JPH0935869A - Manufacture of electroluminescence element - Google Patents

Manufacture of electroluminescence element

Info

Publication number
JPH0935869A
JPH0935869A JP7212332A JP21233295A JPH0935869A JP H0935869 A JPH0935869 A JP H0935869A JP 7212332 A JP7212332 A JP 7212332A JP 21233295 A JP21233295 A JP 21233295A JP H0935869 A JPH0935869 A JP H0935869A
Authority
JP
Japan
Prior art keywords
thin film
oxide
oxidizing gas
phosphor
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7212332A
Other languages
Japanese (ja)
Inventor
Uchitsugu Minami
内嗣 南
Shinzo Takada
新三 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7212332A priority Critical patent/JPH0935869A/en
Publication of JPH0935869A publication Critical patent/JPH0935869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high intensity and stable green EL element by improving crystalline of a luminous layer thin film without reducing oxide sintered BaTiO3 ceramic which is a substrate concurrently serving as an insulating layer. SOLUTION: An oxide thin film of ZnGa2 O4 system, which is an electron beam exciting fluorescent material formed from at least one kind, is prepared by using an already known method on sintered oxide ceramic having 1000 or more preferably 3000 or more dielectric constant. Next, the film is buried in powder consisting of oxide powder containing at least one kind of this thin film constituting element and of oxide powder containing sulfur. By heat treating at a 600 to 1200 deg.C preferably 900 to 1100 deg.C temperature range in the atmosphere of non-oxidizing gas or non-oxidizing gas partly containing oxidizing gas or non-oxidizing gas partly containing reducing gas or in the atmosphere equivalent to these atmospheres, this thin film is made to function as a luminous layer for an EL element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエレクトロルミネッセン
ス素子の製造法に関する。
FIELD OF THE INVENTION The present invention relates to a method for manufacturing an electroluminescent device.

【0002】[0002]

【従来の技術】エレクトロルミネッセンス素子(以下E
L素子と呼ぶ)は、平面形固体発光表示装置への応用に
対し古くから研究され、その実用化に対し根強い期待が
ある。このEL素子は構造上、ガラスまたはプラスチッ
クフィルム基板上に蛍光体の結晶性薄膜を形成させるこ
とを特徴とする薄膜形と蛍光体粉末を有機系誘電体バイ
ンダー中に均一に分散混合させることを特徴とする有機
分散形及び蛍光体粉末をガラス等の無機系バインダーで
結着させることを特徴とする無機分散形に分けられる。
無機分散形ELは、しばしばセラミックス形ELと呼ば
れることもあるが、あくまでも蛍光体粉末粒子がこの無
機系バインダー中に分散したものに過ぎない。従来、E
L素子の発光色に関しては、Mn添加硫化亜鉛(Zn
S:Mn)系やテルビウム添加硫化亜鉛(ZnS:T
b)系二重絶縁構造交流駆動薄膜EL素子における黄橙
色発光並びに緑色発光、そしてCu添加硫化亜鉛(Zn
S:Cu)系有機分散形交流駆動薄膜EL素子における
青緑色発光のもののみが実用されている。
2. Description of the Related Art Electroluminescent devices (hereinafter referred to as E
L element) has been studied for a long time for application to a planar solid state light emitting display device, and there is a strong hope for its practical application. This EL element is structurally characterized in that a crystalline thin film of a phosphor is formed on a glass or plastic film substrate, and the phosphor powder is uniformly dispersed and mixed in an organic dielectric binder. And an inorganic dispersion type characterized in that the phosphor powder is bound with an inorganic binder such as glass.
The inorganic dispersion type EL is often called a ceramics type EL, but it is merely a dispersion of phosphor powder particles in the inorganic binder. Conventionally, E
Regarding the emission color of the L element, Mn-added zinc sulfide (Zn
S: Mn) -based or terbium-added zinc sulfide (ZnS: T)
b) yellow-orange emission and green emission in a double-insulation structure AC drive thin film EL device, and Cu-added zinc sulfide (Zn)
Only S: Cu) -based organic dispersion type AC drive thin film EL devices that emit blue-green light are in practical use.

【0003】上記以外の発光色を有するEL素子として
は、テルビウムもしくはフッ化テルビウム(Tb,Fま
たはTbF)添加ZnSや、アルカリ土金属とVI族
元素から成る、例えば各種発光中心を添加した硫化カル
シウム(CaS)、硫化ストロンチウム(SrS)等を
発光層に用いたものが知られている。また最近ストロン
チウムチオガレート(SrGa)系材料が青色発
光EL素子用発光層として利用できることが示されてい
る。これらのEL素子により赤色から青色に至る発光色
が研究段階ではあるが実現している。
As an EL element having an emission color other than the above, terbium or terbium fluoride (Tb, F or TbF 3 ) added ZnS, or a sulfide containing an alkaline earth metal and a group VI element, for example, various emission centers is added. It is known that calcium (CaS), strontium sulfide (SrS) or the like is used for the light emitting layer. Further, it has recently been shown that a strontium thiogallate (SrGa 2 S 4 ) material can be used as a light emitting layer for a blue light emitting EL device. Emission colors from red to blue have been realized by these EL devices, although they are still in the research stage.

【0004】最近では、発光層に酸化物系蛍光体を用い
た高輝度EL素子の研究開発が活発化している(例え
ば、申請者らの発明になる特願平2−254649及び
特願平2−256474)。特に、基板兼絶縁層として
焼結BaTiOセラミック上にケイ酸塩系蛍光体であ
るMn添加ケイ酸亜鉛(ZnSiO:Mn)なる薄
膜発光層を形成したEL素子で、5kHz駆動時最高5
600cd/mという高輝度緑色発光を実現してい
る。
Recently, research and development of high-brightness EL devices using an oxide-based phosphor in the light-emitting layer have been actively conducted (for example, Japanese Patent Application Nos. 2-254649 and 2-4, which are the inventions of the applicants). -256474). In particular, it is an EL element in which a thin film light emitting layer made of Mn-added zinc silicate (Zn 2 SiO 4 : Mn), which is a silicate-based phosphor, is formed on a sintered BaTiO 3 ceramic as a substrate and an insulating layer, which is the highest when driven at 5 kHz. 5
High-luminance green light emission of 600 cd / m 2 is realized.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、基板兼
絶縁層である酸化物焼結BaTiOセラミック上に薄
膜発光層を形成して成るEL素子において、未熱処理の
発光層を用いたEL素子では十分な発光輝度が得られ
ず、そこで該膜の結晶性を向上させ高輝度を実現するた
め750℃以上での熱処理が欠かせなかった。該発光層
に対する熱処理雰囲気としては従来弱還元性等の非酸化
性ガスが効果的であった。しかし熱処理温度が900℃
以上になると該絶縁層が著しく還元され、その結果EL
特性が悪化するという問題があった。
However, in an EL element formed by forming a thin film light emitting layer on an oxide-sintered BaTiO 3 ceramic which is a substrate and an insulating layer, an EL element using an unheated light emitting layer is sufficient. Therefore, the heat treatment at 750 ° C. or higher is indispensable for improving the crystallinity of the film and realizing high brightness. As a heat treatment atmosphere for the light emitting layer, a non-oxidizing gas such as a weak reducing property has been conventionally effective. However, the heat treatment temperature is 900 ℃
In the above case, the insulating layer is significantly reduced, resulting in EL
There was a problem that the characteristics deteriorate.

【0006】本発明では、基板兼絶縁層である酸化物焼
結BaTiOセラミックを還元させることなく発光層
薄膜の結晶性を改善し高輝度かつ安定な緑色発光EL素
子を実現することを目的として、従来有効でなかった電
子線励起用ZnGa系酸化物蛍光体から成る薄膜
を該EL素子用発光層として十分に機能させるための製
造法を提供し、高輝度で高効率かつ安定な緑色発光の交
流駆動薄膜EL素子を安価にそして容易に製造する方法
を提供するものである。
The object of the present invention is to improve the crystallinity of the thin film of the light emitting layer without reducing the oxide-sintered BaTiO 3 ceramic, which also serves as a substrate and an insulating layer, to realize a high-luminance and stable green light-emitting EL device. The present invention provides a manufacturing method for making a thin film made of a ZnGa 2 O 4 -based oxide phosphor for electron beam excitation, which has not been conventionally effective, sufficiently function as a light emitting layer for the EL device, and has high brightness, high efficiency and stability. It is an object of the present invention to provide a method for inexpensively and easily manufacturing a green light emitting AC driven thin film EL element.

【0007】[0007]

【課題を解決するための手段】本発明は、上記問題点を
解決するための手段として、比誘電率1000以上、好
ましくは3000以上で、厚さ0.04〜0.7mm、
好ましくは0.1〜0.4mmの焼結セラミック基板兼
絶縁層としてのチタン酸バリウム(BaTiO)等の
強誘電体焼結基板上に少なくとも1種から成る電子線励
起用蛍光体として古くから知られているZnGa
系酸化物薄膜を、電子ビーム蒸着法、活性化反応性蒸着
(ARE)法、スパッタ法、クラスタイオンビーム(I
CB)法、イオンビームスパッタ(IBS)法、化学気
相結晶成長(CVD)法、スプレー法、ゾルーゲル法、
スクリーン印刷法、原子層エピタキシャル(ALE)成
長法、分子線エピタキシャル成長(MBE)法、ガスソ
ースMBE(またはCBE)法、エレクトロンサイクロ
トロン共鳴(ECR)を利用する薄膜作製技術等既知の
作製技術を用いて真空中や各種の制御雰囲気下で形成し
た後、該基板と共に該薄膜を、その膜構成元素を少なく
とも一種含む酸化物粉末と還元作用を有する粉末とから
成る粉末中に埋め込み、非酸化性ガスまたは一部酸化性
ガスを含む非酸化性ガスまたは一部還元性ガスを含む非
酸化性ガスの雰囲気の中で、あるいはまたこれらの雰囲
気と等価な雰囲気中にて、600〜1200℃、好まし
くは900〜1100℃の温度範囲で熱処理することに
よって、該薄膜をEL素子用発光層として十分に機能さ
せるようにしたものである。
As a means for solving the above problems, the present invention has a relative dielectric constant of 1000 or more, preferably 3000 or more, and a thickness of 0.04 to 0.7 mm,
For a long time, it is preferable to use at least one kind of phosphor for electron beam excitation on a ferroelectric sintered substrate such as barium titanate (BaTiO 3 ) which is preferably 0.1 to 0.4 mm as a sintered ceramic substrate and an insulating layer. Known ZnGa 2 O 4
-Based oxide thin film, electron beam evaporation method, activated reactive evaporation (ARE) method, sputtering method, cluster ion beam (I
CB) method, ion beam sputtering (IBS) method, chemical vapor deposition (CVD) method, spray method, sol-gel method,
Using known fabrication techniques such as screen printing, atomic layer epitaxial (ALE) growth, molecular beam epitaxial growth (MBE), gas source MBE (or CBE), and electron cyclotron resonance (ECR) thin film fabrication After being formed in vacuum or under various controlled atmospheres, the thin film together with the substrate is embedded in a powder composed of an oxide powder containing at least one of the film-constituting elements and a powder having a reducing action, and a non-oxidizing gas or 600 to 1200 ° C., preferably 900 to 1200 ° C. in an atmosphere of a non-oxidizing gas containing a partially oxidizing gas or a non-oxidizing gas containing a partially reducing gas, or in an atmosphere equivalent to these atmospheres. The thin film was made to sufficiently function as a light emitting layer for an EL device by heat treatment in a temperature range of ˜1100 ° C. It is.

【0008】[0008]

【作用】本発明に係るEL素子製造法において、比誘電
率3000以上、好ましくは4000以上の高比誘電率
を有する該焼結酸化物セラミック基板兼絶縁層上へ少な
くとも一種の蛍光体からなる薄膜を形成するという組み
合わせを採用することによって750℃以上の高温加熱
処理が可能になった。この方法を採用することにより、
優れた結晶性を有する高品質な発光層からなる交流駆動
薄膜EL素子を容易に製造出来、その結果、より高い発
光輝度および高い発光効率を持つ該EL素子を実現出来
るという作用効果が得られた。本発明に係るEL素子
は、絶縁層として、前述したように、高比誘電率の焼結
酸化物セラミック基板兼絶縁層を使用しているため、耐
電圧性能に優れていること、従ってカタストロフィック
な絶縁破壊の心配もなく発光層に有効に極めて高い電界
を印加出来、発光中心を効率良く励起できるという作用
効果を有する。本発明による最も著しい作用は、従来、
EL素子の発光層として応用されることがなかったCR
Tあるいはランプ用蛍光体等にみられる酸素酸塩系蛍光
体や酸化物系蛍光体を中心とした幅広い種類の蛍光体が
EL素子用発光層として十分に活用できる点にある。該
焼結酸化物セラミック基板兼絶縁層上に形成した前記蛍
光体薄膜に該熱処理方法を適用することによって初めて
該膜をEL素子用発光層として有効に機能させられるよ
うになる点は本発明の大きな特徴である。これらは次の
作用効果から生ずるものと考えられる。該絶縁層セラ
ミックの還元を抑制することにより該セラミックの誘電
的特性の悪化を防止できる。酸化物蛍光体薄膜発光層
の表面を硫化することによる硫化層の導入は、発光層表
面が電荷供給層として機能する。また、該焼結酸化物
セラミックスと蛍光体薄膜発光層の間に、20nm〜1
μm厚、好ましくは、50nm〜500nm厚各種薄膜
層を挿入することは、バッファ層、電荷供給層もしくは
保護層等として有効であり、その結果、低電圧駆動およ
び高効率で高発光輝度を実現できる。本発明になるEL
素子の製造技術によって、これまでEL素子用発光層と
してほとんど利用されなかった多くの蛍光体が該発光層
として有効に機能させられるようになった意義は大き
い。このことによって、赤、緑、青色発光等の多色化を
初めとするフルカラー化は勿論、白色発光のEL素子も
容易に実現出来、以て広範な用途が期待出来る。以下に
本発明を実施例により説明する。
In the EL device manufacturing method according to the present invention, a thin film comprising at least one kind of phosphor on the sintered oxide ceramic substrate / insulating layer having a high relative dielectric constant of 3000 or more, preferably 4000 or more. By adopting the combination of forming the above, it became possible to perform high temperature heat treatment at 750 ° C. or higher. By adopting this method,
An AC driven thin film EL element having a high quality light emitting layer having excellent crystallinity can be easily manufactured, and as a result, the EL element having higher light emission luminance and higher light emission efficiency can be realized. . Since the EL element according to the present invention uses the sintered oxide ceramic substrate / insulating layer having a high relative dielectric constant as the insulating layer as described above, it is excellent in the withstand voltage performance, and therefore the catastrophic property. It has an effect that an extremely high electric field can be effectively applied to the light emitting layer without any fear of dielectric breakdown and the emission center can be efficiently excited. The most remarkable effect of the present invention is conventionally
CR which has never been applied as a light emitting layer of EL element
A wide variety of phosphors such as oxygenate-based phosphors and oxide-based phosphors found in phosphors for T or lamps and the like can be fully utilized as a light emitting layer for EL devices. According to the present invention, it is only by applying the heat treatment method to the phosphor thin film formed on the sintered oxide ceramic substrate / insulating layer that the film can effectively function as a light emitting layer for an EL device. This is a great feature. These are considered to result from the following effects. By suppressing the reduction of the insulating layer ceramic, deterioration of the dielectric characteristics of the ceramic can be prevented. The introduction of the sulfurized layer by sulfurizing the surface of the oxide phosphor thin film light emitting layer causes the surface of the light emitting layer to function as a charge supply layer. Further, between the sintered oxide ceramics and the phosphor thin film light emitting layer, 20 nm to 1
Inserting various thin film layers with a thickness of μm, preferably 50 nm to 500 nm is effective as a buffer layer, a charge supply layer, a protective layer, or the like, and as a result, low voltage drive and high efficiency and high emission brightness can be realized. . EL of the present invention
It is significant that many phosphors, which have been rarely used as the light emitting layer for EL devices so far, can be effectively functioned as the light emitting layer by the device manufacturing technology. As a result, it is possible to easily realize not only full-coloring such as multicoloring of red, green, and blue light emission, but also an EL device of white light emission, and thus a wide range of applications can be expected. The present invention will be described below with reference to examples.

【0009】[0009]

【実施例1】第1図は、本発明の第1の実施例として用
いたEL素子の断面構造を示す。ZnO:Zn粉末、G
および二酸化マンガン(MnO)粉末を均一
に混合した後、アルゴン雰囲気中1000℃で焼成して
作製された粉末成形体をターゲットとし、アルゴン雰囲
気中で高周波マグネトロンスパッタ法によって、比誘電
率(εs)5000、厚さ(t)0.2mm、直径
(D)20mmの表面平滑な焼結BaTiOセラミッ
ク基板兼絶縁層上に厚さ1500nmのZnGa
:Mn薄膜を形成した。その後、アルミナセラミ
ックボートに仕込んだ酸化物系蛍光体ZnO:Zn(P
−15蛍光体)粉末、酸化ガリウム粉末および還元作用
を有する粉末中に、ZnGa:Mn付きBaTi
セラミックスを埋め込み、電気炉内にセットし、1
020℃で5時間、アルゴン中で熱処理を行い、該薄膜
にEL素子用発光層としての機能を付与した。その後、
該発光層上に、マグネトロンスパッタ法によって、厚さ
500nmのアルミニウム(Al)ドープ酸化亜鉛(Z
nO:Al)透明電極層を、また反対側の面には真空蒸
着法により金属Al背面電極層をそれぞれ形成しEL素
子を作製した。このEL素子を1kHzの正弦波交流電
圧で駆動した結果、第2図に示すように、発光開始電圧
100V、最高発光輝度710cd/m(240V印
加)、発光効率0.9lm/Wで、透明電極全面にわた
って均一な緑色発光が得られた。ただし、上記のような
熱処理を施さない該EL素子からの最高発光輝度は0.
02cd/mと極めて低い輝度にとどまった。尚、同
素子を60Hzで駆動した場合でも最高発光輝度は23
0cd/mという高い値を示した。熱処理による輝度
改善の効果は顕著であった。また、BaTiOセラミ
ックス上に、あらかじめスパッタ法で電荷供給層として
50nm〜500nm厚のZnO系薄膜を形成しておい
た後、その上にZnGa:Mn発光層を形成した
素子の場合、発光開始電圧を10V〜30V低下出来、
かつ同程度以上のEL特性を実現出来た。
EXAMPLE 1 FIG. 1 shows a sectional structure of an EL device used as a first example of the present invention. ZnO: Zn powder, G
a 2 O 3 and manganese dioxide (MnO 2 ) powder are uniformly mixed and then fired at 1000 ° C. in an argon atmosphere, and a powder compact is produced as a target. ZnGa with a thickness of 1500 nm on a sintered BaTiO 3 ceramic substrate / insulating layer with a smooth surface having a rate (εs) of 5000, a thickness (t) of 0.2 mm and a diameter (D) of 20 mm.
A 2 O 4 : Mn thin film was formed. Then, the oxide-based phosphor ZnO: Zn (P
-15 phosphor) powder, gallium oxide powder, and powder having a reducing action in ZnGa 2 O 4 : Mn-attached BaTi
Embed O 3 ceramics and set it in an electric furnace.
Heat treatment was performed in argon at 020 ° C. for 5 hours to give the thin film a function as a light emitting layer for an EL device. afterwards,
On the light emitting layer, aluminum (Al) -doped zinc oxide (Z) with a thickness of 500 nm was formed by magnetron sputtering.
An nO: Al) transparent electrode layer and a metal Al back electrode layer were formed on the opposite surface by a vacuum deposition method to fabricate an EL device. As a result of driving this EL element with a sinusoidal AC voltage of 1 kHz, as shown in FIG. 2, a light emission starting voltage of 100 V, a maximum light emission luminance of 710 cd / m 2 (240 V applied), and a light emission efficiency of 0.9 lm / W were transparent. Uniform green light emission was obtained over the entire surface of the electrode. However, the maximum light emission brightness from the EL element not subjected to the heat treatment as described above is 0.
The brightness was as low as 02 cd / m 2 . Even when the device is driven at 60 Hz, the maximum emission brightness is 23
It showed a high value of 0 cd / m 2 . The effect of improving the brightness by the heat treatment was remarkable. In addition, in the case of an element in which a ZnO-based thin film having a thickness of 50 nm to 500 nm is previously formed as a charge supply layer on BaTiO 3 ceramics by a sputtering method, and a ZnGa 2 O 4 : Mn light emitting layer is formed thereon, The light emission start voltage can be reduced by 10V to 30V,
Moreover, the EL characteristics of the same level or more were realized.

【0010】[0010]

【実施例2】実施例1と同じ条件でBaTiOセラミ
ックス上に作製したZnGa:Mn発光層を、ア
ルミナセラミックボートに仕込んだ酸化物系蛍光体Zn
O:Zn(P−15蛍光体)粉末および硫黄を含ませた
酸化ガリウム粉末中に埋め込み、電気炉内にセットし、
1020℃で5時間、アルゴンガス中で熱処理を行い、
該薄膜にEL素子用発光層としての機能を付与した。そ
の後、実施例1と同様に各電極を付けEL素子を作製し
た。このEL素子を1kHzの正弦波交流電圧で駆動し
た結果、発光開始電圧150V、最高発光輝度600c
d/m(400V印加)、発光効率0.9lm/W
で、透明電極全面にわたって均一な緑色発光が得られ
た。尚、熱処理用雰囲気ガスとして上記の替わりにアル
ゴン+SO(5%)やO+CSでもほぼ同様のE
L特性が得られた。
Example 2 An oxide-based phosphor Zn in which an ZnGa 2 O 4 : Mn light-emitting layer formed on BaTiO 3 ceramics was charged in an alumina ceramic boat under the same conditions as in Example 1
O: Zn (P-15 phosphor) powder and gallium oxide powder containing sulfur were embedded and set in an electric furnace.
Heat treatment in argon gas at 1020 ° C. for 5 hours,
The thin film was provided with a function as a light emitting layer for EL device. Then, each electrode was attached in the same manner as in Example 1 to fabricate an EL device. As a result of driving this EL element with a sinusoidal AC voltage of 1 kHz, a light emission start voltage of 150 V and a maximum light emission luminance of 600 c
d / m 2 (400 V applied), luminous efficiency 0.9 lm / W
Thus, uniform green light emission was obtained over the entire surface of the transparent electrode. It should be noted that, as the atmosphere gas for heat treatment, argon + SO 2 (5%) or O 2 + CS 2 may be used instead of the above to obtain substantially the same E.
The L characteristic was obtained.

【0011】[0011]

【実施例3】Zn原料としてZnアセチルアセトネート
(Zn(C)、Ga原料としてCaアセ
チルアセトネート(Ca(C)、発光中
心であるMnドーパントとしてトリカルボニルシクロペ
ンタジエニルマンガン(TCM)をそれぞれステンレス
製容器内に充填し、各々93℃、145℃および25℃
に保たれた各ステンレス製容器内を300cc/min
の流量のキャリアガスを通過させ、同時に酸素原科とな
るAr+O(50%)混合ガスも同流量でそれぞれ石
英製リアクタへ導き、リアクタ内に設置され、電気炉に
より700℃に加熱された石英ガラス基板上に各原料を
含むガスを供給し200Torrの減圧下で成膜を行な
った。得られた膜は、その後の熱処理なしでも結晶化し
ており、この膜を用いて作製したEL素子では250V
印加時最高発光輝度8cd/m緑色発光を達成した。
その後、実施例1と同様の熱処理を施した結果、最高発
光輝度20cd/mの緑色発光が得られた。
Example 3 Zn acetylacetonate (Zn (C 5 H 7 O 2 ) 2 ) as a Zn raw material, Ca acetylacetonate (Ca (C 5 H 7 O 2 ) 3 ) as a Ga raw material, and Mn which is an emission center. Tricarbonyl cyclopentadienyl manganese (TCM) was filled in each stainless steel container as a dopant, and the temperature was 93 ° C., 145 ° C. and 25 ° C., respectively.
300cc / min in each stainless steel container kept at
At the same time, the carrier gas at the same flow rate is passed, and at the same time, the mixed gas of Ar + O 2 (50%), which becomes the oxygen source, is also introduced at the same flow rate to the respective quartz reactors. A gas containing each raw material was supplied onto the glass substrate to form a film under a reduced pressure of 200 Torr. The obtained film was crystallized without subsequent heat treatment, and the EL device manufactured using this film was 250 V
When applied, a maximum emission luminance of 8 cd / m 2 green emission was achieved.
Then, the same heat treatment as in Example 1 was performed, and as a result, green light emission with a maximum light emission luminance of 20 cd / m 2 was obtained.

【0012】本発明は上記実施例に限られるものではな
く、薄膜発光層を、電子ビーム蒸着法もしくはMOCV
D法によっても形成できるが、さらにハロゲン化物を使
用するCVD法あるいはMBE成長法等既存の結晶成長
技術が利用出来る。さらに、上記実施例で例示したZn
O:Al透明電極層以外に酸化錫(SnO)系やイン
ジウム・錫酸化物(ITO)系等の透明導電膜を使用す
ることは一向に差し支えない。基板兼絶縁層はその比誘
電率が1000以上あればよく、必ずしもBaTiO
である必要はない。またMOCVD法により発光層を作
製する場合には該焼結セラミック基板兼絶縁層の上にZ
nO:Alのような耐水素特性に優れた導電膜を該基板
の保護膜として形成することは特に有効である。
The present invention is not limited to the above embodiment, but the thin film light emitting layer may be formed by electron beam vapor deposition or MOCV.
Although it can be formed by the D method, existing crystal growth techniques such as a CVD method using a halide or an MBE growth method can be used. Furthermore, the Zn exemplified in the above-mentioned embodiment
There is no problem in using a transparent conductive film such as a tin oxide (SnO 2 ) system or an indium tin oxide (ITO) system other than the O: Al transparent electrode layer. The substrate / insulating layer only needs to have a relative dielectric constant of 1000 or more, and is not necessarily BaTiO 3
Does not have to be. When the light emitting layer is formed by the MOCVD method, Z is formed on the sintered ceramic substrate / insulating layer.
It is particularly effective to form a conductive film having excellent hydrogen resistance such as nO: Al as a protective film for the substrate.

【0013】[0013]

【発明の効果】本発明によれば、従来、EL素子の発光
層材料として利用出来なかったり、また特性的に不十分
であった各種蛍光体、特に酸化物系蛍光体を利用出来る
道を提供することが出来、その効果は絶大である。即ち
既存の電子管やランプ用蛍光体として知られている酸素
酸塩系蛍光体や酸化物系蛍光体あるいは硫化物系蛍光体
をEL素子用発光層として機能させる製造法を確立した
結果、これまでの蛍光体の種類にとらわれず赤、緑、青
色の多色発光やフルカラー発光は勿論、白色発光をも容
易に実現することが出来る。これによって発光形平面デ
ィスプレイ用EL素子として、あるいは面発光体である
特長を活かす照光ランプや各種パターン表示もしくは平
面光源を必要とする例えば液晶表示装置を用いた各種の
応用機器および商用電源駆動形発光素子に対し大いに威
力を発揮し、従来にない幅広い用途が生み出されるとい
う効果がある。
According to the present invention, it is possible to use a variety of phosphors, particularly oxide-based phosphors, which could not be used as a light emitting layer material of an EL device or which had insufficient characteristics. You can do it, and the effect is great. That is, as a result of establishing a manufacturing method for causing an oxyacid salt-based phosphor, an oxide-based phosphor, or a sulfide-based phosphor known as an existing electron tube or lamp phosphor to function as a light emitting layer for an EL device, Regardless of the type of the phosphor, it is possible to easily realize white light emission as well as multicolor light emission of red, green and blue and full color light emission. As a result, as an EL element for a light-emitting flat display, or an illumination lamp that takes advantage of the features of a surface light emitter, various pattern displays, or a flat light source, for example, various applied equipment using a liquid crystal display device and commercial power source driven light emission It has the effect of exerting a great deal of power on devices and creating a wide range of applications that have never existed before.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施例1の断面構造図。FIG. 1 is a sectional structural view of a first embodiment according to the present invention.

【図2】本発明による実施例1のEL素子の典型的な輝
度−印加電圧特性図である。
FIG. 2 is a typical luminance-applied voltage characteristic diagram of the EL element of Example 1 according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・・ZnO:Al透明電極 2・・・・ZnGa2O4:Mn薄膜発光層 3・・・・焼結BaTiO基板兼絶縁層 4・・・・Al背面電極 5・・・・EL素子駆動電源 6・・・・輝度 7・・・・効率1 ... ZnO: Al transparent electrode 2 ... ZnGa2O4: Mn thin film light emitting layer 3 ... Sintered BaTiO 3 substrate / insulating layer 4 ... Al back electrode 5 ... EL element drive Power supply 6 ... Brightness 7 ... Efficiency

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板兼絶縁層である比誘電率1000以
上を有する焼結酸化物セラミック板上に少なくとも一種
または一層の酸化物蛍光体薄膜を形成した後、硫黄を含
む雰囲気中にて600℃〜1200℃、好ましくは90
0℃〜1100℃の温度範囲で熱処理を施すことによ
り、該薄膜にエレクトロルミネッセンス素子用発光層と
しての十分な機能を付与することを特徴とする交流駆動
薄膜エレクトロルミネッセンス素子の製造法。
1. At least one or one layer of an oxide phosphor thin film is formed on a sintered oxide ceramic plate having a relative dielectric constant of 1000 or more, which is also a substrate / insulating layer, and then 600 ° C. in an atmosphere containing sulfur. ~ 1200 ° C, preferably 90
A method for producing an AC-driven thin film electroluminescent element, which comprises giving the thin film a sufficient function as a light emitting layer for an electroluminescent element by performing a heat treatment in a temperature range of 0 ° C to 1100 ° C.
【請求項2】 前記熱処理が該処理条件下で真空中もし
くは非酸化性ガス、あるいは一部酸化性ガス、または一
部還元性ガスと硫黄を含む非酸化性ガス雰囲気中である
いはこれらの雰囲気と等価な雰囲気中で施されることを
特徴とする前記請求項1記載のエレクトロルミネッセン
ス素子の製造法。
2. The heat treatment is performed under vacuum or in a non-oxidizing gas, or in a partially oxidizing gas, or in a non-oxidizing gas atmosphere containing a partially reducing gas and sulfur, or under these treatment conditions. The method for manufacturing an electroluminescent element according to claim 1, wherein the method is performed in an equivalent atmosphere.
【請求項3】 前記蛍光体から成る薄膜が少なくとも一
種の亜鉛ガレート(ZnGa)からなる蛍光体で
ある請求項1あるいは2記載のエレクトロルミネッセン
ス素子の製造法。
3. The method for manufacturing an electroluminescence device according to claim 1, wherein the thin film made of the phosphor is a phosphor made of at least one kind of zinc gallate (ZnGa 2 O 4 ).
【請求項4】 面発光形照光ランプ、面発光形表示パネ
ルあるいは平面光源を有する平面形表示装置を製造する
のに使用される請求項1、2または3記載のエレクトロ
ルミネッセンス素子の製造法。
4. The method for manufacturing an electroluminescent element according to claim 1, 2 or 3, which is used for manufacturing a surface emitting type illumination lamp, a surface emitting type display panel or a flat type display device having a flat light source.
JP7212332A 1995-07-17 1995-07-17 Manufacture of electroluminescence element Pending JPH0935869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7212332A JPH0935869A (en) 1995-07-17 1995-07-17 Manufacture of electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7212332A JPH0935869A (en) 1995-07-17 1995-07-17 Manufacture of electroluminescence element

Publications (1)

Publication Number Publication Date
JPH0935869A true JPH0935869A (en) 1997-02-07

Family

ID=16620790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7212332A Pending JPH0935869A (en) 1995-07-17 1995-07-17 Manufacture of electroluminescence element

Country Status (1)

Country Link
JP (1) JPH0935869A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062582A1 (en) * 1999-04-07 2000-10-19 Tdk Corporation Composite substrate, thin film el element using it, and method of producing the same
WO2003081958A1 (en) * 2002-03-26 2003-10-02 Tdk Corporation El phosphor multilayer thin film and el device
KR100514232B1 (en) * 2002-10-30 2005-09-09 에이엔 에스 주식회사 Method for manufacturing long lifetime device having organic or polymer thin layer, and device and display manufactured by the method
KR100546594B1 (en) * 2002-11-05 2006-01-26 엘지전자 주식회사 apparatus and method for repair in Organic electron luminescence
JP2007157501A (en) * 2005-12-05 2007-06-21 Kanazawa Inst Of Technology El element
CN114657637A (en) * 2022-03-10 2022-06-24 中国科学院长春光学精密机械与物理研究所 Zinc gallate thin film and preparation method thereof, ultraviolet detector and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062582A1 (en) * 1999-04-07 2000-10-19 Tdk Corporation Composite substrate, thin film el element using it, and method of producing the same
US6428914B2 (en) 1999-04-07 2002-08-06 Tdk Corporation Composite substrate, thin-film electroluminescent device using the substrate, and production process for the device
US6723192B2 (en) 1999-04-07 2004-04-20 Tdk Corporation Process for producing a thin film EL device
WO2003081958A1 (en) * 2002-03-26 2003-10-02 Tdk Corporation El phosphor multilayer thin film and el device
US6876146B2 (en) 2002-03-26 2005-04-05 Tdk Corporation Electroluminescence phosphor multilayer thin film and electroluminescence element
KR100514232B1 (en) * 2002-10-30 2005-09-09 에이엔 에스 주식회사 Method for manufacturing long lifetime device having organic or polymer thin layer, and device and display manufactured by the method
KR100546594B1 (en) * 2002-11-05 2006-01-26 엘지전자 주식회사 apparatus and method for repair in Organic electron luminescence
JP2007157501A (en) * 2005-12-05 2007-06-21 Kanazawa Inst Of Technology El element
JP4528923B2 (en) * 2005-12-05 2010-08-25 学校法人金沢工業大学 EL element
CN114657637A (en) * 2022-03-10 2022-06-24 中国科学院长春光学精密机械与物理研究所 Zinc gallate thin film and preparation method thereof, ultraviolet detector and preparation method thereof

Similar Documents

Publication Publication Date Title
CA2227461C (en) Doped amorphous and crystalline gallium oxides, alkaline earth gallates and doped zinc germanate phosphors as electroluminescent materials
JP3704068B2 (en) EL panel
JP2795194B2 (en) Electroluminescence device and method of manufacturing the same
JP2004137480A (en) Fluorescent substance thin film, method for producing the same and el panel
JP2000104059A (en) Luminescent material, alternating current thin-film electroluminescent device, and thin electroluminescent emitter
JP4230363B2 (en) Phosphor thin film, manufacturing method thereof, and EL panel
JPH0935869A (en) Manufacture of electroluminescence element
JP4042895B2 (en) Oxide phosphor for PL, CL or EL, electroluminescence element, and method for producing the same
US6707249B2 (en) Electroluminescent device and oxide phosphor for use therein
JP3574829B2 (en) Inorganic electroluminescent material, inorganic electroluminescent device using the same, and image display device
JP2006524271A (en) Europium-doped gallium-indium oxide as a red-emitting electroluminescent phosphor material
JPH0883686A (en) Thin film luminous element
JPWO2003081958A1 (en) EL phosphor laminated thin film and EL element
JP2985096B2 (en) Zn lower 2 SiO lower 4: Method of manufacturing AC driven thin film electroluminescent device using Mn thin film as light emitting layer
KR20020082384A (en) Fluorescent Thin Film, Preparation Method and EL Panel
JP5192854B2 (en) Phosphor and display panel using the same
JP3073057B2 (en) Manufacturing method of electroluminescence device
JP2001262140A (en) Aluminate-based blue emission phosphor material and blue emission thin film electroluminescence element constituted using the same
JP2006219641A (en) Light-emitting material and light-emitting element
JP2004307808A (en) Gadolinium oxide-vanadium oxide multicomponent oxide white luminous fluorescent material
JP3865122B2 (en) Sulfur oxide phosphor for electroluminescence device and electroluminescence device
JP2828019B2 (en) ELECTROLUMINESCENT ELEMENT AND ITS MANUFACTURING METHOD
JPH09260060A (en) Electro-luminescence element and manufacture thereof
JP2005076024A (en) Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element
JP3016323B2 (en) Electroluminescence element