JP2009256573A - Phosphor for collision excitation type el, manufacturing method of phosphor for collision excitation type el, thin film el device, thin film el display, and thin film el lamp - Google Patents
Phosphor for collision excitation type el, manufacturing method of phosphor for collision excitation type el, thin film el device, thin film el display, and thin film el lamp Download PDFInfo
- Publication number
- JP2009256573A JP2009256573A JP2008222217A JP2008222217A JP2009256573A JP 2009256573 A JP2009256573 A JP 2009256573A JP 2008222217 A JP2008222217 A JP 2008222217A JP 2008222217 A JP2008222217 A JP 2008222217A JP 2009256573 A JP2009256573 A JP 2009256573A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- phosphor
- excitation type
- collision
- activator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Luminescent Compositions (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
本発明は、エレクトロルミネッセンス素子に好適な蛍光体及びエレクトロルミネッセンス素子に関する。 The present invention relates to a phosphor suitable for an electroluminescence element and an electroluminescence element.
従来の衝突励起型薄膜エレクトロルミネッセンス素子(以下薄膜EL素子と呼ぶ)用蛍光体としては、古くから硫化亜鉛(ZnS)を中心とする硫化物が多用されている。 As a conventional phosphor for a collision excitation type thin film electroluminescent element (hereinafter referred to as a thin film EL element), a sulfide mainly composed of zinc sulfide (ZnS) has been used for a long time.
しかしながら、上記の硫化物系蛍光体は化学的に不安定であり、特に水分に対して極めて不安定であることから薄膜EL素子の作製時において、水分を完全に除去するための特別な封止処理を施さなければならず、それが素子の作製コストを押し上げるという致命的な欠点がある。 However, since the above-described sulfide-based phosphor is chemically unstable and particularly extremely unstable with respect to moisture, a special sealing for completely removing moisture at the time of manufacturing a thin film EL device. There is a fatal disadvantage that it must be processed, which raises the cost of fabricating the device.
本発明は、このような事情に鑑み、化学的に極めて安定な化合物もしくは複合酸化物を母体材料とする新規なフルカラーの発光が実現できる衝突励起型EL用蛍光体、該蛍光体薄膜の製造方法、該蛍光体薄膜を発光層に用いる薄膜EL素子及び該薄膜EL素子を用いる屁句膜ELディスプレイ、ELランプを提供することを課題とする。 In view of such circumstances, the present invention provides a collision excitation type EL phosphor capable of realizing novel full-color light emission using a chemically extremely stable compound or composite oxide as a base material, and a method for producing the phosphor thin film. It is an object of the present invention to provide a thin film EL element using the phosphor thin film as a light emitting layer, a phrase film EL display using the thin film EL element, and an EL lamp.
前記課題を解決するための本発明の第1の態様は、構成元素として少なくともランタン(La)及び酸素(O)を含む化合物もしくは複合酸化物からなる母体材料に、付活剤として少なくとも1種類以上の金属元素を含有することを特徴とする衝突励起型エレクトロルミネッセンス(以降ではELと略記する)用蛍光体にある。 The first aspect of the present invention for solving the above-described problem is that a base material comprising a compound or composite oxide containing at least lanthanum (La) and oxygen (O) as constituent elements is used as an activator. A phosphor for collision excitation type electroluminescence (hereinafter abbreviated as EL) characterized by containing the above metal element.
本発明の第2の態様は、第1の態様において、LaNbO4もしくはLaNbO4を含む複合酸化物からなる母体材料に付活剤として少なくとも1種類以上の金属元素を含有することを特徴とする衝突励起型EL用蛍光体にある。 According to a second aspect of the present invention, in the first aspect, the base material comprising LaNbO 4 or a composite oxide containing LaNbO 4 contains at least one metal element as an activator. It is in the phosphor for excitation type EL.
本発明の第3の態様は、第1の態様において、酸化ランタン(La2O3)からなる母体材料に付活剤として少なくとも1種類以上の金属元素を含有することを特徴とする衝突励起型EL用蛍光体にある。 According to a third aspect of the present invention, in the first aspect, the base material comprising lanthanum oxide (La 2 O 3 ) contains at least one metal element as an activator. It is in the phosphor for EL.
本発明の第4の態様は、第2または3の態様において、Laをガドリニウム(Gd)、イットリウム(Y)、ホウ素(B)、インジウム(In)、アルミニウム(Al)もしくはスカンジウム(Sc)の中の少なくとも1種類以上で置換した化合物もしくは複合酸化物からなる母体材料に付活剤として少なくとも1種類以上の金属元素を含有することを特徴とする衝突励起型EL用蛍光体にある。 According to a fourth aspect of the present invention, in the second or third aspect, La is selected from among gadolinium (Gd), yttrium (Y), boron (B), indium (In), aluminum (Al), and scandium (Sc). A collision excitation type EL phosphor comprising: a base material composed of a compound or a complex oxide substituted with at least one of the above, and at least one metal element as an activator.
本発明の第5の態様は、第1〜4の態様において、付活剤としてビスマス(Bi)を含有することを特徴とする衝突励起型EL用蛍光体にある。 According to a fifth aspect of the present invention, there is provided the collision excitation type EL phosphor according to the first to fourth aspects, wherein bismuth (Bi) is contained as an activator.
本発明の第6の態様は、第1〜5の態様において、付活剤としてBiと遷移金属元素及び希土類金属元素からなる群から選択される少なくとも1種類以上を含有することを特徴とする衝突励起型EL用蛍光体にある。 According to a sixth aspect of the present invention, in the first to fifth aspects, the activator contains at least one selected from the group consisting of Bi, a transition metal element, and a rare earth metal element. It is in the phosphor for excitation type EL.
本発明の第7の態様は、第1〜5の態様において、付活剤としての金属元素をLaに対して0.1〜10原子%含有することを特徴とする衝突励起型EL用蛍光体にある。 According to a seventh aspect of the present invention, there is provided the phosphor for collision excitation type EL according to any one of the first to fifth aspects, wherein the metal element as an activator is contained in an amount of 0.1 to 10 atomic% relative to La. It is in.
本発明の第8の態様は、第1〜7の態様において、衝突励起型EL用蛍光体を任意の成膜方法を用いて任意の基体上に薄膜として形成した後、不活性ガスもしくは弱酸化性ガス雰囲気中で1050℃以下で熱処理することを特徴とする衝突励起型EL用蛍光体薄膜の製造方法にある。 According to an eighth aspect of the present invention, in the first to seventh aspects, after the collision excitation type EL phosphor is formed as a thin film on an arbitrary substrate using an arbitrary film forming method, an inert gas or weak oxidation is performed. In the method for producing a phosphor thin film for collision excitation type EL, heat treatment is performed at 1050 ° C. or lower in a reactive gas atmosphere.
本発明の第9の態様は、第8の態様において、衝突励起型EL用蛍光体薄膜を発光層として使用することを特徴とする薄膜EL素子にある。 According to a ninth aspect of the present invention, there is provided a thin film EL device according to the eighth aspect, wherein the collision excitation type EL phosphor thin film is used as a light emitting layer.
本発明の第10の態様は、第9の態様において、薄膜EL素子の発光層の片面もしくは両面に励起効率の向上を目的としてキャリア加速層が積層されている、あるいは、挿入されている構造であることを特徴とする薄膜EL素子にある。 According to a tenth aspect of the present invention, in the ninth aspect, a carrier acceleration layer is laminated or inserted on one or both sides of the light emitting layer of the thin film EL element for the purpose of improving excitation efficiency. The thin film EL element is characterized by being.
本発明の第11の態様は、第10の態様において、キャリア加速層が硫化亜鉛(ZnS)であることを特徴とする薄膜EL素子にある。 An eleventh aspect of the present invention is the thin film EL element according to the tenth aspect, wherein the carrier acceleration layer is zinc sulfide (ZnS).
本発明の第12の態様は、絶縁性の基体と、第1〜7の態様の衝突励起型EL用蛍光体を用いて基体の上に形成された発光層と、発光層の上に形成された保護層と、を備える薄膜EL素子にある。
本発明の第13の態様は、第12の態様において、保護層は、硫化亜鉛(ZnS)を含むことを特徴とする薄膜EL素子にある。
本発明の第14の態様は、第9〜13の態様において、薄膜EL素子を用いる薄膜ELディスプレイにある。
According to a twelfth aspect of the present invention, an insulating substrate, a light emitting layer formed on the substrate using the phosphor for collision excitation EL of the first to seventh aspects, and a light emitting layer are formed. And a protective layer.
A thirteenth aspect of the present invention is the thin film EL element according to the twelfth aspect, wherein the protective layer contains zinc sulfide (ZnS).
A fourteenth aspect of the present invention resides in a thin film EL display using the thin film EL element in the ninth to thirteenth aspects.
本発明の第15の態様は、第9〜13の態様において、薄膜EL素子を用いる薄膜ELランプにある。 A fifteenth aspect of the present invention resides in a thin film EL lamp using the thin film EL element in the ninth to thirteenth aspects.
本発明では、該衝突励起型EL用薄膜蛍光体を不活性ガス雰囲気中でのスパッタリング法、化学気相結晶成長(CVD)法、電子ビーム蒸着法、活性化反応性蒸着(ARE)法、クラスタイオンビーム(ICB)法、イオンビームスパッタ(IBS)法、原子層エピタキシャル(ALE)成長法、分子線エピタキシャル成長(MBE)法、ガスソースMBE(またはCBE)法、エレクトロンサイクロトロン共鳴(ECR)プラズマを利用する結晶成長法等公知の薄膜堆積技術を用いて作製し、不活性ガスまたは弱酸化性ガス雰囲気中で、700〜1050℃、好ましくは900〜1000℃程度で熱処理を施し、良好な多結晶膜を形成することにより、衝突励起型EL素子用発光層としての十分な機能を付与することが可能になり、十分実用に耐える輝度を実現できることを特徴とする。また、該衝突励起型EL用薄膜蛍光体の化学的な安定性をいかして、従来の湿式の化学的成膜方法、例えば溶液塗布法あるいはゾル・ゲル法を用いる成膜法も有効である。 In the present invention, the collision-excited EL thin film phosphor is formed by sputtering in an inert gas atmosphere, chemical vapor deposition (CVD), electron beam evaporation, activated reactive evaporation (ARE), cluster, Utilizing ion beam (ICB) method, ion beam sputtering (IBS) method, atomic layer epitaxial (ALE) growth method, molecular beam epitaxial growth (MBE) method, gas source MBE (or CBE) method, electron cyclotron resonance (ECR) plasma Produced by using a known thin film deposition technique such as a crystal growth method, and heat-treated at 700 to 1050 ° C., preferably about 900 to 1000 ° C. in an inert gas or weakly oxidizing gas atmosphere, and a good polycrystalline film By forming the layer, it becomes possible to provide a sufficient function as a light-emitting layer for a collision excitation type EL element. Wherein the can realize brightness to withstand. In addition, a conventional wet chemical film formation method, for example, a film application method using a solution coating method or a sol-gel method is also effective by taking advantage of the chemical stability of the collision excitation type EL thin film phosphor.
本発明による該Bi添加酸化ランタン系酸化物蛍光体薄膜を700〜1050℃、好ましくは900〜1000℃程度の不活性ガス雰囲気中で熱処理を施す製造方法を駆使することにより作製した薄膜EL素子において青色発光が実現できた。また、キャリア加速層として該Bi添加酸化ランタン系酸化物蛍光体薄膜上に硫化亜鉛(ZnS)薄膜を積層して作製した薄膜EL素子において青色発光の輝度を大幅に向上させることを実現した。 In a thin film EL device produced by making full use of a production method in which the Bi-doped lanthanum oxide-based oxide phosphor thin film according to the present invention is heat-treated in an inert gas atmosphere at about 700 to 1050 ° C., preferably about 900 to 1000 ° C. Blue light emission was realized. In addition, in the thin film EL element produced by laminating a zinc sulfide (ZnS) thin film on the Bi-doped lanthanum oxide-based phosphor thin film as a carrier acceleration layer, it was realized that the luminance of blue light emission was greatly improved.
なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。 A combination of the above-described elements as appropriate can also be included in the scope of the invention for which patent protection is sought by this patent application.
発明者らは、発光中心材料として種々の金属元素を添加した酸化物蛍光体薄膜の製造方法ならびに作製条件等について様々な検討を重ねた結果、Laと酸素を含む化合物及び複合酸化物を母体材料とし、発光中心材料としてBiを添加して成膜した該蛍光体薄膜を不活性ガスもしくは弱酸化性雰囲気中で熱処理を施して高品質の多結晶酸化ランタン系蛍光体薄膜を作製することにより、青色発光を実現できる作用効果を持つ新しい該衝突励起型EL用薄膜蛍光体ならびに該蛍光体薄膜を発光層に用いる薄膜EL素子を発明した。また、キャリア加速層として該Bi添加酸化ランタン系酸化物蛍光体薄膜上に硫化亜鉛(ZnS)薄膜を積層して作製した薄膜EL素子において青色発光の輝度を大幅に向上させることが可能であり、EL素子の高輝度化に対して極めて有利であるという作用効果がある。また、Biに加えて他の複数の発光中心を共添加することにより、発光スペクトルを変化させる作用効果も期待できる。 As a result of various investigations on manufacturing methods and manufacturing conditions of oxide phosphor thin films to which various metal elements are added as an emission center material, the inventors have developed a compound containing La and oxygen and a composite oxide as a base material. The phosphor thin film formed by adding Bi as a luminescent center material is heat-treated in an inert gas or weakly oxidizing atmosphere to produce a high-quality polycrystalline lanthanum oxide phosphor thin film, The present invention has invented a new collision-excited EL thin-film phosphor having the effect of realizing blue light emission and a thin-film EL device using the phosphor thin film as a light-emitting layer. In addition, it is possible to greatly improve the luminance of blue light emission in a thin film EL element produced by laminating a zinc sulfide (ZnS) thin film on the Bi-doped lanthanum oxide-based phosphor phosphor thin film as a carrier acceleration layer, There is an effect that it is extremely advantageous for increasing the luminance of the EL element. Moreover, the effect of changing the emission spectrum can be expected by co-adding a plurality of other emission centers in addition to Bi.
以下、本発明の実施形態を実施例により説明するがあくまで例示であり本発明はこれに限定されるものではない。 Hereinafter, the embodiments of the present invention will be described by way of examples. However, the embodiments are merely examples, and the present invention is not limited thereto.
(実施例1)
酸化ランタン(La2O3)粉末に発光中心材料として酸化ビスマス(Bi2O3)粉末をLaに対して、Biが1.0原子%含有するように十分混合した後、アルゴン(Ar)ガス雰囲気中にて1000℃で1時間焼成することにより、Bi添加酸化ランタン蛍光体粉末を作製した。該酸化物蛍光体粉末を用いてスパッタリングターゲットを作製し、焼結チタン酸バリウム(BaTiO3)セラミック基体兼絶縁体層上に、アルゴン(Ar)ガス中、ガス圧力6Pa、スパッタ投入電力100W、基体温度275℃、基体−ターゲット間距離25mmの条件下でBi添加酸化ランタン蛍光体薄膜発光層を形成した。その後、Arガス雰囲気中において、1000℃で1時間のアニール処理を行った。
(Example 1)
After sufficiently mixing lanthanum oxide (La 2 O 3 ) powder with bismuth oxide (Bi 2 O 3 ) powder as a luminescent center material so that Bi contains 1.0 atomic% with respect to La, argon (Ar) gas Bi-doped lanthanum oxide phosphor powder was produced by firing at 1000 ° C. for 1 hour in an atmosphere. A sputtering target was prepared by using the oxide phosphor powder, and a sintered barium titanate (BaTiO 3 ) ceramic substrate / insulator layer was coated with argon gas (Ar) gas pressure 6 Pa, sputtering input power 100 W, substrate. A Bi-doped lanthanum oxide phosphor thin film light emitting layer was formed under the conditions of a temperature of 275 ° C. and a substrate-target distance of 25 mm. Thereafter, annealing treatment was performed at 1000 ° C. for 1 hour in an Ar gas atmosphere.
図1に該蛍光体薄膜発光層のフォトルミネッセンス(PL)スペクトルを示す。同図に示すように、約450nmにピークを有する強い青色PLを示した。 FIG. 1 shows a photoluminescence (PL) spectrum of the phosphor thin-film light emitting layer. As shown in the figure, strong blue PL having a peak at about 450 nm was shown.
そして該発光層薄膜上にアルミニウム添加酸化亜鉛(ZnO:Al)透明電極を、背面には金属Al電極を形成しEL素子を作製した。該EL素子に1kHz正弦波交流電圧を加えたところ、図2に示すような、波長約450nm及び約490nmにピークを有する青色ELを実現できた。図3に該EL素子の1kHz正弦波交流電圧駆動時の典型的な輝度(L)−印加電圧(V)特性を示す。同図に示すように印加電圧600Vにおいて約1.7cd/m2の青色発光を実現できた。これにより、該Bi添加酸化ランタン蛍光体薄膜発光層がEL素子用発光層薄膜として十分機能した。 An EL element was prepared by forming an aluminum-added zinc oxide (ZnO: Al) transparent electrode on the light emitting layer thin film and a metal Al electrode on the back surface. When a 1 kHz sine wave AC voltage was applied to the EL element, a blue EL having peaks at wavelengths of about 450 nm and about 490 nm as shown in FIG. 2 was realized. FIG. 3 shows typical luminance (L) -applied voltage (V) characteristics when the EL element is driven with a 1 kHz sine wave AC voltage. As shown in the figure, blue light emission of about 1.7 cd / m 2 was realized at an applied voltage of 600V. As a result, the Bi-doped lanthanum oxide phosphor thin film light emitting layer sufficiently functioned as a light emitting layer thin film for an EL element.
(実施例2)
酸化ランタン(La2O3)粉末に発光中心材料として酸化ビスマス(Bi2O3)粉末をLaに対して、Biが1.0原子%含有するように十分混合した後、アルゴン(Ar)ガス雰囲気中にて1000℃で1時間焼成することにより、Bi添加酸化ランタン蛍光体粉末を作製した。該酸化物蛍光体粉末を用いてスパッタリングターゲットを作製し、焼結チタン酸バリウム(BaTiO3)セラミック基体兼絶縁体層上に、アルゴン(Ar)ガス中、ガス圧力6Pa、スパッタ投入電力100W、基体温度275℃、基体−ターゲット間距離25mmの条件下でBi添加酸化ランタン蛍光体薄膜発光層を形成した。その後、Arガス雰囲気中において、1000℃で1時間のアニール処理を行った。その後、硫化亜鉛(ZnS)粉末を用いてスパッタリングターゲットを作製し、Bi添加酸化ランタン蛍光体薄膜発光層上にZnS薄膜を成膜した。成膜後、Ar雰囲気中500℃で熱処理を施しキャリア加速層としての機能を付与した。
(Example 2)
After sufficiently mixing lanthanum oxide (La 2 O 3 ) powder with bismuth oxide (Bi 2 O 3 ) powder as a luminescent center material so that Bi contains 1.0 atomic% with respect to La, argon (Ar) gas Bi-doped lanthanum oxide phosphor powder was produced by firing at 1000 ° C. for 1 hour in an atmosphere. A sputtering target was prepared by using the oxide phosphor powder, and a sintered barium titanate (BaTiO 3 ) ceramic substrate / insulator layer was coated with argon gas (Ar) gas pressure 6 Pa, sputtering input power 100 W, substrate. A Bi-doped lanthanum oxide phosphor thin film light emitting layer was formed under the conditions of a temperature of 275 ° C. and a substrate-target distance of 25 mm. Thereafter, annealing treatment was performed at 1000 ° C. for 1 hour in an Ar gas atmosphere. Thereafter, a sputtering target was prepared using zinc sulfide (ZnS) powder, and a ZnS thin film was formed on the Bi-doped lanthanum oxide phosphor thin film light emitting layer. After film formation, heat treatment was performed at 500 ° C. in an Ar atmosphere to provide a function as a carrier acceleration layer.
そして該ZnS薄膜上にアルミニウム添加酸化亜鉛(ZnO:Al)透明電極を、背面には金属Al電極を形成しEL素子を作製した。図4に該EL素子の1kHz正弦波交流電圧駆動時の典型的な輝度(L)−印加電圧(V)特性を示す。同図に示すように印加電圧600Vにおいて約23cd/m2の高輝度青色発光を実現できた。キャリア加速層としてのZnS薄膜をBi添加酸化ランタン蛍光体薄膜発光層上に形成することにより、輝度の大幅な向上を実現できた。 An EL element was fabricated by forming an aluminum-added zinc oxide (ZnO: Al) transparent electrode on the ZnS thin film and a metal Al electrode on the back surface. FIG. 4 shows typical luminance (L) -applied voltage (V) characteristics when the EL element is driven with a 1 kHz sine wave AC voltage. As shown in the figure, high luminance blue light emission of about 23 cd / m 2 was realized at an applied voltage of 600V. By forming a ZnS thin film as a carrier acceleration layer on the Bi-doped lanthanum oxide phosphor thin film light emitting layer, a significant improvement in luminance was realized.
(剥離の有無)
本発明者らは、雰囲気中の不純物から発光層を保護する保護層の有無により、基板と発光層の剥離の傾向に違いがあることを見いだした。つまり、不純物の透過を抑制、遮断する保護層の有無により素子の信頼性や安定性に違いが生じ得ることを以下の検討結果から見いだした。具体的には、光を透過させる半導体物質である前述のZnS薄膜が形成されているEL素子およびZnS薄膜が形成されていないEL素子における、基板と発光層との剥離の有無について検討した。
(Presence or absence of peeling)
The present inventors have found that there is a difference in the tendency of peeling between the substrate and the light emitting layer depending on the presence or absence of a protective layer that protects the light emitting layer from impurities in the atmosphere. In other words, the inventors have found that the reliability and stability of the device can vary depending on the presence or absence of a protective layer that suppresses or blocks the transmission of impurities from the following examination results. Specifically, the presence or absence of peeling between the substrate and the light emitting layer in the EL element on which the above-described ZnS thin film, which is a semiconductor material that transmits light, and the EL element on which the ZnS thin film is not formed were examined.
ZnS薄膜がBi添加酸化ランタン蛍光体薄膜発光層上に形成されていない場合、空気中での数日程度の放置によりいくつかのEL素子において基板から発光層が剥離するという現象が見られた。一方、実施例2に示すようなBi添加酸化ランタン蛍光体薄膜発光層上にZnS薄膜を成膜した場合、空気中での数日程度の放置では基板と発光層との間の剥離は生じなかった。このような差が生じた要因としては、ZnS薄膜によってEL素子内部への空気中の水分等の侵入が遮断され、基板と発光層との界面に到達する水分等の量が抑制されたためと考えられる。つまり、ZnS薄膜は雰囲気中の不純物の侵入から発光層等を保護する保護層として機能する。 When the ZnS thin film was not formed on the Bi-doped lanthanum oxide phosphor thin film light emitting layer, a phenomenon was observed in which the light emitting layer was peeled from the substrate in some EL devices when left in air for several days. On the other hand, when a ZnS thin film is formed on the Bi-doped lanthanum oxide phosphor thin film light emitting layer as shown in Example 2, peeling between the substrate and the light emitting layer does not occur when left in air for several days. It was. The reason for this difference is that the ZnS thin film blocked the intrusion of moisture in the air into the EL element, and the amount of moisture reaching the interface between the substrate and the light emitting layer was suppressed. It is done. That is, the ZnS thin film functions as a protective layer that protects the light emitting layer and the like from the intrusion of impurities in the atmosphere.
Claims (15)
請求項1〜7のいずれかに記載の衝突励起型EL用蛍光体を用いて前記基体の上に形成された発光層と、
前記発光層の上に形成された保護層と、
を備える薄膜EL素子。 An insulating substrate;
A light emitting layer formed on the substrate using the phosphor for collision excitation EL according to any one of claims 1 to 7,
A protective layer formed on the light emitting layer;
A thin film EL device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008222217A JP5283166B2 (en) | 2008-03-26 | 2008-08-29 | Collision excitation type EL phosphor, method for manufacturing collision excitation type EL phosphor thin film, thin film EL element, thin film EL display, and thin film EL lamp |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008082126 | 2008-03-26 | ||
JP2008082126 | 2008-03-26 | ||
JP2008222217A JP5283166B2 (en) | 2008-03-26 | 2008-08-29 | Collision excitation type EL phosphor, method for manufacturing collision excitation type EL phosphor thin film, thin film EL element, thin film EL display, and thin film EL lamp |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009256573A true JP2009256573A (en) | 2009-11-05 |
JP5283166B2 JP5283166B2 (en) | 2013-09-04 |
Family
ID=41384403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008222217A Expired - Fee Related JP5283166B2 (en) | 2008-03-26 | 2008-08-29 | Collision excitation type EL phosphor, method for manufacturing collision excitation type EL phosphor thin film, thin film EL element, thin film EL display, and thin film EL lamp |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5283166B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019003927A1 (en) * | 2017-06-29 | 2019-01-03 | パナソニックIpマネジメント株式会社 | Wavelength conversion member and light source |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08138866A (en) * | 1994-11-11 | 1996-05-31 | Sharp Corp | Thin film el element |
JP2002114974A (en) * | 2000-10-06 | 2002-04-16 | Rikogaku Shinkokai | Inorganic electroluminescent material, and inorganic electroluminescent device and image display apparatus using the same |
JP2003303690A (en) * | 2002-02-06 | 2003-10-24 | Tdk Corp | El phosphor laminated thin film and el element |
JP2007157501A (en) * | 2005-12-05 | 2007-06-21 | Kanazawa Inst Of Technology | El element |
-
2008
- 2008-08-29 JP JP2008222217A patent/JP5283166B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08138866A (en) * | 1994-11-11 | 1996-05-31 | Sharp Corp | Thin film el element |
JP2002114974A (en) * | 2000-10-06 | 2002-04-16 | Rikogaku Shinkokai | Inorganic electroluminescent material, and inorganic electroluminescent device and image display apparatus using the same |
JP2003303690A (en) * | 2002-02-06 | 2003-10-24 | Tdk Corp | El phosphor laminated thin film and el element |
JP2007157501A (en) * | 2005-12-05 | 2007-06-21 | Kanazawa Inst Of Technology | El element |
Non-Patent Citations (2)
Title |
---|
JPN6012060081; '青色発光Bi付活La2O3ベース多元系酸化物蛍光体薄膜EL素子の作製' 映像情報メディア学会技術報告 Vol.32, No.4, p.1-4, 20080124 * |
JPN6012060083; 'Bi-Activated Phosphors Using Various Oxide Host Materials for Thin-Film EL Devices' IDW'07 Proceedings of The 14th International Display Workshops Vol.2, p.937-940, 20071206 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019003927A1 (en) * | 2017-06-29 | 2019-01-03 | パナソニックIpマネジメント株式会社 | Wavelength conversion member and light source |
CN110799863A (en) * | 2017-06-29 | 2020-02-14 | 松下知识产权经营株式会社 | Wavelength conversion member and light source |
JPWO2019003927A1 (en) * | 2017-06-29 | 2020-04-30 | パナソニックIpマネジメント株式会社 | Wavelength conversion member and light source |
EP3647836A4 (en) * | 2017-06-29 | 2020-07-15 | Panasonic Intellectual Property Management Co., Ltd. | Wavelength conversion member and light source |
CN110799863B (en) * | 2017-06-29 | 2021-11-30 | 松下知识产权经营株式会社 | Wavelength conversion member and light source |
Also Published As
Publication number | Publication date |
---|---|
JP5283166B2 (en) | 2013-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5771555B2 (en) | Light extraction substrate for electroluminescent device and method for manufacturing the same | |
JP2858397B2 (en) | Electroluminescence device and method of manufacturing the same | |
JP2005158668A (en) | Organic electroluminescent display device with excellent high temperature characteristics | |
TWI242037B (en) | Phosphor thin film, manufacturing method of the same and electroluminescence panel | |
JP4528923B2 (en) | EL element | |
KR20030025354A (en) | Fabrication method of blue light emitting ZnO thin film phosphor | |
JP5283166B2 (en) | Collision excitation type EL phosphor, method for manufacturing collision excitation type EL phosphor thin film, thin film EL element, thin film EL display, and thin film EL lamp | |
JP4042895B2 (en) | Oxide phosphor for PL, CL or EL, electroluminescence element, and method for producing the same | |
JP4047095B2 (en) | Inorganic electroluminescent device and manufacturing method thereof | |
JP2003217868A (en) | Mirror with built-in el illumination | |
KR20030064028A (en) | Electroluminescent Display and method for manufacturing the same | |
JPH0935869A (en) | Manufacture of electroluminescence element | |
JP2011057953A (en) | Ultraviolet excitation phosphor, electron-beam excitation phosphor, blue phosphor for collision excitation type el, method for producing thin film of blue phosphor for collision excitation type el, filmy el element, filmy el display, and filmy el lamp | |
US6707249B2 (en) | Electroluminescent device and oxide phosphor for use therein | |
JP2005076024A (en) | Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element | |
JP2004307808A (en) | Gadolinium oxide-vanadium oxide multicomponent oxide white luminous fluorescent material | |
Kawanishi et al. | New red-emitting CaY2S4: Eu thin-film electroluminescent devices | |
JP5192854B2 (en) | Phosphor and display panel using the same | |
JP2985096B2 (en) | Zn lower 2 SiO lower 4: Method of manufacturing AC driven thin film electroluminescent device using Mn thin film as light emitting layer | |
JP5046637B2 (en) | Inorganic electroluminescent device | |
JP2002201469A (en) | Oxide phosphor for electroluminescence device and electroluminescence device | |
JP3590986B2 (en) | Electroluminescence element | |
JP2828019B2 (en) | ELECTROLUMINESCENT ELEMENT AND ITS MANUFACTURING METHOD | |
JP3016323B2 (en) | Electroluminescence element | |
JP2004207091A (en) | Thin film electroluminescent element and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110804 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130521 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130523 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5283166 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |