAX1の輝度値が上限値ThHighより大きく、最大輝度画像IMGMAX2の輝度値が上限値ThHighより大きい場合、最大輝度画像IMGMAXの輝度値を最大値とし、高さ画像IMGZMAXの値を既定の最高値とする。
すなわち、光量設定データOP>OPの場合には、最大輝度画像IMGMAX1が適正輝度の範囲に収まっていれば、S/N比がよく信頼できる最大輝度画像IMGMAX1を最大輝度画像IMGMAXとして無条件に採用することで、ステップ3e〜3gを省略することが可能となる。また、画像合成及び高さ算出処理において、最大輝度画像IMGMAX2を読み出すメモリアクセスが減ることにより、より高速な処理が可能となる。
あるいは、任意の照明条件においては、以下の表2にしたがって画像を合成することもできる。
Figure 2009258436
つまり、画像合成及び高さ算出処理において、取得した最大輝度画像IMGMAX1の輝度値が下限値ThLow未満であり、最大輝度画像IMGMAX2の輝度値が下限値ThLow未満又は上限値ThHighより大きい場合、最大輝度画像IMGMAXの輝度値を0とし、高さ画像IMGZMAXの値を既定の最低値とする。また、最大輝度画像IMGMAX1の輝度値が下限値ThLow未満又は上限値ThHighより大きく、最大輝度画像IMGMAX2の輝度値が下限値ThLow以上かつ上限値ThHigh以下である場合、最大輝度画像IMGMAXの輝度値を最大輝度画像IMGMAX2を光量設定データOPで除算した値とし、高さ画像IMGZMAXの値を高さ画像IMGZMAX2とする。また、最大輝度画像IMGMAX1の輝度値が下限値ThLow以上かつ上限値ThHigh以下である場合、最大輝度画像IMGMAX2に関わらず、最大輝度画像IMGMAXの輝度値を最大輝度画像IMGMAX1を光量設定データOPで除算した値とし、高さ画像IMGZMAXの値を高さ画像IMGZMAX1とする。また、最大輝度画像IMGMAX1の輝度値が上限値ThHighより大きく、最大輝度画像IMGMAX2の輝度値が下限値ThLow未満又は上限値ThHighより大きい場合、最大輝度画像IMGMAXの輝度値を最大値とし、高さ画像IMGZMAXの値を既定の最高値とする。
このとき、最大輝度画像IMGMAX1と最大輝度画像IMGMAX2の両方が適正範囲外のときは、最大輝度画像IMGMAX1との比較結果を優先するようにしている。また、輝度値を光量設定データOP,OP(望ましくは真の光量)で除算することで、任意の照明条件においても線形に合成することが可能である。
なお、上述のように合成された全焦点画像IMGMAX(及び高さ画像IMGZMAX)を表示する際は、0や最大値を、他の値と様態を異ならせて表示するとよい。一例として、0や最大値に他の値とは明確に異なる表示色を割り当てたり、点滅表示やハッチング表示をさせたりすることが挙げられる。このように表示態様を異ならせることにより、ユーザは光量設定データOP,OPが両方とも適切でないことを容易に知覚できる。
なお、本発明は上記各実施形態に限定されるものではない。例えば、上記各実施形態では、制御ユニット60が光源20の光量を調整して、高さ測定を行う例について説明したが、3次元測定装置のユーザが光源20の光量を調整する場合であっても同様に実施可能である。
また、上記各実施形態では、カメラ40により撮像された画像データを、第1及び第2の画像取得制御部62,63の撮像制御により、各焦点位置で得られた各画像の中で最大輝度を有する画素のみを選択した画像に変換した後に、高さの算出を行う例について説明したが、この方法に限定されるわけではない。例えば、第1及び第2の画像取得制御部62,63により共焦点位置A〜Eの共焦点画像を共焦点位置と共にそれぞれメモリ66に格納する。そして、高さ算出部64により最大輝度の画素を含む共焦点画像の焦点位置を読み出し、その共焦点位置をもとに高さ測定する場合であっても同様に実施可能である。
また、上記各実施形態では、試料30が2つの測定対象からなり、光源20が光量設定データOP1と光量設定データOP2とに従って光量を変化させる例について説明したが、試料の測定対象は2つ以上であっても問題はなく、光源の光量は2種類以上で可変であっても同様に実施可能である。
さらに、本発明は、実施段階ではその要旨を逸脱しない範囲で測定対象を変形して具体化できる。また、上記実施形態に開示されている複数の測定対象の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全測定対象から幾つかの測定対象を削除してもよい。さらに、異なる実施形態にわたる測定対象を適宜組み合わせてもよい。
上記各実施形態は、全て反射照明式の例であるが、透過照明式にも同様に適用でき、あるいはそれらを励起光とする蛍光観察にも利用できる。つまり、透過率がほぼ100%の部分とほぼ0%の部分が混在するような試料を測定する際も、本発明は有利な効果を奏する。本発明は、工業用の共焦点顕微鏡に限らず、医療用(生物用)などの各種顕微鏡に用いることができる。
本発明の一実施形態に係る3次元測定装置の構成図である。 図1の制御ユニットの機能構成を示すブロック図である。 図2の制御ユニットの処理手順を示すフローチャートである。 図2の第1及び第2の画像取得制御部の撮像制御のフローチャートである。 上記実施形態の第1の画像取得制御部による共焦点画像である。 上記実施形態の第2の画像取得制御部による共焦点画像である。 想定する試料の斜視図及び断面プロファイルである。 図7の試料の外周部に最適な照明下で測定された高さ画像、断面プロファイル及び全焦点画像である。 図7の試料の底部に最適な照明下で測定された高さ画像、断面プロファイル及び全焦点画像である。
符号の説明
10…共焦点顕微鏡
11…対物レンズ
12…共焦点スキャナ
20…光源
30…試料
31…クロム
32…ガラス
301,302,303…領域
40…カメラ
50…駆動部
60…制御部
61…主制御部
62…第1の画像取得制御部
63…第2の画像取得制御部
64…算出部
65,66…メモリ。

Claims (1)

  1. 反射率の異なる第1及び第2の測定対象部位を有する試料の光学像を拡大する共焦点顕微鏡と、
    前記共焦点顕微鏡により拡大された前記試料の光学像を撮像してその画像データを出力するカメラと、
    前記試料に対し前記撮像のための光を照射する光量可変型の光源と、
    前記試料に対する前記共焦点顕微鏡の焦点位置をその光軸方向に可変する駆動機構と、
    前記カメラ、光源及び駆動機構に接続される制御ユニットと
    を具備し、
    前記制御ユニットは、
    前記試料の第1及び第2の測定対象部位に対応して予め設定された第1及び第2の光量を表す光量設定データを記憶するメモリと、
    前記メモリに記憶された前記第1の光量設定データに基づいて前記光源の発光量を設定し、この状態で前記駆動機構により前記試料に対する前記共焦点顕微鏡の焦点位置を変化させながら前記カメラにより前記試料の光学像を撮像させてその撮像画像を取得する第1の画像取得制御手段と、
    前記メモリに記憶された前記第2の光量設定データに基づいて前記光源の発光量を設定し、この状態で前記駆動機構により前記試料に対する前記共焦点顕微鏡の焦点位置を変化させながら前記カメラにより前記試料の光学像を撮像させてその撮像画像を取得する第2の画像取得制御手段と、
    前記第1及び第2の画像取得制御手段により取得された撮像画像からそれぞれ輝度値が予め設定した最大範囲に含まれる画素領域を抽出し、この抽出した画素領域の輝度値が前記最大範囲内となる画像が取得されたときの前記共焦点顕微鏡の焦点位置をもとに前記第1及び第2の測定対象部位の高さを算出する算出手段と
    を備えることを特徴とする3次元測定装置。
JP2008108144A 2007-10-05 2008-04-17 3次元測定装置 Pending JP2009258436A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008108144A JP2009258436A (ja) 2008-04-17 2008-04-17 3次元測定装置
TW97122523A TWI402495B (zh) 2007-10-05 2008-06-17 三次元測量裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008108144A JP2009258436A (ja) 2008-04-17 2008-04-17 3次元測定装置

Publications (1)

Publication Number Publication Date
JP2009258436A true JP2009258436A (ja) 2009-11-05

Family

ID=41385944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108144A Pending JP2009258436A (ja) 2007-10-05 2008-04-17 3次元測定装置

Country Status (1)

Country Link
JP (1) JP2009258436A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128354A (ja) * 2010-12-17 2012-07-05 Olympus Corp 蛍光観察装置
CN103673920A (zh) * 2012-09-11 2014-03-26 株式会社其恩斯 形状测量装置、形状测量方法、和形状测量程序
JP2015052805A (ja) * 2014-12-01 2015-03-19 株式会社キーエンス 共焦点顕微鏡システム
JP2016040626A (ja) * 2015-11-20 2016-03-24 株式会社キーエンス 共焦点顕微鏡システム
JP2017027055A (ja) * 2015-07-24 2017-02-02 ライカ インストゥルメンツ (シンガポール) プライヴェット リミテッドLeica Instruments (Singapore) Pte. Ltd. 物体の複数の個別画像から1つの組み合わせ画像を生成する顕微鏡及び方法
KR101858823B1 (ko) 2016-08-25 2018-05-18 주식회사 포스코 강판의 평탄도 측정장치 및 방법
CN113655610A (zh) * 2021-07-14 2021-11-16 中国电子科技集团公司第十三研究所 用于光热反射显微热成像的自动对焦方法及控制装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210819A (ja) * 1994-12-02 1996-08-20 Keyence Corp レーザ顕微鏡

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210819A (ja) * 1994-12-02 1996-08-20 Keyence Corp レーザ顕微鏡

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128354A (ja) * 2010-12-17 2012-07-05 Olympus Corp 蛍光観察装置
CN103673920A (zh) * 2012-09-11 2014-03-26 株式会社其恩斯 形状测量装置、形状测量方法、和形状测量程序
JP2014055811A (ja) * 2012-09-11 2014-03-27 Keyence Corp 形状測定装置、形状測定方法および形状測定プログラム
JP2015052805A (ja) * 2014-12-01 2015-03-19 株式会社キーエンス 共焦点顕微鏡システム
JP2017027055A (ja) * 2015-07-24 2017-02-02 ライカ インストゥルメンツ (シンガポール) プライヴェット リミテッドLeica Instruments (Singapore) Pte. Ltd. 物体の複数の個別画像から1つの組み合わせ画像を生成する顕微鏡及び方法
US10269097B2 (en) 2015-07-24 2019-04-23 Leica Instruments (Singapore) Pte. Ltd. Microscope and method for generating a combined image from multiple individual images of an object
JP2016040626A (ja) * 2015-11-20 2016-03-24 株式会社キーエンス 共焦点顕微鏡システム
KR101858823B1 (ko) 2016-08-25 2018-05-18 주식회사 포스코 강판의 평탄도 측정장치 및 방법
CN113655610A (zh) * 2021-07-14 2021-11-16 中国电子科技集团公司第十三研究所 用于光热反射显微热成像的自动对焦方法及控制装置
CN113655610B (zh) * 2021-07-14 2024-04-26 中国电子科技集团公司第十三研究所 用于光热反射显微热成像的自动对焦方法及控制装置

Similar Documents

Publication Publication Date Title
JP6100813B2 (ja) スライド全体蛍光スキャナ
JP5856733B2 (ja) 撮像装置
JP4845607B2 (ja) 3次元形状測定方法及び装置
JP2009258436A (ja) 3次元測定装置
US11009344B2 (en) Image observing device, image observing method, image observing program, and computer-readable recording medium
JP5784435B2 (ja) 画像処理装置、蛍光顕微鏡装置および画像処理プログラム
US10718715B2 (en) Microscopy system, microscopy method, and computer-readable storage medium
US7205531B2 (en) Sample information measuring method and scanning confocal microscope
JP6266302B2 (ja) 顕微鏡撮像装置、顕微鏡撮像方法および顕微鏡撮像プログラム
JP2009538431A (ja) 蛍光目標点を伴う標本をディジタル化するための方法およびシステム
JP4812325B2 (ja) 走査型共焦点顕微鏡および試料情報測定方法
CN111679418B (zh) 基于激光图像的显微镜自动聚焦方法、系统及计算机设备
JPH10513287A (ja) 物体のイメージ、画像を記録、撮像のための方法及び装置
JP5255968B2 (ja) 高さ測定装置とその測定方法
JPH0961720A (ja) 共焦点走査型光学顕微鏡及びこの顕微鏡を使用した測定方法
JP3722535B2 (ja) 走査型共焦点顕微鏡及びこの顕微鏡を使用した測定方法
KR20080069168A (ko) 공초점 현미경
US7589330B2 (en) Ultraviolet microscope apparatus
JP5055081B2 (ja) 高さ測定装置
TWI402495B (zh) 三次元測量裝置
JP4197898B2 (ja) 顕微鏡、三次元画像生成方法、三次元画像を生成する制御をコンピュータに行わせるプログラム、及びそのプログラムを記録した記録媒体
JP2007286284A (ja) 共焦点走査型顕微鏡システム、及びそれを使用した観察方法
JP2010121955A (ja) 高さ情報取得装置、高さ情報取得方法、及びプログラム
JP2008046361A (ja) 光学システム及び光学システムの制御方法
JP2008275538A (ja) 三次元形状測定器及び試料画像構築装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110401

A977 Report on retrieval

Effective date: 20120809

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211